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1. Introduction

In recent years, classifications of all abstract regular polytopes for a given auto-
morphism group G have been made either using the computer [10, 4, 5] or with a
theoretical approach: work on polytopes of highest possible rank has been carried
out by Leemans for the Suzuki groups Sz(q) [7], Leemans and Schulte for the L2(q)
and PGL(2, q) groups [9, 8], Fernandes and Leemans for the symmetric groups [1],
and by Fernandes, Leemans and Mixer [2, 3] for the alternating groups.

In [6], we managed to determine, up to isomorphism and duality, how many
abstract regular polytopes have a given Suzuki simple group Sz(q) as automorphism
group. In order to try to get similar results for the symmetric and alternating
groups, it is important to first determine, up to isomorphism, how many pairs of
commuting involutions these groups have. So a purely group-theoretical question
arises here.

Can we determine, up to isomorphism, the number of (unordered) pairs of
commuting involutions of a symmetric group Sym(n) or an alternating group

Alt(n)?
We obtain the following two theorems that give an affirmative answer to this ques-
tion.

Theorem 1.1. Let n > 1 be a positive integer. Define λ(k) and ψ(k, n) as follows.

λ(k) =
⌊(k

2 + 1
)2⌋

ψ(k, n) =


[ 1

2 (2k − n)
]2 + 1

2 (2k − n) if n is even,

[ 1
2 (2k − n− 1)

]2 + 2k − n if n is odd.
There are, up to isomorphism,

−3n
2 +

n∑
k=1

λ(k) ·
(n− k

2 + 1
)
− 1

2 ·
n∑

k=bn2 c+1

ψ(k, n)

unordered pairs of commuting involutions in Sym(2n) and Sym(2n+1) except for
Sym(6) in which there are, up to isomorphism, five unordered pairs of commuting
involutions.
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Theorem 1.2. Let n > 1 be a positive integer. Define φ(k, n) and µ(n) as follows.

φ(k, n) =


λ(k)− 1 if k ≤

⌊n
2

⌋
,

λ(k)− ψ(k, n)− 1 if k >
⌊n

2

⌋
,

µ(n) =− 2
⌊n

2

⌋
+

n∑
k=1
k even

[
γ(k) ·

⌈1
2 ·
(
n− k + 1

)⌉
+ δ(k) ·

⌊1
2 ·
(
n− k + 1

)⌋]

where

γ(k) = k2

8 + 3k
4 + 1,

δ(k) = k2

8 + k

4 .

There are, up to isomorphism,

1
2

(
µ(n) +

n∑
k=1
k even

φ(k, n)
)

unordered pairs of commuting involutions in Alt(2n) and Alt(2n+ 1) except for
Alt(6) in which there is, up to isomorphism, a unique unordered pair of commuting
involutions.

Table 1 gives the number of unordered pairs of commuting involutions in Sym(n)
and Alt(n), up to isomorphism, for some small values of n, according to the formulas
obtained in our two theorems.

n {ρ0, ρ2}, with ρ0, ρ2 ∈ Sym(n) {ρ0, ρ2}, with ρ0, ρ2 ∈ Alt(n)
1,2,3 0 0
4,5 3 1
6 5 1
7 9 2
8,9 21 7

10,11 39 10
12,13 67 21
14,15 105 28
16,17 158 48
18,19 226 61
20 315 93
30 1169 315
40 3105 855
50 6774 1795
Table 1. Number of unordered pairs of commuting involutions in
Sym(n) and Alt(n), up to isomorphism.

Moreover, we classify, without help of a computer, all abstract regular polyhedra
for Sym(6) and Alt(6).

The paper is organised as follows. In Section 2, we give some preliminaries needed
to understand our paper. In Section 3, we prove Theorem 1.1 and we classify all
abstract regular polyhedra of Sym(6). In Section 4, we prove Theorem 1.2.
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2. Definitions and notation

In this article we denote by Sym(n) the symmetric group of degree n, i.e.
the group of all permutations of the set {1, 2, . . . , n}. We also denote by Alt(n)
the alternating group, i.e. the normal subgroup of Sym(n) consisting of all even
permutations of Sym(n). For further information on the symmetric and alternating
groups, one may refer for instance to [12] and [13].

The classification of pairs of commuting involutions in Sym(n) and Alt(n) is
useful, for instance, if one wants to classify all abstract regular polyhedra, on which
a symmetric or alternating group acts as a regular automorphism group.

For any two elements g, h ∈ G, we define hg := ghg−1. The (ordered) sets S
and S′ of elements of G are conjugate in G provided there exists an element g ∈ G
such that Sg = S′ (preserving the order). They are isomorphic in G provided there
exists an element g ∈ Aut(G) such that gS = S′.

Given an element g ∈ Sym(n), provided its cycle decomposition contains exactly
ki cycles of length ci, we define its cycle type as the sequence (ck1

1 , . . . , cknn ) where
we mention only the lengths of cycles that appear in g.

Concerning polytopes, it is well known that there is a bijection between thin
regular residually connected geometries with a linear diagram, abstract regular
polytopes and string C-groups. The link between these objects, and more informa-
tion on abstract regular polytopes, may be found for instance in [11]. We take here
the viewpoint of string C-groups because it is the easiest and the most efficient one
to define abstract regular polytopes.

3. The Symmetric Group Sym(n),

3.1. Preliminary results. We first need the general form of the centralizer CSym(n)(ρ)
of an involution ρ in Sym(n). It will be useful to find the pairs of commuting in-
volutions {ρ0, ρ2} in Sym(n). This is a special case of [13, Paragraph 2.3.1], hence
we leave the proof as an exercise to the interested reader.

Proposition 3.1. Let ρ be an involution of cycle type (2k, 1n−2k) in Sym(n), where
1 6 k 6 bn2 c. The centralizer CSym(n)(ρ) ∼= E2k : Sym(k) × Sym(n − 2k), where
E2k is an elementary abelian group of order 2k.

Observe that, in Sym(2k + 1) (resp. Alt(2k + 1)), any pair of commuting in-
volutions will necessarily fix a point. Hence the number of pairs of commuting
involutions in Sym(2k) and Sym(2k + 1) (resp. Alt(2k) and Alt(2k + 1)) is the
same up to isomorphism, except for k = 3 as in this case, Aut(Sym(6)) 6= Sym(6).

We now compute the number of pairs of commuting involutions in Sym(2n).
The first step consists of choosing an involution ρ0, up to isomorphism. If 2n 6= 6,
computing such pairs up to conjugacy or up to isomorphism is the same. When
2n = 6, the outer automorphisms may fuse some non-conjugated pairs. As two
involutions are conjugate in Sym(2n) if and only if they have same cycle type, the
number of different possibilities, up to conjugacy, for ρ0 in Sym(2n), equals the
number of different cycle types for an involution in Sym(2n). Clearly an involution
in Sym(2n) has cycle type (2k, 12(n−k)) with k varying from 1 to n. Thus there are
n possibilities for choosing a first involution ρ0 in Sym(2n).

In order to count the number of commuting pairs of involutions in Sym(2n), we
fix the involution ρ0 and look at the number of possibilities to choose ρ2, up to
conjugacy, such that ρ2 commutes with ρ0.

We first compute the number of ordered pairs of commuting involutions in
Sym(2n). We prove the following lemma.
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Lemma 3.2. Up to conjugacy, there are

−2n+
n∑
k=1

λ(k) · (n− k + 1)

ordered pairs of commuting involutions ρ0 and ρ2 in Sym(2n) (and in Sym(2n+1)),
where

λ(k) =
⌊(k

2 + 1
)2⌋

.

Proof. Suppose ρ0 is an involution containing k cycles of length 2. Up to conjugacy,
there is only one such involution, namely (1, 2)(3, 4) . . . (2k−1, 2k). As ρ2 commutes
with ρ0, ρ2 ∈ CSym(2n)(ρ0) ∼= E2k : Sym(k)× Sym(2(n− k)).

First we count the possibilities for an involution ρ2, that fixes every element in
{2k + 1, . . . , 2n}, i.e. an involution in E2k : Sym(k). As we count them up to
conjugacy, we have to figure out which of all these involutions are conjugate by
an element of CSym(2n)(ρ0) . It is obvious that two conjugate involutions have the
same cycle type. Moreover it is obvious that there exists an element g ∈ Sym(2n)
such that ρg0 = ρ0 and ρg2 = ρ′2 if and only if ρ2 and ρ′2 have the same number of
2-cycles of the form (2r − 1, 2r), with 1 ≤ r ≤ k and the same number of 2-cycles
of the form (s, t) with |s− t| ≥ 2 and s, t ≤ 2k.

Suppose now that ρ2 is composed of l 2-cycles, where m 2-cycles are of the form
(s, t), with m ≤ l and l − m 2-cycles are of the form (2r − 1, r). To count the
number of such involutions ρ2 up to conjugacy, we just have to count the number
of possibilities for m. It is trivial to see that m has to be even. So m can take
every even value between 0 and l. This gives us b l2c + 1 possibilites for m, for a
given l. However l can take every value between 0 (in this case ρ2 is the trivial
permutation) and k. If λ(k) denotes the number, up to isomorphism, of possible
involutions ρ2 consisting only of elements in {1, 2, . . . , 2k}, that commute with ρ0,
then it is easily proven that

λ(k) =
k∑
l=0

(⌊ l
2

⌋
+ 1
)

=
⌊(k

2 + 1
)2⌋

.

Now we consider the case where the cycle decomposition of ρ2 involves also 2-
cycles from the group Sym(2(n − k)), i.e. 2-cycles containing the elements of
{2k + 1, . . . , 2n}. In fact these 2-cycles are independent of the other ones. So
we can simply multiply λ(k) by the number of possibilities of forming involutions
in Sym(2(n−k)). As ρ0 fixes all the elements in {2k+1, . . . , 2n}, all the involutions
of same cycle type of Sym(2(n− k)) are conjugate by a permutation fixing ρ0. To
count the number of involutions in Sym(2(n − k)), up to conjugacy, we just have
to count the number of different cycle types. An involution of Sym(2(n − k)) can
have between 0 and n− k cycles of length 2. So there are n− k + 1 different cycle
types.

To compute the number of all the involutions ρ2 that commute with a given ρ0
of cycle type (2k, 12(n−k)), we have to multiply λ(k) by n − k + 1. However the
trivial permutation and ρ0 itself are also among these constructions. So we have to
subtract 2 from this number.

The number of 2-cycles involved in ρ0 may vary between 1 and n. We sum up
(λ(k) · (n− k + 1)− 2) for every k between 1 and n to finish the proof. �

Some ordered pairs of commuting involutions that are not conjugate under the
action of Sym(2n) are conjugate when seen as unordered pairs. For instance, in
Sym(6), the ordered pairs [(1, 2), (1, 2)(3, 4)] and [(1, 2)(3, 4), (1, 2)] are conjugate
when seen as unordered pairs. But [(1, 2), (1, 2)(3, 4)] and [(3, 4)(5, 6), (1, 2)] are
obviously not as [(1, 2), (1, 2)(3, 4)] and [(1, 2), (3, 4)(5, 6)] are not conjugate.
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Lemma 3.3. Let 1 ≤ k, l ≤ n. Let [ρ0, ρ2] be a representative of a conjugacy class
of ordered pairs of commuting involutions of Sym(2n), with ρ0 an involution of
cycle type (2k, 12(n−k)) and ρ2 an involution of cycle type (2l, 12(n−l)).
If k 6= l there exists an involution ρ′0 of cycle type (2l, 12(n−l)) and an involution ρ′2
of cycle type (2k, 12(n−k)), such that the unordered pairs {ρ0, ρ2} and {ρ′0, ρ′2} are
conjugate.
If k = l, two representatives of distinct classes of ordered pairs of commuting invo-
lutions are never conjugate, even when seen as unordered pairs.

Proof. The first one to one correspondence is easy to see. Take [ρ0, ρ2] as described
in the lemma. Take ρ′0 of cycle type (2l, 12(n−l)). As ρ2 and ρ′0 have same cycle
type, they are conjugate by a permutation α. The involution ρα0 is of cycle type
(2k, 12(n−k)) and commutes with ρα2 = ρ′0, because ρ0 commutes with ρ2. Set
ρ′2 = ρα0 . Hence [ρ′0, ρ′2] is an ordered pair of commuting involutions and {ρ0, ρ2}
and {ρ′0, ρ′2} are conjugate as unordered pairs. As the situation is symmetric in k
and l, the one to one correspondence is established.
Suppose now that k = l and suppose, by contradiction, that there exist two ordered
pairs [ρ0, ρ2] and [ρ′0, ρ′2] from different isomorphism classes and a permutation α
such that ρα0 = ρ′2 and ρα2 = ρ′0. Without loss of generality we may choose two
representative pairs with ρ0 = ρ′0. Then

ρ′2 = ρα0 = ρ′α0 = ρα
2

2 .

This means that ρ2 and ρ′2 are conjugate which contradicts the fact that the two
ordered pairs [ρ0, ρ2] and [ρ′0, ρ′2] are in different conjugacy classes. �

Imagine we have found all the conjugacy classes of ordered pairs of commuting
involutions in Sym(2n). We now pick one pair of each class and set up a list.
Lemma 3.3 shows that for every ordered pair of commuting involutions in the list,
of the form [ρ0, ρ2] where ρ0 and ρ2 have different cycle types, there exists another
ordered pair [ρ′0, ρ′2] in the list such that the two pairs are conjugate as unordered
pairs. Hence we have to modify the formula in Lemma 3.2 accordingly.

Remark 3.4. In terms of polytopes the above reasoning means that two ordered
pairs described as above generate two dual polytopes. However an ordered pair in
the list, of the form [ρ0, ρ2], with ρ0 and ρ2 having the same cycle type, has no dual
pair on that list.

In the next proof we apply the above reasoning.

3.2. Proof of Theorem 1.1. First we have to compute the number of ordered
pairs [ρ0, ρ2] where ρ0 and ρ2 contain exactly k cycles, for a given 1 ≤ k ≤ n.
Without any loss of generality, we may again fix ρ0 = (1, 2)(3, 4) . . . (2k − 1, 2k).
We have to count the number of possibilities to choose an involution ρ2 of cycle
type (2k, 12(n−k)), being different from ρ0 and commuting with ρ0. As in the proof
of Lemma 3.2, we construct involutions of cycle type (2l, 12(n−l)) and acting only
on the set {1, 2, . . . , 2k}, i.e. fixing all the elements of the set {2k + 1, . . . , 2n}. As
we want ρ2 to be of cycle type (2k, 12(n−k)), we have to add k − l 2-cycles acting
on the set {2k + 1, . . . , 2n} and fixing the elements of {1, . . . , 2k}. The integer l
may take every value between 0 and k if n − k ≥ k, that is if k ≤ n/2. Define
ν(n) = bn2 c+ 1.

If k < ν(n), the integer l may take every value between 0 and k and 2-cycles
involving only elements from the set {2k + 1, . . . , 2n} are added to get cycle type
(2k, 12(n−k)). To compute the number of possibilities for ρ2 in this case, we have
to compute the number of involutions consisting of l cycles, with 0 ≤ l ≤ k, and
fixing every element of the set {2k + 1, . . . , 2n}. So we are in exactly the same
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situation as in the proof of Lemma 3.2. Thus we get exactly λ(k) possibilities, with
λ(k) defined as in Lemma 3.2. However, one of these possibilities is the case where
ρ2 = ρ0. As we do not want this case, we have to substract 1. Finally if k < ν(n),
there are λ(k) − 1 ordered pairs of commuting involutions [ρ0, ρ2] such that both
ρ0 and ρ2 contain exactly k cycles.

If k ≥ ν(n), we have 2k− n ≤ l ≤ k. Let λ′(k) be the number of possibilities for
ρ2. We distinguish between two cases.
If 2k − n− 1 is odd,

λ′(k) =
k∑

l=2k−n

(⌊ l
2

⌋
+ 1
)

= λ(k)− 1
2

(
2k − n

)
−
[1

2

(
2k − n

)]2
.

If 2k − n− 1 is even,

λ′(k) = λ(k)− 2k + n−
[1

2

(
2k − n− 1

)]2
.

A simple algebraic manipulation then gives us

λ′(k) =


λ(k)− 1

2

(
2k − n

)
−
[1

2

(
2k − n

)]2
if n is even,

λ(k)− 2k + n−
[1

2

(
2k − n− 1

)]2
if n is odd.

Once again we have to subtract 1 from λ(k)′ as one of these possibilities is the
case ρ0 = ρ2.

Let φ(k) be the number of pairs of commuting involutions [ρ0, ρ2] with ρ0 and
ρ2 containing both exactly k cycles. By the former reasoning we get

(1) φ(k) =

λ(k)− 1 if k ≤ bn2 c,

λ(k)− ψ(k, n)− 1 if k > bn2 c,

where ψ(k, n) is defined as in Theorem 1.1. Thus the number of pairs of commuting
involutions [ρ0, ρ2] with ρ0 and ρ2 containing the same number of cycles, is the sum
of all φ(k) for 1 ≤ k ≤ n.

To compute the general number of unordered pairs of commuting involutions in
Sym(2n), we substract this sum from the formula in Lemma 3.2, divide by 2 and
then add again the sum. The number of unordered pairs of commuting involutions
in Sym(2n) is therefore as stated in the theorem, except for 2n = 6 as Sym(6) is
not its own automorphism group.

We finish the proof of Theorem 1.1 by analysing the case where 2n = 6.

3.3. The case where 2n = 6. For Sym(6), the number of pairs of involutions ob-
tained above does not take into account that there may be pairs that are isomorphic
in Aut(Sym(6)). A straightforward analysis of the pairs of commuting involutions
of Sym(6) gives the following representative of each isomorphism class of pairs of
commuting involutions in Sym(6).

ρ0 = (1, 2) and ρ2 = (3, 4)(2a)
ρ0 = (1, 2) and ρ2 = (3, 4)(5, 6)(2b)
ρ0 = (1, 2) and ρ2 = (1, 2)(3, 4)(2c)
ρ0 = (1, 2) and ρ2 = (1, 2)(3, 4)(5, 6)(2d)

ρ0 = (1, 2)(3, 4) and ρ2 = (1, 3)(2, 4)(2e)

This finishes the proof of Theorem 1.1.
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3.4. Polyhedra with Automorphism Group Sym(6). We already mentioned
that there is a bijection between abstract regular polytopes and string C-groups.

Definition 3.5. A C-group is a group generated by pairwise distinct involutions
ρ0, ρ1, ρn−1 which satisfy the following property, called the intersection property.

∀J,K ⊆ {0, . . . , n− 1}, 〈ρj | j ∈ J〉 ∩ 〈ρk | k ∈ K〉 = 〈ρj | j ∈ J ∩K〉

A C-group (G, {ρ0, . . . , ρn−1}) is a string C-group if its generators satisfy the fol-
lowing relations.

(ρjρk)2 = 1G ∀j, k ∈ {0, . . . n− 1} with |j − k| ≥ 2

As seen above, there are, up to isomorphism, 5 pairs of commuting involutions
in Sym(6). We want to see which of these 5 pairs can be extended into a string
C-group 〈ρ0, ρ1, ρ2〉 isomorphic to Sym(6) (see [11]).

By analysing each pair {ρ0, ρ2} separately, it may be found out that only the
two pairs ρ0 = (1, 2) and ρ2 = (3, 4)(5, 6) and ρ0 = (1, 2) and ρ2 = (1, 2)(3, 4)(5, 6)
are expandable in a string C-group isomorphic to Sym(6) by adding one extra
involution ρ1. The following theorem summarizes the result we obtain.

Theorem 3.6. Up to isomorphism and duality, Sym(6) is the automorphism group
of exactly 2 abstract regular polyhedra. These 2 polyhedra have Schläfli type {6, 5}
and {6, 6}.

Remark 3.7. In [10] Leemans and Vauthier have come to the same result for
Sym(6), with the help of a computer.

4. The Alternating Group Alt(n)

4.1. Preliminary results and proof of Theorem 1.2. In this section we do
the same work for the alternating groups. First we give the general form of the
centralizer of a given involution in Alt(n). Then we give a formula computing the
number of unordered and the number of ordered pairs of commuting involutions in
Alt(n).

Proposition 4.1. Let ρ be an involution with of cycle type (2k, 1n−2k) in Alt(n).
Then CAlt(n)(ρ) = {σ ∈ E2k : Sym(k)× Sym(n− 2k) | σ ∈ Alt(n)} and we also get
|CAlt(n)(ρ)| = 2k−1 × k!× (n− 2k)!

Proof. We know that Alt(n) 6 Sym(n). So CAlt(n)(ρ) 6 CSym(n)(ρ). Moreover, as
an involution contains at least one cycle of even length, the conjugacy class of an
involution in Alt(n) corresponds to the class of all involutions of same cycle type.
Thus it is the same as the conjugacy class of that involution in Sym(n). Hence
CAlt(n)(ρ) is not equal to CSym(n)(ρ), but is merely a subgroup of index 2 of it. In
fact it is the subgroup of all even permutations of CSym(n)(ρ). Also the order of
CAlt(n)(ρ) is half of the order of CSym(n)(ρ). �

As in section 3, we concentrate on groups Alt(2n). We start by choosing a first
involution. All involutions of same cycle type in Alt(2n) are conjugate and thus the
number of possibilities to choose a first involution ρ0, up to conjugacy, equals the
number of different cycle types in Alt(2n). An involution in Alt(2n) has cycle type
(2k, 12(n−k)) with k an even integer between 1 and n. Hence there are bn2 c different
possibilities, up to isomorphism, for choosing a first involution ρ0 in Alt(2n).

Step 2 consists of choosing a second involution ρ2, commuting with ρ0, in Alt(2n),
once ρ0 is fixed. Hence we choose a pair of commuting involutions in Alt(2n). We
first compute, in the following lemma, the number of orbits of ordered pairs of
commuting involutions in Alt(2n) under the action of Sym(2n).
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Lemma 4.2. Under the action of Sym(2n), there are µ(n) orbits of ordered pairs of
commuting involutions ρ0 and ρ2 in Alt(2n), where µ(n) is as stated in Theorem 1.2.

Proof. We start in the same way as in the proof of Lemma 3.2. We take ρ0 an
involution of cycle type (2k, 12(n−k)), k even, and ρ2 ∈ CAlt(2n)(ρ0) = {σ ∈ E2k :
Sym(k)× Sym(2(n− k)) | σ ∈ Alt(2n)}. We proceed in the same way by counting
first the possibilities for an involution ρ2 acting only on elements of {1, 2, . . . , 2k}.

We consider the involutions up to isomorphism andAut(Alt(2n)) = Aut(Sym(2n)).
If an involution is conjugate to ρ2 in Sym(2n), then in Alt(2n) it is also conjugate
to ρ2. Therefore we can apply the same reasoning as in the proof of Lemma 3.2
and we suppose ρ2 is composed of l 2-cycles, where m 2-cycles are of the form (s, t),
with |s− t| ≥ 2 and s, t ≤ 2k, m ≤ l and l−m 2-cycles are of the form (2r− 1, 2r),
with 1 ≤ r ≤ k. We have to count the number of possibilities for m, with m even.
So, as before, m can take every even value between 0 and l, which gives us b l2c+ 1
possibilities for m, for a given l. In the previous proof, l could take every value
between 0 and k. In this proof, we have to distinguish between the case when l
takes an even value and when l takes an odd value. Let γ(k) denote the number
of possible involutions ρ2 with an even number of 2-cycles involving only elements
of {1, 2, . . . , 2k}. It is easy to see that γ is as claimed. Let δ(k) denote the number
of possible involutions ρ2 with an odd number of 2-cycles involving elements in
{1, 2, . . . , 2k}. It is also easy to see that δ is as claimed.

As before we add the 2-cycles composed of elements of the set {2k + 1, . . . , 2n}.
An involution in Sym(2(n−k)) can have j 2-cycles with j a number between 0 and
n−k. As the involution ρ2 is in Alt(2n), either l and j are even, or l and j are odd.
There are exactly d 1

2 (n−k+1)e even integers between 0 and n−k and hence there
are d 1

2 (n− k + 1)e possibilities for j taking an even value. These possibilities have
to be multiplied by γ(k). On the other side there are b 1

2 (n − k + 1)c odd integers
between 0 and n− k, which gives us b 1

2 (n− k+ 1)c possibilities for j taking an odd
value. These possibilities have to be multiplied by δ(k).

As before we have to remove the two possibilities where ρ2 is the identity and
where ρ2 is equal to ρ0. In both cases l and j are even. So we have to remove 2
from the number γ(k) · d 1

2 (n− k + 1)e and sum up all these possibilities for every
even k between 1 and n. This leads to the desired value of µ(n). �

By Lemma 4.2, we may compute the number of unordered pairs of commuting
involutions in Alt(2n) and obtain a proof of Theorem 1.2 using the same techniques
as in the proof of Theorem 1.1. Therefore, we leave the proof to the interested
reader.

For the case where 2n = 6, it remains to look at the action of Aut(Alt(6)) on
pairs of commuting involutions.

Lemma 4.3. In Alt(6) there is a unique pair of commuting involutions, up to
isomorphism.

Proof. In Sym(6) we are left with 5 pairs of commuting involutions, up to iso-
morphism. They are shown in (2). Only the pair (2e) corresponds to a pair of
commuting involutions in Alt(6). Hence in Alt(6) we are left with exactly one pair
of commuting involutions, namely (1, 2)(3, 4) and (1, 3)(2, 4). �

4.2. Polyhedra with Automorphism Group Alt(6). Lemma 4.3 shows that
there is, up to isomorphism, only one pair of commuting involutions in Alt(6). We
choose ρ0 = (1, 2)(3, 4) and ρ2 = (1, 3)(2, 4). We are looking for an involution ρ1
such that 〈ρ0, ρ1, ρ2〉 is a string C-group isomoprhic to Alt(6). It can be shown that
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such a ρ1 does not exist. In fact all the ρ1 that satisfy the conditions of a string C-
group are such that the group 〈ρ0, ρ1, ρ2〉 is not isomorphic to Alt(n). This confirms
the following well known theorem.

Theorem 4.4. No polyhedron has automorphism group isomorphic to Alt(6).
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