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Résumé

Nous présenterons 'idée de Sophie Germain (aussi connue sous le nom de
M. Le Blanc) pour attaquer la preuve du théoréeme de Fermat. Apreés un bref
récapitulatif de la biographie de Sophie Germain, nous analyserons son plan
de preuve général et donnerons un apercu des mathématiques sous-jacentes.
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Figure 1 — Une rue de Paris porte encore son nom.

1 Biographie

Née en 1779 dans une famille bourgeoise, Sophie Germain s’est intéressée tres
tot a I’étude des mathématiques. Or, a cette époque, les femmes n’étaient pas
censées faire des études. Elles bénéficiaient certes d’un certain niveau d’éduca-
tion, mais dans le simple intérét de leur transmettre une culture générale afin
qu’elles puissent engager des conversations, dans les salons, avec de futurs maris
potentiels. Un livre trés a la mode a cette époque était le livre Le Newtonianisme
pour les dames, écrit par l'italien Francesco Algarotti. Le but de ce livre était de
rendre des sujets qu’on considérait masculins, comme les sciences, intéressants
pour les femmes. On y trouvait ainsi toutes sortes d’explications pour le moins
singuliéres et au contenu mathématique fort douteux, comme par exemple la
phrase suivante qui tente d’expliquer la loi de la gravitation en l'inverse du carré
de la distance : « Cette loi d’'attraction inverse pourrait s’appliquer a 'amour : aprés
huit jours de séparation 'amour est soixante-quatre fois plus intense. » Il n’est alors
pas difficile de s"imaginer que ce n’est pas un livre pareil qui a éveillé I'intérét de
Sophie Germain pour les mathématiques. En effet, le livre qui a incité Germain
A s’intéresser aux mathématiques est un ouvrage de Jean-Etienne Montucla sur
I'histoire des mathématiques. Dans cet ouvrage Germain découvrit la curieuse
histoire de la mort d’Archimeéde : un jour Archimede était en train de réfléchir a
un probléme de géométrie et pour cela il avait dessiné des figures dans le sable.
Vint alors un soldat qui lui demanda de se présenter et de s’identifier. Selon la
légende, Archimeéde, concentré sur ses figures, eut pour seule réponse : « Je ne
veux pas étre dérangé, et ne piétine pas mes figures sur le sable. » Le soldat le tua
immédiatement d’un coup d’épée. Cette histoire fascinait Germain. Elle se disait
que si un homme pouvait étre pris par I’étude des mathématiques au point de
mourrir pour cela, ce sujet devrait étre fascinant et vaudrait stirement la peine
d’étre étudié. C'est ce qui poussera Germain vers I’étude des mathématiques. Bien
str ceci n’était pas du tout bien vu par ses parents et, a cette époque, on disait
des mathématiques qu’elles pouvaient « mener les femmes d la folie, leur cerveau
n’étant pas capable de supporter un tel effort. » Les parents essayaient donc tout
pour empécher Germain d’étudier, allant parfois jusqu’a la priver de vétements
et de bougies pendant la nuit, mais son désir de comprendre cette science était
tel qu’elle en vint a devoir voler en secret quelques bougies et quelques draps, de
sorte & pouvoir étudier la nuit. Il est dit que les parents finirent par accepter la
passion de leur fille.

En 1794 I'Ecole Polytechnique ouvrit ses portes a Paris, mais il était bien stir
hors question qu'une femme atteigne les cours donnés a cet école. Or, Antoine
Auguste Le Blanc, un ami de Sophie, y était inscrit comme éléve et était d’accord
que Germain se procure les cours en utilisant son nom. Un jour, Le Blanc quitta
Paris sans avertir 1’école et Germain continua ainsi a utiliser son nom pour se
procurer les cours et pour participer aux exercices posés aux étudiants. Mais
Germain avait du talent et Lagrange, un des meilleurs mathématiciens de son
époque, qui était professeur a 1’Ecole Polytechnique & ce moment-13, le remarqua
et demanda a rencontrer cet étudiant en personne. Sophie Germain, forcée de
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révéler sa vraie identité, surprit bien évidemment le professeur qui, loin de le
prendre mal, devint ainsi son mentor ! C’est donc avec 'aide de Lagrange qu’elle
fit ses premiers pas dans la recherche en mathématiques, s’intéressant tres tot au
théoreme de Fermat.

C’est en vue d’une démonstration de ce théoréme qu’elle commenca a déve-
lopper ses premiéres idées originales. Or, a ce moment, le plus grand spécialiste
en théorie des nombres était Carl Friedrich Gauss et en 1804, a I’age de 28 ans,
Sophie Germain décida de lui écrire pour lui expliquer son idée de démonstration.
Par peur de ne pas étre prise au sérieux, elle utilisa a nouveau le pseudonyme
d’Antoine Auguste Le Blanc. Il se trouve que Gauss, qui n’avait malheureuse-
ment pas le temps de tout lire, lut tout de méme les parties de ses lettres qui
I'intéresserent le plus et répondit aimablement. Commence alors une riche cor-
respondance entre les deux, a peine quelques années avant ’envoi des troupes
Napoléoniennes en Allemagne, événement qui démasquera une fois de plus la
mathématicienne, bien que d’une fagon bien différente de 1’épisode de 1'Ecole
Polytechnique et qui aura cette fois attrait non pas au talent mais a I'amitié qui
s’était installée entre les deux correspondants. Effectivement, ayant peur pour
Gauss, Germain demanda a des amis faisant partie des troupes envoyées en Al-
lemagne de protéger son ami allemand. Or, ces derniers informeérent le brillant
mathématicien qu’il devait sa protection a une certaine Mademoiselle Germain,
que Gauss ne tarda pas a identifier avec son correspondant Antoine Auguste
Le Blanc. Si la révélation de l'identité de Germain se déroule ici d’'une maniére
différente, elle trouve pour écho la méme réaction : loin d’étre rebuté, Gauss ett
méme une réaction trés positive et déclara méme dans une lettre que, s’il était
déja fasciné par les travaux de Le Blanc, le savoir réellement une femme ne faisait
que l'enthousiasmer davantage ! D’aucuns rétorqueront, avec toutes les raisons du
monde, qu’une telle réaction, bien que trés progressiste pour I'époque, révele tout
de méme a quel point la femme était percue comme inférieure dans la société de
I’époque. Cependant, il n'y a pas qu’en mathématiques que Gauss était en avance
sur son temps, puisqu’il dira que ce n’est pas l'infériorité intellectuelle supposée
des femmes (chose a laquelle il ne croyait pas) qui exacerbait sa fascination pour
les travaux de Germain, mais bien le fait que le genre opposé n’avait acces qu’a
une éducation réduite. Leur amitié continua ainsi par correspondance jusqu’a ce
que, un peu plus tard, Gauss fusse nommé directeur a I’'Observatoire de Gottingen
et commence a manquer de plus en plus de temps a consacrer a Germain.

Les résultats de Germain sur le théoréme de Fermat ne seront validés qu’en
1830 dans la publication Théorie des nombres de Legendre. Dans une note en bas de
page, ce dernier explique qu’un des théorémes du livre est dit @ Sophie Germain.
11 faut effectivement garder en mémoire que son approximation du théoréme de
Fermat constitue, entre 1738 et 1840, une des avancées les plus importantes vers
sa démonstration (qui ne viendra cependant que bien plus tard).

Le nom de Sophie Germain se trouve ainsi trés souvent mentionné en asso-
ciation avec le théoréme de Fermat, bien que ses contributions ne s’y soient pas
limitées, bien au contraire ! En effet, elle a également fait des contributions a la
théorie de ’élasticité des corps, pour lesquelles elle obtint le prix de ’Académie
des Sciences. Elle obtint en outre la médaille honorifique de I'Institut de France
et fut la premiére femme ayant le droit d’assister aux séances de I’Académie des
Sciences sans étre mariée a 'un des scientifiques présents. En 1830 elle se verra
méme décerner le titre de docteur honoris causa a 'université de Gottingen, titre
qu’elle n'aura malheureusement jamais eu la chance d’accepter en personne, car
c’est en 1831 déja qu’elle succombera a un cancer du sein.
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FIGURE 2 — Le théoréme de Fermat est une source d’inspiration.

Pour plus de détails sur Sophie Germain, nous invitons le lecteur a consulter
les ouvrages [4] et [6].

2 Rappels mathématiques

2.1 Legrand théoréme de Fermat
C’est en 1670 que Pierre de Fermat conjecture le théoreme pour la premiére fois.

Théoréme 1. Pour n> 2 I"équation x" +y" = z" n'admet pas de solution en nombres
entiers.

Fermat écrit en fait ’énoncé du théoreme (sans la preuve) dans une copie du
livre Arithmetica de Diophante. Le probléme 8 de ce livre traite de comment un
carré donné peut étre écrit comme somme de deux carrés, autrement dit, si k
est un nombre rationnel donné, comment peut-on trouver des rationnels u et

v satisfaisant 1’équation k? = u? + v2. La note que Fermat laisse en marge de ce
probleme est la suivante :

Cubum autem in duos cubos, aut quadratoquadratum in duos qua-
dratoquadratos, et generaliter nullam in infinitum ultra quadratum
potestatem in duos eiusdem nominis fas est dividere cuius rei de-
monstrationem mirabilem sane detexi. Hanc marginis exiguitas non
caperet.

On ne peut exprimer un cube comme une somme de deux cubes, un
bicarré comme une somme de deux bicarrés, et plus généralement
une puissance parfaite comme une somme de deux mémes puissances.
J'en ai découvert une démonstration tout a fait remarquable. Mais ma
marge est trop étroite pour la contenir.

Seule la démonstration de Fermat du cas n = 4 a été retrouvée. En 1753, Euler
a pu démontrer le cas n = 3 et en 1825 Dirichlet et Legendre ont traité le cas
n=>5.En 1839, Lamé a démontré le cas n = 7, mais c’est seulement en 1995, plus
de trois siécles apres ’énoncé du théoreme, que Andrew Wiles trouve enfin une
démonstration de cette conjecture, en utilisant la théorie des courbes elliptiques.
Au temps de Sophie Germain, seuls les cas n =4 et n = 3 étaient donc connus. Le
fait que des mathématiciens, ainsi que des amateurs, aient cherché pendant plus
de trois siecles une démonstration de cette conjecture, combiné a la simplicité de
I’énoncé de ce théoréme, aura eu comme résultat que le théoréeme de Fermat est
probablement 'un des théorémes mathématiques les plus connus en dehors du
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monde académique. On trouve ainsi sur ce théoreme diverses blagues, comme
le montre la figure 2 on the preceding page, des poémes et méme des histoires
d’amour. Dans le livre True Tales of American Life de Paul Auster apparait une
nouvelle, intitulée Mathematical Aphrodisiac, écrite par Alex Galt, dans laquelle le
théoréme de Fermat est évoqué.

2.2 Quelques lemmes et théorémes nécessaires

Dans cette sous-section, nous allons survoler quelques lemmes et théorémes
connus et facilement démontrables, qui seront nécessaires a la compréhension de
la partie principale de ce texte.

Nous commencons par rappeler quelques lemmes en relation avec le théoreme
de Fermat, déja connus a I’époque de Sophie Germain.

Lemme 2. Sil’équation x™ +y" = z" n'admet pas de solution en nombres entiers avec
X, V et z premiers entre eux, I'équation n’admet pas de solution tout court.

Démonstration. Supposons que I’équation x” + p" = z" n'admette pas de solution
en nombres entiers x, v et z premiers entre eux, mais qu’elle admet une solution
X, Y, Z. Alors il existe un nombre entier m tel que m | X,Y,Z. Prenons m maximal.

On a
X\ Y\" Z\"
X" y" :Z”@(—) +(7) :(7)
m m m
et donc %, % et % sont solutions de I’équation x"+p" = z". Comme m est maximal,

les trois nombres entiers sont premiers entre eux, ce qui donne la contradiction
souhaitée. O

Lemme 3. Si4|n, "équation x" +y" = 2" n'admet pas de solution en nombres entiers.

Démonstration. Supposons que 4 | n et que 1’équation x" + y" = z"" admette une
solution en nombres entiers X, Y et Z. Alors il existe un nombre entier m tel que
n=4metona

X"+y"t=2"
<3()(l’n)‘l + (Y}’VZ)4 — (Z}ﬂ)‘l'

On aurait donc trouvé une solution en nombres entiers & 'équation x* + p* = z4,
ce qui est en contradiction avec la preuve de Fermat comme quoi cette équation

n’a pas de solution en nombres entiers. O

Gréce aux lemmes 2 et 3, il suffit de démontrer que I’équation xP + yP = zP
n‘admet pas de solution en nombres entiers premiers entre eux pour p étant un
nombre premier impair afin de démontrer le théoréme de Fermat. En effet, sup-
posons que ’équation xP + yP = zP n'admette pas de solutions mais que I’équation
x™+ 9" = z" en admette une pour n non premier. Supposons alors qu'il existe un
nombre premier impair p qui divise n, c’est-a-dire n = pm. Si X, Y, Z satisfont
X"+Y"=2Z", alors X", Y™, Z™ sont solutions de I’équation xP + pP = zP, ce qui
contredit ’hypothése du départ. Si n n’est pas divisible par un nombre premier
impair, alors 7 est de la forme n = 2™ pour un nombre entier m. Or comme n > 2,
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n est divisible par 4, ce qui est en contradiction avec le lemme 3. Le lemme 2
implique alors que les solutions x, v, z peuvent étre choisies premiéres entre elles.

Avant de passer au travail de Sophie Germain, rappelons quelques théorémes
connus, qu’on ne démontrera pas ici. Le premier théoréme est connu sous le nom
de petit théoréme de Fermat.

Théoreme 4 (Le petit théoréme de Fermat). Soient p un nombre premier et a € Z
avec p fa. Alors

aP"l'=1 modp.
Le deuxiéme théoréme est di a Euler.

Théoréme 5. Soient p # O deux nombres premiers. Alors xP = a (mod 0) admet une

0-1
solution en x si et seulement sia @ =1 (mod 0) ou d = pged(p,0 —1).

3 Letravail de Sophie Germain

Dans cette section nous considérons une partie des travaux de Sophie Germain
sur le théoréme de Fermat. Une étude plus complete peut étre trouvée dans [3],
article sur lequel nous nous basons principalement pour cette section. Une autre
étude détaillée des travaux de Germain concernant le théoréme de Fermat est
donnée dans [1]. Dans la premiére sous-section nous décrivons le Grand Plan de
Germain pour démontrer le théoréme. La deuxiéme sous-section est consacrée
au Théoréme des Grandes Tailles des Solutions de Germain, duquel découlera le
théoréme qui est aujourd’hui connu sous le nom de Théoréme de Sophie Germain.

3.1 Le Grand Plan

Dans cette sous-section nous considérons le plan complet de Germain avec le-
quel elle espérait démontrer le théoréme de Fermat. Pour cela elle démontre
tout d’abord un théoreme de base qui reviendra dans tous ses travaux. Pour ce
théoréme, elle utilisera la condition dite de non-consécutivité (condition N-C).

Condition (N-C). Il n’y a pas deux résidus p-iéme puissance consécutifs mo-
dulo 6.

Avec ceci elle établit son théoréme de base comme suit.

Théoréme 6. Sil'équation xP + yP = zP admet une solution en nombres entiers, alors
tout nombre premier O de la forme 2np + 1, avec n € N, qui satisfait N-C, divise x, v
ou z.

Avant de démontrer le théoreme de base, nous considérons un exemple afin de
clarifier la condition N-C. Considérons le nombre premier p = 5 et considérons
1 <n<10. Nous nous demandons d’abord si le nombre 6 = 2np + 1 est premier
et, le cas échéant, s’il satisfait la condition N-C. Définissons l’ensemble R comme
étant 'ensemble des résidus p-iéme puissance modulo 6, c.-a-d. R = {xP (mod 6) |
1 <x <O -1}. Les résultats pour 1 <n <10 sont montrés dans la table 1.

La table 1 montre que pour p =5 la condition N-C est satisfaite pour au moins
0 =11,41,71,101. Considérons donc maintenant la preuve du théoreme 6.
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n 6 R N-C DP-P-P
1 11  R={1,10} v N
2 21 O pas premier X X
3 31  R={1,5,6,25,26,30} X X
4 41 R=1{1,3,9,14,27,32,38,40} v vV
5 51 O pas premier X X
6 61 R=1{1,11,13,14,21,29,32,40,47,48,50,60} X v
7 71 R={1,20,23,26,30,32,34,37,39,41,45,48,51,70} v v
8 81 O pas premier X X
9 91 R={1,2,4,5,...,86,87,89,90} X X
10 101 R={1,6,10,14,17,...84,87,91,95,100} v v

TasLe 1 — Illustration pour p=5et 1 <n<10.

Démonstration. Supposons que x, v et z satisfassent '’équation xP + yP = zP. Soit 0
de la forme 2np + 1 et tel que O satisfait N-C. Supposons que 6 ne divise ni x, ni v,
ni z. Alors xP + pP = zP et ceci équivaut a zP — yP = xP. Modulo 0 'équation reste
valable et, comme 6 est premier et ne divise aucun des trois nombres entiers x, v,
z, on peut diviser I’équation par xP. Aprés division par xP on obtient

(f)p—(g)p =1 modo.

X X

Or ceci signifie que les nombres (%) et (%

modulo 6, sont des p-iémes puissances consécutives modulo 0, ce qui contredit le
fait que O satisfait N-C. O

), si on les considere comme entiers

La prochaine étape dans la quéte de Germain pour une preuve du théoréme
de Fermat était de démontrer que pour tout nombre premier p, il existait une
infinité de nombres premiers 6, de la forme 2np + 1, satisfaisant N-C. Ceci aurait
alors comme corollaire presque immédiat la preuve du théoréme de Fermat. En
effet, supposons que xP + yP = zP admette une solution en nombres entiers X, Y
et Z. Il existe alors une infinité de nombres premiers O satisfaisant N-C et, par le
théoréme 6, chacun de ces nombres premiers 6 divise X, Y ou Z. Or ceci signifie
que au moins un de ces trois nombres est divisible par une infinité de nombres
premiers 6, ce qui est bien siir impossible.

Une question qu’on se pose en analysant les manuscrits de Germain est pour-
quoi elle ne considére que des nombres premiers 0 de la forme 2np+1. La réponse
est qu’elle était probablement bien consciente du lemme suivant.

Lemme 7. Soient p et q deux nombres premiers tels que pged(p,q—1) = 1. Alors il
existe deux nombres entiers x et v tels que xP —yP =1 (mod g).

Démonstration. Soient p et g comme dans I’énoncé du lemme. Alors par le théo-
réme de Bézout, il existe deux entiers a et b tels que ap + b(q—1) = 1. Choisissons

. b(g-1
deux nombres entiers xq et vg tels que xg —vg =1 (mod g). Alors xo = xr(z)p+ (a-1)

_1\b
et modulo g on obtient xg = xgp (xq 1) (mod g). Or, par le petit théoreme de

Fermat (voir le théoréme 4), xg_l =1 (mod g) et donc xo = (xg)p (mod g). De la
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méme maniere Yo = (g)g)p (mod g). Finalement on trouve que (xg)p - (3’8 )p =1
(mod g). O

Ceci montre que si le nombre premier 6 est tel que pged(p,6—1) =1, alors 6 ne
vérifie certainement pas N-C. Il suffit donc de considérer des nombres premiers 0
tels que pged(p,0) = 1. Or comme p est premier ceci équivaut a considérer des 6
tels que p | 6 — 1. C’est pourquoi Germain ne considere que des nombres premiers
0 de la forme 2np + 1, ou le parameétre 2 est d@ au fait qu'un nombre premier
supérieur a 3 est toujours impair.

Le but est donc maintenant de prouver qu’il existe pour chaque nombre
premier p une infinité de nombres premiers 6 qui vérifient la condition N-C.
Or l'idée de Germain n’est pas de démontrer ceci directement, mais plutdt de
démontrer la chose suivante.

Conjecture 8. Pour tout n € N, il existe seulement un nombre fini de nombres p € N
tels que 2np + 1 ne satisfait pas N-C.

A premiere vue, cette conjecture semble «aller dans le mauvais sens ». Or,
le plan final de Germain est de démontrer l’existence d’une valeur K > 0 telle
que pour tout nombre premier p > K le nombre 2np + 1 soit premier et satisfasse
N-C. Ceci impliquerait alors la preuve du théoréme de Fermat pour tout nombre
premier p > K. Malheureusement Germain n’a jamais pu démontrer ce résultat.
Par contre elle a effectué, a la main, tous les calculs pour n <10 et 2 <p <100:

Je n’ai jamais pu arriver a l'infini quoique j’ai reculé bien loin les
limites par une méthode de taitonnement trop longue pour qu’il me
soit possible de 'exposer ici. Je n'oserais méme pas affirmer que pour
chaque valeur de p il n’existe pas une limite au dela de laquelle tous les
nombres de la forme 2np + 1 auraient deux résidus p-iéme puissance
placés de suite dans la série des nombres naturels. C’est le cas qui
intéresse I’équation de Fermat.

De plus Germain a obtenu un résultat concret pour le cas n = 1, qui est le
suivant.

Lemme 9. Soit p un nombre premier. Si O = 2p + 1 est premier, O vérifie automati-
quement N-C.

Démonstration. Regardons quels éléments de Zg s’écrivent comme puissances de
p. Soit a € Zg une puissance de p. Il existe donc x € Zg tel que xP =a (mod 6). Or

-1
par le théoréeme 5, ceci est possible si et seulementsia ¢ =1 (mod ). Dans ce
cas @ —1=2petd=petadoit donc étre solution de I’équation y2 =1 (mod 6).
Les seules solutions de cette équation sont 1 et 0 — 1 et O vérifie donc N-C. O

A cause de ce théoréme, les nombres premiers p tels que 2p+1 est aussi premier
sont appelés nombres premiers de Sophie Germain.

Finalement, le cas qui a vraiment mis en doute Germain concernant sa conjec-
ture a été le cas p = 3. En fait Germain a prouvé le lemme suivant, qui démontre
I’échec de sa conjecture, au moins pour p = 3.

Lemme 10. Pour chaque nombre premier O de la forme 6n+ 1 avec n> 2, il y a deux
résidus troisieme puissance consécutifs modulo 6.
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Démonstration. Supposons que 6 satisfasse N-C et supposons d’abord qu'’il
n'existe pas de valeurs r,r’ € {1,...,6n} telles que r —r’ = 2 et r et 1’ soient des
résidus cubiques. Par le théoréme 5 on a

x3=b mod6n+1sietseulementsib? =1 mod6n+1,

et donc il existe exactement 2n résidus cubiques modulo 67 + 1. Ceux-ci sont
distribués parmi 6n valeurs et, a cause de I'hypothése de départ, entre deux
résidus cubiques il y a toujours une différence d’au moins 2. Les 4n résidus non
cubiques sont donc distribués parmi les 2n—1 « trous ». Comme chaque trou
comporte au moins 2 résidus non cubiques, on a déja strement 4n — 2 des 4n
résidus non cubiques qui sont distribués dans les trous. Il reste 2 résidus non
cubiques a répartir. Du coup tous les trous contiennent 2 résidus non cubiques, a
part deux trous qui en contiennent 3, respectivement un trou qui en contient 4.
Indépendemment de la valeur de n> 2, 1 = 13 et 8 = 23, sont résidus cubiques
et donc 2 et 3 sont résidus non cubiques. Si 4 était résidu cubique, alors % =2
serait résidu cubique aussi. Donc 4 est aussi résidu non cubique. Par conséquent
5 ou 6 sont résidus cubiques. Or, il est facile de voir que les résidus cubiques sont
distribués symétriquement parmi les 6n valeurs de 1 a 6n. Par conséquent, si 6
est résidu cubique, le premier trou contient 4 valeurs et par symétrie le dernier
en contient 4 aussi, ce qui donne trop de résidus non cubiques. Donc 5 est résidu
cubique et la liste des résidus cubiques parmi les valeurs de 1 & 6 est la suivante :

1,58, 11,...,6n-7, 6n—4, 6n.

Sin>5alors O > 31 et, dans ce cas, 27 = 33 est résidu cubique. Or clairement 27
n'est pas dans la liste ci-dessus. Si 6 < 31, alors 6 = 19 (0 = 25 n’est pas premier)

et dans ce cas 7 = 64 = 43 (mod 19) et 7 nest pas non plus dans la liste.

Donc il existe forcément deux résidus cubiques r,7” € {1,...,6n} tels que r—r’ =
2. Soit x un générateur du groupe cyclique Zg. Alors 2 = 3£ (mod 6), pour
f > 0. En effet 2 n’est pas un résidu cubique, car 1 en est un et 0 satisfait N-C.
Considérons r+7’.Onar++r 20 (mod ), car sinon 2 =r—r' =r—(-r) = 2r
(mod 0), ce qui implique que r = 1. Or r—+’ = 2 avec r = 1 et r et 1’ positifs est
impossible. Donc r+ 1" € Z7,, d’ot r + 1’ = x™ (mod 6) pour m > 0. Si 3| m, alors
ona

r+r' = (xm/)3 mod 6
=r—(-1) = (xm/)3 mod 6,
et en posant r = g3 et ' = ¢’ pour ¢,q9” € Zy, cette derniere ligne nous donne
(%)3 - (\%,)3 =1 (mod 0), ce qui contredit le fait que 6 satisfait N-C. Par
conséquent 7+’ = x38*1 (mod 6) avec g > 0. Supposons que le signe de 3g + 1

soit différent de celui de 3f + 1, c.-a-d. supposons que 2 = x>/*! (mod 0) et
r+1 = x38F1 (mod 6). Alors

- 3
P22 = (r+ 1) (r—1) = x38F13f 2 E(Xg+f) mod 6.

Comme r et r’ sont résidus cubiques, r2 et 2 sont résidus cubiques aussi et la
derniére ligne mene de nouveau a une contradiction avec le fait que 6 satisfait
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N-C. Finalement on a donc que

dr=r4r +r—r =38 L 3fEL mod g

= 3 E =385 (3L 64 0
=r=1+x8f) modo

=r-x*¢ =1 modo,
ce qui est a nouveau en contradiction avec le fait que 0 satisfait N-C. O

Ce lemme montre donc clairement que N-C n’est jamais vérifié si p = 3, a part
pour 0 =7 et 6 = 13. Sur base de ce lemme, Germain décide alors d’abandonner
son Grand Plan. Aujourd’hui encore, on ne sait pas si pour p premier il existe
toujours un nombre premier O de la forme 2np + 1 et qui satisfait N-C. Or malgré
I’échec du Grand Plan, la démarche de Germain reste remarquable pour son
temps. En fait en voulant démontrer l'existence de cette valeur K au-dela de
laquelle 2np + 1 est premier et satisfait N-C, pour chaque p > K premier, Germain
aurait démontré le théoreme de Fermat pour chaque exposant premier p supérieur
a une certaine valeur K, dont l’existence est prouvée, mais la valeur exacte n’est
pas connue. Elle aurait donc démontré le théoreme de Fermat pour une infinité
d’exposants sans I'avoir démontré pour un seul exposant précis. Ceci constitue une
premiére dans I'histoire du théoréme de Fermat car jusqu’ici les mathématiciens
avaient toujours essayé de démontrer le théoreme pour une valeur précise (d’abord
4, puis 3, puis 5 etc.).

3.2 Théoréme des Grandes Tailles des Solutions

Bien que Germain décide d’abandonner son Grand Plan, elle n’arréte pas le
travail sur le théoréme de Fermat. Dans une deuxiéme étape elle travaille sur
un théoréme, qu'on appelle Théoréme des Grandes Tailles des Solutions. Pour cela
elle réutilise la condition N-C et ajoute une deuxiéme condition, qu’elle appelle
condition P-P-P, ou P-P-P représente p pas une p-iéme puissance.

Condition (P-P-P). Le nombre premier p n’est pas un résidu p-iéme puissance
modulo 6.

Dans la table 1, on voit que pour p =5 et 1 < n <10, la condition P-P-P
est satisfaite pour 0 = 11,41,71,101. Avec cette condition, Germain essaie de
démontrer le théoréme suivant :

Conjecture 11. Soit p un nombre premier. Si '’équation xP + yP = zP admet une
solution en nombres entiers, alors x +7v, z—7v ou z — x doit nécessairement étre un
multiple de la (2p — 1)-iéme puissance de p ainsi que des p-iémes puissances de tous les
nombres premiers O de la forme 2np + 1 qui satisfont N-C et P-P-P.

L'idée de Sophie Germain derriere ce Théoréeme des Grandes Tailles des So-
lutions n’est plus de démontrer le théoréeme de Fermat directement, mais de
démontrer que si I’équation xP + yP = zP a une solution, cette solution doit étre
gigantesque en taille. Germain écrit a ce sujet les lignes suivantes :

Vous concevrez aisément, Monsieur, que j’ai di parvenir a prouver
que cette équation ne serait possible qu’en nombres dont la grandeur
effraye I'imagination. ..
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En d’autres mots, ce théoreme, s’il était vrai, montrerait que parmi les « petits »
nombres, il n’y aurait pas de solution a I’équation de Fermat. Considérons un
exemple concret. Si ce théoreme était vrai, cela signifierait, pour 'exemple de
p=>5,que x+,z—y ou z—x serait multiple de

52.11°.415.71%.101°
(=691053006763356095514121490614455078125).

On peut montrer que ceci équivaut a ce qu’un des trois nombres contienne au
moins 39 chiffres.

Malheureusement Germain fait une faute dans la démonstration du théoréme.
En ne considérant la preuve que jusqu’au point ou se trouve la faute, on peut en
déduire le théoreme suivant, qu’on appelle encore aujourd’hui Théoreme de Sophie
Germain.

Théoreme de Sophie Germain. Soit p un nombre premier. S’il existe un nombre
premier O de la forme 2np + 1 qui satisfait les conditions N-C et P-P-P, alors dans toute

solution de I'équation xP + P = zP un des nombres x, v ou z est divisible par p?.

Démonstration. Supposons qu’il existe O = 2np + 1 qui satisfait N-C et P-P-P et
supposons que x, ¥ et z satisfassent I’équation xP +yP = zP. Alors par le théoreme 6,
0| x,v ou z et on va montrer que ce dernier est aussi divisible par p2. Pour ceci on
va démontrer d’abord que les couples suivants

x+yetp(xp)=xP Tt —xP 2y P 3y PSSy
z—vet P(zp) = 2P+ 2P 2y 2P 32 1 P34 (1)

z—xet l,D(Z,X) :Zp_1 +ZP_2x+ZP—3x2+Zp—4x3 +...

ne peuvent avoir d’autres diviseurs communs que le nombre p. En effet supposons
que g soit un nombre premier différent de p et que g |x+7v et q| @(x,v). Alors
v =-x (mod g) et donc ¢(x,v) = pxP~1 (mod g). Or comme g divise ¢(x,v),ona
g | pxP~! ce qui implique que g | xP~!. Comme g est premier, g divise donc x. Or
q divise aussi x + v et donc g divise p. Ceci est en contradiction avec le fait que
X, v et z sont premiers entre eux. De méme, on peut montrer que les deux autres
couples n'ont pas de diviseur commun g = p et que les trois couples n‘ont pas de
diviseur commun égal & une puissance de p.
Supposons maintenant que x, v et z soient premiers a p et posons

z =lIr,
x =hn, (2)
y=vm,
pour [, 7, h, n, v et m des entiers positifs. Comme les produits des couples en (1)
sont zP, xP et pP respectivement et comme les couples sont premiers entre eux,
x+y=1P et p(x,p)=7P,
z-y=hPety(z,y)=nP, (3)

z—x=vP et (z,x) = mP.
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Par le théoréme 6, on sait que 0 divise x, v ou z. Supposons que 6 | z (les autres
cas étant analogues). Alors

IP+hP +vP =22=0 mod 6.

Si aucun des trois termes est nul, ceci équivaut a IP + h? = (—v)P (mod 6). Or la

derniére équation peut étre réécrite comme (_—lv)p + (_%)p =1 (mod 0) ce qui est
en contradiction avec la condition N-C. Donc un des trois termes I, hP ou vP est
divisible par 8. Comme x, p et z sont premiers entre eux, la seule possibilité est

que O |1. Donc x+v =0 (mod 0), ce qui équivaut a
(x,v)=pxPL =/ modoé. (4)

Comme z=0 (mod ) et comme z—x =vP, on a, modulo 0, x = (-v)P (mod 6).
Or en remplacant x par (—v)P dans (4), on obtient

p((—v)p_l)pzrp mod 0,

et donc p doit étre une p-ieme puissance modulo 6, ce qui contredit P-P-P. Ceci
implique donc que p divise x, y ou z. Supposons donc que p divise z. Remarquons
ici que les autres cas se traitent de maniére analogue et que le fait qu’on ait aussi
supposé que O | z ne joue ici plus aucun rdle. Or si p | z, la premiere ligne dans (2)
et (3) change. Comme x + v et ¢(x,) n'ont pas d’autre diviseur commun que p, il
y a 4 possibilités :

x+y=1PpP et p(x,

(xp)=rP

x+y=1IF et(p(x,y):rppp
x+y=1Ppet p(x,y)=rPpP,
x+v=1PpP~l et g(x,v) = rPp.

On peut aisément démontrer que si I'un des deux termes est divisible par p,
l'autre I'est aussi et les deux premiéres possibilités sont donc exclues. Supposons
que la troisieme possibilité soit vraie et posons x +y =s. Alors

_(s=x)P P p—1 _[P\.p-2 p p—2 P ) p-1
Q(x,v)= 5 =5 1 X+... ) sxP=< 4+ p xP7.

Dans cette expression chaque terme est divisible par au moins p?, a part le dernier
qui est juste divisible par p. Ceci contredit le fait que ¢(x,v) est divisible par
plus que p et c’est donc la quatrieme possibilité qui est vraie. Donc p divise aussi
2z—-x-7y qui est égal a hP +vP. Ceci donne

WP +vP =0 modp

=hPTh+vP 'y =0 modp

=h+v=0 modp

=h=-v modp.
Or hP +vP = (h+v)@(h,v) et le premier terme est divisible par p et le deuxiéme
peut étre écrit modulo p comme phP~! et est donc aussi divisible par p. Donc
p? | hP +vP et donc p? | 2z—x — . Or x -y est aussi divisible par p? et donc z doit
étre divisible par p?, ce qui conclut la démonstration. O
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Letter to Gauss, 1819

FLT “Large size” of solutions FLT for exponents 2(8n £3)
[Ms. A] [Ms. A] [Ms. B]
] “S. Germain’s Thm.” (Case 1) ‘ | Case 2 ‘
©O- many 6 ‘ ‘ several 6 ‘ asingle © | Key:
= Ms. = Manuscript
1‘ Condition N-C = no consecutive p-th powers mod 6
Condition p-N-p = p is not a p-th power mod 6
| Condition N-C ‘ | Condition p-N-p [ FLT = Fermat's Last Theorem

FIGURE 3 — Schéma du travail complet de Germain sur le théoréme de Fermat
(tiré de l'article [3])

Le théoreme de Sophie Germain est aujourd’hui utilisé en théorie des nombres.
En plus il démontre une partie du théoreme de Fermat. En fait la démonstration
du théoreme de Fermat de Andrew Wiles est divisée en deux cas :

— L’équation xP + pP = zP n’a pas de solution en nombres entiers tels que
p fxyz.

- L'équation xP + yP = zP n’a pas de solution en nombres entiers tels que un et
un seul des nombres x, y ou z soit divisible par p.

En fait le théoréme de Sophie Germain démontre le cas 1 pour
— tous les nombres premiers p tels que p < 100,

— les nombres premiers de Sophie Germain (voir en-dessous de la démonstra-
tion du lemme 9).

Pour conclure le travail de Germain, la figure 3 montre un résumé de son tra-
vail. Quelques éléments n'ont pas été traités dans ce texte. Les lecteurs souhaitant
plus d’information sur cette partie de ses travaux sont invités a consulter [3].

4 Les nombres premiers de Sophie Germain

Rappelons tout d’abord la définition d’un nombre premier de Sophie Germain.

Définition 12. Les nombres premiers p tels que 2p + 1 est aussi premier sont
appelés nombres premiers de Sophie Germain.

4.1 Les nombres premiers de Sophie Germain dans la recherche
Jusqu’a aujourd’hui la conjecture suivante n’a pas été résolue.
Conjecture 13. Il v a une infinité de nombres premiers de Sophie Germain.

Le plus grand nombre premier de Sophie Germain a été trouvé en mars 2010
et correspond a

183027 .2265440 _ ¢
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ce qui représente un nombre a 79911 chiffres.

Dans la recherche contemporaine les nombres premiers de Sophie Germain
trouvent leur application principale en cryptographie, et plus précisément dans
le domaine des signatures digitales.

4.2 Nombres premiers de Sophie Germain palindromiques

Rappelons d’abord qu’un nombre est appelé palindromique lorsque son écriture
décimale lue de gauche a droite ou de droite a gauche représente le méme nombre.
Par exemple 22, 151, 6446 ou 12345678987 654321 sont des nombres palindro-
miques. Harvey Dubner, un ingénieur américain retraité, s'amuse a trouver des
grands nombres premiers de Sophie Germain qui sont palindromiques. En ce mo-
ment il tient le record du plus grand nombre de Sophie Germain palindromique
qui est le suivant :
10...05321812350...01,

ol les pointillés ci-dessus représentent a chaque fois 516 fois le chiffre 0!

Bien que ceci ait déja l'air fort impressionnant, notre ingénieur a trouvé mieux.
En effet, il a trouvé un nombre premier de Sophie Germain P tel que Q = 2P+1 est
aussi un nombre premier de Sophie Germain. Donc R = 2Q + 1 est aussi premier
et les trois nombres sont palindromiques. Les voici :

- P=1919191918090908081808090908191919191
- Q=2P+1=3838383836181816163616181816383838383
- R=20Q+1=7676767672363632327232363632767676767

On peut démontrer que la plus longue suite ainsi possible est toujours une suite
de 3 nombres. Or notre ingénieur a encore trouvé mieux et ici aussi il détient le
record de la plus grande suite de ce type, qui est montrée dans la figure 4.

En plus du fait que cette suite soit formée par les nombres les plus longs, elle
a encore autre chose de remarquable. Chacun des trois nombres dans cette suite a
exactement 727 chiffres et 727 est, a nouveau, un palindrome! Et si, a la lecture
de ces lignes, vous souriez, c’est qu’il doit y avoir un peu de cette extraordinaire
mathématicienne en vous !
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P o=
1515151808080518080580518081505151530518058181515051505305051515080580530505_
0B080808080808080803030580808080503030305805808080508050505050505050808058_
0B080808080808080803030580808080503030305805808080508050505050505050808058_
0B080808080808080803030808080805030303058058080805080505305050505050808058_
0B080808080808080803030808080805030303058058080805080505305050505050808058_
0B080808080808080803030808080805030303058058080805080505305050505050808058_
0B080808080808080803030808080805030303058058080805080505305050505050808058_
0B080808080808080803030808080805030303058058080805080505305050505050808058_
080808080808080808038020505080808058080808080808050808058058058050505080808_
08080808080808080803020505080808050808158158080805180581515158051505151808_
180818080808180808051518151

Q=
3E3E363616161636161616361636163636163616363636163616161636361616161616
1616161616161616161616161616161616161616161616161616161616161616181616
1616161616161616161616161616161616161616161616161616161616161616181616
1616161616161616161616161616161616161616161616161616161616161616181616
1616161616161616161616161616161616161616161616161616161616161616181616
1616161616161616161616161616161816161616161616181616161616161616181616
1616161616161616161616161616161816161616161616181616161616161616181616
1616161616161616161616161616161816161616161616181616161616161616181616
1616161616161616161616161616161816161616161616181616161616161616181616
1616161616161616161616161616161816161636361616183616363636163616383616
361636161616361616163636363

n o=
727272 232323272323232723272327272327232727272327232323272723232323232_
3232323232323232323232323232323232323232323232323232323232323232323232_
32323232323232323232323232323232323232323232323232323232325232323232352_
32323232323232323232323232323232323232323232323232323232325232323232352_
32323232323232323232323232323232323232323232323232323232325232323232352_
32323232323232323232323232323232323232323232323232323232325232323232352_
32323232323232323232323232323232323232323232323232323232325323232323232_
32323232323232323232323232323232323232323232323232323232325323232323232_
32323232323232323232323232323232323232323232323232323232325323232323232_
3232323232323232323232323232323232323272V2323232V23272V2V2327232V2VE3E_
723272323232723232327272727

Ficure 4 — Suite la plus grande connue (tirée de la page web [5])
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