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Résumé

Nous présenterons l’idée de Sophie Germain (aussi connue sous le nom de
M. Le Blanc) pour attaquer la preuve du théorème de Fermat. Après un bref
récapitulatif de la biographie de Sophie Germain, nous analyserons son plan
de preuve général et donnerons un aperçu des mathématiques sous-jacentes.
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Figure 1 — Une rue de Paris porte encore son nom.

1 Biographie

Née en 1779 dans une famille bourgeoise, Sophie Germain s’est intéressée très
tôt à l’étude des mathématiques. Or, à cette époque, les femmes n’étaient pas
censées faire des études. Elles bénéficiaient certes d’un certain niveau d’éduca-
tion, mais dans le simple intérêt de leur transmettre une culture générale afin
qu’elles puissent engager des conversations, dans les salons, avec de futurs maris
potentiels. Un livre très à la mode à cette époque était le livre Le Newtonianisme
pour les dames, écrit par l’italien Francesco Algarotti. Le but de ce livre était de
rendre des sujets qu’on considérait masculins, comme les sciences, intéressants
pour les femmes. On y trouvait ainsi toutes sortes d’explications pour le moins
singulières et au contenu mathématique fort douteux, comme par exemple la
phrase suivante qui tente d’expliquer la loi de la gravitation en l’inverse du carré
de la distance : « Cette loi d’attraction inverse pourrait s’appliquer à l’amour : après
huit jours de séparation l’amour est soixante-quatre fois plus intense. » Il n’est alors
pas difficile de s’imaginer que ce n’est pas un livre pareil qui a éveillé l’intérêt de
Sophie Germain pour les mathématiques. En effet, le livre qui a incité Germain
à s’intéresser aux mathématiques est un ouvrage de Jean-Étienne Montucla sur
l’histoire des mathématiques. Dans cet ouvrage Germain découvrit la curieuse
histoire de la mort d’Archimède : un jour Archimède était en train de réfléchir à
un problème de géométrie et pour cela il avait dessiné des figures dans le sable.
Vint alors un soldat qui lui demanda de se présenter et de s’identifier. Selon la
légende, Archimède, concentré sur ses figures, eut pour seule réponse : « Je ne
veux pas être dérangé, et ne piétine pas mes figures sur le sable. » Le soldat le tua
immédiatement d’un coup d’épée. Cette histoire fascinait Germain. Elle se disait
que si un homme pouvait être pris par l’étude des mathématiques au point de
mourrir pour cela, ce sujet devrait être fascinant et vaudrait sûrement la peine
d’être étudié. C’est ce qui poussera Germain vers l’étude des mathématiques. Bien
sûr ceci n’était pas du tout bien vu par ses parents et, à cette époque, on disait
des mathématiques qu’elles pouvaient « mener les femmes à la folie, leur cerveau
n’étant pas capable de supporter un tel effort. » Les parents essayaient donc tout
pour empêcher Germain d’étudier, allant parfois jusqu’à la priver de vêtements
et de bougies pendant la nuit, mais son désir de comprendre cette science était
tel qu’elle en vint à devoir voler en secret quelques bougies et quelques draps, de
sorte à pouvoir étudier la nuit. Il est dit que les parents finirent par accepter la
passion de leur fille.

En 1794 l’École Polytechnique ouvrit ses portes à Paris, mais il était bien sûr
hors question qu’une femme atteigne les cours donnés à cet école. Or, Antoine
Auguste Le Blanc, un ami de Sophie, y était inscrit comme élève et était d’accord
que Germain se procure les cours en utilisant son nom. Un jour, Le Blanc quitta
Paris sans avertir l’école et Germain continua ainsi à utiliser son nom pour se
procurer les cours et pour participer aux exercices posés aux étudiants. Mais
Germain avait du talent et Lagrange, un des meilleurs mathématiciens de son
époque, qui était professeur à l’École Polytechnique à ce moment-là, le remarqua
et demanda à rencontrer cet étudiant en personne. Sophie Germain, forcée de



LE THÉORÈME DE FERMAT VU PAR M. LE BLANC 53

révéler sa vraie identité, surprit bien évidemment le professeur qui, loin de le
prendre mal, devint ainsi son mentor ! C’est donc avec l’aide de Lagrange qu’elle
fit ses premiers pas dans la recherche en mathématiques, s’intéressant très tôt au
théorème de Fermat.

C’est en vue d’une démonstration de ce théorème qu’elle commença à déve-
lopper ses premières idées originales. Or, à ce moment, le plus grand spécialiste
en théorie des nombres était Carl Friedrich Gauss et en 1804, à l’âge de 28 ans,
Sophie Germain décida de lui écrire pour lui expliquer son idée de démonstration.
Par peur de ne pas être prise au sérieux, elle utilisa à nouveau le pseudonyme
d’Antoine Auguste Le Blanc. Il se trouve que Gauss, qui n’avait malheureuse-
ment pas le temps de tout lire, lut tout de même les parties de ses lettres qui
l’intéressèrent le plus et répondit aimablement. Commence alors une riche cor-
respondance entre les deux, à peine quelques années avant l’envoi des troupes
Napoléoniennes en Allemagne, événement qui démasquera une fois de plus la
mathématicienne, bien que d’une façon bien différente de l’épisode de l’École
Polytechnique et qui aura cette fois attrait non pas au talent mais à l’amitié qui
s’était installée entre les deux correspondants. Effectivement, ayant peur pour
Gauss, Germain demanda à des amis faisant partie des troupes envoyées en Al-
lemagne de protéger son ami allemand. Or, ces derniers informèrent le brillant
mathématicien qu’il devait sa protection à une certaine Mademoiselle Germain,
que Gauss ne tarda pas à identifier avec son correspondant Antoine Auguste
Le Blanc. Si la révélation de l’identité de Germain se déroule ici d’une manière
différente, elle trouve pour écho la même réaction : loin d’être rebuté, Gauss eût
même une réaction très positive et déclara même dans une lettre que, s’il était
déjà fasciné par les travaux de Le Blanc, le savoir réellement une femme ne faisait
que l’enthousiasmer davantage ! D’aucuns rétorqueront, avec toutes les raisons du
monde, qu’une telle réaction, bien que très progressiste pour l’époque, révèle tout
de même à quel point la femme était perçue comme inférieure dans la société de
l’époque. Cependant, il n’y a pas qu’en mathématiques que Gauss était en avance
sur son temps, puisqu’il dira que ce n’est pas l’infériorité intellectuelle supposée
des femmes (chose à laquelle il ne croyait pas) qui exacerbait sa fascination pour
les travaux de Germain, mais bien le fait que le genre opposé n’avait accès qu’à
une éducation réduite. Leur amitié continua ainsi par correspondance jusqu’à ce
que, un peu plus tard, Gauss fusse nommé directeur à l’Observatoire de Göttingen
et commence à manquer de plus en plus de temps à consacrer à Germain.

Les résultats de Germain sur le théorème de Fermat ne seront validés qu’en
1830 dans la publication Théorie des nombres de Legendre. Dans une note en bas de
page, ce dernier explique qu’un des théorèmes du livre est dû à Sophie Germain.
Il faut effectivement garder en mémoire que son approximation du théorème de
Fermat constitue, entre 1738 et 1840, une des avancées les plus importantes vers
sa démonstration (qui ne viendra cependant que bien plus tard).

Le nom de Sophie Germain se trouve ainsi très souvent mentionné en asso-
ciation avec le théorème de Fermat, bien que ses contributions ne s’y soient pas
limitées, bien au contraire ! En effet, elle a également fait des contributions à la
théorie de l’élasticité des corps, pour lesquelles elle obtint le prix de l’Académie
des Sciences. Elle obtint en outre la médaille honorifique de l’Institut de France
et fut la première femme ayant le droit d’assister aux séances de l’Académie des
Sciences sans être mariée à l’un des scientifiques présents. En 1830 elle se verra
même décerner le titre de docteur honoris causa à l’université de Göttingen, titre
qu’elle n’aura malheureusement jamais eu la chance d’accepter en personne, car
c’est en 1831 déjà qu’elle succombera à un cancer du sein.
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Figure 2 — Le théorème de Fermat est une source d’inspiration.

Pour plus de détails sur Sophie Germain, nous invitons le lecteur à consulter
les ouvrages [4] et [6].

2 Rappels mathématiques

2.1 Le grand théorème de Fermat

C’est en 1670 que Pierre de Fermat conjecture le théorème pour la première fois.

Théorème 1. Pour n > 2 l’équation xn + yn = zn n’admet pas de solution en nombres
entiers.

Fermat écrit en fait l’énoncé du théorème (sans la preuve) dans une copie du
livre Arithmetica de Diophante. Le problème 8 de ce livre traite de comment un
carré donné peut être écrit comme somme de deux carrés, autrement dit, si k
est un nombre rationnel donné, comment peut-on trouver des rationnels u et
v satisfaisant l’équation k2 = u2 + v2. La note que Fermat laisse en marge de ce
problème est la suivante :

Cubum autem in duos cubos, aut quadratoquadratum in duos qua-
dratoquadratos, et generaliter nullam in infinitum ultra quadratum
potestatem in duos eiusdem nominis fas est dividere cuius rei de-
monstrationem mirabilem sane detexi. Hanc marginis exiguitas non
caperet.

On ne peut exprimer un cube comme une somme de deux cubes, un
bicarré comme une somme de deux bicarrés, et plus généralement
une puissance parfaite comme une somme de deux mêmes puissances.
J’en ai découvert une démonstration tout à fait remarquable. Mais ma
marge est trop étroite pour la contenir.

Seule la démonstration de Fermat du cas n = 4 a été retrouvée. En 1753, Euler
a pu démontrer le cas n = 3 et en 1825 Dirichlet et Legendre ont traité le cas
n = 5. En 1839, Lamé a démontré le cas n = 7, mais c’est seulement en 1995, plus
de trois siècles après l’énoncé du théorème, que Andrew Wiles trouve enfin une
démonstration de cette conjecture, en utilisant la théorie des courbes elliptiques.
Au temps de Sophie Germain, seuls les cas n = 4 et n = 3 étaient donc connus. Le
fait que des mathématiciens, ainsi que des amateurs, aient cherché pendant plus
de trois siècles une démonstration de cette conjecture, combiné à la simplicité de
l’énoncé de ce théorème, aura eu comme résultat que le théorème de Fermat est
probablement l’un des théorèmes mathématiques les plus connus en dehors du
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monde académique. On trouve ainsi sur ce théorème diverses blagues, comme
le montre la figure 2 on the preceding page, des poèmes et même des histoires
d’amour. Dans le livre True Tales of American Life de Paul Auster apparaît une
nouvelle, intitulée Mathematical Aphrodisiac, écrite par Alex Galt, dans laquelle le
théorème de Fermat est évoqué.

2.2 Quelques lemmes et théorèmes nécessaires

Dans cette sous-section, nous allons survoler quelques lemmes et théorèmes
connus et facilement démontrables, qui seront nécessaires à la compréhension de
la partie principale de ce texte.

Nous commençons par rappeler quelques lemmes en relation avec le théorème
de Fermat, déjà connus à l’époque de Sophie Germain.

Lemme 2. Si l’équation xn + yn = zn n’admet pas de solution en nombres entiers avec
x, y et z premiers entre eux, l’équation n’admet pas de solution tout court.

Démonstration. Supposons que l’équation xn + yn = zn n’admette pas de solution
en nombres entiers x, y et z premiers entre eux, mais qu’elle admet une solution
X, Y , Z. Alors il existe un nombre entierm tel quem | X,Y ,Z. Prenonsmmaximal.
On a

Xn +Y n = Zn⇔
(X
m

)n
+
(Y
m

)n
=

(Z
m

)n

et donc X
m , Ym et Zm sont solutions de l’équation xn+yn = zn. Commem est maximal,

les trois nombres entiers sont premiers entre eux, ce qui donne la contradiction
souhaitée.

Lemme 3. Si 4 | n, l’équation xn+yn = zn n’admet pas de solution en nombres entiers.

Démonstration. Supposons que 4 | n et que l’équation xn + yn = zn admette une
solution en nombres entiers X, Y et Z. Alors il existe un nombre entier m tel que
n = 4m et on a

Xn +Y n = Zn

⇔X4m +Y 4m = Z4m

⇔(Xm)4 + (Ym)4 = (Zm)4.

On aurait donc trouvé une solution en nombres entiers à l’équation x4 + y4 = z4,
ce qui est en contradiction avec la preuve de Fermat comme quoi cette équation
n’a pas de solution en nombres entiers.

Grâce aux lemmes 2 et 3, il suffit de démontrer que l’équation xp + yp = zp

n’admet pas de solution en nombres entiers premiers entre eux pour p étant un
nombre premier impair afin de démontrer le théorème de Fermat. En effet, sup-
posons que l’équation xp + yp = zp n’admette pas de solutions mais que l’équation
xn + yn = zn en admette une pour n non premier. Supposons alors qu’il existe un
nombre premier impair p qui divise n, c’est-à-dire n = pm. Si X, Y , Z satisfont
Xn +Y n = Zn, alors Xm, Ym, Zm sont solutions de l’équation xp + yp = zp, ce qui
contredit l’hypothèse du départ. Si n n’est pas divisible par un nombre premier
impair, alors n est de la forme n = 2m pour un nombre entier m. Or comme n > 2,
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n est divisible par 4, ce qui est en contradiction avec le lemme 3. Le lemme 2
implique alors que les solutions x, y, z peuvent être choisies premières entre elles.

Avant de passer au travail de Sophie Germain, rappelons quelques théorèmes
connus, qu’on ne démontrera pas ici. Le premier théorème est connu sous le nom
de petit théorème de Fermat.

Théorème 4 (Le petit théorème de Fermat). Soient p un nombre premier et a ∈ Z
avec p 6 | a. Alors

ap−1 ≡ 1 mod p.

Le deuxième théorème est dû à Euler.

Théorème 5. Soient p , θ deux nombres premiers. Alors xp ≡ a (mod θ) admet une

solution en x si et seulement si a
θ−1
d ≡ 1 (mod θ) où d = pgcd(p,θ − 1).

3 Le travail de Sophie Germain

Dans cette section nous considérons une partie des travaux de Sophie Germain
sur le théorème de Fermat. Une étude plus complète peut être trouvée dans [3],
article sur lequel nous nous basons principalement pour cette section. Une autre
étude détaillée des travaux de Germain concernant le théorème de Fermat est
donnée dans [1]. Dans la première sous-section nous décrivons le Grand Plan de
Germain pour démontrer le théorème. La deuxième sous-section est consacrée
au Théorème des Grandes Tailles des Solutions de Germain, duquel découlera le
théorème qui est aujourd’hui connu sous le nom de Théorème de Sophie Germain.

3.1 Le Grand Plan

Dans cette sous-section nous considérons le plan complet de Germain avec le-
quel elle espérait démontrer le théorème de Fermat. Pour cela elle démontre
tout d’abord un théorème de base qui reviendra dans tous ses travaux. Pour ce
théorème, elle utilisera la condition dite de non-consécutivité (condition N-C).

Condition (N-C). Il n’y a pas deux résidus p-ième puissance consécutifs mo-
dulo θ.

Avec ceci elle établit son théorème de base comme suit.

Théorème 6. Si l’équation xp + yp = zp admet une solution en nombres entiers, alors
tout nombre premier θ de la forme 2np+ 1, avec n ∈ N, qui satisfait N-C, divise x, y
ou z.

Avant de démontrer le théorème de base, nous considérons un exemple afin de
clarifier la condition N-C. Considérons le nombre premier p = 5 et considérons
1 ≤ n ≤ 10. Nous nous demandons d’abord si le nombre θ = 2np+ 1 est premier
et, le cas échéant, s’il satisfait la condition N-C. Définissons l’ensemble R comme
étant l’ensemble des résidus p-ième puissance modulo θ, c.-à-d. R = {xp (mod θ) |
1 ≤ x ≤ θ − 1}. Les résultats pour 1 ≤ n ≤ 10 sont montrés dans la table 1.

La table 1 montre que pour p = 5 la condition N-C est satisfaite pour au moins
θ = 11,41,71,101. Considérons donc maintenant la preuve du théorème 6.
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n θ R N-C P-P-P

1 11 R = {1,10} √ √
2 21 θ pas premier × ×
3 31 R = {1,5,6,25,26,30} × ×
4 41 R = {1,3,9,14,27,32,38,40} √ √
5 51 θ pas premier × ×
6 61 R = {1,11,13,14,21,29,32,40,47,48,50,60} × √
7 71 R = {1,20,23,26,30,32,34,37,39,41,45,48,51,70} √ √
8 81 θ pas premier × ×
9 91 R = {1,2,4,5, . . . ,86,87,89,90} × ×

10 101 R = {1,6,10,14,17, . . .84,87,91,95,100} √ √

Table 1 — Illustration pour p = 5 et 1 ≤ n ≤ 10.

Démonstration. Supposons que x, y et z satisfassent l’équation xp +yp = zp. Soit θ
de la forme 2np+ 1 et tel que θ satisfait N-C. Supposons que θ ne divise ni x, ni y,
ni z. Alors xp + yp = zp et ceci équivaut à zp − yp = xp. Modulo θ l’équation reste
valable et, comme θ est premier et ne divise aucun des trois nombres entiers x, y,
z, on peut diviser l’équation par xp. Après division par xp on obtient

( z
x

)p
−
(y
x

)p
≡ 1 mod θ.

Or ceci signifie que les nombres
(
z
x

)
et

( y
x

)
, si on les considère comme entiers

modulo θ, sont des p-ièmes puissances consécutives modulo θ, ce qui contredit le
fait que θ satisfait N-C.

La prochaine étape dans la quête de Germain pour une preuve du théorème
de Fermat était de démontrer que pour tout nombre premier p, il existait une
infinité de nombres premiers θ, de la forme 2np+ 1, satisfaisant N-C. Ceci aurait
alors comme corollaire presque immédiat la preuve du théorème de Fermat. En
effet, supposons que xp + yp = zp admette une solution en nombres entiers X, Y
et Z. Il existe alors une infinité de nombres premiers θ satisfaisant N-C et, par le
théorème 6, chacun de ces nombres premiers θ divise X, Y ou Z. Or ceci signifie
que au moins un de ces trois nombres est divisible par une infinité de nombres
premiers θ, ce qui est bien sûr impossible.

Une question qu’on se pose en analysant les manuscrits de Germain est pour-
quoi elle ne considère que des nombres premiers θ de la forme 2np+1. La réponse
est qu’elle était probablement bien consciente du lemme suivant.

Lemme 7. Soient p et q deux nombres premiers tels que pgcd(p,q − 1) = 1. Alors il
existe deux nombres entiers x et y tels que xp − yp ≡ 1 (mod q).

Démonstration. Soient p et q comme dans l’énoncé du lemme. Alors par le théo-
rème de Bézout, il existe deux entiers a et b tels que ap+ b(q − 1) = 1. Choisissons

deux nombres entiers x0 et y0 tels que x0 − y0 ≡ 1 (mod q). Alors x0 = x
ap+b(q−1)
0

et modulo q on obtient x0 ≡ xap0

(
x
q−1
0

)b
(mod q). Or, par le petit théorème de

Fermat (voir le théorème 4), x
q−1
0 ≡ 1 (mod q) et donc x0 ≡

(
xa0

)p
(mod q). De la
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même manière y0 ≡
(
ya0

)p
(mod q). Finalement on trouve que

(
xa0

)p −
(
ya0

)p ≡ 1
(mod q).

Ceci montre que si le nombre premier θ est tel que pgcd(p,θ−1) = 1, alors θ ne
vérifie certainement pas N-C. Il suffit donc de considérer des nombres premiers θ
tels que pgcd(p,θ) , 1. Or comme p est premier ceci équivaut à considérer des θ
tels que p | θ −1. C’est pourquoi Germain ne considère que des nombres premiers
θ de la forme 2np + 1, où le paramètre 2 est dû au fait qu’un nombre premier
supérieur à 3 est toujours impair.

Le but est donc maintenant de prouver qu’il existe pour chaque nombre
premier p une infinité de nombres premiers θ qui vérifient la condition N-C.
Or l’idée de Germain n’est pas de démontrer ceci directement, mais plutôt de
démontrer la chose suivante.

Conjecture 8. Pour tout n ∈ N, il existe seulement un nombre fini de nombres p ∈ N
tels que 2np+ 1 ne satisfait pas N-C.

A première vue, cette conjecture semble « aller dans le mauvais sens ». Or,
le plan final de Germain est de démontrer l’existence d’une valeur K > 0 telle
que pour tout nombre premier p > K le nombre 2np+ 1 soit premier et satisfasse
N-C. Ceci impliquerait alors la preuve du théorème de Fermat pour tout nombre
premier p > K . Malheureusement Germain n’a jamais pu démontrer ce résultat.
Par contre elle a effectué, à la main, tous les calculs pour n ≤ 10 et 2 < p < 100 :

Je n’ai jamais pu arriver à l’infini quoique j’ai reculé bien loin les
limites par une méthode de tâtonnement trop longue pour qu’il me
soit possible de l’exposer ici. Je n’oserais même pas affirmer que pour
chaque valeur de p il n’existe pas une limite au delà de laquelle tous les
nombres de la forme 2np+ 1 auraient deux résidus p-ième puissance
placés de suite dans la série des nombres naturels. C’est le cas qui
intéresse l’équation de Fermat.

De plus Germain a obtenu un résultat concret pour le cas n = 1, qui est le
suivant.

Lemme 9. Soit p un nombre premier. Si θ = 2p+ 1 est premier, θ vérifie automati-
quement N-C.

Démonstration. Regardons quels éléments de Zθ s’écrivent comme puissances de
p. Soit a ∈ Zθ une puissance de p. Il existe donc x ∈ Zθ tel que xp ≡ a (mod θ). Or

par le théorème 5, ceci est possible si et seulement si a
θ−1
d ≡ 1 (mod θ). Dans ce

cas θ − 1 = 2p et d = p et a doit donc être solution de l’équation y2 ≡ 1 (mod θ).
Les seules solutions de cette équation sont 1 et θ − 1 et θ vérifie donc N-C.

A cause de ce théorème, les nombres premiers p tels que 2p+1 est aussi premier
sont appelés nombres premiers de Sophie Germain.

Finalement, le cas qui a vraiment mis en doute Germain concernant sa conjec-
ture a été le cas p = 3. En fait Germain a prouvé le lemme suivant, qui démontre
l’échec de sa conjecture, au moins pour p = 3.

Lemme 10. Pour chaque nombre premier θ de la forme 6n+ 1 avec n > 2, il y a deux
résidus troisième puissance consécutifs modulo θ.
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Démonstration. Supposons que θ satisfasse N-C et supposons d’abord qu’il
n’existe pas de valeurs r, r′ ∈ {1, . . . ,6n} telles que r − r′ = 2 et r et r′ soient des
résidus cubiques. Par le théorème 5 on a

x3 ≡ b mod 6n+ 1 si et seulement si b2n ≡ 1 mod 6n+ 1,

et donc il existe exactement 2n résidus cubiques modulo 6n + 1. Ceux-ci sont
distribués parmi 6n valeurs et, à cause de l’hypothèse de départ, entre deux
résidus cubiques il y a toujours une différence d’au moins 2. Les 4n résidus non
cubiques sont donc distribués parmi les 2n − 1 « trous ». Comme chaque trou
comporte au moins 2 résidus non cubiques, on a déjà sûrement 4n − 2 des 4n
résidus non cubiques qui sont distribués dans les trous. Il reste 2 résidus non
cubiques à répartir. Du coup tous les trous contiennent 2 résidus non cubiques, à
part deux trous qui en contiennent 3, respectivement un trou qui en contient 4.
Indépendemment de la valeur de n > 2, 1 = 13 et 8 = 23, sont résidus cubiques
et donc 2 et 3 sont résidus non cubiques. Si 4 était résidu cubique, alors 8

4 = 2
serait résidu cubique aussi. Donc 4 est aussi résidu non cubique. Par conséquent
5 ou 6 sont résidus cubiques. Or, il est facile de voir que les résidus cubiques sont
distribués symétriquement parmi les 6n valeurs de 1 à 6n. Par conséquent, si 6
est résidu cubique, le premier trou contient 4 valeurs et par symétrie le dernier
en contient 4 aussi, ce qui donne trop de résidus non cubiques. Donc 5 est résidu
cubique et la liste des résidus cubiques parmi les valeurs de 1 à 6n est la suivante :

1, 5, 8, 11, . . . , 6n− 7, 6n− 4, 6n.

Si n > 5 alors θ > 31 et, dans ce cas, 27 = 33 est résidu cubique. Or clairement 27
n’est pas dans la liste ci-dessus. Si θ < 31, alors θ = 19 (θ = 25 n’est pas premier)
et dans ce cas 7 ≡ 64 ≡ 43 (mod 19) et 7 n’est pas non plus dans la liste.

Donc il existe forcément deux résidus cubiques r, r′ ∈ {1, . . . ,6n} tels que r − r′ =
2. Soit x un générateur du groupe cyclique Z∗θ . Alors 2 ≡ x3f ±1 (mod θ), pour
f > 0. En effet 2 n’est pas un résidu cubique, car 1 en est un et θ satisfait N-C.
Considérons r + r′ . On a r + r′ . 0 (mod θ), car sinon 2 = r − r′ ≡ r − (−r) ≡ 2r
(mod θ), ce qui implique que r = 1. Or r − r′ = 2 avec r = 1 et r et r′ positifs est
impossible. Donc r + r′ ∈ Z∗θ , d’où r + r′ ≡ xm (mod θ) pour m > 0. Si 3 |m, alors
on a

r + r′ ≡
(
xm
′ )3

mod θ

⇒r − (−r′) ≡
(
xm
′ )3

mod θ,

et en posant r = q3 et r′ = q′3 pour q,q′ ∈ Z∗θ , cette dernière ligne nous donne
(
q
xm′

)3
−

(
q′
xm′

)3
≡ 1 (mod θ), ce qui contredit le fait que θ satisfait N-C. Par

conséquent r + r′ ≡ x3g±1 (mod θ) avec g > 0. Supposons que le signe de 3g ± 1
soit différent de celui de 3f ± 1, c.-à-d. supposons que 2 ≡ x3f ±1 (mod θ) et
r + r′ ≡ x3g∓1 (mod θ). Alors

r2 − r′2 = (r + r′)(r − r′) ≡ x3g∓1x3f ±1 ≡
(
xg+f

)3
mod θ.

Comme r et r′ sont résidus cubiques, r2 et r′2 sont résidus cubiques aussi et la
dernière ligne mène de nouveau à une contradiction avec le fait que θ satisfait
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N-C. Finalement on a donc que

2r = r + r′ + r − r′ ≡ x3g±1 + x3f ±1 mod θ

⇒ x3f ±1r ≡ x3g±1 + x3f ±1 mod θ

⇒ r ≡ 1 + x3(g−f ) mod θ

⇒ r − x3(g−f ) ≡ 1 mod θ,

ce qui est à nouveau en contradiction avec le fait que θ satisfait N-C.

Ce lemme montre donc clairement que N-C n’est jamais vérifié si p = 3, à part
pour θ = 7 et θ = 13. Sur base de ce lemme, Germain décide alors d’abandonner
son Grand Plan. Aujourd’hui encore, on ne sait pas si pour p premier il existe
toujours un nombre premier θ de la forme 2np + 1 et qui satisfait N-C. Or malgré
l’échec du Grand Plan, la démarche de Germain reste remarquable pour son
temps. En fait en voulant démontrer l’existence de cette valeur K au-delà de
laquelle 2np+ 1 est premier et satisfait N-C, pour chaque p > K premier, Germain
aurait démontré le théorème de Fermat pour chaque exposant premier p supérieur
à une certaine valeur K , dont l’existence est prouvée, mais la valeur exacte n’est
pas connue. Elle aurait donc démontré le théorème de Fermat pour une infinité
d’exposants sans l’avoir démontré pour un seul exposant précis. Ceci constitue une
première dans l’histoire du théorème de Fermat car jusqu’ici les mathématiciens
avaient toujours essayé de démontrer le théorème pour une valeur précise (d’abord
4, puis 3, puis 5 etc.).

3.2 Théorème des Grandes Tailles des Solutions

Bien que Germain décide d’abandonner son Grand Plan, elle n’arrête pas le
travail sur le théorème de Fermat. Dans une deuxième étape elle travaille sur
un théorème, qu’on appelle Théorème des Grandes Tailles des Solutions. Pour cela
elle réutilise la condition N-C et ajoute une deuxième condition, qu’elle appelle
condition P-P-P, où P-P-P représente p pas une p-ième puissance.

Condition (P-P-P). Le nombre premier p n’est pas un résidu p-ième puissance
modulo θ.

Dans la table 1, on voit que pour p = 5 et 1 ≤ n ≤ 10, la condition P-P-P
est satisfaite pour θ = 11,41,71,101. Avec cette condition, Germain essaie de
démontrer le théorème suivant :

Conjecture 11. Soit p un nombre premier. Si l’équation xp + yp = zp admet une
solution en nombres entiers, alors x + y, z − y ou z − x doit nécessairement être un
multiple de la (2p−1)-ième puissance de p ainsi que des p-ièmes puissances de tous les
nombres premiers θ de la forme 2np+ 1 qui satisfont N-C et P-P-P.

L’idée de Sophie Germain derrière ce Théorème des Grandes Tailles des So-
lutions n’est plus de démontrer le théorème de Fermat directement, mais de
démontrer que si l’équation xp + yp = zp a une solution, cette solution doit être
gigantesque en taille. Germain écrit à ce sujet les lignes suivantes :

Vous concevrez aisément, Monsieur, que j’ai dû parvenir à prouver
que cette équation ne serait possible qu’en nombres dont la grandeur
effraye l’imagination. . .



LE THÉORÈME DE FERMAT VU PAR M. LE BLANC 61

En d’autres mots, ce théorème, s’il était vrai, montrerait que parmi les « petits »
nombres, il n’y aurait pas de solution à l’équation de Fermat. Considérons un
exemple concret. Si ce théorème était vrai, cela signifierait, pour l’exemple de
p = 5, que x+ y, z − y ou z − x serait multiple de

59 · 115 · 415 · 715 · 1015

(= 691053006763356095514121490614455078125).

On peut montrer que ceci équivaut à ce qu’un des trois nombres contienne au
moins 39 chiffres.

Malheureusement Germain fait une faute dans la démonstration du théorème.
En ne considérant la preuve que jusqu’au point où se trouve la faute, on peut en
déduire le théorème suivant, qu’on appelle encore aujourd’hui Théorème de Sophie
Germain.

Théorème de Sophie Germain. Soit p un nombre premier. S’il existe un nombre
premier θ de la forme 2np+ 1 qui satisfait les conditions N-C et P-P-P, alors dans toute
solution de l’équation xp + yp = zp un des nombres x, y ou z est divisible par p2.

Démonstration. Supposons qu’il existe θ = 2np + 1 qui satisfait N-C et P-P-P et
supposons que x, y et z satisfassent l’équation xp+yp = zp. Alors par le théorème 6,
θ | x,y ou z et on va montrer que ce dernier est aussi divisible par p2. Pour ceci on
va démontrer d’abord que les couples suivants

x+ y et ϕ(x,y) = xp−1 − xp−2y + xp−3y2 − xp−4y3 + . . .

z − y et ψ(z,y) = zp−1 + zp−2y + zp−3y2 + zp−4y3 + . . . (1)

z − x et ψ(z,x) = zp−1 + zp−2x+ zp−3x2 + zp−4x3 + . . .

ne peuvent avoir d’autres diviseurs communs que le nombre p. En effet supposons
que q soit un nombre premier différent de p et que q | x + y et q | ϕ(x,y). Alors
y ≡ −x (mod q) et donc ϕ(x,y) ≡ pxp−1 (mod q). Or comme q divise ϕ(x,y), on a
q | pxp−1 ce qui implique que q | xp−1. Comme q est premier, q divise donc x. Or
q divise aussi x + y et donc q divise y. Ceci est en contradiction avec le fait que
x, y et z sont premiers entre eux. De même, on peut montrer que les deux autres
couples n’ont pas de diviseur commun q , p et que les trois couples n’ont pas de
diviseur commun égal à une puissance de p.

Supposons maintenant que x, y et z soient premiers à p et posons

z =lr,
x =hn, (2)
y =vm,

pour l, r, h, n, v et m des entiers positifs. Comme les produits des couples en (1)
sont zp, xp et yp respectivement et comme les couples sont premiers entre eux,

x+ y = lp et ϕ(x,y) = rp,

z − y = hp et ψ(z,y) = np, (3)

z − x = vp et ψ(z,x) =mp.
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Par le théorème 6, on sait que θ divise x, y ou z. Supposons que θ | z (les autres
cas étant analogues). Alors

lp + hp + vp ≡ 2z ≡ 0 mod θ.

Si aucun des trois termes est nul, ceci équivaut à lp + hp ≡ (−v)p (mod θ). Or la
dernière équation peut être réécrite comme

(
l−v
)p

+
(
h−v

)p ≡ 1 (mod θ) ce qui est
en contradiction avec la condition N-C. Donc un des trois termes lp, hp ou vp est
divisible par θ. Comme x, y et z sont premiers entre eux, la seule possibilité est
que θ | l. Donc x+ y ≡ 0 (mod θ), ce qui équivaut à

ϕ(x,y) ≡ pxp−1 ≡ rp mod θ. (4)

Comme z ≡ 0 (mod θ) et comme z − x = vp, on a, modulo θ, x ≡ (−v)p (mod θ).
Or en remplaçant x par (−v)p dans (4), on obtient

p
(
(−v)p−1

)p ≡ rp mod θ,

et donc p doit être une p-ième puissance modulo θ, ce qui contredit P-P-P. Ceci
implique donc que p divise x, y ou z. Supposons donc que p divise z. Remarquons
ici que les autres cas se traitent de manière analogue et que le fait qu’on ait aussi
supposé que θ | z ne joue ici plus aucun rôle. Or si p | z, la première ligne dans (2)
et (3) change. Comme x+ y et ϕ(x,y) n’ont pas d’autre diviseur commun que p, il
y a 4 possibilités :

x+ y = lppp et ϕ(x,y) = rp,

x+ y = lp et ϕ(x,y) = rppp,

x+ y = lpp et ϕ(x,y) = rppp−1,

x+ y = lppp−1 et ϕ(x,y) = rpp.

On peut aisément démontrer que si l’un des deux termes est divisible par p,
l’autre l’est aussi et les deux premières possibilités sont donc exclues. Supposons
que la troisième possibilité soit vraie et posons x+ y = s. Alors

ϕ(x,y) =
(s − x)p + xp

s
= sp−1 −

(
p

1

)
sp−2x+ . . .−

(
p

p − 2

)
sxp−2 +

(
p

p − 1

)
xp−1.

Dans cette expression chaque terme est divisible par au moins p2, à part le dernier
qui est juste divisible par p. Ceci contredit le fait que ϕ(x,y) est divisible par
plus que p et c’est donc la quatrième possibilité qui est vraie. Donc p divise aussi
2z − x − y qui est égal à hp + vp. Ceci donne

hp + vp ≡ 0 mod p

⇒hp−1h+ vp−1v ≡ 0 mod p
⇒h+ v ≡ 0 mod p
⇒h ≡ −v mod p.

Or hp + vp = (h+ v)ϕ(h,v) et le premier terme est divisible par p et le deuxième
peut être écrit modulo p comme php−1 et est donc aussi divisible par p. Donc
p2 | hp + vp et donc p2 | 2z − x − y. Or x − y est aussi divisible par p2 et donc z doit
être divisible par p2, ce qui conclut la démonstration.
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Figure 3 — Schéma du travail complet de Germain sur le théorème de Fermat
(tiré de l’article [3])

Le théorème de Sophie Germain est aujourd’hui utilisé en théorie des nombres.
En plus il démontre une partie du théorème de Fermat. En fait la démonstration
du théorème de Fermat de Andrew Wiles est divisée en deux cas :

– L’équation xp + yp = zp n’a pas de solution en nombres entiers tels que
p 6 | xyz.

– L’équation xp + yp = zp n’a pas de solution en nombres entiers tels que un et
un seul des nombres x, y ou z soit divisible par p.

En fait le théorème de Sophie Germain démontre le cas 1 pour
– tous les nombres premiers p tels que p < 100,
– les nombres premiers de Sophie Germain (voir en-dessous de la démonstra-

tion du lemme 9).
Pour conclure le travail de Germain, la figure 3 montre un résumé de son tra-

vail. Quelques éléments n’ont pas été traités dans ce texte. Les lecteurs souhaitant
plus d’information sur cette partie de ses travaux sont invités à consulter [3].

4 Les nombres premiers de Sophie Germain

Rappelons tout d’abord la définition d’un nombre premier de Sophie Germain.

Définition 12. Les nombres premiers p tels que 2p + 1 est aussi premier sont
appelés nombres premiers de Sophie Germain.

4.1 Les nombres premiers de Sophie Germain dans la recherche

Jusqu’à aujourd’hui la conjecture suivante n’a pas été résolue.

Conjecture 13. Il y a une infinité de nombres premiers de Sophie Germain.

Le plus grand nombre premier de Sophie Germain a été trouvé en mars 2010
et correspond à

183027 · 2265440 − 1,
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ce qui représente un nombre à 79911 chiffres.
Dans la recherche contemporaine les nombres premiers de Sophie Germain

trouvent leur application principale en cryptographie, et plus précisément dans
le domaine des signatures digitales.

4.2 Nombres premiers de Sophie Germain palindromiques

Rappelons d’abord qu’un nombre est appelé palindromique lorsque son écriture
décimale lue de gauche à droite ou de droite à gauche représente le même nombre.
Par exemple 22, 151, 6446 ou 12345678987654321 sont des nombres palindro-
miques. Harvey Dubner, un ingénieur américain retraité, s’amuse à trouver des
grands nombres premiers de Sophie Germain qui sont palindromiques. En ce mo-
ment il tient le record du plus grand nombre de Sophie Germain palindromique
qui est le suivant :

10 . . .05321812350 . . .01,

où les pointillés ci-dessus représentent à chaque fois 516 fois le chiffre 0 !
Bien que ceci ait déjà l’air fort impressionnant, notre ingénieur a trouvé mieux.

En effet, il a trouvé un nombre premier de Sophie Germain P tel queQ = 2P +1 est
aussi un nombre premier de Sophie Germain. Donc R = 2Q+ 1 est aussi premier
et les trois nombres sont palindromiques. Les voici :

– P = 1919191918090908081808090908191919191
– Q = 2P + 1 = 3838383836181816163616181816383838383
– R = 2Q+ 1 = 7676767672363632327232363632767676767

On peut démontrer que la plus longue suite ainsi possible est toujours une suite
de 3 nombres. Or notre ingénieur a encore trouvé mieux et ici aussi il détient le
record de la plus grande suite de ce type, qui est montrée dans la figure 4.

En plus du fait que cette suite soit formée par les nombres les plus longs, elle
a encore autre chose de remarquable. Chacun des trois nombres dans cette suite a
exactement 727 chiffres et 727 est, à nouveau, un palindrome ! Et si, à la lecture
de ces lignes, vous souriez, c’est qu’il doit y avoir un peu de cette extraordinaire
mathématicienne en vous !
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Figure 4 — Suite la plus grande connue (tirée de la page web [5])
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