Tiling billiards in the wind-tree model

Magali JAY

Université d'Aix-Marseille
Conference SMaRT, Luxembourg 18 March 2024

Plan

1 Some context
■ Tiling billiards

- The wind-tree model
- Eaton lenses

2 Tiling billiard in the wind-tree model

- Setting
- The result

3 Sketch of the proof

- A corresponding surface

■ Kontsevich-Zorich cocycle

- A contracted direction

Some context

Tiling billiards: Definition

Definition

A tiling billiard is a dynamical system whose trajectories are:

- in a polygonal tiling,

Tiling billiards: Definition

Definition

A tiling billiard is a dynamical system whose trajectories are:

- in a polygonal tiling,
- in straight line in each tile,

Tiling billiards: Definition

Definition

A tiling billiard is a dynamical system whose trajectories are:

- in a polygonal tiling,
- in straight line in each tile,
- refracting when crossing a side.

Tiling billiards: Definition

Definition

A tiling billiard is a dynamical system whose trajectories are:

- in a polygonal tiling,
- in straight line in each tile,
- refracting when crossing a side.

Tiling billiards: Definition

Definition

A tiling billiard is a dynamical system whose trajectories are:

- in a polygonal tiling,
- in straight line in each tile,
- refracting when crossing a side.

Tiling billiards: Definition

Definition

A tiling billiard is a dynamical system whose trajectories are:

- in a polygonal tiling,
- in straight line in each tile,
- refracting when crossing a side.

Tiling billiards: Definition

Definition

A tiling billiard is a dynamical system whose trajectories are:

- in a polygonal tiling,
- in straight line in each tile,
- refracting when crossing a side.

Figure: Metamaterial - From : Experimental Verification of a Negative Index of Refraction, R. A. Shelby, D. R. Smith, S. Schultz

Tiling billiards

An example: the triangle tiling billiards

Theorem (Baird-Smith,Davis,Fromm,Iyer - 2018 - and Hubert,Paris-Romaskevich - 2019)

For any triangle, for almost every initial direction, the trajectory is either periodic or at bounded distance from a line.

Figure: The two generic types of trajectories

Wind-tree model: Definition

\square

\square

\square
\square
\square
\square

Figure: The wind-tree model

Wind-tree model: Definition

Figure: The wind-tree model
Denote $T(a, b)$ this arrangement: each rectangle, of size $a \times b$, is centered in a point of \mathbb{Z}^{2}. Denote φ_{t} the flow, i.e. $\varphi_{t}(x, \theta)$ is the point, at time t, of trajectory that begins in x with angle θ.

Wind-tree model: Recurrence and diffusion rate

Theorem (Avila, Hubert - 2020)
For every $(a, b) \in(0,1)^{2}$, for almost every initial direction θ, for every initial point x, the trajectory $t \mapsto \varphi_{t}(x, \theta)$ is recurrent.

Wind-tree model: Recurrence and diffusion rate

Theorem (Avila, Hubert - 2020)

For every $(a, b) \in(0,1)^{2}$, for almost every initial direction θ, for every initial point x, the trajectory $t \mapsto \varphi_{t}(x, \theta)$ is recurrent.

Theorem (Delecroix, Hubert, Lelièvre - 2017)

For every $(a, b) \in(0,1)^{2}$, for almost every initial direction θ, for every initial point x having infinite future orbit, the following holds:

$$
\limsup _{t \rightarrow \infty} \frac{\log d\left(x, \varphi_{t}(x, \theta)\right)}{\log t}=\frac{2}{3}
$$

Wind-tree model: Recurrence and diffusion rate

Theorem (Avila, Hubert - 2020)

For every $(a, b) \in(0,1)^{2}$, for almost every initial direction θ, for every initial point x, the trajectory $t \mapsto \varphi_{t}(x, \theta)$ is recurrent.

Theorem (Barazer - 2024)

For every $(a, b) \in(0,1)^{2}$, for almost every initial direction θ, for every initial point x having infinite future orbit, the following holds:

$$
\lim _{t \rightarrow \infty} \frac{\log \frac{1}{t} \int_{0}^{t} d\left(x, \varphi_{t}(x, \theta)\right)}{\log t}=\frac{2}{3}
$$

Eaton Lenses: Definition

Let $R>0$.

Eaton Lenses: Definition

Let $R>0$. Let Λ be a lattice of \mathbb{R}^{2}.

Denote $L(\Lambda, R)$ this system of Eaton lenses: each lens, of radius R, is centered in a lattice point.

Eaton Lenses: Definition

Let $R>0$. Let Λ be a lattice of \mathbb{R}^{2}.

Denote $L(\Lambda, R)$ this system of Eaton lenses: each lens, of radius R, is centered in a lattice point.
Say that the pair (Λ, R) is admissible when the lenses are pairwise disjoint.

Eaton Lenses: trapped trajectories

Theorem (Fraczek, Schmoll - 2014)

For almost every admissible pair (Λ, R) there exist constants $C=C(\Lambda, R)>0$ and $\Theta=\Theta(\Lambda, R) \in \mathbb{S}^{1}$, such that every vertical light ray in $L(\Lambda, R)$ is trapped in an infinite band of width $C>0$ in direction Θ.

Eaton Lenses: trapped trajectories

Theorem (Fracczek, Schmoll - 2014)

For almost every admissible pair (Λ, R) there exist constants $C=C(\Lambda, R)>0$ and $\Theta=\Theta(\Lambda, R) \in \mathbb{S}^{1}$, such that every vertical light ray in $L(\Lambda, R)$ is trapped in an infinite band of width $C>0$ in direction Θ.

Theorem (Frączek, Shi, Ulcigrai - 2018)

For every admissible pair (Λ, R), for almost every direction η, there exist constants $C=C(\Lambda, R, \eta)>0$ and
$\Theta=\Theta(\Lambda, R, \eta) \in \mathbb{S}^{1}$, such that every light ray in direction η in
$L(\Lambda, R)$ is trapped in an infinite band of width $C>0$ in
direction Θ.

Tiling billiard in the wind-tree model

Setting

Let $\Lambda \subset \mathbb{R}^{2}$ be a lattice. Let $a, b>0$. Let $\alpha \in[0, \pi)$

Setting

Let $\Lambda \subset \mathbb{R}^{2}$ be a lattice. Let $a, b>0$. Let $\alpha \in[0, \pi)$

Setting

Let $\Lambda \subset \mathbb{R}^{2}$ be a lattice. Let $a, b>0$. Let $\alpha \in[0, \pi)$

Setting

Let $\Lambda \subset \mathbb{R}^{2}$ be a lattice. Let $a, b>0$. Let $\alpha \in[0, \pi)$

Setting

Let $\Lambda \subset \mathbb{R}^{2}$ be a lattice. Let $a, b>0$. Let $\alpha \in[0, \pi)$

Setting

Let $\Lambda \subset \mathbb{R}^{2}$ be a lattice. Let $a, b>0$. Let $\alpha \in[0, \pi)$

The result

Denote $W(\Lambda, a, b, \alpha)$ this system: each rectangle, of size $a \times b$, is centered in a lattice point, making an angle α with the horizontal.
Say that the tuple (Λ, a, b, α) is admissible when the rectangles are pairwise disjoint.

The result

Denote $W(\Lambda, a, b, \alpha)$ this system: each rectangle, of size $a \times b$, is centered in a lattice point, making an angle α with the horizontal.
Say that the tuple (Λ, a, b, α) is admissible when the rectangles are pairwise disjoint.

Theorem (J.+)

For almost every admissible tuple (Λ, a, b, α), there exist constants $C=C(\Lambda, R, a, b, \alpha)>0$ and $\Theta=\Theta(\Lambda, R, a, b, \alpha) \in \mathbb{S}^{1}$, such that every vertical trajectory in $W(\Lambda, a, b, \alpha)$ is trapped in an infinite band of width $C>0$ in direction Θ.

Illustration of the result

Sketch of the proof

A corresponding surface Kontsevich-Zorich cocycle A contracted direction

A corresponding surface

A corresponding surface Kontsevich-Zorich cocycle A contracted direction

A corresponding surface

A corresponding surface

A corresponding surface

The question is now: how many times does the trajectory intersect the curves h and v ?

A corresponding surface Kontsevich-Zorich cocycle A contracted direction

A corresponding surface

A corresponding surface Kontsevich-Zorich cocycle A contracted direction

A corresponding surface

A corresponding surface Kontsevich-Zorich cocycle A contracted direction

A corresponding surface

A corresponding surface Kontsevich-Zorich cocycle A contracted direction

A corresponding surface

A corresponding surface Kontsevich-Zorich cocycle A contracted direction

A corresponding surface

A corresponding surface
Kontsevich-Zorich cocycle
A contracted direction

Trajectories on both surfaces

We get the same trajectory on both surfaces.

A corresponding surface
Kontsevich-Zorich cocycle
A contracted direction

Trajectories on both surfaces

We get the same trajectory on both surfaces.
Goal: Compute the number of intersections between the curve and h (resp. v).

Teichmüller flow

We renormalize the surface via the Teichmüller flow to get a smaller curve.

A corresponding surface Kontsevich-Zorich cocycle A contracted direction

Teichmüller flow

We renormalize the surface via the Teichmüller flow to get a smaller curve.

A corresponding surface

Teichmüller flow

After cutting and pasting, we get new curves, h^{\prime} and v^{\prime}, that intersect our trajectory only a few times.

Teichmüller flow

After cutting and pasting, we get new curves, h^{\prime} and v^{\prime}, that intersect our trajectory only a few times.

Question: What is the relation between h^{\prime}, v^{\prime} and $g_{T}(h)$, $g_{T}(v)$?

Kontsevich-Zorich cocycle

Cutting and pasting corresponds to a change of basis of the homology $H_{1}\left(g_{T}(\Sigma)\right)$ of the surface $g_{T}(\Sigma)$ from "old" basis $\left(g_{T}(h), g_{T}(v)\right)$ to the "new" basis $\left(h^{\prime}, v^{\prime}\right)$.

Kontsevich-Zorich cocycle

Cutting and pasting corresponds to a change of basis of the homology $H_{1}\left(g_{T}(\Sigma)\right)$ of the surface $g_{T}(\Sigma)$ from "old" basis $\left(g_{T}(h), g_{T}(v)\right)$ to the "new" basis $\left(h^{\prime}, v^{\prime}\right)$. This is given by a discrete version of the Kontsevich-Zorich cocycle.

Kontsevich-Zorich cocycle

Cutting and pasting corresponds to a change of basis of the homology $H_{1}\left(g_{T}(\Sigma)\right)$ of the surface $g_{T}(\Sigma)$ from "old" basis $\left(g_{T}(h), g_{T}(v)\right)$ to the "new" basis $\left(h^{\prime}, v^{\prime}\right)$. This is given by a discrete version of the Kontsevich-Zorich cocycle.
We denote A_{T} the transition matrix from the basis $\left(g_{T}(h), g_{T}(v)\right)$ to the basis $\left(h^{\prime}, v^{\prime}\right)$, i.e.

$$
\left\{\begin{array}{l}
g_{T}(h)=k h^{\prime}+m v^{\prime} \\
g_{T}(v)=l h^{\prime}+n v^{\prime}
\end{array}\right.
$$

where

$$
A_{T}^{-1}=\left(\begin{array}{cc}
k & l \\
m & n
\end{array}\right)
$$

We are interested in the growth of A_{T}^{-1} as T goes to infinity.

A contracted direction

We can apply Oseledets' theorem to the Kontsevich-Zorich cocycle.

For any generic surface (which is the case for almost every admissible parameters (Λ, a, b, α)), there exist an homology class $w=x h+y v$ such that A_{T}^{-1} contracts $\binom{x}{y}$.

A contracted direction

We can apply Oseledets' theorem to the Kontsevich-Zorich cocycle.

For any generic surface (which is the case for almost every admissible parameters (Λ, a, b, α)), there exist an homology class $w=x h+y v$ such that A_{T}^{-1} contracts $\binom{x}{y}$.

The curve γ can intersect the curve $x h+y v$ only a bounded number of times.

A contracted direction

We can apply Oseledets' theorem to the Kontsevich-Zorich cocycle.

For any generic surface (which is the case for almost every admissible parameters (Λ, a, b, α)), there exist an homology class $w=x h+y v$ such that A_{T}^{-1} contracts $\binom{x}{y}$.

The curve γ can intersect the curve $x h+y v$ only a bounded number of times.

The vector $\binom{x}{y} \in \mathbb{R}^{2}$ gives the direction of the strip in which the trajectory is trapped.

Thank you!

