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Tiling billiards: Definition

Definition
A tiling billiard is a dynamical system whose trajectories are:

in a polygonal tiling,

in straight line in each tile,
refracting when crossing a side.
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Tiling billiards: Definition

Definition
A tiling billiard is a dynamical system whose trajectories are:

in a polygonal tiling,
in straight line in each tile,
refracting when crossing a side.

Figure: Metamaterial - From : Experimental Verification of a Negative
Index of Refraction, R. A. Shelby, D. R. Smith, S. Schultz
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An example: the triangle tiling billiards

Theorem (Baird-Smith,Davis,Fromm,Iyer - 2018 - and
Hubert,Paris-Romaskevich - 2019)

For any triangle, for almost every initial direction, the trajectory
is either periodic or at bounded distance from a line.

Figure: The two generic types of trajectories
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Wind-tree model: Definition

Figure: The wind-tree model

Denote T (a, b) this arrangement: each rectangle, of size a× b, is
centered in a point of Z2. Denote φt the flow, i.e. φt(x, θ) is the
point, at time t, of trajectory that begins in x with angle θ.
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Wind-tree model: Recurrence and diffusion rate

Theorem (Avila, Hubert - 2020)

For every (a, b) ∈ (0, 1)2 , for almost every initial direction θ,
for every initial point x, the trajectory t 7→ φt(x, θ) is recurrent.
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Wind-tree model: Recurrence and diffusion rate

Theorem (Avila, Hubert - 2020)

For every (a, b) ∈ (0, 1)2 , for almost every initial direction θ,
for every initial point x, the trajectory t 7→ φt(x, θ) is recurrent.

Theorem (Delecroix, Hubert, Lelièvre - 2017)

For every (a, b) ∈ (0, 1)2 , for almost every initial direction θ,
for every initial point x having infinite future orbit, the following
holds:

lim sup
t→∞

log d(x, φt(x, θ))

log t
=

2

3
.
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Theorem (Avila, Hubert - 2020)

For every (a, b) ∈ (0, 1)2 , for almost every initial direction θ,
for every initial point x, the trajectory t 7→ φt(x, θ) is recurrent.

Theorem (Barazer - 2024)

For every (a, b) ∈ (0, 1)2 , for almost every initial direction θ,
for every initial point x having infinite future orbit, the following
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Eaton Lenses: Definition

Let R > 0.

Let Λ be a lattice of R2.

4 K. FRĄCZEK, R. SHI, AND C. ULCIGRAI

Figure 2. Eaton lens and a parallel family of light rays

Figure 3. The system of lenses L(Λ, R)

exists C(θ) > 0 and v(θ) ∈ S1 such that every light ray on L(Λ, R) in direction θ
is trapped in an infinite band of width C(θ) > 0 parallel to the unit tangent vector
v(θ).

Frączek and Schmoll considered randomly chosen lattices and proved that for
every 0 < R <

√
2
√

3 and for almost every R-admissible lattice Λ (with respect to
the Haar measure on the space of lattices), light rays in the vertical direction are
trapped. They also provided explicit examples of specific lattices and directions
which are trapped. Their result, though, does not provide any information for the
behaviour of typical light rays in a fixed admissible lattice configuration.

In this paper we answer this natural question (asked for example by Marklof
and by the referee of [20]) by describing the behavior of light orbits on L(Λ, R) in
direction θ when an admissible pair (Λ, R) is fixed and the parameter θ varies.

Theorem 1.2. Let (Λ, R) be an admissible pair. Then a.e. θ ∈ [0, 2π] is trapped.

This result is proved in § 4. As in [20], we first reduce the system of Eaton lenses
to a simpler model, a system of flat lenses, which can be unfolded and reduced
to an infinite translation surface. For the definition and for more results for this
related system, we refer the reader to § 4.

1.3. Gap distribution of fractional parts of square roots. Let N = {1, 2, . . .}.
Consider a sequence {tn}n∈N ⊂ [0, 1] which is equidistributed modulo one, i.e. for
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Denote L(Λ, R) this system of Eaton lenses: each lens, of radius
R, is centered in a lattice point.
Say that the pair (Λ, R) is admissible when the lenses are
pairwise disjoint.
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Eaton Lenses: trapped trajectories

Theorem (Frączek, Schmoll - 2014)

For almost every admissible pair (Λ, R) there exist constants
C = C(Λ, R) > 0 and Θ = Θ(Λ, R) ∈ S1, such that every
vertical light ray in L(Λ, R) is trapped in an infinite band of
width C > 0 in direction Θ.

Theorem (Frączek, Shi, Ulcigrai - 2018)

For every admissible pair (Λ, R), for almost every direction η,
there exist constants C = C(Λ, R, η) > 0 and
Θ = Θ(Λ, R, η) ∈ S1, such that every light ray in direction η in
L(Λ, R) is trapped in an infinite band of width C > 0 in
direction Θ.
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The result

Denote W (Λ, a, b, α) this system: each rectangle, of size a× b, is
centered in a lattice point, making an angle α with the
horizontal.
Say that the tuple (Λ, a, b, α) is admissible when the rectangles
are pairwise disjoint.

Theorem (J.+)

For almost every admissible tuple (Λ, a, b, α), there exist
constants C = C(Λ, R, a, b, α) > 0 and Θ = Θ(Λ, R, a, b, α) ∈ S1,
such that every vertical trajectory in W (Λ, a, b, α) is trapped in
an infinite band of width C > 0 in direction Θ.
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The question is now: how many times does the trajectory
intersect the curves h and v?
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Trajectories on both surfaces

We get the same trajectory on both surfaces.

Goal: Compute the number of intersections between the curve
and h (resp. v).

Magali Jay Tiling Billiards and Wind-tree 18 / 23



Some context
Tiling billiard in the wind-tree model

Sketch of the proof

A corresponding surface
Kontsevich-Zorich cocycle
A contracted direction

Trajectories on both surfaces

We get the same trajectory on both surfaces.
Goal: Compute the number of intersections between the curve
and h (resp. v).

Magali Jay Tiling Billiards and Wind-tree 18 / 23



Some context
Tiling billiard in the wind-tree model

Sketch of the proof

A corresponding surface
Kontsevich-Zorich cocycle
A contracted direction

Teichmüller flow

We renormalize the surface via the Teichmüller flow to get a
smaller curve.
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Some context
Tiling billiard in the wind-tree model

Sketch of the proof

A corresponding surface
Kontsevich-Zorich cocycle
A contracted direction

Teichmüller flow

After cutting and pasting, we get new curves, h′ and v′, that
intersect our trajectory only a few times.

Question: What is the relation between h′, v′ and gT (h),
gT (v)?

Magali Jay Tiling Billiards and Wind-tree 20 / 23



Some context
Tiling billiard in the wind-tree model

Sketch of the proof

A corresponding surface
Kontsevich-Zorich cocycle
A contracted direction

Teichmüller flow

After cutting and pasting, we get new curves, h′ and v′, that
intersect our trajectory only a few times.

Question: What is the relation between h′, v′ and gT (h),
gT (v)?

Magali Jay Tiling Billiards and Wind-tree 20 / 23



Some context
Tiling billiard in the wind-tree model

Sketch of the proof

A corresponding surface
Kontsevich-Zorich cocycle
A contracted direction

Kontsevich-Zorich cocycle

Cutting and pasting corresponds to a change of basis of the
homology H1(gT (Σ)) of the surface gT (Σ) from "old" basis
(gT (h), gT (v)) to the "new" basis (h′, v′).

This is given by a
discrete version of the Kontsevich-Zorich cocycle.

We denote AT the transition matrix from the basis
(gT (h), gT (v)) to the basis (h′, v′), i.e.

{
gT (h) = kh′ +mv′

gT (v) = lh′ + nv′
,

where

A−1
T =

(
k l
m n

)
.

We are interested in the growth of A−1
T as T goes to infinity.
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A contracted direction

We can apply Oseledets’ theorem to the Kontsevich-Zorich
cocycle.

For any generic surface (which is the case for almost every
admissible parameters (Λ, a, b, α)), there exist an homology class

w = xh+ yv such that A−1
T contracts

(
x
y

)
.

The curve γ can intersect the curve xh+ yv only a bounded
number of times.

The vector
(
x
y

)
∈ R2 gives the direction of the strip in which

the trajectory is trapped.
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Tiling billiard in the wind-tree model

Sketch of the proof

Thank you!
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