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Some context Tiling billiards
Tiling billiard in the wind-tree model The wind-tree model
Sketch of the proof Eaton lenses

Tiling billiards: Definition

A tiling billiard is a dynamical system whose trajectories are:

m i a polygonal tiling,
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Tiling billiards: Definition

A tiling billiard is a dynamical system whose trajectories are:
m in a polygonal tiling,
m in straight line in each tile,

m refracting when crossing a side.

Fig. 1. Photagraph of the left-
handed _metamaterial (LHM)
sample. The LHM sample con-
sists of square copper split ring
resonators and copper wire strips
on fiber glass circuit board ma
terial. The rings and wires are on
opposite sides of the boards, and
the boards have been cut and
assembled into an interlocking
lattice.

Figure: Metamaterial - From : Ezperimental Verification of a Negative
Index of Refraction, R. A. Shelby, D. R. Smith, S. Schultz
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Sketch of the proof Eaton lenses

An example: the triangle tiling billiards

Theorem (Baird-Smith,Davis,Frc Jyer 8 - and

Hubert,Paris-Romaskevich - 2019)

For any triangle, for almost every initial direction, the trajectory
15 either periodic or at bounded distance from a line.

Figure: The two generic types of trajectories
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Figure: The wind-tree model
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Tiling billiards

The wind-tree model
Wind-tree model: Definition

Eaton lenses

Figure: The wind-tree model

Denote T'(a,b) this arrangement: each rectangle, of size a x b, is

centered in a point of Z2. Denote ; the flow, i.e. ¢;(x,0) is the

point, at time %, of trajectory that begins in x with angle 6.
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Wind-tree model: Recurrence and diffusion rate

Theorem (Avila, Hubert - 2020)

For every (a,b) € (0,1)2 , for almost every initial direction 0,
for every initial point x, the trajectory t — pi(x,8) is recurrent.
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Wind-tree model: Recurrence and diffusion rate

Theorem (Avila, Hubert - 2020)

For every (a,b) € (0,1)% , for almost every initial direction 0,
for every initial point x, the trajectory t — p(x,8) is recurrent.

Theorem (Delecroix, Hubert, Leliévre - 2017)

For every (a,b) € (0,1)% , for almost every initial direction 0,
for every initial point x having infinite future orbit, the following
holds: - . 5
Fangnip B A ) %
t—o00 logt 3
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Wind-tree model: Recurrence and diffusion rate

Theorem (Avila, Hubert - 2020)

For every (a,b) € (0,1)2 , for almost every initial direction 0,
for every initial point x, the trajectory t — @i(x,0) is recurrent.

Theorem (Barazer - 2024)

For every (a,b) € (0,1) , for almost every initial direction 6,
for every initial point x having infinite future orbit, the following
holds:

logd fyd( pu(,0) _ 2
t—00 logt 3
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Eaton Lenses: Definition

Tiling billiards

The wind-tree model
Eaton lenses

Let R > 0. Let A be a lattice of R2

O

X

0003
daas

Denote L(A, R) this system of Eaton lenses: each lens, of radius
R, is centered in a lattice point
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Eaton Lenses: Definition

Let R > 0. Let A be a lattice of RZ.

Denote L(A, R) this system of Eaton lenses: each lens, of radius
R, is centered in a lattice point.

Say that the pair (A, R) is admissible when the lenses are
pairwise disjoint.
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Eaton Lenses: trapped trajectories

Theorem (Fraczek, Schmoll - 2014)

For almost every admissible pair (A, R) there exist constants
C=C(AR) >0 and © = O(A, R) € S!, such that every
vertical light ray in L(A, R) is trapped in an infinite band of
width C > 0 in direction ©.
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Eaton Lenses: trapped trajectories

Theorem (Fraczek, Schmoll - 2014)

For almost every admissible pair (A, R) there exist constants
C=C(AR) >0 and © = O(A, R) € S!, such that every
vertical light ray in L(A, R) is trapped in an infinite band of
width C > 0 in direction ©.

Theorem (Fraczek, Shi, Ulcigrai - 2018)

For every admissible pair (A, R), for almost every direction
n, there exist constants C = C(A, R,n) > 0 and

O = O(A, R, n) € SY, such that every light ray in direction 1 in
L(A, R) is trapped in an infinite band of width C > 0 in
direction ©.
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Tiling billiard in the wind-tree
model



Let A C R? be a lattice. Let a,b > 0. Let a € [0, 7)
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Let A C R? be a lattice. Let a,b > 0. Let a € [0, 7)

(0
.

«0O0>» «F»r «=»r 4 o>



Denote W (A, a, b, «) this system: each rectangle, of size a x b, is

centered in a lattice point, making an angle o with the
horizontal.

Say that the tuple (A, a, b, «) is admissible when the rectangles
are pairwise disjoint.
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Tiling billiard in the wind-tree model
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The result

The result

Denote W (A, a, b, «) this system: each rectangle, of size a x b, is
centered in a lattice point, making an angle o with the
horizontal.

Say that the tuple (A, a,b, ) is admissible when the rectangles
are pairwise disjoint.

Theorem (J.+)

For almost every admissible tuple (A, a, b, &), there exist
constants C = C(A, R, a,b,a) >0 and © = O(A, R,a,b,a) € St,
such that every vertical trajectory in W (A, a,b, ) is trapped in
an infinite band of width C' > 0 in direction ©.
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intersect the curves h and v?

The question is now: how many times does the trajectory
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Some context A corresponding surface
Tiling billiard in the wind-tree model Kontsevich-Zorich cocycle
Sketch of the proof A contracted direction

Trajectories on both surfaces

We get the same trajectory on both surfaces.

=
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Some context A corresponding surface
Tiling billiard in the wind-tree model Kontsevich-Zorich cocycle
Sketch of the proof A contracted direction

Trajectories on both surfaces

We get the same trajectory on both surfaces.
Goal: Compute the number of intersections between the curve
and h (resp. v).
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smaller curve.

v

We renormalize the surface via the Teichmiiller flow to get a
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We renormalize the surface via the Teichmiiller flow to get a
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Teichmiiller flow

A corresponding surface
Kontsevich-Zorich cocycle

A contracted direction

After cutting and pasting, we get new curves, h’ and v/, that
intersect our trajectory only a few times.

, < I/i/ —
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A corresponding surface
Kontsevich-Zorich cocycle
A contracted direction
Teichmiiller flow

After cutting and pasting, we get new curves, h’ and v/, that
intersect our trajectory only a few times.

Question: What is the relation between h’, v" and gr(h),
gr(v)?
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Kontsevich-Zorich cocycle
A contracted direction

Kontsevich-Zorich cocycle

Cutting and pasting corresponds to a change of basis of the

homology Hi(gr(X)) of the surface gr(X) from "old" basis
(97 (h), gr(v)) to the "new" basis (h/,v").
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Kontsevich-Zorich cocycle
A contracted direction

Kontsevich-Zorich cocycle

Cutting and pasting corresponds to a change of basis of the
homology Hi(gr(X)) of the surface gr(X) from "old" basis
(97(h), gr(v)) to the "new" basis (h',v"). This is given by a
discrete version of the Kontsevich-Zorich cocycle.
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Kontsevich-Zorich cocycle

Cutting and pasting corresponds to a change of basis of the
homology Hi(gr (X)) of the surface gr(X) from "old" basis
(97(h), gr(v)) to the "new" basis (h',v"). This is given by a
discrete version of the Kontsevich-Zorich cocycle.

We denote A7 the transition matrix from the basis

(97 (h), gr(v)) to the basis (h',v'), i.e.

gr(h) =kh' +md’
gr(v) =1 +n"

_ kol
a=(m 0)

We are interested in the growth of A;l as T goes to infinity.

where
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A corresponding surface
Kontsevich-Zorich cocycle

A contracted direction

A contracted direction

We can apply Oseledets’ theorem to the Kontsevich-Zorich
cocycle.

For any generic surface (which is the case for almost every
admissible parameters (A, a, b, ), there exist an homology class

w = zh 4 yv such that AEI contracts
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A contracted direction

We can apply Oseledets’ theorem to the Kontsevich-Zorich
cocycle.

For any generic surface (which is the case for almost every
admissible parameters (A, a, b, ), there exist an homology class

w = xh + yv such that A}l contracts ( ‘; )

The curve v can intersect the curve xh + yv only a bounded
number of times.
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A contracted direction

We can apply Oseledets’ theorem to the Kontsevich-Zorich
cocycle.

For any generic surface (which is the case for almost every
admissible parameters (A, a, b, ), there exist an homology class

w = xh + yv such that A}l contracts ( ‘; )

The curve v can intersect the curve xh + yv only a bounded
number of times.

The vector < g ) € R? gives the direction of the strip in which

the trajectory is trapped.
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Thank youl!
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