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Surfaces 

Finite type surfaces with negative Euler characteristic
(Topologically, genus g surfaces with n points removed)



● We will consider all curves up to homotopy class

● In each homotopy class there is a unique geodesic 
(shortest one)

● Primitive, essential

Curves 



Definition: A closed curve on a surface is said to 
be filling if it intersects every essential simple, 
non-peripheral closed curve on the surface.

Alternative definition:

Complement of a filling curve is a union of discs 
and annuli

Filling Curves  Example:



Teichmüller Space 

Set of isotopy classes of marked 
hyperbolic structures.

Each point in Teichmüller space of 𝜮, 
can be denoted as (X,f ) where X is a 
surface with complete, finite area 
hyperbolic structure with geodesic 
boundary and f is a diffeomorphism 
from 𝜮 to X.

(X, f) ~ (Y, g) if  f o g -1 is isotopic to an 
isometry. 3 different points in Teichmüller space



Mapping Class Group 
Group of orientation preserving
 isometries up to isotopy

MCG := Diffeo + (𝜮) / ~

f ~ g if  f o g -1 is isotopic to identity

 Easy example: Dehn twists

The MCG acts naturally on the Teichmüller space.

g o (X,f)                   (X, f o g -1 )

Acts by “unmarking”



Moduli Space 
Moduli space Mg is the quotient of Teichmüller space under the action of MCG.

Two points (X, f) and (X, g) that map to the same point in moduli space differ by the action 
of the mapping class  g−1  ◦ f

3 different points in Teichmüller space 2 different points in Moduli space



Topological Types 

 Two curves are said to be of the same topological type if there is a mapping class 
group element taking one to the other.

SameDifferent
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INVARIANTS 



Inf invariant 
Fix a topological surface  𝚺 and let Teich(𝚺) denote its Teichmuller space. 
Consider a non-simple closed curve γ in 𝚺. 

For (𝞍,X ) in(𝚺) . Let  lᵧ(X) denote the ‘X-length’ of the geodesic in the free 
homotopy class of  𝞍(γ).

We define the length infimum of  γ as follows:

mᵧ = inf { lᵧ(X) :  (𝞍, X ) in Teich(𝚺)}



Properties: 

● Invariant under action on Mapping Class Group on Teichmuller 
space.

● The infimum is attained. (Mumford compactness theorem)

● The infimum is unique. (Convexity of Weil-Petersson geodesics)



Other invariants 

Self intersection number

If γ non-simple closed curve in 𝚺 , then the self intersection number of γ denoted by  
i(γ ,γ ) is  the minimum number of self-intersection points of a curve in its free 
homotopy class in general position. 
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RELATION BETWEEN 
INVARIANTS 



Motivation 
Self intersection number vs Length

Currency:  LengthWant to buy :   Self intersections

● To achieve more intersections we would need longer curves.
● However, we can get more intersection for less length in thin parts of the surface.



Questions: 

Relations between these invariants?

Is the inf invariant a complete invariant? Are there 
curves with same inf invariant?

Can the inf invariant distinguish curves that the 
self intersection number can’t?



Known Results: 

Universal length bounds for non-simple closed geodesics on hyperbolic surfaces. 
(A. Basmajian, H.Parlier, and J.Souto., 2017) 

Length bounds on shortest k-geodesics. (A. Basmajian, 2013)

Explicit inf length values for a certain  of curves (uniform filling curves). (E. Girondo, G. 
González-Diez, R.A. Hidalgo, 2023)

Length equivalent curves. (C. Leininger, 2003)

For geodesic currents… (J. Sapir, S. Hensel, 2021, 2023)

Length minima for an infinite family of filling closed curves on a one-holed torus.
(Z.Wang and Y.Zhang, 2022)
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CONSTRUCTING 
FILLING CURVES  



Minimal filling curve 
Definition: Filling curve with the minimum self intersection number on a given surface.

● For a closed surface of genus g, this curve is unique and has intersection number 2g - 1. 
(C. Arettines , 2015).

○ The complement is one disk!
○ m ᵧ = (4g − 2) arccosh (2 cos[ π/4g−2 ] + 1)

● We extend his construction to surfaces with boundaries (genus g and n boundary 
components).

○ Intersection number = 2g − 1 + max {0 ,, (n − 1)}
○ Complement consists of annuli.



Family 1: Separating Curve Case  

Start with a (minimal) filling curve γ0

Cut at an intersection point with a 
separating curve. 

Given a pair of positive
integers (m, n) , let γ be the curve ηm ∗ γ0

n

(based at the intersection point)

A (2,2) curve.



Family 2: Punctured Surface Case 

Start with a (minimal) filling curve γ0, with a 
subloop homotopic to a puncture.

Start at an intersection point of the subloop.

Given (m, n) , let γ be the curve ηm ∗ γ0
n  that 

start at p and goes around γ0, n times, then 
around η, m times.

A (2,1) curve.
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LENGTHS AND 
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Self Intersection numbers: 

i(γ, γ) = i(γ0, γ0)n
2 + m ± 1

Punctured Surface Case: 

i(γ, γ) = i(γ0, γ0)n
2 + (i(γ0, η)n − 1)m

Separating Curve Case: 



βk  

For a fixed k = i(γ, γ) where k >> 2g − 1, there are several choices of curves (pairs of 
integers(m,n)) in both curve family with k self-intersections. We call these admissible pairs.

Punctured Surface Case Separating Curve Case 

Admissible Pairs 



Coarse length bounds 

2n [d + r(ℓη(X)/2]+ mℓη(X) − C ≤ ℓγ (X) ≤ 2n [D + 2 r(ℓη(X)/2))+ Kℓη(X)] + mℓη(X)

Separating Curve Case: 

nd + 2 log m − c2 ≤  ℓγ (X)  ≤ 2 log m + nℓ γ0(X) + c1

where c1, c2, d are positive constants that depend only on γ0

Punctured Surface Case: 

Constants d, D, and K are independent of n and m, and only depend on γ0
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RESULTS 



Theorem 1 (Separating Curve case) 

Suppose χ(Σ) ≤ −2. There exists an infinite set of positive integer K and a collection of curve pairs 
{(αk, βk)}, k∊K such that

(1) αk and βk are each filling curves

(2) i(αk, αk) = i(βk, βk) = k

(3) mαk ≲ log k < √k ≲ mβk

(4) the optimal metrics {Xβk} are contained in a compact subspace of moduli space.

(5) The metrics {Xαk} limit to a stratum S in ∂M(Σ) which correspond corresponds to η being pinched.



Theorem 2 (Punctured Surface case) 

Suppose Σ has negative Euler characteristic with genus g and n ≥ 1 punctures. There exists an 
infinite set of positive integer K and a collection of curve pairs {(αk, βk)}, k∊K so that

(1) αk and βk are each filling curves

(2) i(αk, αk) = i(βk, βk) = k, 

(3) mαk ≠ mβk

(4) mαk ≲ 2 log k < c√k ≲ mβk

(5) the metrics Xαk  and Xβk stay within a compact subspace of M(Σ) for all k.



βk  

For a fixed k = i(γ, γ) where k >> 2g − 1, there are several choices of curves (pairs of 
integers(m,n)) in both curve family with k self-intersections. We call these admissible pairs.

Punctured Surface Case Separating Curve Case 

αk αk

βk βk

Admissible Pairs 



Proof Sketch (Separating Curve case) 

mαk ≤ 2D + 4 log (m / log m)+ K (log m /m) + log m, where m = (k − 2g + 1)

mβk  ≥ 2d ⌊√(k − 1)/(2g − 1)⌋− C

Thus,  mαk ≲ log k < √k ≲ mβk



Proof Sketch (Punctured Surface case) 

mαk ≤ 2 log(k − c − 1) + ℓγ0 (X) + c2

mβk  ≥ d√(k − 2)/(2g + p − 2) − c1

So, mαk  ≲ 2 log k  <  c√k  ≲ mβk



Questions 

● What about the other curves with k self intersections?  (In progress)

● Examples of filling curves with same self intersection number and same inf?

● Understanding the inf length spectrum . . . 
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