Contrôle Continu 2

IMP1

24 novembre 2021

Exercice 1

Soit $f(x) = \tan(2x)$.

a. Donner le domaine de définition D de f.

Le domaine de définition de $x \mapsto \tan(x)$ est $\mathbb{R} \setminus \{\pi/2 + 2k\pi : k \in \mathbb{Z}\}$. Le domaine de définition de $x \mapsto \tan(2x)$ est ainsi $\mathbb{R} \setminus \{\pi/4 + k\pi : k \in \mathbb{Z}\}$.

b. Donner la plus petite période de f.

La plus petite période de $x \mapsto \tan(x)$ est π . La plus petite période de $x \mapsto \tan(2x)$ est donc $\pi/2$.

c. Montrer que pour tout $x, x/2 \in D$ et $1 - f(x/2)^2 \neq 0$, on a

$$f(x) = \frac{2f(x/2)}{1 - f(x/2)^2}.$$

Il s'agit de montrer que

$$\tan(2x) = \frac{2\tan(x)}{1 - \tan(x)^2}.$$

Par la définition de la tangente et les formules d'addition pour le sinus et le cosinus,

$$\tan(2x) = \frac{\sin(2x)}{\cos(2x)} = \frac{2\sin(x)\cos(x)}{\cos(x)^2 - \sin(x)^2} = \frac{2\sin(x)\cos(x)/\cos(x)/\cos(x)}{(\cos(x)^2 - \sin(x)^2)/\cos(x)^2} = \frac{2\tan(x)}{1 - \tan(x)^2}.$$

Exercice 2

- a. Donner le domaine de définition de la fonction $x \to \arccos(x)$. [-1,1].
- b. Montrer que

$$\arccos(-x) = \pi - \arccos(x)$$
.

Par le fait que $0 \le \cos(-x)$, $\pi - \arccos(x) \le \pi$ et l'injectivité de la fonction $x \mapsto \cos(x)$ sur $[0, \pi]$, il suffit de montrer que $\cos(\arccos(-x)) = \cos(\pi - \arccos(x))$. Or $\cos(\arccos(-x)) = -x$, et

 $\cos(\pi - \arccos(x)) = \cos(\pi)\cos(\arccos(x)) + \sin(\pi)\sin(\arccos(x)) = -1 \cdot x + 0 = -x,$

d'où la proposition.

c. Montrer que $x \to \arccos(x)$ est décroissante.

$$\arccos'(x) = \frac{-1}{\sqrt{1-x^2}} < 0$$

pour tout $x \in]-1,1[$.

d. Étudier la convexité de la fonction $x \to \arccos(x)$.

$$\arccos''(x) = \frac{-x}{(1-x^2)^{3/2}} = \begin{cases} \le 0 & \text{si } x \ge 0, \\ \ge 0 & \text{si } x \le 0, \end{cases}$$

Donc la fonction $x \mapsto \arccos(x)$ est convexe sur]-1,0], et concave sur [0,1[.

e. Montrer que

$$0 < \arccos(3/4) < \frac{\pi}{4}.$$

Il découle du fait que

$$\frac{\pi}{2} > \frac{3}{4} > \frac{\sqrt{2}}{2}$$

et 2.c.

f. Montrer que, pour tout $x \in \mathbb{R}$,

$$2\cos^2(x) - 1 = \cos(2x).$$

$$\cos(2x) = \cos(x+x) = \cos(x)\cos(x) - \sin(x)\sin(x) = \cos(x)^2 - (1 - \cos(x)^2) = 2\cos(x)^2 - 1.$$

g. Résoudre l'équation

$$\arccos(x) = 2\arccos(3/4).$$

Par 2.e, $2\arccos(3/4) \in [0, \pi/2]$, donc $\cos(\arccos(x)) = x$. Ainsi

$$x = \cos \arccos(x) = \cos(2\arccos(3/4)) = 2\cos(\arccos(3/4))^2 - 1 = 2 \cdot \left(\frac{3}{4}\right)^2 - 1 = \frac{1}{8}$$