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Abstract. We study conformal actions of connected nilpotent Lie groups

on compact pseudo-Riemannian manifolds. We prove that if a type-(p, q)

compact manifold M supports a conformal action of a connected nilpo-

tent group H , then the degree of nilpotence of H is at most 2p + 1,

assuming p ≤ q; further, if this maximal degree is attained, then M

is conformally equivalent to the universal type-(p, q), compact, confor-

mally flat space, up to finite or cyclic covers. The proofs make use

of the canonical Cartan geometry associated to a pseudo-Riemannian

conformal structure.

1. Introduction

Let (M,σ) be a compact pseudo-Riemannian manifold—that is, the tangent

bundle of M is endowed with a type-(p, q) inner product, where p+ q = n =

dimM . We will always assume p ≤ q. The conformal class of σ is

[σ] = {ehσ : h : M → R smooth}

Denote by Conf M the group of conformal automorphisms of M—the group

of diffeomorphisms f of M such that f∗σ ∈ [σ]. If n ≥ 3, then Conf M

endowed with the compact-open topology is a Lie group (see [Ko, IV.6.1]

for the Riemannian case; the proof is similar for p > 0).

A basic question, first addressed by A. Lichnerowicz, is to characterize the

pseudo-Riemannian manifolds (M,σ) for which Conf M does not preserve

any metric in [σ]; in this case, Conf M is essential. The pseudo-Riemannian

Lichnerowicz conjecture says that if M is compact and Conf M is essential,

then M is conformally flat—that is, locally conformally equivalent to Rp,q

with the translation-invariant, type-(p, q) metric. A stronger result in the

Riemannian case was proved by Lelong-Ferrand [LF1]. See for example [Fr2]

for more background on this conjecture.
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One difficulty for general type (p, q) is that no characterization of essential

conformal groups exists. In the Riemannian case, on the other hand, for M

compact, Conf M is essential if and only if it is noncompact. For p ≥ 1,

noncompactness is only a necessary condition to be essential. Now, a first

approach to the conjecture is to exhibit sufficient conditions on a group

of conformal transformations which ensure it is essential, and to test the

conjecture on groups satisfying the given condition.

From the conformal point of view, the Einstein universe is the most sym-

metric structure of type (p, q). These spaces, denoted Einp,q, are defined in

section 2.1 below. The group Conf Einp,q is isomorphic to PO(p + 1, q + 1),

and it is essential. The Einstein spaces are conformally flat.

Thanks to [Zi1], we know that a simple noncompact real Lie group acting iso-

metrically on a compact pseudo-Riemannian manifold (M,σ) of type (p, q)

satisfies rk H ≤ p, where rk H denotes the real rank. For H < Conf M

noncompact and simple, the rank

rk H ≤ p + 1 = rk PO(p + 1, q + 1)

This was first proved in [Zi1], also in [BN], and for H not necessarily simple

in [BFM, 1.3 (1)]. Thus, conformal actions of simple groups H, with rk H =

p+1, on type-(p, q) compact pseudo-Riemannian manifolds cannot preserve

any metric in the conformal class. The results of [BN], together with [FZ],

give that when H < Conf M attains this maximal rank, then M is globally

conformally equivalent to Einp,q, up to finite covers when p ≥ 2; for p = 1,

M is conformally equivalent to the universal cover Ẽin
1,n−1

, up to cyclic and

finite covers. In particular, M is conformally flat, so this result supports the

pseudo-Riemannian Lichnerowicz conjecture. The interested reader can find

a wide generalization of this theorem in [BFM, 1.5].

Actions of semisimple Lie groups often exhibit rigid behavior partly because

the algebraic structure of such groups is itself rigid. The structure of nilpo-

tent Lie groups, on the other hand, is not that well understood; in fact, a

classification of nilpotent Lie algebras is available only for small dimensions.

From this point of view, it seems challenging to obtain global results simi-

lar to those above for actions of nilpotent Lie groups. Observe also that a

pseudo-Riemannian conformal structure does not naturally define a volume

form, so that the nice tools coming from ergodic theory are not available

here.
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For a Lie algebra h, we adopt the notation h1 = [h, h], and hk is defined

inductively as [h, hk−1]. The degree of nilpotence d(h) is the minimal k

such that hk = 0. For a connected, nilpotent Lie group H, define the

nilpotence degree d(H) to be d(h). If a connected Lie group H is nilpotent

and acts isometrically on a type-(p, q) compact pseudo-Riemannian manifold

M , where p ≥ 1, then the nilpotence degree d(H) ≤ 2p (when p = 0,

then d(H) = 1). This was proved in the Lorentzian case in [Zi2], and in

broad generality in [BFM, 1.3 (2)]. Theorem 1.3 (2) of [BFM] also implies

d(H) ≤ 2p + 2 for H < Conf M . This bound is actually not tight, and the

first result of the paper is to provide the tight bound, which turns out to be

2p + 1, the maximal nilpotence degree of a connected nilpotent subgroup in

PO(p + 1, q + 1).

Theorem 1.1. Let H be a connected nilpotent Lie group acting conformally

on a compact pseudo-Riemannian manifold M of type (p, q), where p ≥ 1,

p + q ≥ 3. Then d(H) ≤ 2p + 1.

By theorem 1.3 (2) of [BFM], a connected nilpotent group H such that

d(H) = 2p + 1 cannot act isometrically on a compact pseudo-Riemannian

manifold of type (p, q). The following theorem says that if this maximal

nilpotence degree is attained in Conf M , then M is a complete conformally

flat manifold, providing further support for the pseudo-Riemannian Lich-

nerowicz conjecture.

Theorem 1.2. Let H be a connected nilpotent Lie group acting conformally

on a compact pseudo-Riemannian manifold M of type (p, q), with p ≥ 1,

p + q ≥ 3. If d(H) = 2p + 1, then M is conformally equivalent to Ẽin
p,q

/Φ,

where Φ < Õ(p + 1, q + 1) is trivial or isomorphic to Z2 when p ≥ 2, or

isomorphic to Z when p = 1.

Here, Ẽin
p,q

denotes the universal cover of Einp,q and Õ(p + 1, q + 1) =

Conf Ẽin
p,q

. When p ≥ 2, the center of Õ(p + 1, q + 1) has order two, while

for Õ(2, q +1), q ≥ 2, the center is infinite cyclic. From this theorem follows

a complete description of the H-action: let Φ′ be the intersection of Φ with

the center of Õ(p + 1, q + 1). Then the conformal group of the quotient

Ẽin
p,q

/Φ is N/Φ′, where N is the normalizer of Φ in Õ(p + 1, q + 1). The

conformal diffeomorphism given by the theorem conjugates the H-action on

M to one on Ẽin
p,q

/Φ, via a representation H → N/Φ′, which is faithful if

the original H-action on M is.
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We do not treat the Riemannian case p = 0 in this paper, since the results

in this case are a trivial consequence of Ferrand’s theorem.

Section 2 below provides brief background on the geometry of the Ein-

stein universe, as well as an algebraic study of nilpotent subalgebras of

o(p + 1, q + 1). In section 2.3, we introduce the notion of Cartan geometry,

which is central in all the proofs, and recall the interpretation of type-(p, q)

conformal structures, where p + q ≥ 3, as Cartan geometries infinitesimally

modeled on Einp,q. Section 3 uses results of [BFM] to prove theorem 1.1.

Actually, we prove here a stronger statement, theorem 3.2, which gives also

the starting point to prove theorem 1.2: whenever a connected nilpotent

group of maximal nilpotence degree acts conformally on M , then some point

has nontrivial stabilizers, containing special elements called lightlike transla-

tions. We explain the role of these elements and outline the proof of theorem

1.2 at the end of section 3.

2. Ein
p,q

as a homogeneous space for PO(p + 1, q + 1)

In this section, we introduce some basic notation used throughout the paper,

and provide background on the geometry of the Einstein universe, as well

as an algebraic study of nilpotent subalgebras of o(p + 1, q + 1).

2.1. Geometry of Einp,q. Let Rp+1,q+1 be the space Rp+q+2 endowed with

the quadratic form

Qp+1,q+1(x0, . . . , xn+1) = 2(x0xp+q+1 + · · · + xpxq+1) + Σq
p+1x

2
i

We consider the null cone

N p+1,q+1 = {x ∈ Rp+1,q+1 | Qp+1,q+1(x) = 0}

and denote by N̂ p+1,q+1 the cone N p+1,q+1 with the origin removed. The

projectivization P(N̂ p+1,q+1) is a smooth submanifold of RPp+q+1, and

inherits from the pseudo-Riemannian structure of Rp+1,q+1 a type-(p, q)

conformal class (more details can be found in [Fr1], [BCDGM]). We call

the Einstein universe of type (p, q), denoted Einp,q, this compact mani-

fold P(N̂ p+1,q+1) with this conformal structure. Note that Ein0,q is confor-

mally equivalent to the round sphere (Sq, gSq ). When p ≥ 1, the product

(Sp × Sq,−gSp ⊕ gSq) is a conformal double cover of Einp,q.

The projective orthogonal group of Qp+1,q+1, isomorphic to PO(p+1, q+1),

acts projectively on Einp,q and is the full conformal group of Einp,q.
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2.1.1. Lightcones, stereographic projection, and Minkowski charts. A light-

like, timelike, or spacelike curve of a pseudo-Riemannian manifold (M,σ)

is a C1 γ : I → M such that σγ(t)(γ
′(t), γ′(t)) is 0, negative, or positive,

respectively, for all t ∈ I. It is clear that the notion of lightlike, timelike

and spacelike curves is a conformal one. Lightlike curves are sometimes also

called null.

It is a remarkable fact that all metrics in [σ] have the same null geodesics,

as unparametrized curves (see for example [Fr6] for a proof). Thus it makes

sense to speak of null—or lightlike—geodesics for pseudo-Riemannian con-

formal structures. Given a point x ∈ M , the lightcone of x, denoted C(x),

is the set of all lightlike geodesics passing through x.

The lightlike geodesics of Einp,q are the projections on Einp,q of totally

isotropic 2-planes in Rp+1,q+1. Hence every null geodesic is closed. If

x ∈ Einp,q is the projection of y ∈ N p+1,q+1, the lightcone C(x) is just

P(y⊥∩N p+1,q+1). Such a lightcone is not smooth, but C(x)\{x} is smooth

and diffeomorphic to R × Sp−1 × Sq−1 (see figure 1).

Figure 1. the lightcone of a point in Ein1,2

For any (p, q), there is a generalized notion of stereographic projection. Con-

sider ϕ : Rp,q → Einp,q given in projective coordinates of RPn+2 by

ϕ : x 7→ [−
1

2
Qp,q(x, x) : x1 : · · · : xn : 1]

Then ϕ is a conformal embedding of Rp,q into Einp,q, called the inverse

stereographic projection with respect to [e0]. The image ϕ(Rp,q) is a dense

open set of Einp,q with boundary the lightcone C([e0]). Since the action of

PO(p + 1, q + 1) is transitive on Einp,q, it is clear that the complement of

any lightcone C(x) in Einp,q is conformally equivalent to Rp,q. Such an open

subset of Einp,q will be called a Minkowski component, and denoted M(x).

Its identification with Rp,q via stereographic projection with respect to x is

a Minkowski chart.
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Here we explain how images of lightlike lines of Rp,q under ϕ reach the

boundary (see also [Fr1, ch 4]). Lightlike lines of Rp,q are identified via

ϕ with traces on M([e0]) of lightlike geodesics in Einp,q. If γ : R → Rp,q

is a lightlike line, then limt→∞ ϕ(γ(t)) = limt→−∞ ϕ(γ(t)) = xγ , where

xγ ∈ C([e0])\{[e0]}. For lightlike lines γ(t) = c + tu and β(t) = b + tv, the

limits xγ = xβ if and only if u = v and 〈b − c, u〉 = 0. In other words,

M([e0]) ∩ C(x) is a degenerate affine hyperplane for x ∈ C([e0]) \ {[e0]}.

2.1.2. A brief description of o(p + 1, q + 1). The Lie algebra o(p + 1, q + 1)

consists of all (n + 2) × (n + 2) matrices X, where n = p + q, such that

XtJp+1,q+1 + Jp+1,q+1X = 0

where Jp+1,q+1 is the matrix of the quadratic form Qp+1,q+1. It can be

written as a sum u− ⊕ r⊕ u+ (see [Ko, IV.4.2] for p = 0; the case p > 0 is a

straightforward generalization), where

r =








a 0

M

−a


 :

a ∈ R

M ∈ o(p, q)





u+ =








0 −xt.Jp,q 0

0 x

0


 : x ∈ Rp,q





and

u− =








0

x 0

0 −xt.Jp,q 0


 : x ∈ Rp,q





Thus r ∼= co(p, q), and there are two obvious isomorphisms i+ and i− from

u+ and u−, respectively, to Rp,q, given by the matrix expressions above.

The standard basis of Rp,q corresponds under i− to the basis of u−

Ui =

{
E0

i − En+1−i
n+1 i ∈ {1, . . . , p} ∪ {q + 1, . . . , n}

E0
i − Ei

n+1 i ∈ {p + 1, . . . , q}

where Ej
i is the (n + 2)-dimensional square matrix with all entries 0 except

for a 1 in the (i, j) place.
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The parabolic Lie algebra p ∼= r⋉u+ is the Lie algebra of the stabilizer P of

[e0] in PO(p + 1, q + 1), and similarly for p− ∼= r ⋉ u−, the Lie algebra of the

stabilizer of [en+1]. The groups P and P− are isomorphic to the semidirect

product CO(p, q) ⋉ Rp,q, and i+ (respectively i−) intertwines the adjoint

action of P on u+ (respectively u−) with the conformal action of CO(p, q)

on Rp,q.

2.1.3. Translations in PO(p + 1, q + 1). Let U+ be the closed subgroup of

PO(p + 1, q + 1) with Lie algebra u+.

Definition 2.1. A translation of PO(p + 1, q + 1) is an element which is

conjugate in PO(p + 1, q + 1) to an element of U+. A translation of o(p +

1, q + 1) is an element generating a 1-parameter group of translations of

PO(p + 1, q + 1).

This terminology is justified because a translation is a conformal transfor-

mation of Einp,q fixing a point, say x, and acting as a translation on M(x).

Notice that there are three conjugacy classes of translations in O(p+1, q+1):

lightlike (we will also say null), spacelike, and timelike. An example of a

null translation is the element T = (i+)−1(1, 0, . . . , 0) of u+.

Since any null translation of p is conjugate under P to T , the reader will

easily check the following fact, that will be used several times below.

Fact 2.2. Let T ∈ p be a nontrivial null translation and c(T ) the centralizer

of T in o(p + 1, q + 1). Then c(T ) ∩ p is of codimension one in c(T ).

2.2. Bounds in PO(p + 1, q + 1). The first step for proving theorem 1.1 is

to show that any nilpotent subalgebra of o(p+1, q +1) has degree ≤ 2p+1.

We will actually prove more:

Proposition 2.3. For a nilpotent subalgebra h ⊂ o(p + 1, q + 1), the degree

d(h) ≤ 2p + 1. Assuming p ≥ 1, if d(h) = d ≥ 2p, then h contains a

translation in its center; in fact, hd−1 consists of null translations.

2.2.1. Preliminary results. The following definitions will be relevant below.

Let l ⊂ gl(n) be a subalgebra. The set of all compositions Πk
1Xi, where

X1, . . . ,Xk ∈ l, will be denoted lk. We say that l is a subalgebra of nilpotents

if there exists k ≥ 1 such that lk = 0. The minimal such k will be called

the order of nilpotence of l, denoted o(l). By Lie’s theorem, subalgebras of

nilpotents coincide with those subalgebras of gl(n), the elements of which
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are nilpotent matrices. If h is a nilpotent Lie algebra, then ad h ⊂ gl(h) is

a subalgebra of nilpotents and d(h) = o(ad h).

For V a vector space with form B, a Lie subalgebra h ⊂ co(V ) is infinitesi-

mally conformal if for all u, v ∈ V and X ∈ h,

B(Xu, v) + B(u,Xv) = λ(X)B(u, v)

for some infinitesimal character λ : h → R. Of course, the Lie algebra of

a subgroup of CO(V ) ⊂ GL(V ) acts by infinitesimally conformal endomor-

phisms of V .

Lemma 2.4. Let l be a Lie algebra and V a finite dimensional l-module.

Let Y ∈ hk−1 and v ∈ V . Then Y (v) ∈ lk(V ).

This lemma is easily proved by induction, using the Jacobi identity.

Lemma 2.5. Let V be a vector space with a symmetric bilinear form B of

type (p, q). If u ⊂ co(V ) is a subalgebra of nilpotents, then o(u) ≤ 2p + 1.

Proof: Note that u is infinitesimally isometric because there are no non-

trivial infinitesimal characters u → R. If p = 0, then u ⊂ o(n), in which

case u must be trivial.

Now assume p ≥ 1. Let U be the connected group of unipotent matrices in

CO(p, q) with Lie algebra u. Because U consists of unipotent matrices, it

lies in a minimal parabolic subgroup of CO(p, q), hence leaves invariant some

isotropic p-plane N ⊂ V . The order of u on both N and V/N⊥ is at most

p, because each is dimension p. Because N⊥/N inherits a positive-definite

inner product that is infinitesimally conformally invariant by u, the order of

u on it is 1. Then o(u) ≤ 2p + 1, as desired. ♦

2.2.2. Proof of proposition 2.3. Let H be the connected subgroup of G =

PO(p + 1, q + 1) with Lie algebra h. We recall some facts from the theory of

algebraic groups. First, the nilpotence degrees of a connected group and its

Zariski closure are the same, so that there is no loss of generality assuming

H Zariski closed. Then there is an algebraic Levi decomposition of the Lie

algebra h ∼= r× u, where r is abelian and comprises the semisimple elements

of h, and u consists of nilpotents (see for example [Bo, thm 10.6]). If u is

trivial, h is abelian and proposition 2.3 is proved. If not, d(h) = d(u), so

we will assume that h = u. Moreover, u is contained in a minimal parabolic
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subalgebra of o(p+1, q+1), and so conjugating u if necessary, we have u ⊂ p.

Thanks to i+ (see 2.1.2), we identify u with a subalgebra of co(p, q) ⋉ Rp,q.

Denote by u the projection to co(p, q), which is actually in o(p, q) since u is

a subalgebra of nilpotents. For any natural number k,

(1) uk ⊆ uk + uk(Rp,q)

The proof by induction of this relation is straightforward using lemma 2.4

for l = u and V = Rp,q, and is left to the reader.

When p = 0, then any nilpotent subalgebra u ⊂ o(1, q +1) is abelian, by the

remarks above combined with lemma 2.5. We thus have d(u) ≤ 2p+1 when

p = 0. Now proceed inductively on p, using lemma 2.5 and relation (1) to

obtain d(u) ≤ o(u) ≤ 2p + 1 whenever u ⊂ o(p + 1, q + 1) is nilpotent, for all

p ∈ N.

Next suppose that d(u) = d ≥ 2p ≥ 2. Since u is a nilpotent subalgebra of

o(p, q), its nilpotence degree is at most 2p− 1 by the first part of the proof.

Since d ≥ 2p, ud−1 = 0 and

0 6= ud−1 ⊆ ud−1(Rp,q)

so an element of ud−1 can be written

w = Y1 · · ·Yd−1(v) for Y1, . . . , Yd−1 ∈ u, v ∈ Rp,q

Further, any Y ∈ u annihilates w. Because Y1 ∈ u is infinitesimally confor-

mal and nilpotent, it is infinitesimally isometric. Then

Qp,q(w,w) = 〈Y1 · · ·Yd−1(v), Y1 · · ·Yd−1(v)〉 = −〈Y2 · · · Yd−1(v), Y1(w)〉 = 0

and so w is a null translation. ♦

2.3. Conformal structures as Cartan geometries. In the sequel, it will

be fruitful to study pseudo-Riemannian structures in the setting of Cartan

geometries. A Cartan geometry modeled on some homogeneous space X =

G/P is a curved analogue of X.

Definition 2.6. Let G be a Lie group with Lie algebra g and P a closed

subgroup of G such that Ad P is faithful on g. A Cartan geometry (M,B,ω)

modeled on (g, P ) is

(1) a principal P -bundle π : B → M

(2) a g-valued 1-form ω on B satisfying

• for all b ∈ B, the restriction ωb : TbB → g is an isomorphism
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• for all b ∈ B and Y ∈ h, the evaluation ωb(
d
dt

∣∣∣
0
betY ) = Y

• for all b ∈ B and h ∈ P , the pullback R∗
hω = Ad h−1 ◦ ω

For the model X, the canonical Cartan geometry is the triple (X, G, ωG),

where ωG denotes the left-invariant g-valued 1-form on G, called the Maurer-

Cartan form.

A conformal structure (M, [σ]) of type (p, q) with p + q ≥ 3, defines, up to

isomorphism, a canonical Cartan geometry (M,B,ω) modeled on Einp,q—

that is, on (o(p + 1, q + 1), P ). The interested reader will find the details

of this solution, originally due to E. Cartan, of the so-called equivalence

problem in [Sh, ch 7].

The group Aut M comprises the bundle automorphisms of B preserving

ω. Any conformal diffeomorphism lifts to an element of Aut M , maybe

not unique, but the fibers of the projection from Aut M to the conformal

group of M are discrete. The Lie algebras of Aut M and Conf M are thus

isomorphic. We will not distinguish in notation between an element f ∈

Conf M and the corresponding lift to Aut M .

3. General degree bound: proof of theorem 1.1

In this section, we use the interpretation of conformal structures as Cartan

geometries to prove theorem 1.1. Let (M,B,ω) be a Cartan geometry mod-

eled on (g, P ), and H < Aut M a connected Lie group. Since H acts on

B, each vector X ∈ h defines a Killing field on B, and for every b ∈ B, we

will call X(b) the value of this Killing field at b. Thus, each point b ∈ B

determines a linear embedding

sb : h → g

X 7→ ωb(X(b))

The injectivity of sb comes from the fact that H preserves a framing on B,

hence acts freely (see [Ko, I.3.2]). The image sb(h) will be denoted hb, and,

for X ∈ h, the image sb(X) will be denoted Xb. In general, sb is not a Lie

algebra homomorphism, except with respect to stabilizers (see [Sh, 5.3.10]):

for any X,Y ∈ h and b ∈ B such that Y b ∈ p,

[X,Y ]b = [Xb, Y b]
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Observing that Y belongs to the stabilizer h(π(b)) if and only if Y b ∈ p, we

deduce the following fact.

Fact 3.1. If hb∩p is codimension at most 1 in hb, then hb is a Lie subalgebra

of g, isomorphic to h.

The following result implies theorem 1.1. It is more precise and will be

useful for the proof of theorem 1.2:

Theorem 3.2. Let (M, [σ]) be a compact manifold with a type-(p, q) con-

formal structure, and let (M,B,ω) be the associated Cartan geometry. Let

H < Aut M be a connected nilpotent Lie group. Then d(H) ≤ 2p + 1. If

d(H) = 2p + 1, then every H-invariant closed subset F ⊂ M contains a

point x such that

(1) The dimension of the orbit H.x is at most 1.

(2) For every b ∈ π−1(x), hb is a subalgebra of o(p + 1, q + 1).

(3) There exists X ∈ h such that Xb is a lightlike translation in p for

every b ∈ π−1(x), and Xb is in the center of hb.

A consequence of this theorem is that when d(H) = 2p + 1, there are points

with nontrivial stabilizers, because X as in (3) generates a 1-parameter

subgroup of the stabilizer H(x). We will study the dynamics near x of this

flow in the proof of theorem 1.2.

Proof: (of theorem 3.2)

Let F ⊂ M be closed and H-invariant. The group H is amenable, so

it preserves a finite Borel measure on F . Then the embedding theorem

of [BFM, thm 4.1] with S = H gives x ∈ F and an algebraic subgroup

Š < AdgP such that, for all b ∈ π−1(x),

(1) hb is Š-invariant

(2) sb intertwines the Zariski closure of Ad H in Aut h with Š
∣∣
hb

Since the adjoint representation of PO(p+1, q +1) is algebraic and faithful,

Š is the image of an algebraic subgroup of P , which we will also denote Š.

We denote the corresponding Lie algebra by š ⊂ p. The embedding theorem

says that for any X ∈ h, there exists X̌ ∈ š such that for all Y ∈ h,

[X,Y ]b = [X̌, Y b]
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Suppose that d = d(h) ≥ 2p + 1. Because š is algebraic, there is a decompo-

sition š ∼= r ⋉ u with r reductive and u consisting of nilpotent elements (see

[WM, 4.4.7]). Because ad h consists of nilpotents, the subalgebra r is in the

kernel of restriction to hb, and u maps onto ad h. Therefore, for l = d(u),

2p ≤ d − 1 = d(ad h) ≤ l ≤ 2p + 1

where the upper bound comes from proposition 2.3. Also by this proposition,

ul−1 consists of null translations. Whether l = d− 1 or d, we will show that

hb centralizes a null translation in p, from which fact we will obtain the

bound and points (1) and (3).

First suppose l = d− 1. Then ud−2 consists of null translations and acts on

hb as ad hd−2, which means it centralizes (h1)
b. Then by facts 2.2 and 3.1,

(h1)
b embeds homomorphically in o(p + 1, q + 1). The order of u on (h1)

b is

d− 1; further, u and (h1)
b generate a nilpotent subalgebra n of order d − 1,

in which (h1)
b is an ideal. Since d− 1 ≥ 2p, proposition 2.3 implies that the

commutators nd−2 are all null translations. But nd−2 contains

ud−2(h1)
b = (hd−1)

b

Because u preserves (h1)
b ∩ p and acts by nilpotent transformations on

(h1)
b/((h1)

b ∩ p), which is 1-dimensional,

u1(h1)
b = (h2)

b ⊂ p

Thus (hk)b ⊂ p as soon as k ≥ 2, so for any X ∈ h, Y ∈ hk, we have

[X,Y ]b = [Xb, Y b]. In particular, (hd−1)
b, the image under sb of the center

of h, commutes with hb, so that hb is in the centralizer of a nonzero null

translation.

Next suppose l = d. Then ud−1 centralizes hb because it acts as ad hd−1.

By proposition 2.3, ud−1 consists of null translations, so hb commutes with

a nonzero null translation in p.

Given that hb centralizes a nonzero null translation in p, 2.2 implies point (1);

moreover, (hb)1 ⊂ p. By fact 3.1, sb : h → o(p + 1, q + 1) is a homomorphic

embedding. The assumption d ≥ 2p+1 and proposition 2.3 forces d = 2p+1,

proving the bound. Also by proposition 2.3, (hb)2p, which is central in hb,

consists of null translations. Then (hb)2p ⊂ (hb)1 ⊂ p, and (3) is proved.

Finally, item (2) of the theorem is a consequence of item (1) and fact 3.1.

♦
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3.1. Outline of the proof of theorem 1.2. For x ∈ M , denote by H(x)

the stabilizer of x in H. For each b ∈ π−1(x), the action of H by automor-

phisms of the principal bundle B gives rise to an injective homomorphism

ρb : H(x) → P . Theorem 3.2 says that if d(H) = 2p + 1, then each H-

invariant closed set F contains a point x0, such that for some 1-parameter

group hs in H(x0) and b0 ∈ π−1(x0), the image ρb0(h
s) is a 1-parameter

group τ s of null translations in P .

The dynamics of null translations are studied in section 4.1 and summarized

in fact 4.1. In section 4.2, we make the crucial link between the dynamics

of τ s on Einp,q and those of hs on M , via the respective actions on special

curves, called geodesics, in the two Cartan bundles. The actions on these

curves are conjugate locally by the exponential maps of the two Cartan

geometries. In section 4.3, we deduce from this relationship the dynamics

of the hs-action and develop a method to precisely compute the differential

of hs near x0; see proposition 4.5.

In section 5 we use our description of the hs-action to show that M is

conformally flat, namely locally modeled on Einp,q (see proposition 5.1).

First we reduce the claim to showing flatness on a neighborhood of x0.

Proposition 5.2 of section 5.1 establishes flatness on a nonempty open subset.

In section 5.2, we make a technical modification of proposition 5.2 in order

to show that this flat set includes a neighborhood of x0 (see proposition 5.7).

The purpose of section 6 is to understand the global structure of M , using

classical techniques for (G,X)-structures. We again use the dynamics of hs

to show that the subset of M tending under the forward or reverse flow to a

fixed curve develops to the complement of the fixed set of τ s in Einp,q; the

Lorentzian case is treated first in section 6.4, while the more complicated

case p ≥ 2 is in section 6.5. In both cases, we apply the the theorem [Fr5,

thm 1.8] on boundaries of embeddings of flat Cartan geometries to conclude.

This final section completes the proof of theorem 1.2.

4. Conformal dynamics

This section establishes properties of the flow hs that will later be used to

show M is conformally flat. Along the way, we develop some general tools

to relate the behavior of an automorphism of a Cartan geometry with the

behavior of the corresponding holonomy on the model space.
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4.1. Dynamics of null translations on Einp,q. The first task is to de-

scribe the dynamics of 1-parameter groups of null translations in the model

space Einp,q. Let τ s be the flow generated by the null translation T =

(i+)−1(1, 0, . . . , 0) of section 2.1.3.

The action of τ s on Einp,q is given in projective coordinates by

τ s : [y0 : · · · : yn+1] 7→ [y0 + syn : y1 − syn+1 : y2 : · · · : yn+1]

The fixed set is

F = P(e⊥0 ∩ e⊥1 ∩ N p+1,q+1)

When p = 2, it has codimension 2, and contains a singular circle

Λ = P(span{e0, e1}) ⊂ F

When p = 1, then F = Λ; since p + q ≥ 3, the codimension of F is also at

least 2 in this case.

If y /∈ F , then

τ s.y → [yn : −yn+1 : 0 : · · · : 0] ∈ Λ as s → ∞

Every point x ∈ Einp,q lies in some C(y) for y ∈ Λ, and y is unique when

x /∈ F . We summarize the dynamics of τ s near Λ; see also figure 2:

Fact 4.1. The complement of the closed, codimension-2 fixed set F of τ s in

Einp,q is foliated by subsets of lightcones Č(y) = C(y)\(C(y)∩F ), for y ∈ Λ.

Points x ∈ Č(y) tend under τ s to y along the lightlike geodesic containing x

and y; in particular, τ s preserves setwise all null geodesics emanating from

points of Λ.

Λ

Λ
Figure 2. local picture of flow by null translation τ s
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4.2. Geodesics and holonomy. In this section (M,B,ω) will be a Cartan

geometry modeled on G/P . The form ω on B determines special curves, the

geodesics. Here they will be defined as projections of curves with constant

velocity according to ω—that is, γ : (−ǫ, ǫ) → M is a geodesic if γ(t) =

π(γ̂(t)) where

ω(γ̂′(t)) = ω(γ̂′(0)) for all t ∈ (−ǫ, ǫ)

Geodesics on the flat model space (G/P,G, ωG) are orbits of 1-parameter

subgroups. Note that this class of curves is larger than the usual set of

geodesics in case the Cartan geometry corresponds to a pseudo-Riemannian

metric or a conformal pseudo-Riemannian structure (see [Fi], [Fri], [Fri-S]

for a definition of conformal geodesics).

The exponential map is defined on B × g in a neighborhood of B × {0} by

exp(b,X) = expb(X) = γ̂X,b(1)

where γ̂X,b(0) = b and ω(γ̂′
X,b(t)) = X for all t.

Let h ∈ Aut M . Then h carries geodesics in M to geodesics:

ĥ ◦ γ̂X,b = γ̂
X,ĥ(b)

Suppose that hs is a 1-parameter group of automorphisms Then for any

b0 ∈ B, the curve parametrized by the flow γ̂(s) = hs.b0 projects to a

geodesic γ(s) in M : it is easy to see that γ̂(s) has ω-constant velocity.

Definition 4.2. If h ∈ Aut M fixes x, and b ∈ π−1(x), then the element

g ∈ P such that h.b = bg is the holonomy of h with respect to b. More

generally, given a local section σ : U → B, the holonomy of h ∈ Aut M with

respect to σ at some point x ∈ U ∩ h−1.U is g such that h.σ(x) = σ(h.x)g

If H(x) is the stabilizer of x in H < Aut M and b ∈ π−1(x), then the holo-

nomy with respect to b gives a monomorphism ρb : H(x) → P . Replacing b

with bp has the effect of post-composing with conjugation by p−1.

For automorphisms fixing a point x0, the holonomy with respect to some

b0 ∈ π−1(x0) tells a lot about the action in a neighborhood of x0 via the

exponential map. If, moreover, an automorphism h fixes x0 and preserves

the image of a geodesic γ emanating from x0, then the holonomy at x0

determines the holonomy along γ, as follows. For X ∈ g, denote by eX the

exponential of X in G.
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Proposition 4.3. Suppose that h ∈ Aut M fixes a point x0 and has holo-

nomy g0 with respect to b0 ∈ π−1(x0). Let γ(t) = π(exp(b0, tX)) for X ∈ g,

defined on an interval (α, β) containing 0. Suppose there exist

• a path g : (α, β) → P with g(0) = g0

• a diffeomorphism c : (α, β) → (α′, β′)

such that, for all t ∈ (α, β),

g0e
tX = ec(t)Xg(t)

Then

(1) The curves exp(b0, c(t)X) and γ(c(t)) are defined for all t ∈ (α, β),

and h.γ(t) = γ(c(t)).

(2) Viewing exp(b0, tX) as a section of B over γ(t), the holonomy of h

at γ(t) with respect to this section is g(t).

Proof: In G, reading the derivative of g0e
tX with ωG gives (see [Sh, 3.4.12])

X = (Ad g(t)−1)(c′(t)X) + ωG(g′(t))

Because h preserves ω, the derivative of

h. exp(b0, tX) = exp(b0g0, tX)

according to ω is X for all t ∈ (α, β). On the other hand, it is also true in

B that whenever t ∈ (α, β) and exp(b0, c(t)X) is defined,

ω((exp(b0, c(t)X)g(t))′) = (Ad g(t)−1)(c′(t)X) + ωG(g′(t))

This formula follows from the properties of ω in the definition 2.6 of a Cartan

geometry; see [Sh, 5.4.12]. Therefore, because the two curves have the same

initial value and the same derivatives, both are defined for t ∈ (α, β), and

h. exp(b0, tX) = exp(b0, c(t)X)g(t)

This proves (2); item (1) follows by projecting both curves to M . ♦

We record one more completeness result that will be useful below, for flows

that preserve a geodesic, but do not necessarily fix a point on it.

Proposition 4.4. Let X ∈ g and b0 ∈ B be such that exp(b0, tX) is defined

for all t ∈ (α, β), where α < 0 < β. Suppose that for some Y ∈ g, there

exists g : (α, β) → P such that for all t ∈ (α, β),

etX = ec(t)Y g(t)
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in G, where c is a diffeomorphism (α, β) → R fixing 0. Then exp(b0, tY ) is

defined for all t ∈ R.

Proof: In G, we have for all t ∈ (α, β)

Y =
1

c′(t)
[Ad g(t)][X − ωG(g′(t))](2)

Let c−1(s) be the inverse diffeomorphism (−∞,∞) → (α, β). Define, for

s ∈ R,

γ̂(s) = exp(b0, c
−1(s)X)g(c−1(s))−1

The derivative of the right-hand side is

1

c′(c−1(s))
[Ad g(c−1(s))][X − ωG(g′(c−1(s))]

For t = c−1(s), this reduces to the right-hand side of (2). Then exp(b0, sY )

equals γ̂(s) and is defined for all s ∈ R. ♦

4.3. Dynamics of hs on M . We now return to the pseudo-Riemannian

manifold (M,σ) with associated Cartan geometry (M,B,ω) modeled on the

pair (o(p + 1, q + 1), P ) corresponding to the homogeneous space Einp,q.

The subalgebra u− complementary to p and the basis U1, . . . , Un are as in

section 2.1.2. Let N (u−) be the null cone with respect to Q− := (i−)∗(Qp,q)

in u− (see 2.1.2 for the definition of i−). The following proposition captures

properties of the flow hs given by theorem 3.2 that reflect properties of τ s

established above, and that will be used to prove flatness in the next section.

Now we suppose the group H < Conf M is nilpotent of maximal degree

2p + 1. The point x0 is given by theorem 3.2, and hs.x0 = x0. We have

b0 ∈ π−1(x0) for which the holonomy of hs is τ s as in section 4.1.

Proposition 4.5. Suppose H < Conf M is nilpotent of maximal degree

2p + 1. Let F ⊆ M be closed and H-invariant subset, and let x0 ∈ F and

X ∈ h be given by theorem 3.2. Let hs be the flow generated by X. Then

there is b0 ∈ π−1(x0) for which the following holds:

(1) Let ∆̂(v) = exp(b0, vU1) with domain I∆ ⊆ R; let ∆ = π ◦ ∆̂. Then

the flow hs fixes pointwise the geodesic ∆, and, for v ∈ I∆, has

holonomy at ∆(v) with respect to ∆̂ equal τ s.

(2) There is an open subset S ⊂ N (u−) such that S ∪ −S is dense

in N (u−), and for all v ∈ I∆ and U ∈ S, if the geodesic β(t) =
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π ◦ exp(∆̂(v), tU) is defined on (−ǫ, ǫ), then the flow hs preserves β

and reparametrizes by

c(t) =
t

1 + st

for t ∈ (−ǫ, ǫ). In particular, for t > 0 (t < 0),

hs(β(t)) → ∆(v) as s → ∞ (s → −∞)

Moreover, β(t) is complete.

(3) There is a framing f1(t), . . . , fn(t) of M along β(t) for which the

derivative

hs
∗(fi(t)) =

(
1

1 + st

)σ(i)

fi(c(t))

where

σ(i) =





0 i = 1

1 i ∈ {2, . . . , n − 1}

2 i = n

To prove this proposition, we will compute the relevant holonomies of τ s

in the model space and use proposition 4.3. We start with some algebraic

facts pertaining to Einp,q. Let r be as in section 2.1.2, a maximal reductive

subalgebra of p.

Lemma 4.6. Let R ∼= CO(p, q) be the connected subgroup of P with Lie

algebra r, and let S be the unipotent radical of the stabilizer in R of U1.

(1) Fix(Ad τ s) ∩ u− = RU1

(2) Let S = R∗
>0 · S.Un. Then S ∪ −S is open and dense in N (u−).

(3) The subgroups S and τ s commute.

Proof:

(1) Recall that T is the infinitesimal generator for τ s defined in section

2.1.3. It suffices to show

RU1 = ker(ad T ) ∩ u−

We leave this basic linear algebra calculation to the reader.

(2) We will show that S consists of all U ∈ N (u−) with 〈U,U1〉 > 0;

these elements and their negatives form an open dense subset of

N (u−).
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First, if g ∈ S, then g.Un ∈ N (u−) and

〈g.Un, U1〉 = 〈g.Un, gU1〉 = 〈Un, U1〉 = 1

Both N (u−) and the property 〈U,U1〉 > 0 are invariant by the action

of R∗
>0, so S is contained in the claimed subset.

Next let U ∈ N (u−) be such that 〈U,U1〉 > 0. Replace U with a

positive scalar multiple so that 〈U,U1〉 = 1. Define g ∈ S by

g : U1 7→ U1

Un 7→ U

V 7→ V − 〈V,U〉 · U1 for V ∈ {U1, Un}
⊥

It is easy to see that g is unipotent and belongs to O(Q−), and thus

defines an element of R. Therefore U ∈ S.

(3) Both S and τ s lie in the unipotent radical of P , which, in the chosen

basis, is contained in the group of upper-triangular matrices. The

commutator of any unipotent element with τ s is In+2 + cEn+1
0 for

some c ∈ R. There is no such element of O(p + 1, q + 1) for any

nonzero c, so the commutator is the identity.

♦

Proof: (of proposition 4.5)

Because Ad τ s fixes U1, the corresponding 1-parameter subgroups commute

in G:

τ sevU1 = evU1τ s

Then by proposition 4.3, the flow hs fixes ∆ pointwise, and the holonomy

of hs with respect to ∆̂ at any ∆(v), v ∈ I∆, equals τ s. This proves (1).

To prove (2), first consider the null geodesic α(t) = π(etUn) in G/P , and let

α̂(t) = etUn . Now it is possible to compute the holonomy of τ s along α with

respect to α̂:

τ s · α̂(t) = τ s · etUn

= α̂(c(t)) · e−c(t)Un · τ s · etUn
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Refer to the expression for τ s in section 4.1, and compute directly in O(p +

1, q + 1)

e−c(t)Un · τ s · etUn = diag(1 + st, 1 + st, 1, . . . , 1,
1

1 + st
,

1

1 + st
) + sT

Denote this holonomy matrix by h(s, t).

Now let S < G be as in lemma 4.6, and let U = (Ad g)(Un) with g ∈ S. Let

α̂(t) = etU . Because τ s commutes with g by lemma 4.6 (3), we can compute

the holonomy of τ s with respect to α̂ along α:

τ s · α̂(t) = τ s · etU = τ s · e(Ad g)(tUn)

= τ s · g · etUn · g−1 = g · τ s · etUn · g−1

= g · ec(t)Un · h(s, t) · g−1 = e(Ad g)(c(t)Un) · g · h(s, t) · g−1

= α̂(c(t)) · g · h(s, t) · g−1

Let S be as in lemma 4.6 (2). Let U ∈ S. Let β̂(t) = exp(∆̂(v), tU) and

β = π ◦ β̂, and assume β̂ is defined on (−ǫ, ǫ). From (1), the holonomy of

hs at ∆(v) with respect to ∆̂ is τ s. The above calculation, together with

proposition 4.3 (1), implies

hs.β(t) = β(c(t))

for all t ∈ (−ǫ, ǫ). Taking s = ±1/ǫ and again applying proposition 4.3 (1)

proves completeness of β(t). Then point (2) is proved.

By proposition 4.3 (2), the holonomy of hs at β(t) with respect to β̂ is

g · h(s, t) · g−1. The adjoint of h(s, t) on g/p in the basis comprising the

images of U1, . . . , Un is

diag(1,
1

1 + st
, . . . ,

1

1 + st
,

1

(1 + st)2
)

Since S is contained in P , for g ∈ S, the span of (Ad g)(U1), . . . , (Ad g)(Un)

is transverse to p. The adjoint of g · h(s, t) · g−1 in the corresponding basis

of g/p is of course the same diagonal matrix as for g = 1. For β̂ and β as

above, define a framing f1, . . . , fn along β by

fi(β(t)) = (π∗ ◦ ω−1

β̂(t)
◦ Ad g)(Ui)

Now we can compute the derivative of hs along β in the framing (f1, . . . , fn).

Recall the identity for a Cartan connection

ω−1
p ◦ (Ad g) = Rg−1∗ ◦ ω−1

pg



CONFORMAL ACTIONS OF NILPOTENT GROUPS 21

We will write fi(t) in place of fi(β(t)) below.

hs
∗(fi(t)) =

(
π∗ ◦ hs

∗ ◦ ω−1

β̂(t)
◦ Ad g

)
(Ui)

=
(
π∗ ◦ ω−1

hs·β̂(t)
◦ Ad g

)
(Ui)

=
(
π∗ ◦ Rg−1∗ ◦ ω−1

hs·β̂(t)·g

)
(Ui)

=
(
π∗ ◦ ω−1

β̂(c(t))·g·h(s,t)

)
(Ui)

=
(
π∗ ◦ Rg·h(s,t)∗ ◦ ω−1

β̂(c(t))
◦ Ad(g · h(s, t))

)
(Ui)

=
(
π∗ ◦ ω−1

β̂(c(t))
◦ Ad(g · h(s, t) · g−1) ◦ Ad g

)
(Ui)

=

(
1

1 + st

)σ(i)

fi(c(t))

which proves (3). ♦

5. Maximal degree of nilpotence implies conformal flatness

This section is devoted to the proof of the following proposition, the next

step towards theorem 1.2.

Proposition 5.1. If the group H and the pseudo-Riemannian manifold M

satisfy the assumptions of theorem 1.2, then M is conformally flat.

Recall that a type (p, q) pseudo-Riemannian manifold is conformally flat

whenever it is locally conformally equivalent to Einp,q. If dim M ≥ 4, con-

formal flatness is equivalent to the vanishing the Weyl curvature W , which

is a conformally invariant (3, 1) tensor on M ; if dimM = 3, then vanishing

of the (3, 0) Cotton tensor characterizes flatness (see [AG, p 131]).

For the canonical Cartan geometry (M,B,ω) associated to the conformal

structure (M, [σ]), the Cartan curvature is defined as follows: the 2-form

dω +
1

2
[ω, ω]

on B vanishes on u∧ v at b whenever u or v is tangent to the fiber of b. We

define the Cartan curvature K to be the resulting function B → Λ2(g/p)∗⊗g

(see [Sh, 5.3.22]). Vanishing of K on B is equivalent to M being conformally

flat (see [Sh, ch 7] or [Ko, ch IV]). The function K is Aut M -invariant and

P -equivariant; in particular, if K(b) = 0 for b ∈ π−1(x), then K vanishes on

the fiber of B over x. In this case we will also say that K vanishes at x.
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To prove proposition 5.1, we suppose V ⊂ M is not flat. Then ∂V is a

nonempty H-invariant closed subset. Under the assumptions of theorem

1.2, there exists a flow hs of H, a point x0 ∈ ∂V , and b0 ∈ π−1(x0) such

that the holonomy of hs with respect to b0 is the null translation τ s studied

in 4.1. We use the differential of the flow hs computed above plus an idea

of [Fr3] to show vanishing of the Weyl and Cotton tensors along any null

geodesic β emanating from a point on ∆. Next we examine geodesic triangles

in this set of vanishing curvature to show in proposition 5.7 that in fact the

Weyl and Cotton tensors vanish in a neighborhood of x0—a contradiction.

The proof of proposition 5.7 below will require several preliminary results

exposed in subsections 5.1 and 5.2.

5.0.1. Notation. In the two following subsections, the points x0 and b0 and

the 1-parameter groups hs and τ s are as in the paragraph above. The

infinitesimal generator of τ s is T given in subsection 4.1. Recall also u− and

the basis U1, . . . , Un first defined in section 2.1.2. See proposition 4.5 for

the definitions of ∆, I∆, and S ⊂ N (u−). Recall that each curve β(t) =

exp(∆̂(v), tU) with U ∈ S and v ∈ I∆, is defined for all t ∈ R.

5.1. Vanishing on lightcones emanating from ∆. The aim of this sub-

section is the proof of:

Proposition 5.2. For every U ∈ S and v ∈ I∆, the Cartan curvature of

(M,B,ω) vanishes on π−1(β(t)) for all t ∈ R, where β(t) = π◦exp(∆̂(v), tU).

Consequently, the Cartan curvature vanishes on the lightcone of each point

of ∆, in a sufficiently small neighborhood.

Proof: Choose v ∈ I∆. We will show that when p + q ≥ 4, the Weyl

curvature vanishes on β, and the Cotton tensor vanishes when p + q = 3.

These tensors are zero on a closed set, and S ∪ −S is dense in N (u−). The

neighborhood V can be chosen to be π◦exp∆̂(v), restricted to a neighborhood

of the origin in u−. Then vanishing on the entire lightcone C(∆(v))∩V will

follow. From the discussion above, vanishing of the Weyl and Cotton tensors

implies flatness, which implies vanishing of the Cartan curvature on the same

subset.

Let fi(t) be the framing along β given by proposition 4.5 (3). We first

assume n ≥ 4 and consider the Weyl tensor. The conformal action of the
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flow hs obeys

W (hs
∗fi(t), h

s
∗fj(t), h

s
∗fk(t)) = hs

∗W (fi(t), fj(t), fk(t))

The left hand side is
(

1

1 + st

)σ(i)+σ(j)+σ(k)

W (fi(cs(t)), fj(cs(t)), fk(cs(t)))

We assume t > 0, so that hs.β(t) → β(0) = ∆(v) as s → ∞ by proposition

4.5 (2). (If t < 0, then make s → −∞.) Now

W (fi(0), fj(0), fk(0)) = lim
s→∞

(1 + st)σ(i)+σ(j)+σ(k)hs
∗W (fi(t), fj(t), fk(t))

If i = j = k = 1, then the left side vanishes because W is skew-symmetric in

the first two entries. Therefore, we may assume the σ(i) + σ(j) + σ(k) ≥ 1.

Boundedness of the right hand side implies

hs
∗W (fi(t), fj(t), fk(t)) → 0 as s → ∞

Because hs
∗(f1(t)) = f1(c(t)), the above limit means W (fi(t), fj(t), fk(t))

cannot have a nontrivial component on f1(t). Then

W (fi(0), fj(0), fk(0)) ∈ span{f2(0), . . . , fn(0)}

Varying U over S, one sees that the Weyl curvature at ∆(v) has image in
⋂

g∈S

π∗ω
−1

∆̂(v)
(span{(Ad g)(U2), . . . , (Ad g)(Un)})

=
⋂

g∈S

π∗ω
−1

∆̂(v)
(Ad g)(Un)⊥

By (2) of lemma 4.6, the set of all (Ad g)(Un) with g ∈ S is a dense set of

directions in the null cone N (u−). Then the intersection above is 0, so W

vanishes at ∆(v).

Now

0 = lim
s→∞

(1 + st)σ(i)+σ(j)+σ(k)hs
∗W (fi(t), fj(t), fk(t))

If σ(i) + σ(j) + σ(k) ≥ 2, then

W (fi(t), fj(t), fk(t)) = 0

because hs
∗ cannot contract any tangent vector at β(t) strictly faster than

(1 + st)2. If σ(i) + σ(j) + σ(k) = 1, then we may assume i = k = 1, and

hs
∗ must contract the Weyl curvature strictly faster than (1 + st), which is

possible only if

W (f1(t), fi(t), f1(t)) ∈ Rfn(t)
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But, in this case, for any inner product 〈, 〉 in the conformal class,

〈W (f1(t), fi(t), f1(t)), f1(t)〉 = −〈W (f1(t), fi(t), f1(t)), f1(t)〉 = 0

which implies W (f1(t), fi(t), f1(t)) = 0, and again W vanishes at β(t), as

desired.

When dimM = 3, the argument follows the same steps and is easier. We

leave it to the reader. ♦

5.2. Vanishing on a neighborhood of x0. The previous subsection es-

tablished vanishing of the Cartan curvature K on the union of lightcones

emanating from the null geodesic segment ∆ containing x0. This union does

not, however, contain a neighborhood of x0 in general. In this subsection

we will show that ∆, or a particular reparametrization of it, is complete,

and that lightcones of points on ∆ intersect a neighborhood of x0 in a dense

subset. Then vanishing of K in a neighborhood of x0 will follow. We keep

the notations of the previous section: there is a flow hs of H fixing x0 with

holonomy the lightlike translation τ s. Recall that T denotes the infinitesimal

generator of the one-parameter group τ s.

Proposition 5.3. There exists gθ in the centralizer of T such that (Ad gθ)(u
−)

is transverse to p and such that the curve ∆̂(t) = exp(b0, t(Ad gθ)(U1)) in

B is defined for all time t.

Proof: Recall that x0 and τ s were obtained by theorem 3.2, which ensured

that hb0 centralizes T (see the beginning of section 3 for the notation hb0).

Recall the dynamics on Einp,q of τ s (fact 4.1): for each y in the null geodesic

Λ, an open dense subset of the cone C(y) tends under τ s to y. Then any

flow coming from the centralizer of T must leave Λ setwise invariant; in

particular, hb0 preserves Λ.

Lemma 5.4. Let n be a nilpotent subalgebra of o(p + 1, q + 1) fixing two

points on Λ. Then the nilpotence degree of n is at most 2p.

Proof: The stabilizer in PO(p + 1, q + 1) of a lightlike geodesic Λ in

Einp,q restricts to an action equivalent to PSL(2,R) on RP1; in particular,

the stabilizer acts transitively on pairs of distinct points on Λ. Thus we

may assume n fixes [e0] and [e1]. Fixing [e0] means n is a subalgebra of

p ∼= co(p, q) ⋉ Rp,q. Recall the inverse stereographic projection ϕ : Rp,q →
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Einp,q from section 2.1.1. Let u1, . . . , un be the standard basis of Rp,q. Then

limt→∞ ϕ(tu1) = [e1]. As in section 2.1.1, the set of lines in Rp,q which tend

to [e1] all have the form {x + tu1} for x ∈ u⊥
1 . This set of lines is invariant

by the n-action on Rp,q, which means that the translational components of

n ⊂ co(p, q) ⋉ Rp,q are all in u⊥
1 , and the linear components preserve Ru1,

and therefore also u⊥
1 . Now by calculations similar to those in the proof of

2.3, we see that, if n is the projection of n on co(p, q), then

nk ⊆ nk + nk(u⊥
1 )

for each positive integer k. But the nilpotence degree of a nilpotent subal-

gebra n of co(p, q) is at most 2p−1, while the order of n on u⊥
1 is easily seen

to be at most 2p (compare with lemma 2.5). ♦

As in the proof above, the image of the restriction a of hb0 to Λ is isomorphic

to a subalgebra of sl(2,R). Because a is nilpotent, dim a ≤ 1. Let v be the

unipotent radical of hb0 ; it has nilpotence degree 2p + 1 since hb0 does. The

restriction of v to Λ is generated by a parabolic element of sl(2,R), and it

must be nontrivial by lemma 5.4. Thus a is of parabolic type. Let L ∈ hb0

have nontrivial image in a; denote this image by L̄.

Suppose L̄ is parabolic type and that it fixes [1 : 0] ∈ RP1. Then L fixes

[e0] in Einp,q. The 1-parameter group esL preserves Λ(t) = π(etU1) and

reparametrizes it by t 7→ t
1+st

. Suppose that ∆̂(t) = exp(b0, tU1) is defined

on (−ǫ, ǫ). Take s∞ = −1/ǫ and s−∞ = 1/ǫ and apply proposition 4.3 (1)

to see that exp(b0, tU1) is defined for all t ∈ R.

Next suppose that L̄ fixes [0 : 1] ∈ RP1. Then etL̄.[1 : 0] = [1 : t], and, in

Einp,q, the orbit is etL.[e0] = Λ(t). Then there exist g(t) ∈ P such that

etL = etU1 · g(t)(3)

Then there exist (α, β) ⊂ R, a diffeomorphism c : (α, β) → R, and a path

g(t) ∈ P such that

etL = ec(t)U1 · g(t)

for all t ∈ (α, β). The curve exp(b0, tL) is the orbit of b0 under the lift of

a conformal flow, so it is complete, and proposition 4.4 applies to give that

exp(b0, tU1) is defined for all t ∈ R. Note that, because the two subgroups

etL and etU1 have the same restriction to Λ, the path g(t) is in the subgroup

PΛ < P pointwise fixing Λ.

Last, consider arbitrary L̄ of parabolic type. There exists ḡθ ∈ SL(2,R) a

rotation such that (Ad ḡθ)(L̄) fixes [0 : 1]. Let gθ be the image of ḡθ under
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the standard embedding SL(2,R) → PO(p + 1, q + 1) given by







A 0 0

0 In−2 0

0 0 A−1


 : A ∈ SL(2, R)





with respect to which the identification RP1 → Λ is equivariant. Then gθ

centralizes T . In PO(p + 1, q + 1),

gθe
tLg−1

θ = etU1 · g(t)

where g(t) ∈ PΛ is as in (3). So

etL = e(Ad gθ)(tU1) · h(t)

where h(t) = gθg(t)g−1
θ . The subgroup PΛ is normalized by gθ, so h(t) ∈ PΛ.

Proposition 4.4 applies to show exp(b0, (Ad gθ)(tU1)) is complete, because

exp(b0, tL) is defined for all t.

To prove the transversality claim, we show (Ad gθ)(u
−) is still transverse to

p, provided gθ does not exchange [e0] and [e1] in Einp,q. Then we will take

gθ = 1 when L̄ fixes [1 : 0], and to be the above rotation when L̄ is parabolic

but does not fix [1 : 0].

The subalgebra (Ad gθ)(u
−) is transverse to p if the orbit of [e0] in Einp,q

under it is n-dimensional. In the Minkowski chart M([en+1]), the point [e0]

is the origin, and Λ is a null line through the origin, meeting the lightcone

at infinity in one point, [e1]. The subalgebra u− acts by translations. If gθ

does not exchange [e0] and [e1], then g−1
θ [e0] is a point on Λ still contained

in M([en+1]). The orbit

(gθu
−g−1

θ ).[e0] = gθ(M([en+1]))

which is n-dimensional. ♦

Proposition 5.5. Let gθ ∈ PO(p+1, q +1) be given by proposition 5.3, and

S as in proposition 4.5. Let ∆̂(v) = exp(b0, v(Ad gθ)(U1)) and ∆ = π ◦ ∆̂.

Let S ′ = (Ad gθ)(S). Then

(1) The flow hs fixes ∆(v) pointwise and has holonomy at ∆(v) with

respect to ∆̂ equal τ s.

(2) For each U ∈ S ′ and v ∈ R, the curve β̂(t) = exp(∆̂(v), tU) is

complete and projects to a null geodesic.

(3) For ∆ as in (1) and β̂ as in (2), the Cartan curvature vanishes on

the fiber of β̂(t) for all t ∈ R.
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Proof:

(1) Since gθ centralizes the null translation T , one can follow the same

proof as for proposition 4.5 (1).

(2) Recall the embedding PSL(2,R) → PO(p + 1, q + 1) with image the

stabilizer of Λ. The element gθ corresponds to rotation by some

angle θ on Λ = P(span{e0, e1}). Compute that for Un = E0
n −E1

n+1

as in lemma 4.6,

(Ad gθ)(Un) = Un

Next, note that the subgroup S of lemma 4.6 is contained in PΛ, the

pointwise stabilizer of Λ. Then

gθSg−1
θ < PΛ < P

Now any element of S ′ is of the form

λ(Ad gθ ◦ Ad w)(Un)

for some λ ∈ R and w ∈ S, and can be written

λ(Ad(gθwg−1
θ ))(Un) = U

Since gθwg−1
θ ∈ P , the element U projects to a null vector in g/p ∼=

Rp,q. Then π ◦ exp(∆̂(v), tU) is a null geodesic.

Fix U = (Ad gθw)(Un) ∈ S ′; it suffices to prove (2) for such U ,

since the geodesic generated by λU is complete if and only if the

geodesic generated by U is. Recall the matrices h(s, t), representing

the holonomy of hs along null geodesics based at π(exp(b0, vU1)) with

initial direction in S or −S. Straightforward computation shows

that gθ commutes with h(s, t). Recall also that esT commutes with

S. Then we compute in PO(p + 1, q + 1),

esT etU = ec(t)U (gθwg−1
θ )h(s, t)(gθwg−1

θ )−1

where c(t) = t
1+st

.

Now proposition 4.3 with part (1) implies that hs reparametrizes

β(t) by c(t) and has holonomy

gθwh(s, t)w−1g−1
θ = (gθwg−1

θ )h(s, t)(gθwg−1
θ )−1 ∈ P

along it with respect to β̂. Part (1) of proposition 4.3 gives the

desired completeness.
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(3) As above, we may assume U = Ad(gθw)(Un). Define a framing along

β(t) as in proposition 4.5 by

fi(β(t)) = (π∗ ◦ ω−1

β̂(t)
◦ (Ad gθw))(Ui)

Recall that (Ad gθ)(u
−) is transverse to p by proposition 5.3, so

Ad(gθw)(u−) is, as well. Now the derivative of h(s, t) along β(t) in

this framing is computed as in the proof of 4.5 by the adjoint action

of the holonomy gθwh(s, t)w−1g−1
θ on the (Ad gθw)(Ui), modulo p.

The derivative has the same diagonal form as in proposition 4.5.

In fact, all the conclusions of 4.5, and thus also the arguments of

proposition 5.2, hold when ∆̂(v) = exp(b0, (Ad gθ)(vU1)), and S is

replaced by S ′, so we conclude that the Cartan curvature vanishes

along the desired geodesics.

♦

Definition 5.6. Let (M,B,ω) be a Cartan geometry modeled on G/P . Let

γ be a piecewise smooth curve in B. The development Dγ is the piecewise

smooth curve in G satisfying Dγ(0) = e and (Dγ)′(t) = ω(γ′(t)) for all but

finitely many t.

Note that for any piecewise smooth curve γ in B, the development Dγ is

defined on the whole domain of γ, because it is given by a linear first-order

ODE on G with bounded coefficients.

Proposition 5.7. The Cartan curvature K vanishes on an open set of the

form π−1(V ) for V a neighborhood of x0 in M .

Proof: Recall the basis U1, . . . , Un for u− first introduced in section 2.1.2.

Let ∆̂(v) = exp(b0, (Ad gθ)(vU1)), where gθ is given by proposition 5.3, so ∆̂

is complete. Recall that the curves exp(∆̂(v), tU), where U ∈ (Ad gθ)(S) =

S ′ are complete, as well, from proposition 5.5.

To show that the Cartan curvature vanishes on a neighborhood above x0,

it suffices to show that K = 0 on exp(b0, V ), for V a neighborhood of 0 in

(Ad gθ)(u
−), because π∗b0 maps ω−1

b0
(V ) onto a neighborhood of 0 in Tx0

M

by proposition 5.3.

First suppose gθ = 1. Recall from the proof of lemma 4.6 (2) that S consists

of all U ∈ N (u−) with 〈U,U1〉 > 0. Let

Y = aU1 + X + cUn ∈ u−
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with X ∈ span{U2, . . . , Un−1}, and assume that c 6= 0. Let b = 〈X,X〉. De-

fine, for each 0 ≤ r ≤ 1, a piecewise smooth curve αr in B by concatenating

∆̂(t(b2/c + 2a)), 0 ≤ t ≤ r/2

and

exp(∆̂(rb2/2c + ra), (2t − r)(cUn + X − b2/2c U1)), r/2 ≤ t ≤ r

Note that cUn + X − b2/2c U1 ∈ ±S because c 6= 0. Define β(r) = αr(r).

{{β

αr

αs

∆̂

b0
β̂rβ̌s

Figure 3. components of the homotopy between β and α1

Because u− is an abelian subalgebra of g, the development

Dαr(r) = er( b2

2c
+a)U1 · er(cUn+X−

b2

2c
U1) = erY

Denote by β̂s the restriction of β to [0, s] and by β̌s the restriction of β to

[s, 1]. The curve β is homotopic to α1 through the family of concatenations

αs ∗ β̌s; similarly, β̂r is homotopic to αr for all 0 ≤ r < 1. Because the

curvature K vanishes on the images of these homotopies, the developments

of the homotopic curves have the same endpoints (see [Sh, 3.7.7 and 3.7.8]):

Dβ̂r(r) = Dαr(r) = erY ∀ r ∈ [0, 1]

But

Dβ(r) = Dβ̂r(r) = erY

which means that

β(r) = exp(b0, rY )

Then K(exp(b0, Y )) = 0. Varying Y over all sufficiently small aU1+X+cUn

with c 6= 0 and passing to the closure gives vanishing of K on exp(b0, V ),

for V a neighborhood of 0 in u−.
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If gθ 6= 1, then consider

Y = (Ad gθ)(aU1 + X + cUn) ∈ (Ad gθ)(u
−)

again with c 6= 0. Define αr by concatenating a portion of ∆̂ as above with

exp(∆̂(rb2/2c + ra), (2t − r)(Ad gθ)(cUn + X − b2/2c U1)), r/2 ≤ t ≤ r

note that (Ad gθ)(cUn + X − b2/2cU1) ∈ ±S ′. Therefore, by proposition

5.5 (2) and (3), the curves αr are defined on [0, r] for all r and K vanishes

on them. Then the same argument as above applies to give vanishing of

curvature at exp(b0, Y ). The set of possible Y are dense in a neighborhood

V of 0 in (Ad gθ)(u
−), so we obtain the desired vanishing on exp(b0, V ). ♦

6. End of the proof of theorem 1.2: global structure of M

This section is again under the assumptions of theorem 1.2: H is a connected

nilpotent Lie group acting conformally on a type (p, q) pseudo-Riemanniann

manifold (M,σ), and d(H) = 2p + 1 with p + q ≥ 3. From proposition 5.1,

the manifold (M,σ) is locally conformally equivalent to Einp,q, or in other

words is endowed with a (G̃, Ẽin
p,q

)-structure, where G̃ = Conf Ẽin
p,q

, a

covering group of PO(p + 1, q + 1). The developing map of the structure is

a conformal immersion of the universal cover of M

δ : M̃ → Ẽin
p,q

(see [Th], [Go] for an introduction to (G,X)-structures and the construction

of the developing map). If (M̃, B̃, ω̃) is the canonical Cartan geometry asso-

ciated to the lifted conformal structure (M̃, σ̃), then δ lifts to an immersion

of bundles δ̂ : B̃ → G̃, where G̃ is seen as a principal bundle over Ẽin
p,q

.

This immersion satisfies δ̂∗ω eG
= ω̃, where ω eG

denotes the Maurer-Cartan

form on G̃.

Let ρ be the holonomy morphism Conf M̃ → G̃, related to the developing

map by the equivariance property

ρ(φ) ◦ δ = δ ◦ φ ∀ φ ∈ Conf M̃.

The H-action lifts to a faithful action of a connected covering group, which

we will also denote H, on M̃ . The group ρ(H) = Ȟ is a connected nilpotent

subgroup of G̃, with Lie algebra ȟ isomorphic to h. In particular d(ȟ) =

2p + 1, and by proposition 2.3, we may assume that Ȟ contains the lifted

1-parameter group τ s (see section 4.1).
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The fundamental group π1(M) is isomorphic to a discrete subgroup Γ <

Conf M̃ acting freely and properly on M̃ . Because Γ centralizes h, the

image ρ(Γ) = Φ centralizes ȟ.

To complete the proof of theorem 1.2, we must prove that the developing map

δ is a conformal diffeomorphism between M̃ and Ẽin
p,q

. Subsections 6.1, 6.2,

and 6.3 contain preliminary geometric and algebraic results to this end. The

end of the proof of theorem 1.2 will be given in 6.4 for the Lorentzian case,

and in 6.5 for the other types.

6.1. More on geometry and dynamics on Ẽin
p,q

. When p ≥ 2, Ẽin
p,q

is a double cover of Einp,q. It is N̂ p+1,q+1/R∗
>0. The conformal group G̃

is O(p + 1, q + 1), and the stabilizer of [e0] is an index-two subgroup of P .

A lightcone C(x) in Ẽin
p,q

has two singular points, and its complement has

two connected components, each one conformally equivalent to Rp,q.

The Lorentz case p = 1 is more subtle since Ẽin
1,n−1

is no longer compact.

It is conformally equivalent to (R×Sn−1,−dt2 ⊕ gSn−1). Details about this

space are in [Fr1, ch 4.2] and [BCDGM]. The group G̃ = Conf Ẽin
1,n−1

is

a twofold quotient of the universal covering group of O(2, n), with center

Z ∼= Z. The space Ein1,n−1 is the quotient of Ẽin
1,n−1

by the Z-action.

The lightlike geodesics and lightcones in Ẽin
1,n−1

are no longer compact.

Any lightlike geodesic can be parametrized γ(t) = (t, c(t)), where c(t) is a

unit-speed geodesic of Sn−1. Lightlike geodesics are preserved by Z, which

acts on them by translations; the quotient is a lightlike geodesic of Ein1,n−1.

Any lightcone C(x) ⊂ Ẽin
1,n−1

has infinitely-many singular points, which

coincide with the Z-orbit of x. The complement of C(x) in Ẽin
1,n−1

has

a countable infinity of connected components, each one conformally diffeo-

morphic to R1,n−1. The center Z freely and transitively permutes these

Minkowski components.

Recall that τ s is the flow on Ẽin
1,n−1

generated by the null translation T .

The null geodesic Λ = P(span{e0, e1}) is the fixed set of τ s on Ein1,n−1. Let

Λ̃ be the inverse image of Λ in Ẽin
1,n−1

; it is noncompact and connected,

and equals the fixed set of τ s on Ẽin
1,n−1

. Given x̃ ∈ Ẽin
1,n−1

\ Λ̃, there are

two distinct points x̃+ and x̃− on Λ̃ such that

lim
s→∞

τ s.x̃ = x̃+ and lim
s→−∞

τ s.x̃ = x̃−

Details about this material can be found in [Fr1, p 67].
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6.2. About the centralizer of ȟ. For arbitrary (p, q), let Λ̃ be the inverse

image in Ẽin
p,q

of Λ; it is connected and fixed by τ s. Our first task is to

find an algebraic restriction on Φ, using that it commutes with ȟ.

Proposition 6.1. The centralizer C(ȟ) of ȟ in G̃ leaves Λ̃ invariant. The

C(ȟ)-action on Λ̃ factors through a homomorphism to Z2 if p ≥ 2, and it

factors through a homomorphism to Z when p = 1.

Proof: Denote c(ȟ) the Lie algebra of the centralizer of ȟ. Observe first

that both c(ȟ) and ȟ centralize τ s. Recall that Λ̃ is a local attracting set

for τ s (see the proof of proposition 5.5), so c(τ s) leaves Λ̃ invariant. The

centralizer c(τ s) in o(p + 1, q + 1) of {τ s} thus consists of matrices of the

form 


a b −xt.Jp−1,q−1 s 0

c −a −yt.Jp−1,q−1 0 −s

M y x

a −b

−c −a




a, b, c, s ∈ R

x, y ∈ Rp−1,q−1

M ∈ o(p − 1, q − 1)

(4)

As in the proof of proposition 5.5, the projection of ȟ on sl(2,R) is a 1-

dimensional subalgebra of parabolic type. The projection of c(ȟ) lies in the

same subalgebra; we wish to show it is zero.

We may assume, by conjugating ȟ in the centralizer of τ s if necessary, that

c(ȟ) and ȟ are subalgebras of

q = {X ∈ c(τ s) : a, c = 0}

This algebra is isomorphic to (R⊕ o(p− 1, q − 1)) ⋉ heis(2n− 3). Elements

of q are denoted u = (b,M, x, y, s), with b ∈ R, x, y ∈ Rp−1,q−1, and

M ∈ o(p − 1, q − 1). Denote b = π1(u), M = π2(u), and (x, y) = π3(u).

Note that if πi(u) = 0 for i = 1, 2, 3, then u is in the center of q. If

u1 = (b1,M1, x1, y1, s1) and u2 = (b2,M2, x2, y2, s2) are in q, then an easy

computation yields

• π1([u1, u2]) = 0

• π2([u1, u2]) = [M1,M2]

• π3([u1, u2]) = (b1y2 − b2y1 − M1.x2 + M2.x1,−M1.y2 + M2.y1)

Now, if u0 = (b0,M0, x0, y0, s0) is in c(ȟ), each u = (b,M, x, y, s) ∈ ȟ must

satisfy the relations:
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• [M0,M ] = 0

• M0.y = M.y0

• b0y − M0.x = by0 − M.x0

We claim that b0 = 0. If not, then from the last relation above, whenever

u1 and u2 are in ȟ, then

y1 =
b1

b0
y0 −

1

b0
M1.x0 +

1

b0
M0.x1

and

y2 =
b2

b0
y0 −

1

b0
M2.x0 +

1

b0
M0.x2

This implies

π3([u1, u2]) = (
b1

b0
(−M2.x0 + M0.x2) +

b2

b0
(−M0.x1 + M1.x0)

− M1.x2 + M2.x1,−M1.y2 + M2.y1)

As in section 2.2.2, we may assume without affecting the nilpotence degree

and without changing C(ȟ) that ȟ is Zariski closed. Write ȟ ∼= ř ⋉ ǔ, where

ǔ is an algebra of nilpotents, and d(ȟ) = d(ǔ).

Let m̌ = π2(ǔ). It is a nilpotent Lie subalgebra of o(p − 1, q − 1), and also

an algebra of nilpotents, since ǔ is so. Using the equation above, we get by

induction that π3(ǔk) ⊂ m̌k(Rp−1,q−1)× m̌k(Rp−1,q−1). Moreover, π2(ǔk) =

m̌k, and π1(ǔk) = 0 as soon as k ≥ 1. By proposition 2.3, d(m̌) ≤ 2p−3, and

o(m̌) ≤ 2p − 1 by lemma 2.5. As a consequence, π1(ǔ2p−1) = π2(ǔ2p−1) =

π3(ǔ2p−1) = 0, which implies that ǔ2p−1 is in the center of ǔ, and finally

d(ǔ) ≤ 2p. Since d(ȟ) = d(ǔ), we get a contradiction. Therefore, c(ȟ) is

actually the subalgebra of c(τ s) with b = 0 in (4).

The projection of C(ȟ) to PO(p + 1, q + 1) commutes with the flow of par-

abolic type on Λ generated by ȟ. The centralizer of such a 1-parameter

subgroup in PSL(2,R) is itself; in particular, any finite subgroup of the

centralizer is trivial. From the above calculation, on the other hand, the

identity component of C(ȟ) acts trivially on Λ̃. It follows that the image of

C(ȟ) in PO(p + 1, q + 1) acts trivially on Λ, so the restriction of C(ȟ) to

Λ̃ factors through a homomorphism to the kernel of G̃ → PO(p + 1, q + 1).

From the previous section, this kernel is isomorphic to Z2 when p ≥ 2 and

equals Z when p = 1. This concludes the proof of the proposition. ♦
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6.3. Geometric properties of the developing map. Recall that {hs} <

H satisfies ρ(hs) = τ s. We now adopt the notations and results of subsection

4.3. The lightlike geodesic ∆(t) = π◦exp(b0, tU1) is pointwise fixed by hs and

is locally an attracting set for it (see proposition 4.5 (2)). Choose x̃0 ∈ M̃

over x0 and lift hs to M̃ . Let Λ̃ ⊂ Ẽin
p,q

be as above: it is a closed subset,

pointwise fixed by τ s, and it is the attracting set for τ s. Because of these

dynamics, π−1
M (∆) ⊂ δ−1(Λ̃), which is a closed, Γ-invariant, 1-dimensional,

immersed submanifold. Let ∆̃ be the component of δ−1(Λ̃) containing x̃0.

Denote Γ0 < Γ the subgroup leaving ∆̃ invariant.

Proposition 6.2. The image πM (∆̃) ⊂ M is closed. Therefore, Γ0 acts

cocompactly on ∆̃.

Proof: We show πM (∆̃) is closed in πM (δ−1(Λ̃)), and therefore in M .

Suppose πM (x̃n) → πM (ỹ) with x̃n ∈ ∆̃ and ỹ ∈ δ−1(Λ̃). Let U be a

neighborhood of ỹ that maps diffeomorphically to its images under πM and

under δ. There exist γn ∈ Γ such that γn.x̃n → ỹ in U . Then δ(γn.x̃n) →

δ(ỹ) in Λ̃, and we may assume U is small enough that δ(U) ∩ Λ̃ is an open

segment. Then γn.x̃n and ỹ are in a common segment of δ−1(Λ̃) ∩ U . Then

for some γn = γ, the translate γ.ỹ ∈ ∆̃. ♦

As a consequence, we obtain the following result.

Proposition 6.3. The map δ is a covering map from ∆̃ onto Λ̃. When M

is Lorentzian, δ is a diffeomorphism between ∆̃ and Λ̃.

Proof: First note that ∆̃ is open in δ−1(Λ̃). For if δ−1(Λ̃) were recurrent,

then Λ̃ would be, as well; but Λ̃ is a closed, embedded submanifold of Ẽin
p,q

.

Therefore the image δ(∆̃) is a connected open subset of Λ̃. By equivarience

of δ and the previous proposition, ρ(Γ0) preserves δ(∆̃) and acts cocompactly

on it. But ρ(Γ0) centralizes ȟ, so its action on Λ̃ factors through either a

finite group, or the extension of a finite group by Z. In both cases, δ(∆̃)

must equal Λ̃.

When M has Lorentz type, then δ : ∆̃ → Λ̃ must be a diffeomorphism,

because all lightlike geodesics in Ẽin
1,n−1

are embedded copies of R, as

described in section 6.1; in particular, they have no self-intersection.

Now assume p ≥ 2. On one hand, Γ0 acts cocompactly on ∆̃; on the other

hand, the action of ρ(Γ0) on Λ̃ factors through a finite group. Let Γ′
0 ⊳Γ0 be
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such that ρ(Γ′
0) is the kernel in ρ(Γ0) of restriction to Λ̃. Then the restriction

of δ factors
δ|∆̃ : ∆̃ → Λ̃

ց ↑

∆̃/Γ′
0

Because Γ′
0 acts freely and properly on ∆̃, the quotient map ∆̃ → ∆̃/Γ′

0 is a

covering, and because Γ′
0 has finite index in Γ0, its action on ∆̃ is cocompact.

The map ∆̃/Γ′
0 → Λ̃ is surjective because δ|∆̃ is; it is a local diffeomorphism

because δ|∆̃ and ∆̃ → ∆̃/Γ′
0 are. By compactness of ∆̃/Γ′

0, it follows that

∆̃/Γ′
0 → Λ̃, hence ∆̃ → Λ̃, is a covering, as desired. ♦

6.4. Proof of theorem 1.2: the case of Lorentz manifolds. Suppose

now that p = 1. Let

Ω = {z̃ ∈ M̃ \ ∆̃ | lim
s→∞

hs.z̃ exists and is in ∆̃}

Proposition 6.4. The set Ω is nonempty and open. It is mapped diffeo-

morphically by δ onto Ẽin
1,n−1

\ Λ̃.

Proof: Let us first check that Ω is nonempty. Recall ∆̃ is pointwise fixed

by hs. Let z̃∞ ∈ ∆̃, and choose b̃∞ ∈ B̃ above z̃∞ such that the holonomy

of hs with respect to b̃∞ is τ s. Let S be as in proposition 4.5 and U ∈ S.

Consider the geodesic β(t) = π ◦ exp(b̃∞, tU). It is complete by proposition

4.5 (2); further, for t > 0,

lim
s→∞

hs.β(t) = β(0) = z̃∞

Then β(t) ∈ Ω for t > 0.

To prove that Ω is open, choose z̃0 ∈ Ω. There exists z̃∞ ∈ ∆̃ such that

lims→∞ hs.z̃0 = z̃∞. Since the orbits of τ s are lightlike geodesics in Ẽin
1,n−1

,

the same is true for the orbits of hs on M̃ . Then z̃0 lies on some lightlike

geodesic emanating from z̃∞. Any such geodesic not fixed by hs has the

form π ◦ exp(b̃∞, tU) with U ∈ S. Then for s0 > 0 there exist ǫ > 0 and a

diffeomorphism c : (s0,∞) → (0, ǫ) such that, for every s ∈ (s0,∞),

π ◦ exp(b̃∞, c(s)U) = hs.z̃0.

There are a neighborhood I of z̃∞ in ∆̃, a segment Ĩ ⊂ B̃ lying over I, and

an open neighborhood U of 0 in u− such that the map

µ : I × (U ∩ S) → M̃

(z̃, u) 7→ π ◦ exp(b̃, u)
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where b̃ ∈ Ĩ lies over z̃, is defined and is a submersion. Choosing s0 big

enough, c(s0)U ∈ U ∩ S, so that V = µ(I × (U ∩ S)) is an open subset

containing hs0.z̃0. It follows immediately from proposition 4.5 that V ⊂ Ω.

Since Ω is hs-invariant, h−s0(V ) ⊂ Ω. It is an open subset containing z̃0,

which shows that Ω is open.

We now prove that δ is an injection in restriction to Ω. Assume that z̃ and

z̃′ are two points of Ω satisfying δ(z̃) = δ(z̃′). Let z̃∞ = lims→∞ hs.z̃ and

z̃′∞ = lims→∞ hs.z̃′. Then

δ(z̃∞) = lim
s→∞

τ s.δ(z̃) = lim
s→∞

τ s.δ(z̃′) = δ(z̃′∞)

Because δ is injective on ∆̃ by proposition 6.3, z̃∞ = z̃′∞. Choose U an open

neighborhood of z̃∞ which is mapped diffeomorphically by δ on an open

neighborhood V of z∞ = δ(z̃∞). There exists s0 ≥ 0 such that for all t ≥ s0,

ht.z̃ ∈ U and ht.z̃′ ∈ U . Moreover, δ(ht.z̃) = δ(ht.z̃′) = τ t.δ(z̃). Since δ is an

injection in restriction to U , the images ht.z̃ = ht.z̃′, so z̃ = z̃′, as desired.

It remains to show that δ(Ω) = Ẽin
1,n−1

\Λ̃. The inclusion δ(Ω) ⊂ Ẽin
1,n−1

\

Λ̃ follows easily from the definition of Ω. Just note that any z̃ ∈ δ−1(Λ̃) is

fixed by hs, so Ω cannot meet δ−1(Λ̃). Now, pick z ∈ Ẽin
1,n−1

. There

exists z∞ ∈ Λ̃ such that lims→∞ τ s.z = z∞. By proposition 6.3, there is a

unique z̃∞ ∈ ∆̃ such that δ(z̃∞) = z∞. Also, there is a neighborhood U of

z̃∞ mapped diffeomorphically by δ on some neighborhood V of z∞. There

exists s0 such that for s ≥ s0, τ s.z ∈ V . Let z̃ ∈ U be such that δ(z̃) = τ s0 .z.

Then for all s ≥ s0, we have hs.z̃ ∈ U and lims→∞ hs.z̃ = z̃∞. Thus, z̃ ∈ Ω.

Moreover, δ(h−s0 .z̃) = z and since Ω is hs-invariant, z ∈ δ(Ω), as desired.

♦

Remark 6.5. Notice that when we proved that Ω is nonempty, we showed

that ∆̃ is in the closure of Ω.

The inverse of δ on Ω̌ = Ẽin
1,n−1

\ Λ̃ is a conformal embedding λ : Ω̌ → M̃ .

Because n ≥ 3, ∂Ω̌ has codimension at least 2. Then theorem 1.8 of [Fr5]

applies in our context. It yields an open subset Ω̌′ containing Ω̌ and a

conformal diffeomorphism λ−1 : M̃ → Ω̌′, which coincides with δ on Ω. Two

conformal maps which are the same on an open set of a connected pseudo-

Riemannian manifold of dimension ≥ 3 must coincide, so λ−1 = δ. Now,

Ω̌′ contains δ(∆̃) = Λ̃ and Ẽin
1,n−1

\ Λ̃, which yields Ω̌′ = Ẽin
1,n−1

, and

δ : M̃ → Ẽin
1,n−1

is a conformal diffeomorphism.
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Thus M is conformally diffeomorphic to the quotient Ẽin
1,n−1

/Φ. Since Φ

centralizes ȟ, it leaves Λ̃ invariant by proposition 6.1, and the restriction of

Φ to Λ̃ factors through a homomorphism to Z ∼= Z. Because Φ acts freely,

this restriction homomorphism is injective. Since M is compact, Φ must be

infinite, so theorem 1.2 is proved in the Lorentzian case.

6.5. Proof of theorem 1.2: the case p ≥ 2. The proof in the Lorentz

case must be adapted for p ≥ 2 because in this case, δ is a priori just a

covering map from ∆̃ to Λ̃ and no longer a diffeomorphism.

Recall that τ s fixes Λ̃ pointwise. Let p1 ∈ Λ̃. The lightcone C(p1) has

two singular points, p1, and another point, p2 ∈ Λ̃, and its complement

consists of two Minkowski components, M1 and M2. Also, Λ̃ \ {p1, p2} has

two connected components I1 and I2, which can be defined by dynamical

properties of τ s:

∀z ∈ M1, lim
s→∞

τ s.z ∈ I1 and lim
s→−∞

τ s.z ∈ I2

∀z ∈ M2, lim
s→∞

τ s.z ∈ I2 and lim
s→−∞

τ s.z ∈ I1

If F is the set of fixed points of τ s, then C(p1) \F splits into two connected

components, C1 and C2. Suppose p1 = [e0]. Then C(p1) is the quotient

(e⊥0 ∩ N̂ p+1,q+1)/R∗
>0 and p2 = [−e0]. Recall that

F = (e⊥0 ∩ e⊥1 ∩ N̂ p+1,q+1)/R∗
>0

The components of C(p1) \F correspond to {〈x, e1〉 > 0} and {〈x, e1〉 < 0}.

As in section 4.1, τ s.[x] → [e0] as s → ∞ if 〈x, e1〉 > 0 and τ s.[x] → [−e0]

if 〈x, e1〉 < 0; similarly, τ s.[x] → [e0] as s → −∞ if 〈x, e1〉 < 0 and τ s.[x] →

[−e0] as s → −∞ if 〈x, e1〉 > 0.

The dynamics are the same at any p1 ∈ Λ̃, because there is a conformal

automorphism of Ẽin
p,q

sending [e0] to p1 and preserving F :

∀z ∈ C1, lim
s→∞

τ s.z = p1 and lim
s→−∞

τ s.z = p2

∀z ∈ C2, lim
s→∞

τ s.z = p2 and lim
s→−∞

τ s.z = p1

Let {p̃2i+1 : i ∈ J} = δ−1(p1) and {p̃2i : i ∈ J} = δ−1(p2). Order the

points p̃2i+1 and p̃2i compatibly with an orientation of ∆̃, and in such a way

that p̃2i is between p̃2i−1 and p̃2i+1. If the covering δ : ∆̃ → Λ̃ is finite, then

J is finite; in this case, order each set of points cyclically. The segment of

∆̃ from p̃2i−1 to p̃2i will be denoted I2i−1, and the segment from p̃2i to p̃2i+1
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will be I2i. Now the set Ω of the previous section will be replaced by the

two sets

Ω1 = {z̃ ∈ M̃ \ ∆̃ | lim
s→∞

hs.z̃ exists and is in I1}

Ω2 = {z̃ ∈ M̃ \ ∆̃ | lim
s→∞

hs.z̃ exists and is in I2}

Using the dynamical characterization of I1 and I2 corresponding to that of

I1 and I2 given above, one can reproduce the proof of proposition 6.4 to

obtain

Proposition 6.6. The sets Ω1 and Ω2 are nonempty and open. Each Ωi is

mapped diffeomorphically by δ onto Mi, i = 1, 2.

Lemma 6.7. δ(∂Ωi) ⊂ C(pi), i = 1, 2.

Proof: Let z̃ ∈ ∂Ω1. By proposition 6.6, δ(z̃) ∈ M1. If δ(z̃) ∈ M1,

the same proposition gives z̃′ ∈ Ω1 such that δ(z̃′) = δ(z̃). Then if U ′ is

a neighborhood of z̃′ in Ω1, and if U is a neighborhood of z̃ in M̃ , with

U ∩ U ′ = ∅,

δ(U ∩ Ω1) ∩ δ(U ′) 6= ∅

contradicting the injectivity of δ on Ω1.

The same proof holds if z̃ ∈ ∂Ω2. ♦

If U is an open set of a type-(p, q) pseudo-Riemannian manifold (N,σ), and

if x ∈ N , denote by CU (x) the set of points in U which can be joined to x

by a lightlike geodesic contained in U .

Lemma 6.8. There exists U a neighborhood of p̃1 in M̃ such that

U \ CU(p̃1) = (U ∩ Ω2)
⋃

(U ∩ Ω1)

Proof: First choose U a neighborhood of p̃1 that is geodesically convex

for some metric in the conformal class, so U \ CU (p̃1) is a union of exactly

two connected components U1 and U2. (Here we use the assumption p ≥ 2.

In the Lorentz case, there would be three connected components.) We may

choose U small enough that δ maps U diffeomorphically on its image V , and

δ(CU (p̃1)) = V ∩ C(p1).

First, U ∩ Ω1 and U ∩ Ω2 are both nonempty: remark 6.5 is easily adapted

to the current context to show that I1 ⊂ Ω1 and I2 ⊂ Ω2. Assume then that

U1∩Ω1 6= ∅. By lemma 6.7, if U1∩∂Ω1 6= ∅, then δ(U1∩∂Ω1) ⊂ C(p1). Since
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δ is injective on U , then U1 ∩ ∂Ω1 ⊂ CU (p̃1), a contradiction. Therefore,

U1 ∩ ∂Ω1 = ∅, so U1 ⊂ Ω1. Similarly, U2 ⊂ Ω2. ♦

Let WU = CU(p̃1) \ F , and define W =
⋃

s∈R
hs.WU .

Lemma 6.9. The set Ω = Ω1 ∪ W ∪ Ω2 ⊂ M̃ is open, and is mapped

diffeomorphically by δ to Ẽin
p,q

\ F .

Proof: We first prove that Ω is open. By lemma 6.8, and the fact that

Ω1 and Ω2 are open, the set Ω1 ∪ WU ∪ Ω2 is open. Now, if z̃ ∈ W , there

exists s0 ∈ R such that hs0.z̃ ∈ WU . Then there is a neighborhood U ′ of

hs0.z̃ contained in Ω1 ∪WU ∪Ω2 ⊂ Ω. Then h−s0 .U ′ is a neighborhood of z̃

contained in Ω.

We now show that δ is injective on Ω. By lemma 6.6, δ is injective on Ω1

and Ω2, and because δ(Ω1) = M1 is disjoint from δ(Ω2) = M2, the map

δ is actually injective on Ω1 ∪ Ω2. Because δ(W ) ⊂ C(p1) is disjoint from

δ(Ω1 ∪ Ω2), it suffices to prove that δ is injective on W . Assume z̃, z̃′ ∈ W

with δ(z̃) = δ(z̃′), and suppose this point is in C1, so

lim
s→∞

τ s.δ(z̃) = lim
s→∞

τ s.δ(z̃′) = p1

Since z̃ ∈ W , either lims→∞ hs.z̃ = p̃1 or lims→−∞ hs.z̃ = p̃1. But if

lims→−∞ hs.z̃ = p̃1, then lims→−∞ τ s.δ(z̃) = p1, contradicting δ(z̃) ∈ C1.

Therefore, lims→∞ hs.z̃ = p̃1, and for the same reasons, lims→∞ hs.z̃′ = p̃1.

Then there exists s0 > 0 such that for all s ≥ s0, both hs.z̃ and hs.z̃′ are in

U . Since δ(hs.z̃) = τ s.δ(z̃) = τ s.δ(z̃′) = δ(hs.z̃′), and since δ is injective on

U , we get hs.z̃ = hs.z̃′ and finally z̃ = z̃′. The proof is similar if δ(z̃) = δ(z̃′)

is in C2.

It remains to understand the set δ(Ω). From proposition 6.6, M1 ∪ M2 ⊂

δ(Ω), and it is also clear that δ(Ω) ⊂ Ẽin
p,q

\F . If z ∈ C1, then there exists

s > 0 such that τ s.z ∈ V . Hence, there is z̃ ∈ U such that δ(z̃) = τ s.z,

and finally δ(h−s.z̃) = z. Since z̃ ∈ U , then h−s.z̃ ∈ Ω, which proves

z ∈ δ(Ω). In the same way, we show that if z ∈ C2, then z ∈ δ(Ω). Finally

δ(Ω) = Ẽin
p,q

\ F = M1 ∪ M2 ∪ C1 ∪ C2. ♦

The conclusion is essentially the same as in the Lorentzian case. Let Ω̌ be

the complement of F in Ẽin
p,q

. Then inverting δ on Ω̌ gives a conformal

embedding λ : Ω̌ → M̃ . Recall from section 4.1 that F = ∂Ω̌ has codimen-

sion 2. Then theorem 1.8 of [Fr5] gives an open subset Ω̌′ containing Ω̌ and

a conformal diffeomorphism λ−1 : M̃ → Ω̌′, which coincides with δ on Ω.



40 CHARLES FRANCES AND KARIN MELNICK

As above, λ−1 = δ. Now, Λ̃ ⊂ Ω̌′, and since δ : M̃ → Ω̌′ is a diffeomorphism,

the action of Φ on Ω̌′ is free and proper. In particular, the map associating

to an element of Φ its restriction to Λ̃ is injective. By proposition 6.1, the

group Φ is trivial or isomorphic to Z2. Because M = M̃/Γ is compact,

Φ acts cocompactly on Ω̌′, so Ω̌′ = Ẽin
p,q

. Therefore M is conformally

diffeomorphic to Ẽin
p,q

/Φ, as was to be shown.
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cas analytique. (French) [Proof of the Liouville theorem of conformal geometry in the

analytic case] Enseign. Math. (2) 49 (2003), no. 1-2, 95–100.

[FZ] C. Frances and A. Zeghib: Some remarks on pseudo-Riemannian conformal actions

of simple Lie groups, Math. Res. Lett. 12 2005, 100021-10008.

[Fri] H. Friedrich: Conformal geodesics on vacuum space-times. Comm. Math. Phys. 235

(2003), no. 3, 513–543.

[Fri-S] H. Friedrich, B.G. Schmidt: Conformal geodesics in general relativity. Proc. Roy.

Soc. London Ser. A 414 (1987), no. 1846, 171–195.



CONFORMAL ACTIONS OF NILPOTENT GROUPS 41

[Go] W.M. Goldman: Geometric structures on manifolds and varieties of representations.

Geometry of group representations (Boulder, CO, 1987), 169–198, Contemp. Math., 74,

Amer. Math. Soc., Providence, RI, 1988.

[Ko] S. Kobayashi: Transformation groups in differential geometry. Reprint of the 1972

edition. Classics in Mathematics. Springer-Verlag, Berlin, 1995.

[LF1] J. Ferrand: The action of conformal transformations on a Riemannian manifold.

Math. Ann. 304 (1996), no. 2, 277–291.

[O] M. Obata: The conjectures on conformal transformations of Riemannian manifolds.

J. Diff. Geom. 6 (1971/72), 247–258.

[Sh] R.W. Sharpe: Differential Geometry: Cartan’s generalization of Klein’s Erlangen

Program, New York: Springer, 1997.

[Th] W.P Thurston, Three-dimensional geometry and topology. Vol. 1. Edited by Silvio

Levy. Princeton Mathematical Series, 35. Princeton University Press, Princeton, NJ,

1997. 311 pp.

[WM] D. Witte Morris: Ratner’s theorems on unipotent flows. Chicago Lectures in Math-

ematics Series. University of Chicago Press, Chicago, IL, 2005.

[WM] D. Witte Morris: An introduction to arithmetic groups.

http://people.uleth.ca/∼dave.morris/.

[Zi1] R.J. Zimmer: Split rank and semisimple automorphism groups of G-structures, J.

Diff. Geom. 26 1987, 169-173.

[Zi2] R.J. Zimmer: On the automorphism group of a compact Lorentz manifold and other

geometric manifolds, Inv. Math. 83 1986 no. 3, 411-424.

Charles Frances
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