
Proposed schedule for the seminar “Adic spaces”

University of Luxembourg, Winter Semester 2020

The seminar will take place on Tuesdays from 10:30 to 12:30 in room MSA 3.220, except for

September 29th (room 3.100) and November 3 (room 3.190).

The main reference for the seminar is the script by Wedhorn [Wed12]. Additional suggested

references are:

• Morel’s script [Mor19];

• Weinstein’s script from the Arizona Winter School 2017 [Wei17], and the videos of his lectures;

• Conrad’s brief introduction [Con18];

• The brief introduction in Scholze’s perfectoid paper [Sch12, pages 2–8].

One can also have a look at the exercises from the course by Venjakob and Ludwig in Heidelberg

[Lud20] and those by Mieda for the Arizona Winter School [Mie17].

The foundations of the theory go back to Huber and most of the material can also be found

in his original papers and book [Hub93; Hub94; Hub96].

1. Introduction: [Andrea, 29/9] References: [Con18], [Wei17], [Sch12].

Recall the motivation for introducing rigid spaces as nonarchimedean analogues of complex

analytic spaces, and the basic constructions from the previous seminar: rigid spaces as locally

ringed spaces, locally isomorphic to affinoid algebras, and equipped with the Tate G-topology.

Explain the shortcomings of this theory and how adic spaces should solve them. If time allows

mention formal schemes and how these are also generalized by adic spaces.

2. Valuations [?, 6/10] References: [Wed12, Sections 1 and 2].

Introduce valuations in the sense of Huber (what one would normally call seminorms), of

arbitrary rank. Prove some basic properties of valuation rings. This part may be a bit long but

it is just basic algebra and one could leave out some of the less interesting proofs.

3. Spectral and sober spaces [?, 13/10] References: [Wed12, Section 3], [Con18].

Define spectral spaces and sober spaces and prove their basic properties. One could read in

[Con18] and explain why the notion of sober space is important for what follows.

4. Valuation spectra [, 20/10] References: [Wed12, Section 4].

Define the valuation spectrum of an arbitrary ring; it is a topological space. Discuss gener-

izations and specializations in a valuation spectrum.

5. Non-archimedean rings [?, 27/10] References: [Wed12, Section 5].

Define non-archimedean topological rings, their subrings of power-bounded and of topologi-

cally nilpotent elements, and make examples.

6. f-adic rings and Tate rings [?, 3/11] References: [Wed12, Section 6].

7. Adic spectra of affinoid rings, I [?, 10/11] References: [Wed12, Subsections 7.1–7.4].

Define affinoid rings and their adic spectra, that are topological spaces. These are not yet

affinoid adic spaces.

8. Adic spectra of affinoid rings, II [?, 17/11] References: [Wed12, Subsections 7.5–7.7].

Define the set of analytic points of the adic spectrum of a ring. Prove some basic properties

of adic spectra and make examples.

9. Adic spaces, I [?, 24/11] References: [Wed12, Subsections 8.1–8.2].
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Define a structure presheaf on the adic spectrum of an affinoid ring. Define affinoid adic

spaces: they are adic spectra of affinoid rings for which the structure presheaf is a sheaf. Use

them as building blocks to define adic spaces.

10. Adic spaces, II [?, 1/11] References: [Wed12, Subsections 8.1–8.2].

Discuss analytic points, morphisms, and fiber products of adic spaces.

11. From rigid analytic spaces and formal schemes to adic spaces [?, 8/12] Refer-

ences: [Wed12, Sections 9-10], [Hub94, Section 4].

Show how to attach an adic space to a rigid analytic space. Without the details, explain

what a formal scheme is and how to attach a rigid analytic generic fiber and an adic space to

a locally Noetherian formal scheme. Explain how all of these constructions are compatible.

If necessary we could have a talk in the last week before Christmas, on a different day if

Tuesday is the Number Theory Day. One could either finish what is left of the above program,

or give (if manageable) a very quick idea of some applications. Typical applications are: defining

perfectoid spaces [Sch12], constructing the spectral halo of the eigencurve [AIP15], constructing

the fundamental curve of p-adic Hodge theory [FF18].
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