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Motivation

In the first seminar of the series we talked about a “Weil cohomology formalism”, and
now we would like to find a concrete realization of this theory.

As a first attempt, one might try to reason as follows: our variety (or scheme) X is a
topological space with its Zariski topology, so we can consider the constant sheaf Q on X
and its cohomology groups

H∗(X,Q) .

However, there are some problems with this. One of these is that the Zariski topology
is simply inadequate: indeed any constant sheaf A on an irreducible variety X is flasque
(or flabby), which implies that

Hq(X,A) = 0 for all i > 0 .

So we need to find a replacement for the Zariski topology. When X is a variety over C for
example, we might want to use its (complex) analytic topology. However we are working
over (the algebraic closure of) a finite field, and there seems to be no appropriate notion
of topology on X in this case.

Grothendieck’s idea to solve this problem was to give a new notion of “topology”, in
which open subsets are replaced by certain maps to X. This notion generalizes that of open
immersions U ↪→ X, and makes it possible to define sheaves over this new “topological
space”. Once we have have sheaves, we can simply define cohomology as the right derived
functor of the global sections.

Another problem is given by the fact that Q is not a suitable coefficient field; we will
explain this towards the end of this seminar.
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1. Sheaves on a site

Let X be a topological space. Denote by Open(X) the category whose objects are open
subsets of X and whose morphisms are defined, for U, V ⊆ X open, as

Hom(U, V ) =

{
{iUV } if U ⊆ V
∅ otherwise

where iUV : U ↪→ V is the inclusion.
Then a presheaf of abelian groups on X is simply a contravariant functor F from

Open(X) to the category Ab of abelian groups. This means in particular that for each
open U ⊆ X we have an abelian group F (U) and for each open V ⊆ U we have restriction
maps ρUV := F (iUV ) : F (U)→ F (V ), compatible in the usual sense. The elements of F (U)
are also called sections of F on U , and we will simply denote the restriction of s ∈ F (U)
by s|V when there is no risk of confusion.

We can then define a sheaf on X as follows:

Definition 1.1. A presheaf (of abelian groups) F on X is called a sheaf (of abelian groups)
on X if, for every U ∈ Open(X) and every open cover U of U , the sequence:

0 → F (U) →
∏
V ∈U

F (V ) →
∏

V,W∈U
F (V ∩W )

s 7→ (s|V )V ∈U

(sV )V ∈U 7→ (sV |V ∩W − sW |V ∩W )V,W∈U

(1)

is exact.

This definition is perhaps elegant, but definitely cryptic at first sight. Lets break down
what the exactness of the sequence (1) means in more concrete terms.

The injectivity of the map on the left means: a non-zero section restricts to the non-
zero section at least in some open subset. In other terms, if you have two sections whose
restrictions on every open subset coincide, then the two sections must be equal. This is
known as the identity axiom.

Exactness in the middle means two things, the non-trivial one being: if you have a
collection of sections sV ∈ V for every V in an open cover U of U , and these sections are
compatible in the sense that they coincide on the intersections V ∩W , then there is a
section s ∈ U such that s|V = sV for every V ∈ U . This is known as the gluing axiom,
because it allows us to glue together compatible sections to form one defined on a larger
open set.

From this definition we can clearly see which particular feature of topological spaces is
necessary in order to define sheaves: it is the notion of open cover. Grothendieck’s idea
was then to define a “topology” to be a certain category T with prescribed sets of maps
to a given object as “open covers” of that object.

Definition 1.2 ([5, Chapter I, Definition 1.2.1]). A site (or Grothendieck topology) on
a category T is given by specifying for every U ∈ T which collection of maps to U are
covering families for U , in such a way that:

(1) If {Ui → U} is a covering family for U and V → U is a morphism, then {Ui ×U V → V }
is a covering family for V .
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(2) If {Ui → U} is a covering family for U and, for every Ui, {Vij → Ui} is a covering
family for Ui, then {Vij → U}, where each map is obtained by composition with
Ui → U , is a covering family for U .

(3) If ϕ : V → U is an isomorphism, then {ϕ} is a covering family for U .

Compare this with the case T = Open(X): the axiom (T1) tells us that a subset of U is
covered by a covering of U , and (T2) says that the union of open covers of an open cover
is again an open cover.

Definition 1.3 ([5, Chapter I, Definition 1.2.3]). A sheaf (of abelian groups) on a site
T is a contravariant functor F : T → Ab such that, for every U ∈ T and every covering
family U = {i : Ui → U} of U , the following sequence is exact:

0 → F (U) →
∏
i∈U

F (Ui) →
∏
i,j∈U

F (Ui ×U Uj)

s 7→ (F (i)(s))i∈U

(si)i∈U 7→ (F (j ×U Ui)(si)− F (i×U Uj)(sj))i,j∈U

(2)

Remark 1.4. The cumbersome notation “F (j ×U Ui)(si)” can be explained looking at
the following pullback diagram

Ui ×U Uj Uj

Ui U

i×UUj

j×UUi j

i

and remembering that “sV |V ∩W ” is just a shorthand for F (ι)(sV ) where ι : V ∩W ↪→ V
is the inclusion.
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2. Étale morphisms

In this section we will assume that schemes are locally Noetherian and that morphisms
of schemes are of finite type, see [2, 2.3.4 and 3.2.1]. These assumptions always hold for
algebraic varieties and morphisms between them.

Definition 2.1. Let (A,mA) and (B,mB) be local rings. A ring homomorphism f : A→ B
is called unramified if f(mA) ·B = mB and A/mA ↪→ B/mB is a separable field extension.

As an example, let K ⊆ L be number fields with rings of integers OK ⊆ OL. A prime
p of K is unramified in L precisely when for every prime q of L above p the extension of
local rings OK,p ↪→ OL,q is unramified in the sense of Definition 2.1.

Recall that, if A is a ring, an A-module M is called flat if for every injective A-
homomorphism N ↪→ P the homomorphism N ⊗A M → P ⊗A M is also injective. It
is a local property: a module M is flat if and only if Mp is flat for every prime ideal p of
A.

We say that a morphism of rings A→ B is flat if B is a flat A-module.

Definition 2.2. A morphism of schemes f : X → Y is called étale at x ∈ X if the induced
map of local rings OY,f(x) → OX,x is flat and unramified. We say that f is étale if it is so
at every point of X.

Examples and facts.

(1) Open immersions are étale. This implies that the étale topology (see below) is a
refinement of the Zariski topology.

(2) [1, §1, Proposition 1.7] A morphism of affine algebraic varieties over C is étale
precisely when it is a locally biholomorphic map in the sense of complex analysis.

(3) [2, Theorem 4.3.12] If f : X → Y is a flat morphism (i.e. the induced maps of local
rings are flat) then for every y ∈ Y and every x ∈ f−1(y) we have dimx f

−1(y) =
dimxX − dimy Y . If X is irreducible this simply means that the fibers of f all
have dimension dimX − dimY . If moreover f is étale, then dimX = dimY and
every fiber is a finite set.

(4) A normalization morphism is never flat, thus never étale, unless it is an isomor-
phism, see [2, §8.1.4]). See for example [3, Theorem 23.0(i)]; the proof uses coho-
mological algebra, in particular Serre’s normality criterion.

(5) It follows directly from (3) (and it is strictly related to (4)) that a blowup morphism
is never flat.

Proposition 2.3 ([5, Chapter II, Proposition 1.1.2]).

(i) The composition of étale morphisms is étale.
(ii) If f : X → X ′ and g : Y → Y ′ are étale morphisms over a base scheme S, then so

is f ×S g : X ×S Y → X ′ ×S Y
′.

(iii) If f : X → Y and g : Y → Z are morphisms and both g and g ◦ f are étale, then
f is étale.

Proof. Tamme [5] does not include a proof and just refers to EGA IV, so I will cite my
personal favorite algebraic geometry reference instead.

Notice that (i) and (ii) can be rephrased as “étale morphisms are stable under com-
position” and “étale morphisms are stable under fibered products”, respectively. These
are contained in [2, Proposition 4.3.22(c)]. Part (iii) follows from the fact that étale mor-
phisms are stable under base change, which is also part of [2, Proposition 4.3.22(c)] (base
changing g ◦ f : X → Z to X ×Z Y → Z ×Z Y ); see also [1, Chapter I, Remark 2.2]. �
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3. Étale cohomology

Thanks to Proposition 2.3 one can easily show that the following definition satisfies all
the axioms of a Grothendieck topology.

Definition 3.1. Let X be a variety and let ET (X) be the category of étale schemes over
X, i.e. the category whose objects are morphisms of schemes Y → X and whose objects
are morphism Y → Y ′ that commute with the morphisms to X. Declaring as covering
families all families of morphisms {ϕ : Ui → U} such that

⋃
i ϕi(Ui) = U we obtain a

Grothendieck topology on ET (X) which we call the étale site of X.

We may now consider sheaves on the étale site of X as defined in Definition 1.3. Fol-
lowing [5, Chapter I, §3.3], and as is the case with classical cohomology theory for sheaves
on a topological space, for every sheaf F on X the global sections functor

F 7→ Γ(X,F ) = F (X)

is additive and left exact. The right-derived functor of Γ(X,−) is called the étale cohomol-
ogy of X with coefficients in F , and we will denote it by H∗(X,F ). If A is an abelian group
and F is the constant sheaf A with value A, we will use the simpler notation H∗(X,A).

Remark 3.2. The Čech cohomology groups Ȟ∗(X,F ) of a sheaf F on (any site of) a
scheme X are defined as follows (but see [5, Chapter I, §2.2] or [2, §5.2] for a proper
introduction to Čech cohomology). For any covering family {Ui → X}i∈I of X and n > 0
we call

Cn({Ui → X}i∈I , F ) =
∏

(i0,...,in)∈In+1

F (Ui0 ×X · · · ×X Uin)

the group of n-cochains of {Ui → X} with values in F . We may define a coboundary
operator

dn : Cn({Ui → X} , F )→ Cn+1({Ui → X} , F )

by letting, for every s ∈ Cn({Ui → X} , F ), the (i0, . . . , in+1)-th component of dns be

(dns)i0,...,in+1 :=

n+1∑
k=0

(−1)kF (πk)(si0,...,îk,...in+1
)

where

πk : Ui0 ×X · · · ×X Uin+1 → Ui0 ×X · · · ×X Ûik ×X · · · ×X Uin+1

is the projection. Then we have a cochain complex

C0({Ui → X} , F )→ C1({Ui → X} , F )→ · · · → Cn({Ui → X} , F )→ . . .

and we define Čech cohomology of the covering {Ui → X} as the cohomology of this
complex

Ȟn({Ui → X} , F ) := Hn(C∗({Ui → X} , F ))

or more explicitly

Ȟn({Ui → X} , F ) = ker(dn)/ im(dn−1) .

The Čech cohomology of X is then defined by taking the direct limit of these cohomology
groups over all covering families of X

Ȟn(X,F ) := lim−→
{Ui→X}

Hn({Ui → X} , F )
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a map of coverings (also called refinement) being defined as a map between the set of
indeces ε : I → I ′ together with maps Ui → U ′ε(i) that commute with the maps to X (see

[5, Chapter I, Definition 2.2.4].
It turns out that, under certain assumptions, we may compute étale cohomology groups

using Čech cohomology. Indeed, for any sheaf F on the étale site of X we have canonical
group homomorphisms

Ȟn(X,F )→ Hn(X,F )

which are isomorphisms for n = 0, 1 and injective for n = 2 (see [5, Chapter I, Corollary
3.4.7]). Under certain conditions which hold for example when X is a quasi-projective
variety, these maps are isomorphisms for every n (see [4, Chapter III, Theorem 2.17]).

In order to obtain a “Weil cohomology theory” in the sense of the previous talk, we
need to take coefficients in a field K of characteristic 0 (that is, our sheaf F is the constant
sheaf with value K). As mentioned in the introduction, one cannot hope that choosing
K = Q works: if for example X is an elliptic curve one can show using the Künneth
Formula that End(X) acts on H1(X,Q) compatibly with addition. By our axioms for the
Weil cohomology formalism we need H1(X,Q) to be a dimension 2 vector space over Q.
This seems to be all nice and well until one remembers that if X is supersingular then
End(X) ⊗Z Q is a central simple algebra of dimension 4 over Q, and the aforementioned
action of End(X) yields a representation

End(X)⊗Z Q→ Mat2×2(Q)

which cannot exist, because the two unitary Q algebras above have the same (finite)
dimension, but they are not isomorphic and the one on the left is simple.

One might still hope that choosing K = Qp for some prime p works. Unfortunately this
won’t work either (see [1, Introduction to Chapter I]).
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