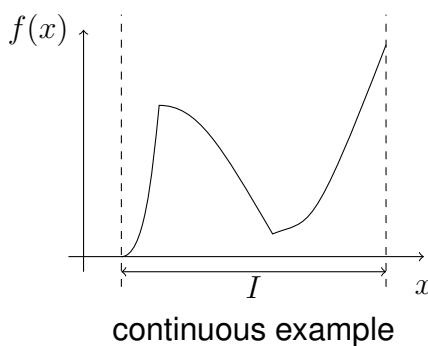
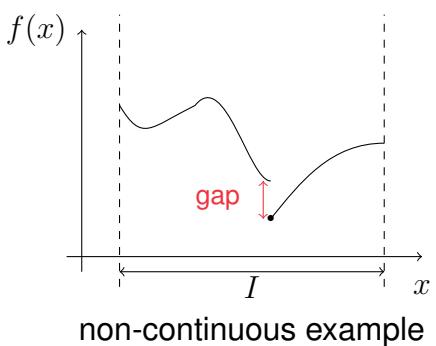


Continuity

1. Let $a = -\infty$ or a real number and b a real number or $b = +\infty$ such that $a < b$. The set of real numbers x verifying $a \leq x \leq b$ (resp. $a \leq x < b$, $a < x \leq b$ or $a < x < b$) is denoted $[a, b]$ (resp. $[a, b[$, $]a, b]$ or $]a, b[$). By definition, any set of this form is an *interval* of \mathbb{R} .
2. Let I be an interval of real numbers. A function f defined on I sending x in I to $f(x)$ is *continuous* if one can draw its graph without lifting the pencil. In other words, if there is no gap in the graph of the function. For instance :



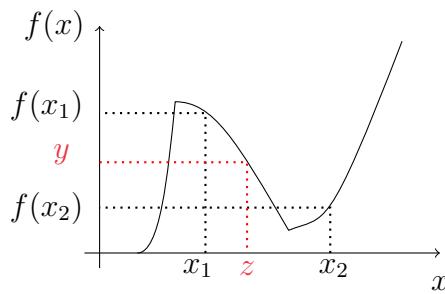
It is an intuitive definition. Although we will not write it to avoid technicalities, there is a more rigorous way to define continuous functions.

3. Classical functions such as polynomials (that we have seen last month), trigonometric functions (\cos, \sin) are continuous. For those who know them, the logarithm and exponential functions (\ln and \exp) are continuous as well.
4. The sum/difference/product/quotient of two continuous functions on I is continuous on I (in the latter case, the denominator must not vanish on I for the quotient to be defined).
5. Let f be a function defined on I and g be a function defined on some interval J . Assume that for any x in I , $f(x)$ belongs to J . Then, we define the *composition* of f by g to be the function $g \circ f$: defined on I sending x in I to $g(f(x))$, the image of $f(x)$ by g .¹ If f and g are continuous then $g \circ f$ is continuous.

1. For example, with $f(x) = x^2$ and $g(y) = y + 1$ we find $g \circ f(x) = x^2 + 1$.

6. Using these two facts, you can prove that a function is continuous without drawing it. Most examples of functions that you have seen are continuous functions. For instance, justify that the function sending x to $\frac{2x+1}{x+5}$ is continuous on $]0, +\infty[$ ².

7. **The intermediate value theorem** Let f be a continuous function on some interval I . Let x_1, x_2 be elements in I and let y be a real number such that $f(x_1) \leq y \leq f(x_2)$. Then there exists a real number z between x_1 and x_2 such that $y = f(z)$. For instance :



The non-continuous function that we have drawn in point 1 does not satisfy the intermediate value theorem, can you see why ?

8. The following consequence of the intermediate value theorem. Let f be a continuous function on some interval I . If the equation $f(x) = 0$ has no solutions on I then the sign of f is constant on I (that is to say either for all x in I , $f(x) > 0$ or for all x in I , $f(x) < 0$). This is usually how you should use continuity of functions in IMO problems.

2. Since both functions $x \mapsto 2x + 1$ and $x \mapsto x + 5$ are polynomials, they are continuous. Remarking that the only root -5 of $x + 5$ is negative and therefore not in $]0, +\infty[$, we have that the quotient of these functions is continuous.

Problem 1 (Prove Fact 8). Let I be an interval and let f be a continuous function on I such that the equation $f(x) = 0$ has no solutions on I . Prove that the sign of f is constant on I .

Problem 2. Let a, b be real numbers such that $a < b$ and let f be a continuous function on $[a, b]$. We assume that $f(a)f(b) < 0$.

1. Show that the equation $f(x) = 0$ has at least one solution on $[a, b]$.
2. If $c := \frac{a+b}{2}$, justify that the equation $f(x) = 0$ has at least one solution on $[a, c]$ or $[c, b]$. Use the sign of $f(c)$ to decide which of these two intervals contains a solution to the equation $f(x) = 0$.
3. Describe an algorithm that takes a continuous function f on $[0, 1]$ such that $f(0)f(1) < 0$ and returns an approximation of a solution to the equation $f(x) = 0$ on $[0, 1]$.

Problem 3. Let f and g be continuous function from \mathbb{R} to \mathbb{R} verifying $f \circ g = g \circ f$ ³. Suppose furthermore that the equation $f(x) = g(x)$ has no solution. Prove that the equation $f(f(x)) = g(g(x))$ has no solution.

Problem 4. Let f be a continuous function on $[0, 1]$ such that $f(0) = f(1)$. Find x in $[0, \frac{4}{5}]$ such that $f\left(x + \frac{1}{5}\right) = f(x)$.

Problem 5 (more challenging). Let f be a continuous function on $[0, 1]$ such that for any real number $0 \leq x \leq 0.7$, $f(x + 0.3) \neq f(x)$ and $f(0) = 0 = f(1)$.

1. Show that the equation $f(x) = 0$ has at least seven solutions.
2. Draw an example of such function f .

ANY QUESTION? JUST ASK!

3. This is the composition of functions we defined in Fact 4.