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Abstract. This note is about a type of quantitative density of closed geodesics on closed

hyperbolic surfaces. The main results are upper bounds on the length of the shortest closed

geodesic that ε-fills the surface.

1. Introduction

Closed geodesics on hyperbolic surfaces provide a concrete link between algebraic, geomet-

ric and topological approaches to understanding the geometry of these surfaces and their

moduli spaces. One feature of the hyperbolic geometry is that they are dense in both the

surface and the unit tangent bundle. This is in strong contrast to the set of simple closed

geodesics or those with bounded intersection number which are nowhere dense and in fact

Haussdorf dimension 1 [22]. In this article, we investigate a type of quantitative density of

closed geodesics.

Given a closed hyperbolic surface X and ε > 0, we’re interested in finding the shortest

closed geodesic that is ε-dense, by which we mean that all points of X are at distance at

most ε from the geodesic. Our main result is the following.

Theorem 1.1. For all X ∈ Mg there exists a constant CX > 0 and such that for all ε ≤ 1
2 there

exists a closed geodesic γε that is ε-dense on X and such that

`(γε) ≤ CX
1
ε

log
(

1
ε

)

Another measure of complexity for a closed geodesic is its self-intersection number. Length

and self-intersection numbers of a curve are of course related (see for instance [11]). Instead

of minimizing length, one can try and minimize self-intersection for ε filling curves. As a

corollary of Theorem 1.11.1 we obtain the following.

Corollary 1.2. For all X ∈ Mg there exists a constant CX > 0 such that for all ε ≤ 1
2 there exists
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a closed geodesic γε that is ε-dense on X and such that

i(γε, γε) ≤ CX
1
ε2

(
log
(

1
ε

))2

The main ingredient in the proof of Theorem 1.11.1 is a more technical result (Theorem 2.42.4)

which shows the existence of a closed geodesic of bounded length that contains a given set

of geodesic segments on X in its ε-neighborhood. Theorem 1.11.1 then follows by finding an

appropriate set of geodesic segments that fill the surface. This tool can also be used to find

a similar quantitive density result in the unit tangent bundle of X (Theorem 3.13.1).

The growth rate of length in Theorem 1.11.1 is perhaps not optimal but if not it is off by

at most a factor of log
( 1

ε

)
. Indeed if a closed geodesic is ε-dense then the area of its ε-

neighborhood is the area of the surface. In H, for small ε, the area of a ε-neighborhood of

a geodesic segment of length ` is roughly ε`. And putting these things together tells us

that if a geodesic γ ε-fills, it must be of length at least area(X)
ε . Understanding the log

( 1
ε

)
discrepancy between the upper and lower bounds seems to be an interesting problem.
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2. Geodesics in H and on surfaces

We begin with a simple lemma about hyperbolic polygons and angles of geodesics travers-

ing them. By angle between two geodesics we mean the minimal angle, so in particular

angles are always less than π
2 .

Lemma 2.1. Let P be a convex polygon in H. Then there exists a θP > 0 such that any geodesic
segment with endpoints on distinct sides of ∂P forms an angle of at least θP in one of its endpoints.

Proof. The statement follows by a compactness argument since a geodesic segment cannot

have angle 0 in both endpoints, but there is a direct argument that also shows that this

minimal angle corresponds to a specific geometric quantity which we now describe.

Consider the set of all geodesic segments that form a triangle with consecutive sides of P.
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We’ll call these triangles the ears of P. Consider the set of angles of the ears (three angles for

each ear) and set θP to be their minimum value.

s
s̃

T

T′

Figure 1: The ear T containing T′

Now consider a geodesic segment c leaving from a side s of ∂P forming an angle θ of at

most θP. It stays entirely in an ear T (one of the sides of the ear is s) so it intersects a side s̃
of P adjacent to s. The triangle T′ formed by c with segments of s and s̃ is contained in T
and is thus of lesser area. As it also shares an angle with T, the sum of its two remaining

angles cannot be strictly less than 2θP, otherwise by Gauss-Bonnet the area of T′ would be

greater than that of T. As θ ≤ θP, the remaining angle is at least θP.

Note that θP is optimal as the inner sides of the ears are admissible geodesic segments.

The following is just an observation about geodesics in H. The proof we give, and many of

the following proofs, use hyperbolic trigonometry. We refer the reader to [33] or any other

standard hyperbolic geometry textbook for the formulas.

Lemma 2.2. Let π
2 ≥ θ0 > 0, and set

m(θ0) := arccosh
(

2
sin2 (θ0)

− 1
)

If c is a geodesic segment in H of length at least m(θ0) between two (complete) geodesics γ1, γ2

such that
∠(c, γi) ≥ θ0

for i = 1, 2, then γ1 and γ2 are disjoint.

Proof. Fix θ0. To check whether segments of given length ` with the angle condition always

lie give rise to disjoint geodesics, we can consider the ”worst case scenario” which is when

both geodesics form an angle of θ0 with the segment. The limit case in this worst case

scenario between intersecting and not intersecting is when the two geodesics γ1 and γ2 are
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ultra-parallel and in this case we have a triangle with an ideal vertex and two angles of

θ0 in endpoints of a segment c of length `. In this case ` is easy to compute via standard

hyperbolic trigonometry: it is

m(θ0) = arccosh
(

2
sin2 (θ0)

− 1
)

The distance between γ1 and γ2 being an increasing function of `, we can conclude that

any c of length greater or equal to m(θ0) with the angle condition will lie between disjoint

geodesics.

Note that the proof also shows that the condition is sharp. The next lemma is more

technical and contains several quantifiers, but is again a somewhat elementary statement

about geodesics in H.

Lemma 2.3. Let π
2 ≥ θ0 > 0 be a fixed constant. Let c be a geodesic segment in H and γ the

complete geodesic containing c. Fix ε > 0 and let γ1 and γ2 be geodesics that intersect γ such that
the intersection points p1, p2 lie on different sides of c.

Suppose for i = 1, 2 that ∠(γi, γ) ≥ θ0 and

d(c, pi) ≥ log
(

1
ε

)
+ log

(
4

sin(θ0)

)
Then any geodesic δ intersecting both γ1 and γ2 satisfies

c ⊂ Bε(δ)

Proof. Given θ0 and the length of c, we’ll consider the ”worst case scenario” by which we

mean the situation, under the assumptions of the lemma, where a geodesic with endpoints

on γ1 and γ2 is as far away as possible from c.

In order for it to be the worst case scenario a number of things need to happen. First of

all, given any setup for c and γ1 and γ2 the geodesic furthest away from c with endpoints

on γ1 and γ2 is a limit case and actually is a geodesic δ ultra-parallel to both γ1 and γ2.

Furthermore, decreasing the distance between c and pi pushes geodesics away, so we can

suppose that

d(c, pi) = log
(

1
ε

)
+ log

(
4

sin(θ0)

)
=: rε

Finally, if one of the angles is greater than θ0 then decreasing the angle also pushes c away

from the limit case so we can suppose that both angles of intersection are exactly θ0. We

can thus suppose that we are in the situation of Figure 22.
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Figure 2: The worst case scenario

This situation has a lot of symmetry which we’ll now use. Let µ be the minimal geodesic

path between γ1 and γ2 and let d be the the distance between γ and δ. We denote by h the

maximal distance between c and δ. It is this quantity that we need to bound in function of

the other parameters. It lies in a symmetric quadrilateral Q with c as one of its sides

We denote by d′′ the distance between γ and µ and by d′ the distance between µ and δ. By

looking at the quadrilaterals separated by µ, observe that d′ > d′′ and thus that d′ > d
2 . We

consider another symmetric quadrilateral Q′, somewhat similar to Q but this time with the

height of length d replaced with a height of length d′ (see Figure 33).

h

h′ d′

d′′

`(c)
2

`(c)
2

Figure 3: The quadrilaterals Q and Q′

We denote by h′ the length of the side corresponding to h and we claim that in fact h′ enjoys

the property of h′ > h
2 . This will be useful because h′ is somewhat easier to compute.

To prove this, using the left right symmetries of Q and Q′, we first restrict ourselves to the

left half of each quadrilateral (see Figure 33).

Using hyperbolic trigonometry, we have

sinh(h′) = sinh(d′) cosh
(
`(c)

2

)
> sinh

(
d
2

)
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whereas

sinh(h) = sinh(d) cosh
(
`(c)

2

)
Thus

sinh(h′)
sinh(h)

>
sinh

(
d
2

)
sinh(d)

=
1

2 cosh
(

d
2

)
But if h′ ≤ h

2 we would have

sinh(h′)
sinh(h)

≤
sinh

(
h
2

)
sinh(h)

=
1

2 cosh
(

d
2

)
a contradiction showing h′ > h

2 .

We now seek to bound h′ and to do so, we begin by computing `(µ). Using for instance the

upper left quadrilateral of Figure 22 and hyperbolic trigonometry, we have

cosh
(
`µ

2

)
= cosh(rε + `(c)/2) sin(θ + 0)

Using the lower left quadrilateral we have

sinh(d′) =
1

sinh
(
`µ
2

)
We now return to the quadrilateral pictured in Figure 44 to compute h′.

h′
d′

`(c)
2

Figure 4: The left half of Q′

We have

sin(θ0) cosh(rε + `(c)/2) sinh(h′) = cosh
(
`(c)

2

)
from which we deduce

h′ = arcsinh

 1
sin(θ0)

cosh
(
`(c)

2

)
cosh

(
rε +

`(c)
2

)


We want to show that h′ ≤ ε
2 thus that

1
sin(θ0)

cosh
(
`(c)

2

)
cosh

(
rε +

`(c)
2

) ≤ sinh
( ε

2

)
(1)
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The left hand of Inequality 11 can be manipulated to show that

1
sin(θ0)

cosh
(
`(c)

2

)
cosh

(
rε +

`(c)
2

) =
1

sin(θ0)

1 + e−`(c)

er + e−rε−`(c)

Note that
1 + e−`(c)

erε + e−rε−`(c)
<

2
erε

and thus Inequality 11 certainly holds provided

1
sin(θ0)

2
erε
≤ sinh

( ε

2

)
and thus will hold if

1
sin(θ0)

2
erε
≤ ε

2

Expressed different this last inequality becomes

rε ≥ log
(

1
ε

)
+ log

(
4

sin(θ0)

)
As the above inequality is in fact an equality, this proves the lemma.

We now can proceed to prove the main tool for our results.

Theorem 2.4. For any X ∈ Mg, there exists a constant KX such that the following holds. For all
1 > ε > 0 and any finite collection {ci}N

i=1 of geodesic segments of average length c on X, there
exists a closed geodesic γ such that

`(γ) ≤ N
(

KX + c + 2 log
(

1
ε

))
and for all i = 1, . . . , N

ci ⊂ Bε(γ)

Proof. We take a filling closed geodesic γ0 on X of minimal length (among filling geodesics).

Thus X \ γ0 consists in a finite collection of polygons {Pi}i∈I and we denote by D the

maximum their intrinsic diameters. Furthermore we denote by θ0 the minimum of {θPi}i∈I

where the θPi s are from Lemma 2.12.1.

As X is orientable, the geodesic γ0 has two sides which we think of as being + and − (it

does not matter which is which but we fix it). We take µ+, resp. µ−, to be a geodesic arc

from γ to itself, orthogonal γ in both end points, and which leaves and returns to the +

side, resp. − side. The existence of µ+ and µ− might not be obvious but can be shown
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as follows. Take a cover X̃ → X of finite index so that a lift γ̃0 of γ0 is simple. In X̃, it

suffices to find orthogonal arcs that return to the same side by completing γ̃0 into a pants

decomposition and by taking appropriate orthogonal arcs in the pants containing γ̃0. The

image in X of these arcs provides µ+ and µ−.)

We note that θ0, D, `(γ0), `(µ+) and `(µ−) are all quantities that depend only X.

We’ll begin by constructing a closed piecewise geodesic segment containing all of the cis

with endpoints lying on γ0. We begin by extending each ci to a segment c̃i with endpoints

on γ0 as follows. Following Lemma 2.32.3 we set

rε := log
(

1
ε

)
+ log

(
4

sin(θ0)

)
We extend each ci by rε in both directions. We continue to extend it until it intersects γ0 at

an angle θ ≥ θ0. As γ0 fills, a first intersection point will occur within an extension of length

at most D on both ends. If the angle is too small in one of the endpoints, by extending by at

most an additional D there is a second intersection point. The arc between two successive

intersection points is an arc with endpoints on one of the polygons of X \ γ0. By Lemma

2.22.2, one of the two angles must be at least θ0.

We’ll also need to apply Lemma 2.22.2 to the extended segments so if their current length is

not yet m(θ0) (where m(θ0) is from Lemma 2.22.2), we extend it equally in both directions

until it reaches that length. We denote the resulting segment c′i.

Note that because the quantities D, θ0 and m(θ0) only depend on X we have that the

resulting geodesic arc c′i satisfies

`(c′i) ≤ `(ci) + 2 log
(

1
ε

)
+ CX

where CX is a constant only depending on X.

We think of the segments c′i as being cyclically ordered and we construct a closed curve at

follows.

We orient each ci arbitrarily. What will be important is on which sides of γ0 they start and

end on.

To determine what happens between the endpoint of ci and the starting point of ci+1 what

will be important is on which sides of γ0 they start and end on.

If c′i+1 begins on the opposite side that c′i ends on, we join the endpoint of c′i to the starting

point of c′i+2 by the shortest subarc of γ0 which does this and which will be of length at

most γ0
2 .
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If c′i+1 begins on the same side that c′i ends on, we’ll use either µ+ or µ− which we also think

of as oriented. Suppose c′i ends on + (the other case is symmetric). We join the endpoint of

c′i to the starting point of µ− by a shortest arc of γ0 that does this and is of length at most
γ0
2 . Now we join the endpoint of µ− to the initial point of c′i+1 similarly, i.e., by a shortest

arc of γ0 of length at most γ0
2 . All in all, the length of these three additional arcs is at most

`(γ0) + max(`(µ+), `(µ−)).

In this way, we have constructed a piecewise geodesic closed curve γ′ and we denote by γ

the unique geodesic in its homotopy class. Its length is thus upper bounded by

N

∑
k=1

`(c′k) + N (`(γ0) + max(`(µ+), `(µ−)))

Putting this bound together with the bound on the length of each c′i, we set

KX := CX + `(γ0) + max(`(µ+), `(µ−))

to obtain the desired bound on the length of γ.

What remains to be seen is that γ is non-trivial and contains all of the segments ci in its

ε-neighborhood. To see this we consider a lift in the universal cover.

Note that the piecewise geodesic γ′ consists of an even number of geodesic arcs where arcs

of γ0 are followed by either c′is or µ+ or µ− (we’ll refer to these as the non γ0 arcs).

We begin by taking a specific lift of γ′ (for instance by taking a lift of c′1 and then constructing

the full lift from there). Note that each lift of a c′i lies between two copies of γ0 which are

disjoint by the length condition imposed on c′i and by Lemma 2.22.2. As they are orthogonal

in their endpoints, this also holds for lifts of µ+ and µ−.

We think of the lift of γ′ as being oriented. We were careful about what sides the non γ0

arcs left from and in particular we ensured that successive non γ0 arcs left from different

sides. In the lift, this means that the piecewise geodesic never backtracks and traverses

each lift of γ0 corresponding to the lift of a γ0 arc. Thus the successive lifts of γ0 form a

sequence of nested geodesics.

That tells us two things: the lift of γ′ is simple and it limits in both directions to distinct

endpoints on the boundary of H. We denote by γ̃ the unique geodesic in H with these

endpoints (this is a lift of γ). By standard arguments, this ensures that γ′, and thus γ, is

non trivial.

We now look at γ̃. Given a lift of c′i, we look at the two lifts of γ0 surrounding it which

we’ll denote γ′i and γ′′i . By construction c′i has the proper length on both ends of the lift of
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Figure 5: Lifting γ′ to H: the complete geodesics are lifts of γ0

ci and angle condition to ensure that any geodesic intersecting both γ′i and γ′′i contains ci in

a ε-neighborhood. By the above argument, γ̃ crosses both γ′i and γ′′i and this is what we

wanted to show.

3. Quantitative density

We now apply Theorem 2.42.4 to prove results about dense geodesics. Recall that a closed

geodesic γ is ε-dense on X if dX(x, γ) ≤ ε for all x ∈ X.

Theorem 1.11.1. For all X ∈ Mg there exists a constant CX > 0 such that for all ε ≤ 1
2 there exists

a closed geodesic γε that is ε-dense on X and such that

`(γε) ≤ CX
1
ε

log
(

1
ε

)
Proof. The strategy is to find a collection of geodesic segments that ε

2 -fill X and then to apply

Theorem 2.42.4 to find a closed geodesic that contains the segments in a ε
2 -neighborhood.

We begin by setting

RX := min{1, injrad(X)}

where injrad(X) is the minimum injectivity radius of X. We consider a maximal collection

points {pk}k∈I all pairwise distance at least RX (I is a finite index set). Note that the balls of

radius RX around the pk cover X. Further note that the balls of radius RX
2 around the pk are
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disjoint and thus

|I| ≤ area(X)

area (BRX/2)

In particular, there is a bound on |I| which only depends on X. Now consider a ball of

radius RX in H. As RX ≤ 1, the perimeter of this ball is less than

2π sinh(1)

We want to fill it by geodesic segments such that all points are distance at most ε
2 from one

of the segments. To do so we place points qk, k ∈ J on the perimeter, all exactly ε-apart

except for possibly the last one which might be closer to its two neighbors. Note there are

at most
2π sinh(1)

ε

Now consider any collection of disjoint ”parallel” segments constructed by first taking two

neighbors and joining them by a geodesic segment, and then taking the geodesic between

their other neighbors and so forth. There are half as many segments as there were points.

Taking into account that we might have had an odd number of points, we’ve constructed at

most
π sinh(1)

ε
+ 1

segments. Now any point in the disk lies between two geodesic segments and is at a

distance at most ε
2 from one of them (this is because the distance between the endpoints of

these segments is at most ε).

Doing this for each of our balls, we have at most

AX
1
ε

segments where AX is a constant depending only on X. Each of them are length at most 2.

We now apply Theorem 2.42.4 to these segments asking that the closed geodesic γε contain

every segment in its ε
2 neighborhood. The estimate follows.

Using the same method as above, one can find an estimate on the length of a shortest closed

geodesic that is ε-dense in the unit tangent bundle UT(X) of X. For this one needs a notion

of distance. One way of defining this is by associating oriented segments to vectors. Given

X and given a constant l ≤ injrad(X), we say that a curve γ is ε-dense in UT(X) if every

oriented geodesic segment on X of length l is contained in a ε-neighborhood of γ.
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Theorem 3.1. For all X ∈ Mg there exists a constant CX > 0 and an ε0 such that for all ε ≤ 1
2

there exists a closed geodesic γε that is ε-dense in UT(X) and such that

`(γε) ≤ CX
1
ε2 log

(
1
ε

)
Proof. The proof is identical to the proof of Theorem 1.11.1 with the following exceptions.

When choosing the set of balls that cover X, we choose the balls to be of radius 2RX (they

may not be embedded but we can consider them in the universal cover and project to X).

This is to ensure that we capture the totality of oriented segments of length `.

Now when constructing the geodesic segments, instead of choosing roughly 1
ε segments

that lie between the points qk, we choose all oriented geodesic segments that lie between

them. As there are roughly 1
ε points qk, there are roughly 1

ε2 segments this time, hence the

difference in the estimate.

We end the paper with the corollary of Theorem 1.11.1, mentioned in the introduction.

Corollary 1.21.2. For all X ∈ Mg there exists a constant CX > 0 and an ε0 such that for all ε ≤ ε0

there exists a closed geodesic γε that is ε-dense on X and such that

i(γε, γε) ≤ CX
1
ε2

(
log
(

1
ε

))2

Proof. This follows directly from the length estimates on γε from Theorem 1.11.1 as any

geodesic of length ` can have at most roughly `2 self-intersection points by the following

argument. Take the geodesic of length ` and break it up into segments of length `0 where

`0 is less than the minimal injectivity radius of X. Now any two segments of length `0 can

intersect at most once.
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