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Abstract

Motivated by recent work on Delaunay triangulations of hyperbolic surfaces, we
consider the minimal number of vertices of such triangulations. First, we will show
that every hyperbolic surface of genus g has a simplicial Delaunay triangulation with
O(g) vertices, where edges are given by distance paths. Then, we will construct a
class of hyperbolic surfaces for which the order of this bound is optimal. Finally,
to give a general lower bound, we will show that the Q(,/g) lower bound for the
number of vertices of a simplicial triangulation of a topological surface of genus g
is tight for hyperbolic surfaces as well.
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1 Introduction

The classical topic of Delaunay triangulations has recently been studied in the context of
hyperbolic surfaces. Bowyer’s incremental algorithm for computing simplicial Delaunay
triangulations in the Euclidean plane [5] has been generalized to orientable hyperbolic
surfaces and implemented for some specific cases [4, 11]. Moreover, it has been shown
that the flip graph of geometric (but not necessarily simplicial) Delaunay triangulations
on a hyperbolic surface is connected [7].

In this work, we consider the minimal number of vertices of a simplicial Delaunay
triangulation of a closed hyperbolic surface of genus g. Motivated by the interest in
embeddings where edges are shortest paths between their endpoints [8, 10], which have
applications in for example the field of graph drawing [18], we restrict ourselves to
distance Delaunay triangulations, where edges are distance paths.

Our main result is the upper bound on the number of vertices with sharp order of
growth:

Theorem 1. An orientable closed hyperbolic surface of genus g > 2 has a distance
Delaunay triangulation with at most O(g) vertices. Furthermore, there exists a family
of surfaces, Xy, g > 2, such that the number of vertices of any distance Delaunay
triangulation grows like Q(g).



The above result is a compilation of Theorems 4 and 19 where explicit upper and
lower bounds are given.

Another reason to study triangulations whose edges are distance paths, comes from
the study of moduli spaces M,, which we can think of as a space of all hyperbolic
surfaces of genus g > 2 up to isometry. These spaces admit natural coordinates associ-
ated to pants decompositions (the so-called Fenchel-Nielsen coordinates, see Section 2
for details). It is a classical theorem of Bers [2] that any surface admits a short pants
decomposition, meaning each of its simple closed geodesics is bounded by a function
that only depends on the topology of the surface (but not its geometry). As these
curves provide a local description of the surface, one might hope that they are also
geodesically convex, meaning that the shortest distance path between any two points
of a given curve is contained in the curve. It is perhaps surprising that most surfaces
admit no such pants decompositions. Indeed it is known that any pants decomposition

of a random surface (chosen with respect to a natural probability measure on M) have

at least one curve of length on the order of géfe as g grows (for any fixed € > 0) [9].

And it is a theorem of Mirzakhani that these same random surfaces are also of diameter
on the order of log(g) [13]. Hence the longest curve of any pants decomposition of a
random surface is not convex.

The lengths of edges in a given triangulation are another parameter set for M,.
By the theorem above, such a parameter set can be chosen with a reasonable number
of vertices such that the edges are all convex. Using the moduli space point of view,
one has a function w : My — N which associates to a surface the minimal number of
vertices of any of its distance Delaunay triangulations. The above result implies that

. w(X)
limsup max
g—oo XeEMy g

is finite and strictly positive, but for instance we do not know whether the actual limit
exists.

The examples we exhibit are geometrically quite simple, as they are made by gluing
hyperbolic pants, with bounded cuff lengths, in something that resembles a line as the
genus grows. One might wonder whether all surfaces have this property, but we show
this is not the case by exploring the quantity minxea, w(X). This quantity has a
precise lower bound on the order of ©(,/g) because we ask that our triangulations be
simplicial [12]. We show how to use the celebrated Ringel-Youngs construction [16]
to construct a family of hyperbolic surfaces that attain this bound for infinitely many
genus (Theorem 27), showing that one cannot hope for better than the simplicial lower
bound in general.

Although our results provide a good understanding on the extremal values of w,
there are still plenty of unexplored questions. For example, what is the behavior of w
for a random surface (using Mirzakhani’s notion of randomness [13] alluded to above)?

This paper is structured as follows. In Section 2, we will introduce our notation and
give some preliminaries on hyperbolic surface theory and triangulations. In Section 3,
we will prove our linear upper bound for the number of vertices of a minimal distance
Delaunay triangulation. In Section 4, we will construct classes of hyperbolic surfaces
attaining the order of this linear upper bound. Finally, in Section 5, we will construct
a family of hyperbolic surfaces attaining the general ©(,/g) lower bound. Proofs of two
technical lemmas appear in the appendices.
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2 Preliminaries

We will start by recalling some hyperbolic geometry. There are several models for the
hyperbolic plane [1]. In the Poincaré disk model, the hyperbolic plane is represented
by the unit disk D in the complex plane equipped with a specific Riemannian metric
of constant Gaussian curvature —1. With respect to this metric, hyperbolic lines, i.e.,
geodesics are given by diameters of I or circle segments intersecting 0D orthogonally.
A hyperbolic circle is a Euclidean circle contained in D. However, in general the centre
and radius of a hyperbolic circle are different from the Euclidean centre and radius.

We refer to [6] for all of the following facts. A hyperbolic surface is a 2-dimensional
Riemannian manifold that is locally isometric to an open subset of the hyperbolic plane
[17], thus of constant curvature —1. Our surfaces are assumed throughout to be closed
and orientable, and because they are hyperbolic, via Gauss-Bonnet, their genus g sat-
isfies g > 2 and their area is 47(g — 1). Note that we will frequently be interested in
subsurfaces of a closed surface which we think of as compact surfaces with boundary
consisting of a collection of simple closed geodesics. The signature of such a subsurface
is (¢', k) where ¢’ is its genus and k is the number of boundary geodesics.

Via the uniformization theorem, any hyperbolic surface X can be written as a quo-
tient space X = ID/T of the hyperbolic plane under the action of a Fuchsian group I' (a
discrete subgroup of the group of orientation-preserving isometries of D). The hyperbolic
plane D is the universal cover of X and is equipped with a projection 7 : D — D/T.

In the free homotopy class of any non-contractible closed curve lies a unique closed
geodesic. If the curve is simple, then the corresponding geodesic is simple, and hence it
is a straightforward topological exercise to decompose a hyperbolic surface into 2g — 2
pairs of pants by cutting along 3¢ — 3 disjoint simple closed geodesics. A pair of pants is
a surface homeomorphic to a three times punctured sphere but we generally think of its
closure, and thus of a hyperbolic pair of pants as being a surface of genus 0 with three
simple closed geodesics as boundary. Its closure is thus a surface of signature (0, 3). See
Figure 1).

It is a short but useful exercise in hyperbolic trigonometry to show that a hyperbolic
pair of pants is determined by its three boundary lengths. This is done by cutting
the pair of pants along the three geodesic paths, orthogonal to the boundary, which
realize the distance between the different boundary geodesics and then arguing on the
resulting right angled hexagons. Hence, the lengths of the 3g — 3 geodesics determine
the geometry of each of the 2g — 2 pairs of pants, but to determine X, one needs to add
twist parameters that control how the pants are pasted together. How one computes the
twist coordinate is at least partially a matter of taste, and although we will not make
much use of it, for completeness we follow [6], where the twist is the signed distance
between the points lying on the basepoints of the orthogeodesics mentioned above.

The length and twist parameters determine X and are called Fenchel-Nielsen coor-
dinates. These parameters can be chosen freely in the set (R>?)3973 x R3973. What
they determine is more than just an isometry class of surface: they determine a marked
hyperbolic surface, homeomorphic to a base topological surface . As the lengths and
twists change, the marked surface changes, and the Fenchel-Nielsen coordinates pro-
vide a parameter set for the space of marked hyperbolic surfaces of genus g, called



Teichmiiller space 7,. The underlying moduli space M, can be thought of as the space
of hyperbolic surfaces up to isometry, obtained from 7, by “forgetting” the marking.
Throughout the paper, lengths of closed geodesics will play an important role. As
mentioned above, in the free homotopy class of a non-contractible closed curve lies a
unique geodesic representative, and as the metric changes, the free homotopy class is
well defined, but the length of the geodesic changes. Generally we will be dealing with a
fixed surface X € 7,, and the length of a geodesic v will be denoted by #(v). Nonetheless,
it is sometimes useful to think of the length of the corresponding homotopy class as a
function over 7, which associates to X the length of the geodesic corresponding to 7.
To a pair of pants decomposition, we can associate a 3-regular graph. In this 3-regular

Figure 1: Decomposition of a genus 3 surface into 4 pair of pants using 6 disjoint simple closed
geodesics.

graph, each pair of pants is represented by a vertex and two vertices share an edge if the
corresponding pairs of pants share a boundary geodesic. For example, Figure 2 shows
the 3-regular graph corresponding to the pair of pants decomposition in Figure 1. As
our parametrization of 7, depends on a choice of pants decomposition, one can think of
the Fenchel-Nielsen coordinates associating a length and a twist to each edge.

S

Figure 2: 3-regular graph corresponding to the pair of pants decomposition shown in Figure 1.

Around a simple closed geodesic 7y, the local geometry of a surface is given by its
so-called collar. Roughly speaking, for small enough r, the set

Cy(r) ={z € X [ d(z,7) <r}

is an embedded cylinder. A bound on how large one can take the r to be while retaining
the cylinder topology is given by the Collar Lemma:

Lemma 2 ([6, Theorem 4.1.1]). Let v by a simple closed geodesic on a closed hyperbolic
surface X. The collar Cy(w(vy)) of width w(vy) given by
w(y) = arcsinh ( - (1)
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is an embedded hyperbolic cylinder isometric to [—w(7y), w(y)] x ' with the Riemannian
metric ds® = dp®>4-02(v) cosh?(p)dt? at (p,t). Furthermore, if two simple closed geodesics
v and v are disjoint, then the collars Cy(w(7)) and Cy(w(v')) are disjoint as well.

This paper is about distance Delaunay triangulations on closed hyperbolic surfaces.

Definition 3. A distance Delaunay triangulation is a triangulation satisfying the fol-
lowing three properties:

1. it is a simplicial complex,
2. it is a Delaunay triangulation,
3. its edges are distance paths.

The set of all distance Delaunay triangulations of a closed hyperbolic surface X is
denoted by D(X).

We will describe each of the three properties of distance Delaunay triangulations in
more detail below.

Simplicial complexes. We will use the standard definition of a simplicial complex.
In our case, an embedding of a graph into a surface is a simplicial complex if and only
if it does not contain any 1- or 2-cycles. In particular, a geodesic triangulation of a
point set in the Euclidean or hyperbolic planes is always a simplicial complex. This is
because there are no geodesic monogons or bigons.

Delaunay triangulations. We recall that given a set of vertices in the Euclidean
plane a triangle is called a Delaunay triangle if its circumscribed disk does not contain
any vertex in its interior. A triangulation of a set of vertices in the Euclidean plane is
a Delaunay triangulation if all triangles are Delaunay triangles.

We can define Delaunay triangulations in the hyperbolic plane in the same way as in
the Euclidean plane, where we use the fact that hyperbolic circles are Euclidean circles.
Delaunay triangulations on hyperbolic surfaces can be defined by lifting vertices on a
hyperbolic surface X to the universal cover D [3, 7]. More specifically, let P be a set of
vertices on X and let 7 : D — D/I" be the projection of the hyperbolic plane D to the
hyperbolic surface X = D/I". A triangle (vy,v2,v3) with v; € P is called a Delaunay
triangle if there exist pre-images v] € 7~ 1({v;}) such that the circumscribed disk of
the triangle (v}, v}, v4) in the hyperbolic plane does not contain any point of 7~1(P) in
its interior. A triangulation of P on X is a Delaunay triangulation if all triangles are
Delaunay triangles.

A Delaunay triangulation of a point set on a hyperbolic surface X is related to a
Delaunay triangulation in D as follows [3]. Given a point set P on X, we consider a
Delaunay triangulation 7" of the infinite point set 7—1(P). Then, we let T = w(T”).
By definition, T is a Delaunay triangulation. Moreover, because every triangulation in
D is a simplicial complex, T is a simplicial complex. However, T is not necessarily a
simplicial complex, because projecting 7" to X might introduce 1- or 2-cycles. We will
use the correspondence between Delaunay triangulations in D and in X in Definition 11
and the proof of Theorem 4 and show explicitly that in these cases the result after
projecting to X is simplicial.

To make sure that 7' = 7(7") is a well-defined triangulation, we will assume without
loss of generality that 7" is I'-invariant, i.e., the image of any Delaunay triangle in 7"



under an element of I' is a Delaunay triangle. Otherwise, it is possible that in so-called
degenerate cases T contains edges that intersect in a point that is not a vertex [4].
Namely, suppose that 7" contains a polygon P = {p1,pa,...,px} consisting of k > 4
concircular vertices and let Tp be the Delaunay triangulation of P in T'. Because
the Delaunay triangulation of a set of at least four concircular vertices is not uniquely
defined, assume that there exists A € I' such that the Delaunay triangulation T4 p) of
A(P) in T' is not equal to A(Tp). Because 7(P) = w(A(P)), there exists an edge of
m(Ty(py) and an edge of 7(A(Tp)) that intersect in a point that is not a vertex.

Distance paths. Suppose we are given an edge (u, v) in a triangulation of a hyperbolic
surface X. Because (u,v) is embedded in X, there exists a geodesic v : [0, 1] — X with
~v(0) = u and (1) = v. We say that (u,v) is a distance path if £(y) = d(u,v), where
d(u,v) is the infimum of the lengths of all curves joining u to v.

3 Linear upper bound for the number of vertices of a min-
imal distance Delaunay triangulation

As our first result, we prove that for every hyperbolic surface there exists a distance
Delaunay triangulation whose cardinality grows linearly as a function of the genus. Note
that the constant 151 is certainly not optimal.

Theorem 4. For every closed hyperbolic surface X of genus g there exists T € D(X)
with at most 151g wvertices.

The idea of the proof is the following. Given a hyperbolic surface X, we construct
a vertex set P on X consisting of at most 151¢g vertices such that the projection T of a
Delaunay triangulation of 7=!(P) in D to X is a distance Delaunay triangulation of X.

It is known that T is a simplicial complex if P is sufficiently dense and well-
distributed [3]. More precisely, there are no 1- or 2-cycles in T if the diameter of
the largest disk in D not containing any points of 7=!(P) is less than %sys(X ), where
sys(X) is the systole of X, i.e. the length of the shortest homotopically non-trivial closed
curve. However, the systole of a hyperbolic surface can be arbitrarily close to zero, which
means that we would need an arbitrarily dense set P to satisfy this condition.

Instead, for a constant € > 0 we subdivide X into its e-thick part

thick = {* € X | injrad(z) > ¢}

and its e-thin part X5. = X\ X7, where injrad(x) is the injectivity radius at z, i.e.,
the radius of the largest embedded open disk centered at x. Note that the minimum
of injrad(z) over all z € X is given by Jsys(X). We see in Section 3.1 that X§,,
is a collection of hyperbolic cylinders for sufficiently small ¢ (see Figure 3). In these
hyperbolic cylinders we want to construct a set of vertices of which the cardinality does
not depend on sys(X). To do this, we put three vertices on the “waist” and each of
the two boundary components of the cylinders that are “long and narrow”. In the
cylinders that are not “long and narrow” it suffices to place three vertices on its waist
only. The notions of “waist” and “long and narrow” will be specified in Section 3.1.
Because injrad(z) > ¢ for all x € X7, , we can construct a sufficiently dense and well-
distributed point set in Xy}, , whose cardinality does not depend on sys(X) but only on
€. In Section 3.2 we will describe how we combine the vertices placed in the hyperbolic
cylinders with the dense and well-distributed set of vertices in X§; ... Finally, the proof
of Theorem 4 is given in Section 3.3.



Figure 3: Decomposition of a hyperbolic surface into a thick part consisting of two connected
components and two narrow hyperbolic cylinders (in red).

3.1 Distance Delaunay triangulations of hyperbolic cylinders

We now describe our construction of a set of vertices for the e-thin part X§; . The

following lemma describes Xg, in more detail.

Lemma 5 ([6, Theorem 4.1.6]). If ¢ < arcsinh(1) then Xg,, is a collection of at most
3g — 3 pairwise disjoint hyperbolic cylinders.

The following description of the geometry of the hyperbolic cylinders in X§,;  is based
primarily on a similar description in the context of colourings of hyperbolic surfaces [15].
Each hyperbolic cylinder C' in X, consists of points with injectivity radius at most €
and the boundary curves v© and v~ consist of all points with injectivity radius equal to
€. Every point on the boundary curves is the base point of an embedded geodesic loop
of length 2¢ (Figure 4), which is completely contained in the hyperbolic cylinder. All
points on the boundary curves have the same distance K¢ to -y, which only depends on
e and the length ¢(v) of 7. To see this, fix a point p on v and consider a distance path
¢ from p to v (Figure 4). Cutting along v, & and the loop of length 2¢ with base point
p yields a hyperbolic quadrilateral. The common orthogonal of v and the geodesic loop
subdivides this quadrilateral into two congruent quadrilaterals, each with three right
angles. Applying a standard result from hyperbolic trigonometry yields [6, Formula
Glossary 2.3.1(v)]

sinh(e) = sinh(3£4(7)) cosh(£(€)).

Because K¢ = ¢(§), it follows that

— arccos w
Fo = axceosh <sinh<§e<v>>>' @

We see that y* consists of points that are equidistant to 7. By symmetry, the
distance between a point on v~ and 7 is equal to K¢ as well. Moreover, v© and v~ are
smooth.

Recall the notion of a collar from Section 2. In particular, each hyperbolic cylinder
C in Xg;, is a collar of width K. Comparing equation (2) for K¢ with equation (1) in
the statement of the Collar Lemma, we see that w(vy) > K¢, because sinhe < 1. This
inequality will be used in the proof of Lemma 7 to give a lower bound for the distance
between distinct hyperbolic cylinders in X§.. .



Figure 4: Computing K¢.

We distinguish between two kinds of hyperbolic cylinders in X§, , namely &’-thin
cylinders and &’-thick cylinders, where ¢’ = 0.99¢. An &’-thick cylinder with waist v
satisfies 2¢’ < () < 2g, since « is contained in the e-thin part. An &’-thin cylinder
satisfies £(y) < 2¢’.

Lemma 14 in Section 3.2 states that the triangulation depicted in Figure 5 is a De-
launay triangulation for ’-thin cylinders. We call this triangulation a standard trian-
gulation and describe it in more detail in the following definition. For &’-thick cylinders

we use a different construction defined in Definition 10.

Definition 6. Let X be a closed hyperbolic surface. Let C be an ¢'-thin hyperbolic
cylinder in X5, with waist v and boundary curves y*,~57. Place three equally-spaced
points z;,4 = 1,2,3 on ~ (see Figure 5). Then, place three points z; ,i = 1,2,3 on "
and three points z; ,7 =1,2,3 on v~ such that the projection of xfc on 7 is equal to z;
for i =1,2,3. Let V be the set consisting of x;,z;” and :c;r for i =1,2,3. Let E be the
set of edges of one of the forms
(CC;, 33;_1)7 ($;7 SUi)a ($;7 xi-i-l)? (:L‘ia xi-i-l)? (‘Ii’ $z+)7 (mi7 LL”;:_I), (x;r’ J"zt—l)

for i = 1,2,3 (counting modulo 3), where the embedding of an edge in C is as shown in
Figure 5. We call (V, E) a standard triangulation of C.

We not only have to prove that a standard triangulation of an &’-thin cylinder
is a Delaunay triangulation, we also have to show that its edges are distance paths.
Corollary 9 states that all edges in a standard triangulation are distance paths if ¢ <
0.72. Before we can prove Corollary 9, we first need the following lemma.

Lemma 7. Let X be a closed hyperbolic surface and let € < 0.72. For each pair of
distinct closed geodesics 1 and vy in X§,,, the collars Cy, (Ke, + 3e) and Cyy (K, + 3¢)
are embedded and disjoint.

Remark 8. The value 0.72 was found experimentally and is optimal up to two decimal
digits, i.e., the statement is not true for € = 0.73. More specifically, if € > 0.73 then
there exists a closed hyperbolic surface X with disjoint closed geodesics 1 and 2 in

Xihin such that Cy, (K¢, + %6) and Cy, (K¢, + %6) are not disjoint.



Figure 5: Standard triangulation of an &’-thin cylinder.

Proof. See Figure 6. We will show that w(vy;) — K¢, > %5 for ¢ = 1,2. Namely,
this implies that C,, (K¢, + 1&) € Cy,(w(v;)). Because Cy, (w(v1)) and Cy,(w(72))
are embedded and disjoint by the Collar Lemma, it follows that C,, (K¢, + 3¢) and
Cy, (K¢, + 3¢) are embedded and disjoint as well.

Comparing expression (2) for K¢, and expression (1) for w(+;), we see that w(vy;) —
K¢, is a positive number, with infimum when ¢(;) — 0 [15]. A straightforward compu-
tation shows that for ¢ = 0.72 this infimum is equal to 0.24... > %8. Since w(vy;) — K¢,
is decreasing as a function of ¢, it follows that w(v;) — K¢, > 3¢ for all £ < 0.72. O

Corollary 9. Let X be a closed hyperbolic surface and let € < 0.72. All edges in a
standard triangulation of an €’'-thin cylinder in X3, are distance paths.

Proof. 1t is clear that edges of the form (z;, 7, ), (zi, Tit1), (z], af, ;) fori = 1,2,3 are
distance paths. Now, consider the edge of length K¢ between x; and x:r Because we
know the metric of the cylinder, it can be shown explicitly that there are no shorter paths
completely contained in the cylinder. Furthermore, because the collar C (K¢ + %6) is
embedded by Lemma 7, any path that leaves the top half of the cylinder and returns
through the bottom half has length at least K¢ + %5. It follows that the edges of
the form (z;,x;") are distance paths. By symmetry, the edges of the form (z; ,z;) are
distance paths as well.

Finally, consider the edge between z; and ;. Because d(z;,ziy1) = 30(7) < 3¢
and d(x;y1, x:Zrl) = K¢, we see from the triangle inequality that d(z;, :Ef_H) < K¢+ %s.
Because any path that leaves the top half of the cylinder and returns through the
bottom part of the cylinder has length at least K¢+ %5 by the same reasoning as above,
it follows that edges of the form (z;, x;fH) are distance paths. By symmetry, edges of
the form (z;,x;11) are distance paths as well. O

For £’-thick cylinders, we see from Equation (2) for K¢ that the width K¢ is close



Figure 6: Illustration of the collars C,, (K¢,) C Cy, (K¢, + 1¢) C Cy, (w(7:)).

to zero. It turns out that we do not need to place three points on its waist and on each
of its two boundary curves. Instead, three vertices on its waist suffice.

Definition 10. Let X be a closed hyperbolic surface. Let C' be a &’-thick hyperbolic
cylinder in X§, with waist . Place three equally-spaced points x;,7 = 1,2,3 on . Let
V=Ax;|1=1,2,3} and E = {(21,x2), (z2,23), (z3,21)}. We call (V, E) a standard
cycle of C.

3.2 Constructing a distance Delaunay triangulation of X with few
vertices

After constructing sets of vertices in the cylinders in the e-thin part X§ . , we construct
a sufficiently dense and well-distributed set of vertices in the remainder of the surface.
The following definition shows more precisely how we construct a set of vertices in X§; ;.
and a corresponding Delaunay triangulation.

Definition 11. Set ¢ = 0.72 and &' = 0.99e. Let X be a closed hyperbolic surface.
Let P; be the set consisting of the vertices of a standard triangulation of every &’-thin
cylinder in X3, together with the vertices of a standard cycle for every &’-thick cylinder
in X§,,. Let Tj be the union of triangles in a standard triangulation (V}, E;) of an &'-
thin cylinder C;. For every ¢’-thick cylinder Cj, set T; = (). Define P; to be a maximal
set in X \ U;Tj such that d(p,q) > %6 for all distinct p € Py U Pa,q € Pa. Denote
the union P; U Py by P and let T be the Delaunay triangulation of P on X obtained
after projecting a Delaunay triangulation of 771(P) in D to X. We call T' a thick-thin
Delaunay triangulation of X. The vertices in P; and Py are called the cylinder vertices
and non-cylinder vertices of T, respectively.

Remark 12. Because by Corollary 9 all edges in a standard triangulation of any &'-
thin cylinder are distance paths if we choose ¢ < 0.72, we have chosen ¢ = 0.72 in
Definition 11. Namely, we will see in the proof of Theorem 4 that the larger we choose ¢,
the smaller the constant (in our case 151) in the upper bound for the number of vertices.
As in Section 3.1 we will fix ¢ = 0.72 and &’ = 0.99¢ throughout this subsection.

10



The edges between vertices on the same boundary curve of C; are not equal to the
boundary curves of C; (because the latter are not geodesics), so T} is strictly contained
in Cj. We define Py as a point set in X \ U;7} instead of in X \ U;C; to simplify our
proof of Lemma 17, where we show that a thick-thin Delaunay triangulation of X is a
simplicial complex.

The definition of P does not explicitly forbid placing vertices of Py in &’-thick cylin-
ders. However, we will see in the next lemma that there are no vertices of Py in &’-thick
cylinders, because then they would be too close to the vertices of a standard cycle.

Lemma 13. Let X be a closed hyperbolic surface and let T be a thick-thin Delaunay
triangulation of X. Every vertex of T contained in an &'-thick cylinder in X3 . is a
cylinder vertex.

Proof. Let Py be the set of cylinder vertices and P the set of non-cylinder vertices.
Let C be an arbitrary &’-thick cylinder with waist v and standard cycle (V, E). We will
show that the union U of the disks of radius %E centered at the vertices of V' covers C
completely. Namely, this implies that every point of C' has distance at most %5 to a
vertex of V. Because d(p,q) > %5 for all p € P and g € Py, it follows that there are no
vertices of Py contained in C.

To prove that U covers C' completely, first observe that d(z;, x;41) = %6(7) < %5
for all ¢ = 1,2,3 (counting modulo 3). Therefore, the circles of radius %5 centered at
x; and ;41 intersect in two points, of which we call one p. Since the collar C, (d(v,p))
is contained in U, it suffices to show that K¢ < d(v,p), because then C' = C,(K¢) C
C,(d(~,p)) C U. From equation (2) for K¢ we know that

sinh(e) < sinh(e)

coh(Ke) = ) < sub(@)

< 1.02,

where we substituted ¢’ = 0.99¢ and € = 0.72 in the last step. On the other hand, the
hyperbolic Pythagorean theorem yields

cosh(Le) - cosh(

2 £)
cosh(2£(7)) ~ cosh(

cosh(d(v,p)) = 5

> 1.03,

W[N]

(see Figure 7) where again we substituted € = 0.72 in the last step. We conclude that
K¢ < d(7,p), which finishes the proof.

p

T L) M) Tk
Figure 7: Computing d(vy, p).

O

Even though the set of vertices of a thick-thin Delaunay triangulation of X contains
the vertices of a standard triangulation (Vj, E;) for every &’-thin cylinder C}, a piori it
is not clear that the edges in Ej; are edges in T" as well. In the next lemma, we will show
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that for every &-thin cylinder the triangles in a standard triangulation are Delaunay
triangles with respect to the set of vertices of any thick-thin Delaunay triangulation
of X. Namely, if this holds, then there exists a Delaunay triangulation of P on X

containing a standard triangulation of every &’-thin cylinder in Xg,, .

Lemma 14. Let X be a closed hyperbolic surface. Let T be a thick-thin Delaunay
triangulation of X with vertex set P and let C' be an €’'-thin cylinder in Xg,,, with waist
v. Let (V, E) be a standard triangulation of C' such that V' C P. Then all triangles of
(V, E) are Delaunay triangles with respect to the point set P.

Remark 15. The proof of Lemma 14 is given in Appendix A. Even though we do not
give the proof here, we note that in the proof it is shown as an intermediate step that
d(acf,:):;-ﬁrl) < ¢ for all ¢ = 1,2,3. This inequality is used once more in the proof of
Lemma 16.

Henceforth, we will assume that for each ¢’-thin cylinder the vertices and edges of
a standard triangulation are contained in a thick-thin Delaunay triangulation of X. To
show that T" € D(X), we must show that 7" is a simplicial complex, i.e. it does not
contain any 1- or 2-cycles, and that its edges are distance paths.

In the next lemma, we show that any edge that intersects X§. . has length smaller
than e. Moreover, we show that it follows that all edges that intersect X, ., are distance
paths and that there are no 1- and 2-cycles consisting of edges intersecting Xg.. ;-

Lemma 16. Let X be a closed hyperbolic surface and let T be a thick-thin Delaunay
triangulation of X . Any edge of T' that intersects Xg, ;. has length smaller than € and is
a distance path. Moreover, there are no 1- or 2-cycles that intersect X, and consist
of edges of length smaller than e.

Proof. Let (u,v) be an edge of T' with non-empty intersection with X7 ., . Assume that
(u,v) is contained in a triangle (u,v,w) in T with circumradius r and circumcenter c.
We will first show that ¢(u,v) < e. We consider two cases, depending on which set ¢
is contained in. First, if ¢ € Tj for some ¢’-thin cylinder Cj, then at least one of u
and v is contained in P;. If both are contained in Pi, then (u,v) is contained in T},
because the edges of a standard triangulation of an ¢-thin cylinder are distance paths
by Corollary 9. This contradicts (u,v) N Xg,q 7 0, so we can assume that only one of
u and v, say v, is contained in P;. Then without loss of generality the situation is as
depicted in Figure 8, where {v, w} = {z;, /. | }.

U

€T, CC@-Jrl

=

Figure 8: Circumscribed disk of a triangle (u,z;, z}, ).

It follows that £(u,v) < d(z;,z ). Because d(z},z; ;) < e by Remark 15, it
follows that £(u,v) < e. Second, if ¢ € X \ Uje/Tj, then we can deduce that r < ie.
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Namely, if we suppose for a contradiction that r > %e, then d(c,p) > %5 for all p € P,
because the circumcircle of (u,v,w) is empty. Then we could add ¢ to Py, which
contradicts its maximality. We conclude that r < %5. Because (u,v) is contained in a
circle of radius r < %5, it follows that ¢(u,v) < . Because ¢(u,v) < ¢ in both cases, the
first claim of the lemma follows.

To show that (u,v) is a shortest distant path between its endpoints, suppose for
a contradiction that it is not. Then there exists a geodesic v from u to v, such that
0(vy) < £(u,v). This means that (u,v) U~ is a homotopically non-trivial closed curve
of length smaller than 2/(e) < 2¢. However, because injrad(xz) > ¢ for all € X5,
every homotopically non-trivial closed curve «y intersecting X ., has length at least 2¢,
which contradicts ¢((u,v) Uy) < 2. We conclude that (u,v) is a distance path between
its endpoints.

A 1- or 2-cycle in G corresponds to a homotopically non-trivial closed curve on X
[4]. By the same argument as before, the length of a 1- or 2-cycle ¢ intersecting X7
is at least 2¢. Therefore, there are no 1- or 2-cycles that intersect X§,, and consist of
edges of length smaller than e. 0

Using the previous lemma, we show that a thick-thin Delaunay triangulation of X
is a distance Delaunay triangulation.

Lemma 17. Every thick-thin Delaunay triangulation of a closed hyperbolic surface is
a distance Delaunay triangulation.

Proof. Let X be a closed hyperbolic surface and let T be a thick-thin Delaunay trian-
gulation of X. By definition, T is a Delaunay triangulation. We will show that T does
not contain any 1- or 2-cycles to prove that it is a simplicial complex. We know from
Lemma 16 that any edge (u,v) such that (u,v) N Xq,, 7# 0 is not a l-cycle. Because
by construction there are no 1-cycles in a standard triangulation or standard cycle in
X as well, we conclude that T' contains no 1-cycles.

To prove that T does not contain any 2-cycles, consider two distinct edges (u,v)
and (v, w) of T with at least one shared endpoint. There are three cases, depending on
whether two, one or zero of the edges (u,v) and (v, w) intersect X .

First, if (u,v) and (v,w) both intersect X, then they do not form a 2-cycle by
Lemma 16.

Second, if precisely one of (u,v) and (v, w), say (u,v), intersects Xg, ., then £(u,v) < e
and (v,w) is an edge contained in a hyperbolic cylinder of X, . If (v,w) is an edge
contained in an &’-thick cylinder C' with waist 7, then (v, w) is one of the edges of the
standard cycle of C, because there are no other vertices in C by Lemma 13. Then
((v,w) = $0(y) < Ze, so (u,v) and (v,w) do not form a 2-cycle by Lemma 16. Next,
assume that (v,w) is an edge in an &’-thin cylinder with waist 4. Then either w lies
on v and v lies on one of the boundary curves of C' or v and w both lie on the same
boundary curve of C. If w lies on v and v on a boundary curve of C, then (u,v) and
(v,w) do not form a 2-cycle, because u does not lie on v. If v and w both lie on the
same boundary geodesic, then ¢(v,w) < € by Remark 15, so (u,v) and (v, w) do not
form a 2-cycle by Lemma 16.

Third, if neither (u,v) nor (v, w) intersects Xg; ., then (u,v) and (v, w) are both con-
tained in a hyperbolic cylinder in X§; . They are contained in the same cylinder,
because different cylinders are separated by Xg,,. Because by construction standard
triangulations and standard cycles do not contain any 2-cycle, (u,v) and (v, w) do not
form a 2-cycle.

This finishes the case analysis and we conclude that T is a simplicial complex.
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To prove that all edges of T are distance paths, we know from Lemma 16 that
any edge that intersects X, is a distance path. Because all edges in a standard
triangulation are distance paths by Corollary 9 and because all edges in a standard
cycle are distance paths by construction, we conclude that all edges in T are distance
paths. O

3.3 Proof of Theorem 4

Proof. (Theorem 4)

Let X be an arbitrary hyperbolic surface of genus g and let T be a thick-thin Delaunay
triangulation of X. By definition, T is a Delaunay triangulation. By Lemma 17, T is a
simplicial complex and all edges of T" are distance paths. Hence, T' € D(X).

We will show here that the number of vertices of T" is smaller than 151g. By Lemma 5,
X, consists of at most 3g — 3 cylinders and each of these cylinders contains either 9
vertices (if it is €’-thin) or 3 vertices (if it is &’-thick). Therefore, |P;| < 27g — 27.

To find an upper bound for the cardinality of Ps, observe that for distinct p,q € Po
the disks Bp(%s) and Bq(ie) of radius %6 centered at p and ¢, respectively, are embedded
and disjoint. Therefore, the cardinality of P5 is bounded above by the number of disjoint,
embedded disks of radius %e that we can fit in X. Because the area of a hyperbolic
disk of radius %e is 2m(cosh(1e) — 1) [1] and because the area of X is 4m(g —1) [17], we

obtain 0 )
P2 < ms}(j};s))—l'
Therefore,
|P| < 27g — 27+ 008215?};)1)_1 < 151g.
This finishes the proof. O

Remark 18. The constant 151 is not optimal. We can obtain the stronger upper bound
|P| < 124¢g by looking more precisely at the upper bounds of |P;| and |P2| but because
we are mainly interested in the the order of growth, we will not provide any details.

4 Classes of hyperbolic surfaces attaining the order of the
upper bound

As our second result, we show that there exists a class of hyperbolic surfaces which
attains the order of the upper bound presented in Theorem 4. We will first introduce
this class of hyperbolic surfaces and then state the precise result in Theorem 19.

Recall from the Preliminaries that cutting a hyperbolic surface along 3g — 3 disjoint
simple closed geodesics decomposes the surface into 2g — 2 pairs of pants and that each
pair of pants decomposition has an associated 3-regular graph. Conversely, define L, as
the trivalent graph depicted in Figure 9. Here, every vertex v; corresponds to a pair of
pants Y;. There is one edge from v; to itself and similarly from v,_2 to itself. Moreover,
for 1 <4 < 2g — 3 there is one edge between v; and v;1 if ¢ is odd and there are two
edges if ¢ is even.

Now, fix some interval [a,b] C R with 0 < a < b. Let S;(a,b) be the subset of T,
with underlying graph L, such that all length parameters are contained in [a,b]. In
particular, Sy(a,b) contains an open subset of T,, showing that having a linear number
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U1 U3 V2g—3

V9 V2g—4 V2g—2
(a) Trivalent graph L.

(b) Pair of pants decomposition corresponding to L,

Figure 9: Trivalent graph L, with corresponding pair of pants decomposition.

of vertices in terms of genus is relatively stable in this part of Teichmiiller space. We
will now state the result of this section.

Theorem 19. There exists a constant B > 0 depending only on a,b such that a minimal
distance Delaunay triangulation of any hyperbolic surface in Sg(a,b) has at least By
vertices.

The idea of the proof is the following. Let a hyperbolic surface X € Sy(a,b) and

T € D(X) be given. Euler’s formula implies v— %e = 2—2g for triangulations of a surface
of genus g, where v and e are the number of vertices and edges of the triangulation. We

prove that e < B’v for some constant B’ > 3 only depending on a, b, which implies that

6g — 6
UZB’—S'

This implies the result of Theorem 19. Hence, the argument consists mostly in finding
an upper bound for the number of edges in terms of the number of vertices.

Before we continue with the proof of Theorem 19, we will look at our construction
of Sy(a,b) in more detail. By definition, every boundary geodesic of a pair of pants in
the pair of pants decomposition of X € S;(a,b) with respect to Ly has length in [a, b].
As explained in Section 2, the geometry of a pair of pants depends continuously on the
lengths of its three boundary geodesics. In particular, the diameter diam(Y") of a pair
of pants Y as well as the minimal distance mindist(Y") between any two of its boundary
geodesics depend continuously on the lengths of its boundary geodesics. Because [a, b]
is a compact set, we obtain as an immediate consequence the following lemma.

Lemma 20. There exist positive numbers m(a,b) and M (a,b) depending on a and b
such that m(a,b) < mindist(Y) < diam(Y') < M (a,b) for every pair of pants Y whose
boundary geodesics have length in [a,b].

Remark 21. It is not too difficult to compute bounds for mindist(}Y") and diam(Y") in
terms of the lengths of the boundary geodesics of Y. This would give explicit expressions
for m(a,b) and M(a,b) in terms of @ and b. As we are only interested in the order of
growth, to avoid further technical details, we do not provide details.

From now on, the numbers m = m(a,b) and M = M (a,b) will be fixed. Furthermore,
the way in which we constructed the graph L, allows us to speak of consecutive pairs
of pants. A cluster in a hyperbolic surface X is a subset of X consisting of a number
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of consecutive pairs of pants. Consider T' € D(X). An m-gap is a cluster consisting of
m consecutive empty pairs of pants, where empty means that the pairs of pants do not
contain any vertices of T. We say that an edge of T' crosses a cluster if the pairs of
pants containing its endpoints are separated by the cluster. Note that the cluster need
not contain all pairs of pants which separate the two endpoints.

The next lemma states that if an edge of a distance Delaunay triangulation crosses
many pairs of pants, then “many” of these pairs of pants are empty.

Lemma 22. Let X € Sy(a,b) and define N = N(a,b) as

N(a,b) := [%éj:ﬂ +1.

Then, for every T € D(X):

1. If an edge of T crosses a cluster consisting of at least 3N pairs of pants, this
cluster contains an N-gap.

2. If an edge of T' crosses a cluster in which the first N and the last N pairs of pants
are empty, then all pairs of pants in the cluster are empty.

Proof. Let T € D(X) and let (u,v) be an edge of T' with u € ¥; and v € Y;. We will
show that the cluster consisting of the union of all Y withi+ N+1<k<j—N-—11is
empty. In other words, only the first NV and last N pairs of pants are possibly non-empty.
In particular, this implies that the two properties of the lemma hold.

Now, because (u,v) is a Delaunay edge, it is contained in some empty disk D passing
through v and v. Consider Yy with i+ N+1 <k < j— N —1 and take p € Y}, arbitrarily
(see Figure 10). We will show that the distance between p and the center ¢ of D satisfies
dist(p, ¢) < dist(u, c). This implies that p is contained in the interior of D, so it cannot
be a vertex of T'. Therefore, Y} is empty.

Y; Y

Figure 10: Depiction of the construction in the proof of Lemma 22.

Let ~y, be a distance path from c to u. First assume that v, NY, # (. Let z; be the
intersection of v, with one of the boundary geodesics of Y. By the triangle inequality
and the definition of M, we know that

dist(c, p) < dist(c, zx) + dist(xg, p) < dist(c, xg) + M.

To give an upper bound for dist(c, xy), observe that the part of v, from zj to u passes
through Y;_1,. .., Y;y1 before reaching u € Y;. By definition of m, the length of the part
of 7, within each of these k—1—1 pair of pants is at least m, so dist(xg,u) > (k—1—1i)m.
This means that

dist(c, z) = dist(c, u) — dist(xg, u) < dist(c,u) — (k — 1 —i)m.
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It follows that
dist(c,p) < dist(c,u) + M — (k — 1 —i)m.

Because k —1 —i > N and Nm > M, we see that M — (k—1—1i)m <0, so
dist(c, p) < dist(c, u),

so Y, € D, hence Y, does not contain any vertices of T. Note that we assumed that
Yo MYy # 0. If 4, MY}, = 0, then we consider a distance path v, from ¢ to v instead of
Yy The rest of the proof is analogous. We conclude that Yz is empty for i + N + 1 <
k < j— N — 1. This finishes the proof. O

The following lemma states that we can construct a set of clusters which has as one
of its properties that every edge of the distance Delaunay triangulation has its endpoints
in the same cluster, or in two consecutive clusters.

Lemma 23. Let X € Sy(a,b) be a hyperbolic surface and let N = N(a,b) be as defined
in Lemma 22. Let T € D(X). There are interior-disjoint clusters with the following
properties:

1. FEach cluster consists of at most 6N consecutive pairs of pants;

2. Every cluster contains at least one vertex of T, and every vertex of T belongs to
at least one cluster;

3. Every edge of T has its endpoints in the same cluster, or in two consecutive
clusters.

Proof. A wide gap in the sequence of 2g — 2 pairs of pants is a maximal subsequence
consisting of at least N empty pairs of pants, where maximality is defined with respect
to inclusion. The complement of the collection of wide gaps of X consists of a number
of sequences of consecutive pairs of pants, that we call superclusters (see Figure 11).
To obtain clusters that satisfy the properties of the lemma, each supercluster will be
chopped up into one or more subsequences of length at most 6/N in the following way:

e Each supercluster consisting of at most 3N pairs of pants is a cluster. Such a
cluster is said to be a short cluster.

e Each supercluster consisting of more than 3N pairs of pants is chopped up into
non-overlapping subsequences of length 3V, followed by a subsequence of length
between 3N and 6N — 1.

More precisely, let m be the length of such a supercluster. Since m > 3N there
are integers k and r, with 0 < r < 3N and k > 1, such that m = 3kN + r. Let

mp=---=mp_1 =3N and mp = 3N +r, then m; +---+mp = m and 3N <
m; < 6IN. Therefore, the supercluster is the concatenation of k£ subsequences of
length myq, ..., mg.

This construction enforces Property 1.

Proof of Property 2. Each supercluster contains at least one vertex. Therefore, short
clusters contain at least one vertex. The clusters obtained by chopping up a supercluster
have length at least 3N. Since a supercluster contains no N-gap, each of these clusters
contains at least one vertex.
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supercluster supercluster supercluster

| | | | |
B B BN B B BEEEE BE BB

1 2 3 4 5 6 7 8 91011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

cluster cluster cluster cluster cluster

Figure 11: Tllustration of the construction in the proof of Lemma 23. Each square represents
a pair of pants in the pair of pants decomposition of a hyperbolic surface of genus 17. A
pair of pants corresponding to a black square contains vertices of T', whereas a pair of pants
corresponding to a white square does not contain vertices of 7. We assume that N = 2. The
superclusters and clusters that are defined during the construction are indicated.

Since all vertices belong to some supercluster, they belong to at least one cluster.
This completes the proof of Property 2.

Proof of Property 3. Suppose the property does not hold. Then there is an edge of T
with vertices in non-adjacent clusters. In other words, this edge crosses an other cluster,
say C. The construction of clusters implies that C' does not contain an N-gap. By Part
1 of Corollary 22 the cluster C' consists of less than 3N pairs of pants. Therefore, C is a
short cluster. Since this short cluster is neither the first nor the last in the sequence of
superclusters, it is preceded by a wide gap and succeeded by a wide gap. Since a wide
gap contains an N-gap, Part 2 of Corollary 22 implies that cluster C' is empty. This
contradicts Property 2. Therefore, Property 3 holds. O

In the following corollary, we denote the number of vertices of T € D(X) contained
in a subset U of X by v(U). Likewise, let e(U, W) be the number of edges of T' with
one endpoint in U C X and one endpoint in W C X.

Corollary 24. Let X € Sy(a,b) be a hyperbolic surface and let T € D(X). Let {I'; | i =
1,...,n} be a collection of clusters satisfying the properties of Lemma 28 for somen € N.
If v and e are the number of vertices and edges of T, respectively, then

n <wv,
n
v= ZU(I}),
=1
n n—1
e = e(Fi,Fi) + Ze(ri,l—‘i+1).
i=1 =1

Proof. Because every cluster contains at least one vertex, the number of clusters is
at most the number of vertices, which proves the first equation. The second equation
follows from the property that every vertex is contained in a cluster. Because every edge
has its endpoints in the same cluster, or in two consecutive clusters, the third equation

holds. O

Recall that we want to find a linear upper bound for the number of edges of a
distance Delaunay triangulation in terms of the number of vertices. By Corollary 24, it
suffices to find upper bounds for e(I';,T";) and e(T';,';11) for clusters T'; satisfying the
properties of Lemma 23. We will do this in the next lemma.
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Lemma 25. Let the notation be as in Corollary 24. Then, the following upper bounds
hold:

1. e(T;,T;) < 3U(Fl) +18N(N +1) foralli=1,...,n,
2. €(Fi, Fi+1) < 18U(Fz U FiJrl) + 216N(N + 1) foralli=1,...,i—1.

The proof is given in Appendix B. We can now commence with the proof of Theo-
rem 19.

Proof. (Theorem 19)
Take X € Sy(a,b) arbitrary and let 7' € D(X) be arbitrary. Let {I'; | i = 1,...,n} be
a collection of clusters satisfying the properties of Lemma 23. By Corollary 24,

n n—1
e = Z e(Fi, Fi) + Z e(l“i, Fi-{—l)-
i=1 =1

Substituting the upper bounds for e(T';,I';) and e(T';, ;1) from Lemma 25, we obtain
e < Z (3v(I;) + 18N (N + 1)) + Z (180(T'; UT41) + 216N (N + 1)),

<392 I;) +6N(N +1)).

From Corollary 24, we know that > , v(I';) = v and n < v. Hence,
e <3914+ 6N(N +1))v.
Fuler’s formula for triangulations v — %e = 2 — 2¢g implies that

39(14+6N(N +1))v > e = 3v + 69 — 6,
v > 9-1 ,
~ 6+39N(N +1)

which finishes the proof. O

5 Lower bound

In this section, we will look at a general lower bound for the minimal number of vertices
of a distance Delaunay triangulation of a hyperbolic surface of genus g.

In the more general situation of a simplicial triangulation of a topological surface of
genus ¢, one has an immediate lower bound on the minimal number of vertices. The
fact that this lower bound is sharp is the following classical theorem of Jungerman and
Ringel:

Theorem 26. [12, Theorem 1.1] The minimal number of vertices of a simplicial trian-
gulation of a topological surface of genus g is

el
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We show that the same result holds for the minimal number of vertices of a distance
Delaunay triangulation of a hyperbolic surface of genus ¢ for infinitely many values of

g.
Theorem 27. For any g > 2 of the form

(n—3)(n—4)

9= 12

for somen =0 mod 12, the minimal number of vertices of a distance Delaunay trian-
gulation of a hyperbolic surface of genus g is

7+ I+ 48y
n= -——————.
2

Proof. Because every distance Delaunay triangulation of a hyperbolic surface is a sim-
plicial triangulation of the corresponding topological surface, it follows from Theorem 26
that the minimal number of vertices is at least

0]

In the remainder of the proof, we will construct for a given hyperbolic surface a dis-
tance Delaunay triangulation with the required number of vertices, inspired by a similar
construction in the context of the chromatic number of hyperbolic surfaces [15].

Let n = 0 mod 12 and assume that n # 0. The complete graph K,, on n vertices
can be embedded in a topological surface S, of genus

(n—3)(n—4)

9= 12 )

which is the smallest possible genus [16]. Because we have assumed that n =0 mod 12,
we know that the embedding of K, into Sy is a triangulation 7" [19]. To turn T into
a distance Delaunay triangulation, we will add a hyperbolic metric to the topological
surface as follows. Every triangle in T is replaced by the unique equilateral hyperbolic
triangle with all three angles equal to % In the complete graph K, every vertex has
n — 1 neighbouring vertices. This means that in every vertex n — 1 equilateral triangles
meet, so the total angle at each vertex is 2w. Therefore, the result after replacing all
triangles in 7" by hyperbolic triangles is a smooth hyperbolic surface Z,.

It remains to be shown that T' € D(Z). By construction, T is a simplicial complex.
It has also been shown that all edges are distance paths [15]. We will show here that
T is a Delaunay triangulation of Z;. Consider an arbitrary triangle (u,v,w) in T with
circumcenter ¢ and let p & {u, v, w} be an arbitrary vertex of T' (Figure 12). Consider a
distance path v from ¢ to p. We can regard y as the concatenation of simple segments
that each pass through an individual triangle.

The first of these simple segments starts from ¢ and leaves the triangle (u,v,w), so
its length is at least the distance between ¢ and a side of (u, v, w). Therefore, denoting
by x the projection of ¢ on one of the edges as shown in Figure 12, the length of the first
segment is at least d(c, x). The last of the simple segments passes through a triangle, say
A, before arriving at p, so it has to pass through the side of A opposite to p. Therefore,
its length is at least the distance between p and the opposite side of A. It is known
that the distance between a vertex and the opposite side of an equilateral triangle is at
least %E, where ¢ denotes the length of the sides of the equilateral triangle [15]. Hence,
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Figure 12: Schematic overview of the proof of T being a Delaunay triangulation.

d(c,p) = L(v) > d(c,x) + %E. By the triangle inequality in triangle (c,w,z) we see
that d(c,w) < d(c,z) + d(z,w) = d(c,z) + 3¢, so we conclude that d(c,p) > d(c,w).
This means that p is not contained in the interior of the circumcircle of (u,v,w), which
shows that (u,v,w) is a Delaunay triangle. By symmetry, it follows that all triangles
are Delaunay triangles, which finishes the proof. O

A  Proof of Lemma 14

Proof. (Lemma 14)

To prove that the triangles of (V| E) are Delaunay triangles, we will show that every
circumscribed disk does not contain any point of P in its interior. By symmetry, it is
sufficient to consider the top half of the cylinder. Let ¢ = 1,2, 3 be arbitrary and denote
the disk passing through :Uj, xzﬁrl, xi, xi41 by D;. That D; does not contain any p € V'
in its interior is clear. The remainder of the proof consists of showing that p is not
contained in the interior of D; for all p € P\ V. Take p € P\ V arbitrarily. Let ¢; be
the center of D;. If d(c;, p) > d(c;, i), then p is not contained in the interior of D;.

Observe that d(p, xli) > %5 for i = 1,2,3. Namely, if p € P, where P, is the subset
of P constructed in X§,, ., then by definition d(p, acli) > %6 for i = 1,2, 3. On the other
hand, if p € Py, then p is a vertex in some hyperbolic cylinder C" # C with waist +/
in X§;,- By Lemma 7, the collars C (K¢ + %6) and C./ (K¢ + 3¢) are disjoint, so the
distance between C' and C’ is at least %s. Hence, d(p, z;) > %5 fori=1,2,3.

Now, we claim that we can assume without loss of generality that d(x;r,p) =
d(:z::Zrl,p) = %a. See Figure 13. Consider the curve ~. consisting of points of distance
d(c;,) from 7 and let p. be the point of 7. closest to p. Because ¢; € 7., we know that
d(p,c;) > d(p,p:). Now, note that a standard result from hyperbolic trigonometry in
the quadrilateral (x;, z;",m}, m;) with three right angles [6, Formula Glossary 2.3.1(v)]
states that

sinh(#£(7)) sinh(e)
sinh(%ﬁ(’y)) ’

where the last equality follows from expression (2) for K¢. It can be deduced that

d(z],zf, ) < e. Because d(z,p) > te for all z € V, the circles of radius 1 centered at

wf and x;:_l intersect in two points. We see that d(p, p.) is minimized when d(xf, p) =

d(xitrl,p) = %6. Furthermore, if d(z;", p) = d(xitrl,p) = %6, then p lies on the geodesic

sinh(§d(z;, 2, 1)) = sinh(34(7)) cosh(K¢) =
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Figure 13: Construction to show that we can assume without loss of generality that d(a:j, p) =
d(zf,,p) = 3e. 14
TP 5€. 14,

passing through m; and m;", so d(p, p.) = d(p, ¢;), which means that d(p, ¢) is minimized
as well. We conclude that we can assume without loss of generality that d(x;r,p) =
d(x;LJrl,p) = %5.

See Figure 14, where ¢} is the projection of ¢; on (z;, xt

;). To prove that
d(ci, p) > d(ci, i),

observe that d(c;, p) = d(m;, m;") — d(mi, ¢;) +d(m;, p), where d(m;, m; ), d(m;, ;) and
d(m;r, p) satisfy the equations

COS 1
coth(d(mg, m})) = M (3)
COS 1
anh(d(ms. ¢3)) — m (4)
COS 18
o ) = oy ®

Here, equation (3) follows from applying a standard formula in hyperbolic trigonometry
[6, Formula Glossary 2.3.1(iv)] in quadrilateral (z;,z;, m;,m;). Equation (4) follows
from applying the same formula in quadrilateral (z;,c},¢;, m;). Equation (5) follows
from the hyperbolic Pythagorean theorem in triangle (a:j', P, mj‘) Moreover, applying
the hyperbolic Pythagorean theorem in triangle (z;, c;, m;) yields

cosh(d(e;, x;)) = cosh(%f(y)) cosh(d(e,m;)),
cosh(

W)) ©)

o=

= cosh(%é(fy)) cosh <arctanh (

N[ =
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Figure 14: Schematic overview of the trigonometry in Lemma 14.

where we used equation (4) in the second line.

When we substitute the expressions for K¢ and d(z;", 7, ) into equations (3),(4),(5)
and (6), we find expressions for d(m;, m;),d(m;,c;),d(m; ,p) and d(c;,z;) in terms
of € and /(7). As € = 0.72 is fixed, we can treat these as functions of ¢(y). By a
straightforward (but tedious) computation, it can be shown that d(m;, m;") —d(m, ¢;) —
d(ci, x;) is strictly decreasing as a function of £(y) with minimum —0.180. .. for {(y) =
2¢/. By a similar computation, d(m;,p) is strictly increasing as a function of £(v) with
minimum 0.247. .. for () — 0. We conclude that

d(mi,m;) — d(mi, ¢;) — d(ciy ;) +d(m;,p) > —0.180... +0.247... > 0,
from which it follows that d(c;,p) = d(m;, m;") —d(mi, ¢;) +d(m;, p) > d(c;, p). Hence,

p is not contained in D;. This finishes the proof. O

B Proof of Lemma 25

Proof. (Lemma 25)

Throughout the proof, we denote the set of vertices of 1" contained in a subset U of X
by V(U). Likewise, let E(U, W) be the set of edges with one endpoint in U C X and
one endpoint in W C X.

Part 1. Consider the graph G; = (V(I';), E(I';,I';)). Let g; be the genus of G, i.e.,
the minimal genus of a surface onto which G; can be embedded. It is known that [14,

Proposition 4.4.4]
e(FZ, Fz) ’U(FZ)
gi = ’V 6 9 + 1y,

or, equivalently, that
e(T;,T;) < 6g; + 3v(I;) — 6. (7)
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We will show that the embedding of G; into X intersects at most 6 N (N + 1) +2 pairs of
pants, which implies that g; < 3N (N +1)+1. Certainly, V(I';) is contained in I';, which
consists of at most 6N consecutive pairs of pants. Now, let e € E(I';,T';). Because the
diameter of I'; is at most 6/NM, we know that there exists a path of length at most
6N M between the endpoints of e. Because e is a distance path, it follows that

{(e) <6NM < 6N?m.

Suppose that e intersects exactly k pairs of pants that are not contained in I'; and
denote the farthest pair of pants that it intersects by Y*. Here, farthest is defined with
respect to the distance along the trivalent graph L,. Because e is an edge between
vertices in I';, e has to traverse at least k — 1 pairs of pants to reach Y* and similarly at
least k — 1 pairs of pants to return to I';. As the length of e within each of these pairs
of pants is at least m, we know

l(e) > 2(k —1)m.
It follows that
2(k — 1)m < 6N?m,

which implies that £ < 3N2+1. We conclude that G; is embedded in a surface consisting
of at most (3N2+ 1)+ 6N + (3N2+1) = 6N(N + 1) + 2 pairs of pants. It follows that
gi <3N(N +1)+ 1. Hence

e(T;,T;) <6(BN(N +1)+ 1)+ 3v(;) —6 =3v(l;) + I8N (N + 1),
which finishes the proof.

Part 2. We consider two cases.

Case 1: there are at most 6N? + 2 pairs of pants between I'; and T';11.

Consider the graph (V(I'; UT41), E(T; U141, UT41)). We have shown in Part 1
that edges in E(I';,T';) and E(T;41,T;41) can traverse at most 3N? — 1 pairs of pants
that are not contained in I'; and I';41 respectively. Therefore, E(I';, I';) U E(Ti41,Tiq1)
is contained in a surface consisting of at most

(3N2 4+ 1)+ 6N 4+ (3N? + 1) + (3N? + 1) + 6N 4 (3N? +1) = 12N? + 12N + 4

pairs of pants. With a similar argument it can be shown that E(T';,T";41) is contained
in this surface as well. Therefore, (V(I'; UT;41), E(T; UT41, T UT41)) is embedded in
a surface consisting of at most 12/N? + 12N + 4 pairs of pants. Replacing I'; by I'; UT; 11
in Inequality (7) yields

e(T; UTiy1, T3 UT41) <6(6N? + 6N +4) + 3v(T; UT41) — 6,
= 3v(T; UTi11) + 36N (N + 1) + 18.

Because e(I';,I'j41) < e(T; UT;41, T UT41), the desired inequality follows.

Case 2: there are more than 6N? + 2 pairs of pants between I'; and T'iyq.
We show that there are integers g; 1 and g; 2 with

9i1 < gi2, (8)
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such that
e(T, Tiv1) < 20(1y) + 20(Tiq1) +4gi1 — 4 (9)

and
e(Ty,Tit1) > 30(T;) + 3v(Tit1) — 3e(Ty, Ti) — 3e(Tig1, Tig1) + 6952 — 6. (10)
Combining (9) and (10) yields
e(Is, Tit1) < 6e(ly,T) + 6e(Tip1, Tiv1) + 12951 — 12g; 2.

Using the upper bound e(I';,I';) < 3v(I'j) + 18N(N + 1) from Part 1 for j = i and
j =1+ 1, together with (8) yields

e(T,Tiy1) < 18u(T UT41) 4+ 216N (N + 1),

which is the desired inequality.

The number g;; is the genus of the graph G;; with edge set E(I';,I';41) and vertex
set Vi1 consisting of all vertices incident to some edge in E(I';,I;11). The number
gi,2 is the genus of the graph G; 2 with edge set E(I'; UT'; 1, UL 1) and vertex set
V(Tit1 UT41). Since G, is a subgraph of G, inequality (8) holds. Therefore, it
remains to be proved that (9) holds for this value of g; 1, and that (10) holds for this
value of g; 2.

To prove that (9) holds, we apply a result in graph theory about bipartite graphs
to G;1. By construction, G; 1 contains no cycle of length 3. We claim that G;1 is
connected. Then, [14, Prop. 4.4.4, eq. 4.13]

e(Ts, Tit1) < 2[Via| +4gi1 — 4.

Observing that |V; 1| < v(I';) + v(T'i41) yields the desired inequality.

To prove that G 1 is connected, consider a pair of pants Y between I'; and I';;1 such
that there are at least 3N2+1 pairs of pants between Y and I'; and between Y and | PER
Such a pair of pants Y exists because there are more than 6 N?+2 pairs of pants between
I'; and I';11. Let v be the boundary geodesic of Y such that X \ 7 consists of exactly
two connected components. Every edge in E(T';,T';11) intersects v, because ~ separates
I'; and T';4;. Furthermore, every edge in E(I';,I';11) intersects v exactly once, because
the edges in F(T';,T;4+1) and v are geodesics and there are no hyperbolic bigons. No
edge in E(I";, ;) U E(I'i41,41) intersects v, because by the reasoning in Part 1 edges
in B(T;,T;) for j =i and j =i+ 1 intersect fewer than 3N? + 1 pairs of pants that are
not contained in I';. Because T has no edges between non-adjacent clusters, it follows
that the only edges of T' that intersect  are edges in E(I';,I';4+1) and that each edge
intersects vy in exactly one point. Therefore, we can write E(I';,[';11) = {e1, ..., ex} for
k= |E(T;,T;t1)|, where the indices of the edges correspond to the order in which they
intersect . For every ¢ = 1,...,k, the edges e; and e;1; are contained in a triangle
of T consisting of ¢;, ;41 and an edge in either E(I';,I';) or E(Ij+1,T4+1). Hence, ¢;
and e;;1 share an endpoint. Therefore, there is a path in G;; between any endpoint
of e; and any endpoint of e; 1. This implies that there is a path in G;; between any
endpoint of e; and e; for all 4,5 = 1,..., k. Because V;; consists of the vertices incident
to some edge in E(I';,I'j41), it follows that G;; is connected. This concludes the proof
of Inequality (9).

We continue with the proof of Inequality (10). Recall that the graph G2 has edge
set B(T';UT;4+1,T;UT 1) and vertex set V(I';11UT;41). The union of the triangles of T
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with edges and vertices in G; 2 define a topological surface with boundary components!.
Each boundary component consists of a finite number of edges of G;2. By adding a
face to each boundary component, we obtain an embedding of G2 in a closed surface
Si. When we speak of faces of G; 2, we will always refer to faces with respect to the
embedding of G; 2 in S;.

Denote the number of edges that are contained in exactly zero, one or two triangles in
G2 by do, 01 and d2, respectively. The total number of edges is given by e; 2 = do+01+02.
Now, let fa be the number of triangular faces of G; 2. As the total number of faces f; 2
is at least the number of triangular faces, we know that f; 2 > fa. Since 3fa = 202+ 61,
it follows that

3fi2 > 202 + 1.

As e;2 = 6 + 01 + 2, we obtain
3fi2 > 2(ej2 — 01 — o) + 01 = 2e;2 — 51 — 20p.
Because
eiz2 = ey, T) +e(Ts, Tiy1) + e(Tir1, Tiga), (11)
we see
3fi,2 > 2€(Fi, Fz) + 2€(Fi, Fi+1) + 2€(Fi+1, Fi+1) — 01 — 20g. (12)
We will now bound the right-hand side from below by proving that
01 4260 < 2e(I;,I) + 2e(Tiq1, Tig1)-

We claim that every edge in E(I';,T";41) is part of two triangles. To prove this, let
e = (u,v) € E(I';,T;11) and consider a triangle (u,v,w) in T containing e. Because
every edge has its endpoints in either the same cluster or consecutive clusters, there is
only an edge between u and w if w € I'j for j =7 —1,4,7 4+ 1 and there is only an edge
between v and w if w € I'; for j = i,i+ 1,7+ 2. Since (u,v,w) is a triangle in T, it
follows that w € I'; UT';41, so w € G 2. This means that (u,v,w) is a triangle in G; 2
and since we have chosen it arbitrarily, both triangles in T containing e are triangles in
Gi2. It follows that the edges that are contained in no triangles or exactly one triangle
in G2 are contained in E(I';,I";) U E(I';11,1';41). This means that

do + 01 < e(ly, Ty) + e(Tig1, Tig1),
SO
260 + 61 < 2e(I';,I) + 2e(Tiq1, Tig1).
Combining this upper bound with Equation (12) we obtain
3f7;72 Z 26(Fi,ri+1). (13)
To conclude, we will look at Euler’s formula for the graph G; 2, which is given by
vip — eia + fig =2 —2g;,, (14)

where gz’-72 is the genus of the embedding of G;2 in S;. Because g;o is the minimal
genus of a surface onto which G 2 can be embedded, in particular g; 2 < gz’-72. Substitut-
ing Equation (11) and Inequality (13) into Euler’s formula (14), we obtain after some
simplifications

G(Fi, Fi+1) > 3U(FZ U Fi+1) — 3€(Fi, Fz) — 3€(Fi+1, Fi+1) + 6gi72 — 6.
This finishes the proof. O

'In fact, these triangles define a hyperbolic surface with boundary components consisting of a finite
number of geodesic segments. However, for our argument we do not use any metric properties.
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