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2. Intégrale d’une fonction de deux variables 9
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Introduction et préliminaires

1. Objectifs du cours

Pour comprendre les bases de la physique moderne, comme pour mâıtriser les techniques
même élémentaires de l’ingéniérie, certains outils mathématiques sont indispensables. L’objectif
de ce cours, comme des cours de mathématiques que vous avez suivi en première année et que
vous suivrez au second semestre de cette année, est de vous permettre d’appréhender ces notions
mathématiques et d’apprendre à les utiliser dans des contextes proches de ceux où vous pourrez
les rencontrer dans la suite de vos études puis dans votre futur métier.

De ce point de vue, il est souhaitable, mais pas indispensable, de comprendre les bases
mathématiques rigoureuses qui sous-tendent les outils utilisés. Le cours se concentrera donc sur
l’utilisation pratique des outils, plus que sur la compréhension en profondeur des notions sous-
jacentes. La place des preuves formelles sera donc limitée. Les étudiants qui souhaiteront mieux
comprendre les bases mathématiques des éléments du cours, ou qui voudraient connâıtre les preuves
de certains résultats présentés sans démonstration, pourront s’adresser aux enseignants.

Dans certains cas nous n’hésiterons pas à donner des énoncés imprécis, par exemple dans le
dernier chapitre sur l’introduction aux équations aux dérivées partielles, où notre objectif sera de
montrer et d’expliquer quelques propriétés essentielles de ces équations.

Dans chaque chapitre du cours nous essaierons de donner des éléments historiques ainsi que
quelques motivations pour justifier le contenu du cours. Là aussi nous en resterons à quelques
points de repère, et les étudiants qui souhaiteraient en savoir plus sont invités à s’adresser aux
enseignants.

2. Méthode de travail

Pour acquérir le contenu du cours, les étudiants pourront utiliser à la fois le cours, les notes
de cours qui seront régulièrement distribuées, ainsi que toute autre source bibliographique qui leur
conviendra.

On peut rappeler que, en ce qui concerne les mathématiques, il est rarement utile d’apprendre
par coeur des résultats ou des énoncés ; ça n’est réellement utile que pour un petit nombre de
formules ou de théorèmes importants. Il est par contre utile de comprendre et de savoir refaire seul
les preuves qui seront faites en cours — elles ont en général une réelle valeur pédagogique — et
d’être capable de résoudre seul les exercices qui ont été vus lors des séances de travaux dirigés.

Le cours sera disponible sous forme écrite, sur la page moodle du cours. Chaque chapitre y
sera mis en ligne en principe au moment où se termine sa présentation en cours, de manière à
encourager les étudiants à prendre leurs propres notes pendant le cours.
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3. Exercices

Les exercices forment une composante essentielle du cours — on pourrait même considérer que
l’objectif essentiel de l’étudiant qui suit le cours devrait être de savoir faire, seul et correctement,
les exercices.

Pour aider les étudiants à acquérir le contenu de chaque chapitre, deux types d’exercices
“particuliers” seront proposés.

— Quelques exercices d’application directe du cours seront marqués du symbole “∆”. Tous
les étudiants devraient, après avoir suivi le cours et lu les notes, être capable de faire ces
exercices.

— Quelques exercices plus difficiles seront marqués du symbole “*”. Ces exercices peuvent
être considérés comme optionnels, et destinés aux étudiants qui souhaitent aller, dans la
compréhension du cours, au-delà du strict minimum.

Les exercices qui ne sont marqués ni par un symbole ni par l’autre devraient pouvoir être compris
et résolus par les étudiants qui auront suivi et compris le cours et auront participé aux travaux
dirigés.

Il est important de rappeler que se contenter de suivre la correction des exercices lors des
travaux dirigés n’a qu’une valeur pédagogique très limitée. Pour progresser, les étudiants sont
fortement encouragés à faire, ou du moins à essayer de faire, les exercices proposés, soit avant,
soit pendant les séances de travaux dirigés. Les feuilles d’exercice seront mises en ligne sur la page
moodle du cours avant les séances de travaux dirigés.

4. Validation des acquis

L’évaluation finale comptera pour l’essentiel de la note, néanmoins le contrôle continu sera
pris en compte et permettra aux étudiants qui auront obtenu de bons résultats d’ajouter jusqu’à
3 points à leur note finale.

Lors des examens, la plupart des questions seront des versions légèrement modifiées d’exercices
vus lors des travaux dirigés. Les étudiants qui sont capables de refaire de manière indépendante
les exercices vus en TD devraient donc obtenir de bons résultats.

Références bibliographiques

Il existe de nombreux ouvrages disponibles sur les sujets traités en cours. On en mentionne
seulement quelques-uns ici, qui pour certains ne couvrent qu’une partie du contenu du cours.

Ouvrages en français. Parmi les nombreux ouvrages en français qui couvent le contenu du
cours on peut mentionner celui de Liret et Martinais [LM98]. Pour ce qui est plus spécifiquement
des outils mathématiques pour la physique, on pourra se référer au livre de Hulin et Quinton
[HQ86].

Références en anglais. Le livre de Marsden et Weinstein [MW85] date un peu mais c’est
un bon livre de base sur l’analyse. Il ne contient par contre pas tous les sujets traités dans le cours.
Il a l’avantage d’être disponible gratuitement en ligne.

On pourra par ailleurs consulter le livre de Spivak [Spi06], assez complet, ou des ouvrages
plus limités mais agréables à lire comme celui de Strang [Str91] ou de Stewart [Ste08].



CHAPITRE 1

Intégrales des fonctions de plusieurs variables

Un peu d’histoire

La notion d’intégrale est apparue au XVIIème siècle lors du développement du calcul
différentiel, dû en parallèle à Isaac Newton (1642-1727) et à Gottfried Leibniz (1646-1716). L’un
comme l’autre étaient motivés par l’utilisation du calcul différentiel pour la mécanique, et en par-
ticulier pour comprendre le mouvement des planètes. Les notations utilisées pour la dérivée et
l’intégrale d’une fonction aujourd’hui remontent à celles introduites par Leibniz.

Néanmoins le calcul différentiel tel qu’ils l’ont construit restait dans une certaine mesure
mystérieux. C’est à Bernhard Riemann (1826-1866) qu’on doit la première construction rigoureuse
de la notion d’intégrale — Riemann est un des plus grand mathématiciens du XIXème siècle, et il
a contribué de manière essentielle à des domaines variés des mathématiques, depuis la géométrie
“riemannienne” jusqu’à la théorie des nombres. Une autre construction, beaucoup plus générale
et puissante, en a été donnée par Henri Lebesgue (1875-1941). La construction de l’intégrale de
Lebesgue a l’avantage de s’appliquer directement aux surfaces ou aux domaines dans des espaces de
dimension plus grande. Néanmoins nous nous contenterons ici de rappeler la définition de l’intégrale
telle qu’elle est donnée par Riemann, dans le cadre qui nous occupe.

Dans beaucoup de situations physiques — électromagnétisme, mécanique des fluides, etc —
on peut transformer une intégration sur un domaine du plan R2 en une intégration sur le bord du
domaine. C’est possible lorsque la fonction à intégrer satisfait certaines conditions très particulières,
et la formule générale qui permet de le faire est connue sous le nom de formule de Green, ou de
Green-Riemann. George Green (1793-1841) était un physicien anglais entièrement autodidacte,
puisqu’il n’a passé qu’un an à l’école, ce qui ne l’a pas empêché d’apporter des contributions
importantes à la science de son époque.

Nous verrons ensuite une version plus générale de cette formule, elle aussi très importante pour
les applications en physique, où l’intégration se fait non plus dans un domaine du plan mais sur une
surface de l’espace. Cette formule porte le nom de Sir George Gabriel Stokes (1819-1903). Elle a en
fait été découverte par Lord Kelvin (1824-1907), un grand physicien anglais (qui a aussi donné son
nom au degré Kelvin, utilisé en physique pour mesurer les températures) qui l’avait communiqué
à Stokes dans une lettre de 1850. Stokes a ensuite donné cette formule comme question dans un
concours de mathématiques en 1854, ce qui a conduit à ce qu’elle porte son nom.

Objectifs du chapitre

Les objectifs principaux de ce chapitre sont les suivants.
— Savoir calculer une intégrale double en se ramenant à deux intégrales successives d’une

seule variable, en choisissant convenablement l’ordre des intégrations.
— Connâıtre et savoir appliquer la formule de changement de variable pour les fonctions de

deux variables.
— Comprendre la notion d’intégrale curviligne et d’intégration sur une surface dans R3.
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Figure 1. L’intégrale au sens de Riemann (image provenant de Wolfram/Mathworld.)

— Connâıtre et savoir appliquer la formule de Green.
— Connâıtre et savoir appliquer la formule de Stokes.

1. Rappel sur l’intégrale de Riemann en une variable

1.1. Définition. On peut définir l’intégrale d’une fonction continue sur un intervalle [a, b] de
R en utilisant la propriété suivante.

Théorème 1.1. Supposons a < b. Soit f : [a, b] → R une fonction continue. Pour tout
n ∈ N, n ≥ 1, on pose :

I(n) =
b− a
n

n−1∑
i=0

min{f(x) | x ∈ [a+ i(b− a)/n, a+ (i+ 1)(b− a)/n]} ,

J(n) =
b− a
n

n−1∑
i=0

max{f(x) | x ∈ [a+ i(b− a)/n, a+ (i+ 1)(b− a)/n]} ,

Alors limn→∞ I(n) = limn→∞ J(n).

Définition 1.2. On appelle cette limite l’intégrale de f entre a et b, et on la note∫ b

a

f(x)dx .

Si b < a l’intégrale est égale à la même limite avec un signe −.

La définition s’étend à des fonctions plus générales que les fonctions continues, par exemple
les fonctions qui sont seulement continues par morceaux.

1.2. Signification géométrique. L’intégrale d’une fonction continue f : [a, b] → R peut
s’interpréter comme l’aire sous le graphe de f sur [a, b], à condition de tenir compte du signe : les
parties du graphe où f est négative sont comptées négativement.
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1.3. Quelques propriétés. On se contente ici de rappeler sans démonstration quelques pro-
priétés essentielles de l’intégrale telle qu’elle est définie ici.

Proposition 1.3 (Dérivation d’une primitive). Soit f : R → R une fonction continue, soit
a ∈ R. La fonction F : R→ R définie par

F (x) =

∫ x

a

f(t)dt

est dérivable, de dérivée égale à f en tout point.

Proposition 1.4 (Changement de variable). Soit f : [a, b]→ R une fonction continue, et soit
u : [c, d]→ R une fonction C1, monotone, telle que u([c, d]) ⊂ [a, b]. Alors∫ b

a

f(u(t))u′(t)dt =

∫ u(b)

u(a)

f(u)du .

Proposition 1.5 (Intégration par parties). Soit u, v : [a, b]→ R deux fonctions C1. Alors∫ b

a

u(t)v′(t)dt = [u(t)v(t)]ba −
∫ b

a

u′(t)v(t)dt .

2. Intégrale d’une fonction de deux variables

2.1. Définition. Une fonction de deux variables est une fonction f : Ω → R, où Ω est un
sous-ensemble de R2.

Pour définir l’intégrale d’une fonction (continue) de deux variables sur un domaine de R2, on
peut s’inspirer du cas des fonctions d’une variable, mais on doit adapter la définition. On se base
comme dans le cas des fonctions d’une variable sur un théorème qu’on va ici admettre sans preuve.

Théorème 2.1. Soit Ω ⊂ R2 un domaine borné, à bord régulier par morceaux, et soit f : Ω→
R une fonction continue. Pour tout n ∈ N on se donne

— une famille finie cn1 , c
n
2 , · · · , cnN(n) de rectangles de la forme cnk = [ank , b

n
k ] × [a′nk , b

′n
k ],

d’interieur disjoints, telle que

Ω ⊃ ∪N(n)
k=1 c

n
k et lim

n→∞
∪kCnk = Ω .

— une famille finie Cn1 , C
n
2 , · · · , CnN(n) de rectangles de la forme Cnk = [Ank , B

n
k ]× [A′nk , B

′n
k ],

d’interieur disjoints, telle que

Ω ⊂ ∪N(n)
k=1 C

n
k et lim

n→∞
∪kCnk = Ω .

On suppose que

lim
n→∞

max
k
|bnk − ank | = lim

n→∞
max
k
|b′nk − a′nk | = lim

n→∞
max
k
|Bnk −Ank | = lim

n→∞
max
k
|B′nk −A′nk | = 0 ,

et on pose

I(n) =

N(n)∑
k=1

|bk − ak|.|b′nk − a′nk | min
x∈cnk

f(x) ,

J(n) =

N(n)∑
k=1

|Bk −Ak|.|B′nk −A′nk |max
x∈cnk

f(x) .

Alors limn→∞ I(n) = limn→∞ J(n). De plus, cette limite ne dépend pas du choix des cnk et des Cnk .
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Définition 2.2. On appelle cette limite l’intégrale de f sur Ω, et on la note∫
Ω

f(x, y)dxdy .

Notons qu’en pratique, la définition est difficile à appliquer pour calculer une intégrale. On va
voir dans la suite du chapitre des outils pratiques pour calculer des intégrales.

2.2. Interprétation géométrique. Comme pour les fonctions d’une variable, on peut in-
terpréter l’intégrale d’une fonction définie sur un domaine Ω comme le volume borné par son
graphe — il faut à nouveau compter négativement le domaine qui se trouve en-dessous du plan des
coordonnées x, y, correspondant aux points où la fonction est négative.

3. Intégrations successives et théorème de Fubini

Le premier cas à considérer est celui où Ω est un rectangle de la forme [a, b]× [c, d] de R2. Dans
ce cas on peut se ramener à calculer successivement deux intégrales, grâce au théorème suivant,
qu’on admettra là encore sans démonstration.

Théorème 3.1 (Fubini). Soit f : [a, b]× [c, d]→ R une fonction continue, avec a < b et c < d.
Alors ∫

[a,b]×[c,d]

f(x, y)dxdy =

∫ b

a

F (x)dx =

∫ d

c

G(y)dy ,

où F et G sont définies par

F (x) =

∫ d

c

f(y)dy , G(y) =

∫ b

a

f(x)dx .

De manière un peu plus générale, on peut intégrer de cette manière sur un domaine qui est
“simple” par rapport au système de coordonnées.

Théorème 3.2. Soit [a, b] ⊂ R un intervalle, et soient u, v : [a, b] → R deux fonctions C1

telles que u(x) < v(x) pour tout x ∈ [a, b]. Soit

Ω = {(x, y) ∈ R2 | x ∈ [a, b] et u(x) < y < v(x)} .

Finalement, soit f : Ω→ R une fonction continue. Alors∫
Ω

f(x, y)dxdy =

∫ b

a

(∫ v(x)

u(x)

f(x, y)dy

)
dx .

On peut procéder de même en échangeant x et y si nécessaire.

4. Formule de changement de variable

Pour calculer les intégrales de fonctions définies sur des domaines plus compliqués que des
rectangles, on sera amené à utiliser la formule de changement de variables. Pour les fonctions de
deux variable (ou plus) cette formule est un peu plus compliquée que pour les fonctions d’une
variable, et elle utilise la notion de déterminant, dont on va commencer par rappeler la définition
et quelques propriétés.
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4.1. Rappel sur le déterminant. On note Mn(R) l’espace vectoriel des matrices n × n
à coefficients réels. On va commencer par rappeler la définition générale du déterminant d’une
matrice, même si on l’utilisera rarement dans toute sa généralité.

Définition 4.1. Soit M ∈Mn(R). Le déterminant de M est défini comme suit :

det(M) =
∑
σ∈Sn

sign(σ)m1σ(1)m2σ(2) · · ·mnσ(n) .

Ici Sn désigne le groupe des permutations de l’ensemble {1, 2, · · · , n}, et sign(σ) désigne la signature
de σ, qui vaut 1 ou −1 suivant que σ peut s’écrire comme produit d’un nombre pair ou impair de
transpositions. (Une transposition est une permutation qui échange simplement deux éléments.)

Notons que cette définition s’étend telle quelle aux matrices à coefficients complexes.
Exemple. Pour n = 2 on a la formule suivante :

det(M) = m11m22 −m12m21 .

Dans ce cas la somme ci-dessus n’a que deux termes puisqu’il n’y a que deux permutations de
l’ensemble à deux éléments {1, 2}.

Interprétation géométrique. On peut interpréter |det(M)| comme le volume (ou l’aire, en di-
mension deux) d’un parallélépipède qui est l’image par M d’un parallélépipède de volume 1 de Rn,
par exemple celui qui correspond à la base canonique de Rn.

Propriétés essentielles. On rappelle aussi quelques propriétés essentielles du déterminant.
— Il est multilinéaire, c’est-à-dire linéaire par rapport à chacune des lignes (ou des colonnes)

de M . En d’autres termes, si M = (C1, · · · , Cn), où C1, · · · , Cn sont ses vecteurs colonnes,
et si C ′k ∈ Rn et a, b ∈ R, alors

det(C1, · · · , aCk + bC ′k, · · · , Cn) = a det(C1, · · · , Ck, · · · , Cn) + bdet(C1, · · · , C ′k, · · · , Cn) .

— Le déterminant est alterné : si M ′ est obtenue à partir de M en échangeant deux lignes (ou
deux colonnes) alors det(M ′) = −det(M).

— Si M,N ∈Mn(R) alors det(MN) = det(M) det(N).
— Soit u : Rn → Rn l’application linéaire dont la matrice dans la base canonique est M . Alors

detM = 0 si et seulement si le noyau de u n’est pas réduit à 0, et aussi si et seulement si
l’image de u n’est pas tout Rn.

4.2. Formule de changement de variable. Considérons une fonction φ = (φx, φy) : R2

dans R2.

Définition 4.2. En chaque point (x, y) ∈ R2, on appelle (Jφ)(x, y) la matrice des dérivées
partielles de φ par rapport à x et y :

Jφ =

(
∂φx/∂x ∂φx/∂y
∂φy/∂x ∂φy/∂y

)
.

La matrice Jφ est appelée matrice Jacobienne de φ, d’où la notation.
Pour calculer l’intégrale d’une fonction de deux variables sur un domaine plus compliqué qu’un

rectangle, on utilisera très souvent le résultat suivant.

Théorème 4.3 (Formule de changement de variable). Soit Ω et Ω′ deux domaines bornés de
R2 à bord régulier par morceaux, soit f : Ω→ R continue, et soit φ : Ω→ Ω′ une bijection qui est
de classe C1 et admet une bijection réciproque de classe C1. Alors∫

Ω′
f(x, y)dxdy =

∫
Ω

f(φ(u, v))|det Jφ(u, v)|dudv .
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Cette formule ressemble à celle rappelée ci-dessus pour les fonctions d’une seule variable. Mais
il faut noter la valeur absolue qui entoure le déterminant, qui n’existe pas dans le cas d’une seule
variable (elle est remplacée par la convention de signe quand les bornes d’intégration sont inversées).

En fait, le déterminant est indispensable pour tenir compte, dans l’intégration, de la manière
dont φ agit sur l’aire. Le déterminant permet de donner un poids plus important, dans l’intégrale
de droite, des régions qui sont “étirées” par φ, c’est-à-dire envoyées par φ sur des régions d’aire
plus importante.

5. Formule de Green

5.1. Intégrale curviligne. On considère une courbe régulière orientée C ⊂ R2, et une pa-
ramétrisation c : (cx, cy) : [a, b]→ R2 de C, c’est-à-dire que c est une fonction C1, dont la dérivée
n’est jamais nulle, et qui définit une bijection entre [a, b] et C qui préserve l’orientation.

Note. Dire qu’une courbe est orientée, c’est choisir un sens dans lequel on la parcourt. Dire
qu’une paramétrisation préserve l’orientation, c’est dire que la paramétrisation parcourt la courbe
“dans le bon sens”.

Définition 5.1. Soit u, v : R2 → R deux fonctions continues. On définit l’intégrale de udx+
vdy sur la courbe orientée C comme∫

C

udx+ vdy =

∫ b

a

u(c(t))c′x(t) + v(c(t))c′y(t)dt .

Remarque. Cette intégrale ne dépend pas de la paramétrisation de C choisie, tant qu’elle
respecte l’orientation. En effet si c̄ : [c, d] → R2 est une autre paramétrisation de C respectant
l’orientation, on peut poser φ = c̄−1 ◦ c : [a, b]→ [c, d], c’est une application C1, bijective, et dont
la dérivée ne s’annule jamais, si bien que la bijection réciproque est aussi C1. De plus on a par
définition

c ◦ φ = c ,

si bien que, d’après la règle de dérivation d’une fonction composée,

(c′x(t), c′y(t)) = c′(t) = φ′(t)c̄′(φ(t)) = φ′(t)(c̄′x(φ(t)), c̄′y(φ(t))) .

On en déduit que∫ b

a

u(c(t))c′x(t) + v(c(t))c′y(t)dt =

∫ b

a

u(c̄ ◦ φ(t))φ′(t)c̄′x(φ(t)) + v(c̄ ◦ φ(t))φ′(t)c̄′y(φ(t))dt

et, d’après la formule de changement de variable avec t = φ(s),∫ b

a

u(c(t))c′x(t) + v(c(t))c′y(t)dt =

∫ d

c

u(c̄(s))c̄′x(s) + v(c̄(s))c̄′y(s)ds .

L’intégrale sur C est donc bien indépendante du paramétrage choisi, tant qu’il respecte l’orienta-
tion.

Par contre, si on prend un paramétrage qui renverse l’orientation, un signe − apparâıt dans
l’intégration !

Interprétation. On peut interpréter cette intégration comme celle d’un champ de vecteurs, de
coordonnées (u, v), le long d’une courbe orientée. C’est une interprétation courante en physique.
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Figure 2. Preuve du théorème de Green : cas particulier

5.2. Orientation des bords des domaines de R2. Considérons un domaine Ω ⊂ R2 à
bord régulier par morceaux. Son bord est donc constitué d’une suite de courbes régulières. On
utilise toujours l’orientation du bord dans le sens dit “trigonométrique”, qui est l’inverse du sens
des aiguilles d’une montre.

Ainsi, l’orientation du bord est définie par la convention que, quand on parcourt le bord dans
le sens positif, le domaine se trouve du coté gauche.

5.3. Formule de Green.

Théorème 5.2 (Formule de Green). Soit Ω ⊂ R2 un domaine borné à bord régulier par
morceaux. Soient u, v : R2 → R des fonctions C1. Alors∫

∂Ω

udx+ vdy =

∫
Ω

(
∂v

∂x
− ∂u

∂y

)
dxdy .

Plutôt que faire une preuve complète, on va se contenter de considérer un cas particulier, dont
on pourrait déduire le cas général, qui permet de comprendre pourquoi la formule de Green est
valide.

Principe de la preuve. On se limite d’abord au cas particulier où Ω est tel que son bord
peut se décomposer de deux manières différentes :

— comme la réunion de deux courbes, régulières par morceaux, sur laquelle la coordonnée
x est monotone — croissante sur l’une, décroissante sur l’autre, avec l’orientation naturelle
du bord,

— comma la réunion de deux courbes, régulières par morceaux, sur laquelle la coordonnée
y est monotone.

On note a, b le min et le max de la coordonnée x sur ∂Ω, si bien que ∂Ω est la réunion de deux
courbes, qui sont le graphe respectivement de fonctions Y− et Y+ de [a, b] dans R. La première est
parcourue dans le sens des x croissants, la seconde dans le sens des x décroissants. De même, si c, d
sont le min et le max de y sur ∂Ω, on peut voir ∂Ω comme la réunion des graphes de deux fonctions
de y, soit X− et X+, la première étant parcourue dans le sens des y décroissants, la seconde des y
croissants.
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Figure 3. Preuve du théorème de Green : découpage

Maintenant on peut décomposer l’intégrale sur Ω en deux intégrales successives comme suit :∫
Ω

∂v

∂x
dxdy =

∫ d

y=c

(∫ X+(y)

x=X−(y)

∂v

∂x
dx

)
dy

=

∫ d

y=c

v(X+(y))− v(X−(y))dy

=

∫
∂Ω

vdy .

Les signes qui apparaissent correspondent en effet exactement au sens de parcourt des deux com-
posantes du bord.

De même on a : ∫
Ω

∂u

∂x
dxdy =

∫ b

x=a

(∫ Y+(x)

y=Y−(x)

∂u

∂y
dy

)
dx

=

∫ b

x=a

u(Y+(y))− u(Y−(y))dy

= −
∫
∂Ω

udx .

La formule de Green suit en ajoutant les deux termes.
Pour traiter des cas plus généraux, lorsque Ω ne satisfait pas l’hypothèse ci-dessus, on le

découpe en sous-domaines qui la satisfont, c’est-à-dire qu’on écrit Ω = ∪Ni=1Ωi, où les Ωi sont des
domaines à bord régulier par morceaux, d’intérieur disjoint, et qui satisfont cette hypothèse. On
remarque alors que d’une part l’intégrale sur Ω est la somme des intégrales sur les Ωi, par définition.
D’autre part, l’intégrale de udx + vdy sur ∂Ω est la somme des intégrales sur les ∂Ωi, parce que
chaque segment de ∂Ω y apparâıt exactement une fois, alors que les segments des ∂Ωi qui ne sont
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pas dans ∂Ω sont chacun parcourus exactement deux fois, avec des orientations opposées, si bien
qu’ils se compensent exactement (voir la figure 2). �

6. Théorème de Stokes

6.1. Intégration d’un champ de vecteurs le long d’une courbe. On a vu plus haut
comment intégrer une expression de la forme udx+ vdy sur une courbe orientée dans le plan. En
fait, on peut voir cela comme l’intégration d’un champs de vecteurs du plan le long d’une courbe
orientée. On peut étendre cette définition aux courbes dans l’espace à trois dimensions.

Définition 6.1. Soit V un champ de vecteurs sur R3, de coordonnées (u, v, w), et soit C ⊂ R3

une courbe orientée munie d’une paramétrisation c : [a, b]→ R3 respectant l’orientation. On définit
l’intégrale de V sur C comme ∫

C

V · dr =

∫ b

a

V · c′(t)dt ,

où · désigne le produit scalaire.

Rappelons que le produit scalaire de deux champs de vecteurs V et V ′ de coordonnées (u, v, w)
et (u′, v′, w′) est la fonction égale à

V · V ′ = uu′ + vv′ + ww′ .

Exercice. Montrer que, comme dans le plan, l’intégrale ne dépend pas du choix de la pa-
ramétrisation tant qu’elle respecte l’orientation, mais qu’elle change de signe si on change l’orien-
tation.

6.2. Intégration des fonctions sur les surfaces dans R3.

Définition 6.2. Une surface Σ ⊂ R3 est orientée si elle est munie d’un champ de vecteurs
orthogonal unitaire.

Le champ de vecteurs détermine un “coté” de la surface. A noter que si une surface est le bord
d’un domaine borné de R3 (par exemple une sphère) alors on peut la munir d’une orientation (par
exemple en choisissant en chaque point le vecteur unitaire orthogonal vers l’extérieur). A l’opposé,
il existe des surfaces dans R3 qui ne sont pas orientables, par exemple un ruban de Möbius.

Définition 6.3. Soit Σ ⊂ R3 une surface orientée, munie d’un champ de vecteur normal
unitaire N , et soit φ : Ω → Σ une paramétrisation. On dit que φ respecte l’orientation si on a en
tout point

∂xφ× ∂yφ ·N > 0 .

On peut aussi définir une orientation naturelle du bord d’une surface orientée dans R3. La
définition est la suivante : on parcourt le bord dans le sens positif si, lorsqu’on se place de manière
à avoir la normale unitaire vers le haut, on a la surface du coté gauche. Cette définition généralise
celle des surfaces dans le plan.

On peut maintenant donner la définition de l’intégrale d’une fonction sur une surface.

Définition 6.4. Soit Σ une surface orientée munie d’une paramétrisation φ : Ω → Σ qui
préserve l’orientation. Soit u : Σ → R une fonction continue. On définit son intégrale sur Σ
comme ∫

Σ

udΣ =

∫
Ω

u ◦ φ(∂xφ× ∂yφ) ·Ndxdy .

On verra dans les exercices que cette notion d’intégrale est bien définie, c’est-à-dire qu’elle ne
dépend pas de la paramétrisation (respectant l’orientation) choisie.
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Interprétation géométrique. Comme ∂xφ et ∂yφ sont tangents à la surface, ∂xφ × ∂yφ lui est
orthogonal, donc tangent à N . Si la paramétrisation φ préserve l’orientation, il est de plus dans
le même sens. En fait (∂xφ × ∂yφ) · N est égal à l’aire du parallélogramme engendré par ∂xφ et
∂yφ (on peut le vérifier en prenant un repère adapté). Ce terme, dans l’intégration, permet donc
de tenir compte du rapport entre l’aire sur la surface et l’aire du domaine Ω.

6.3. Intégration des champs de vecteurs sur les surfaces dans R3. On peut donner
une définition analogue pour les champs de vecteurs.

Définition 6.5. Soit Σ une surface orientée munie d’une paramétrisation φ : Ω → Σ qui
préserve l’orientation. Soit F : Σ → R3 un champ de vecteurs continu. On définit son intégrale
sur Σ comme ∫

Σ

F · dΣ =

∫
Ω

(∂xφ× ∂yφ) · Fdxdy .

Interprétation géométrique. On a vu que ∂xφ× ∂yφ est parallèle à N et dans le même sens, et
que sa norme est liée à l’aire de la surface. Il suit que (∂xφ × ∂yφ) · F mesure la composante de
F orthogonale à la surface, multipliée par un terme qui tient compte de l’aire. En fait l’intégrale
qu’on a définie est le flux de F à travers la surface Σ.

6.4. Rotationnel des champs de vecteurs. On va utiliser la notion de rotationnel d’un
champ de vecteurs, que vous connaissez probablement déjà.

Définition 6.6. Soit V un champ de vecteurs régulier sur R3, de coordonnées (Vx, Vy, Vz).
Son rotationnel est le champ défini par

∇× V = (∂yVz − ∂zVy, ∂zVx − ∂xVz, ∂xVy − ∂yVx) .

6.5. Formule de Stokes pour les surfaces dans R3.

Théorème 6.7. Soit Σ une surface à bord régulier par morceaux, bornée, dans R3, et soit V
un champ de vecteurs défini sur R3. Alors∫

Σ

∇× V · dΣ =

∫
∂Σ

V · dr .

On ne donne pas ici de preuve de cette formule, on va se contenter de voir que, dans un cas
particulier, on se ramène à la formule de Green.

Exemple. Supposons que Σ est contenue dans le plan xOy, c’est-à-dire le plan d’équation
{z = 0}. Alors l’équation se ramène à∫

Σ

∂xFy − ∂yFxdxdy =

∫
∂Σ

Fxdx+ Fydy ,

donc à la formule de Green.

6.6. Généralisations. En fait la formule de Green et la formule de Stokes présentées ici
sont deux cas particuliers d’un résultat beaucoup plus général et central dans les mathématiques
contemporaines qui porte aussi le nom ( !) de formule de Stokes. On peut considérer sur Rn une
notion de forme différentielle de degré k, où k est n’importe quel entier entre 0 et n. Une 0-
forme est une fonction, une 1-forme peut être identifiée à un champ de vecteurs, etc. On note Λk

l’espace vectoriel des k-formes. On a aussi un opérateur de différentielle extérieure d : Λk → Λk+1.
La formule de Stokes est simplement que pour toute k-forme ω ⊂ Λk et toute “surface” V de
dimension k + 1 on a ∫

V

dω =

∫
∂V

ω .
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C’est sous cette forme qu’il est le plus simple de montrer la formule de Stokes.

7. Exercices

Intégrales d’une fonction d’une variable.

7.1. Calculer en fonction de a, b, c ∈ R l’intégrale entre a et b des fonctions qui à x associent :

(1) xex
2

,

(2) sinh(cx),

(3) cx,

(4) 1/ cosh(cx)2,

(5) 1/(1 + (cx)2),

(6) 1/
√

1 + (cx)2,

(7) 1/
√

1− (cx)2.

On précisera dans chaque cas quelles conditions il faut mettre sur a, b, c pour que l’intégrale ait un
sens.

7.2. Primitives de fonctions usuelles. Déterminer les primitives des fonctions suivantes :

(1) t 7→ tn ln(t), pour n ≥ 1,

(2) t 7→ arctan(t).

7.3. On pose pour tout n ∈ N :

In =

∫ π/2

0

sin(t)ndt .

Montrer que pour tout n ≥ 2 on a nIn = (n− 1)In−2.

Déterminants.

7.4. Calculer en fonction de t les déterminants des matrices 2× 2 suivantes.(
cos(t) sin(t)
− sin(t) cos(t)

)
,

(
cosh(t) 2 sinh(t)
sinh(t) 2 cosh(t)

)
,

(
2t+ 1 (2t+ 1)2

1 2t− 1

)
.

7.5. Calculer les déterminants des matrices suivantes :(
7 11
−8 4

) 1 0 6
3 4 15
5 6 21

 1 0 2
3 4 5
5 6 7

 1 0 −1
2 3 5
4 1 3


7.6. Volumes de parallélogrammes et de parallélépipèdes.

(1) Calculer l’aire du parallélogramme construit sur les vecteurs ~u =

(
2
3

)
et ~v =

(
1
4

)
.

(2) Calculer le volume du parallélépipède construit sur les vecteurs

~u =

 1
2
0

, ~v =

 0
1
3

 et ~w =

 1
1
1

.

(3) Montrer que le volume d’un parallélépipède dont les sommets sont des points de R3 à
coefficients entiers est un nombre entier.
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Calculs d’intégrales par intégration successive.

7.7. ∆. Calculer l’intégrale sur [0, 1]× [1, 3] de la fonction définie par f(x, y) = xy + y2.

7.8. ∆.

(1) Déterminer l’aire de la partie bornée D du plan délimitée par les courbes d’équation y = x
et y2 = x.

(2) Calculer l’intégrale sur D de la fonction définie par f(x, y) = x+ y.

7.9.

(1) Calculer l’intégrale de la fonction f définie par f(x, y) = x2y sur le domaine D défini par

D = {(x, y) ∈ R2 | y ≥ 0, x+ y < 1, y − x < 1} .

(2) Même question pour f(x, y) = sin(x) sin(y) et

D = {(x, y) ∈ R2 | x ≥ 0, y ≥ 0, x+ y < π} .

7.10. Calculer ∫
0≤y≤x≤1

y

(1 + x2)
dxdy .

Changements de variable.

7.11. Déterminer le centre de gravité d’un demi-disque réalisé dans un matériau homogène.

7.12. *. Soit a > 0, et soit

Ta = {(x, y) ∈ R2 | x > 0, y > 0, x+ y < a} .
Calculer ∫

Ta

√
xye−x−ydxdy .

(Indication : On pourra utiliser le changement de variable x = tu, y = (1− t)u.)

7.13. *. On souhaite calculer l’intégrale entre 0 et ∞ de e−x
2

.

(1) Soit R > 0, et soit DR = [0, R]× [0, R]. Montrer que∫
DR

e−x
2−y2dxdy =

(∫ R

0

e−x
2

dx

)2

.

(2) Soit r > 0, notons

CR = {(x, y) ∈ R2 | x > 0, y > 0, x2 + y2 < r2} .
Calculer

I(r) =

∫
Cr

e−x
2−y2dxdy .

(3) Montrer que pour tout r > 0,

I(r) ≤
∫
Dr

e−x
2−y2dxdy ≤ I(

√
2r) .

(4) En déduire la valeur de l’intégrale entre 0 et ∞ de e−x
2

.

Intégrale curviligne.
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7.14. Calculer l’intégrale curviligne∫
C

(x+ y)dx+ (x− y)dy

où C est le cercle unité, paramétré dans le sens trigonométrique.

7.15. Calculer l’intégrale curviligne∫
C

(y + z)dx+ (z + x)dy + (x+ y)dz

x2 + y2

lorsque C est :

(1) Le segment de droite dont les extrémités sont les points de coordonnée (1, 1, 1) et (2, 2, 2),

(2) le segment d’hélice paramétré par la fonction qui à t associe (cos t, sin t, t) pour t ∈ [0, 2π].

Formule de Green.

7.16. Soit D le domaine borné bordé par la courbe d’équation x2 + y2 − 2y = 0. Calculer en
utilisant la formule de Green ∫

D

(x2 − y2)dxdy .

7.17. Soit C la courbe fermée constituée d’un segment de la parabole d’équation x2 = y et
d’un segment de la parabole d’équation y2 = x, et soit D le domaine borné qu’elle délimite.

(1) Calculer ∫
C

(2xy − x2)dx+ (x+ y2)dy .

(2) Vérifier le résultat avec la formule de Green.

Intégration sur une surface de R3.

7.18. *. Soit Σ une surface orientée dans R3, munie d’un champ de vecteurs orthgonal unitaire
N , et soit u : Σ → R une fonction continue. On se donne deux paramétrisations respectant
l’orientation φ : Ω → Σ et φ′ : Ω′ → Σ de Σ par des ouverts de R2. Montrer que la définition de
l’intégrale de u sur Σ ne dépend pas de la paramétrisation choisie, c’est-à-dire que :∫

Ω

u(φ(x, y))(∂xφ× ∂yφ) ·Ndxdy =

∫
Ω′
u(φ′(x, y))(∂xφ

′ × ∂yφ′) ·Ndxdy .

Formule de Stokes.

7.19. Calculer le flux du champ de vecteurs (x, y,−z) à travers la demi-sphère d’équation
x2 + y2 + z2 = 1, z > 0.

7.20. Soit C le cercle de R3 d’équation x2 + y2 + z2 = R2, x+ y + z = 0. Calculer∫
C

(y + z)dx+ (z + x)dy + (x+ y)dz

d’abord en appliquant la formule de Stokes, puis directement.





CHAPITRE 2

Suites et séries de fonctions

Motivations

Ce chapitre est consacré à l’étude des suites et des séries de fonctions.
La raison principale pour laquelle il nous est nécessaire de les étudier est que, dans les chapitres

suivants, nous allons développer les séries de Fourier puis la transformée de Fourier. Or une série
de Fourier est une exemple emblématique de série de fonction, et il est nécessaire, pour pouvoir
comprendre convenablement le comportement des séries de Fourier, de disposer de quelques notions
plus générales. Lesquelles seront utiles aussi dans d’autres parties du cours, par exemple pour la
transformée de Laplace.

Néanmoins la notion de suite ou de série de fonction a un intérêt beaucoup plus vaste, puisque
ces notions apparaissent dès qu’on cherche à approcher une fonction inconnue — par exemple la so-
lution d’une équation physique ou provenant d’un problème d’ingénierie — par des approximations,
par exemple provenant de calculs approchés avec une solution de plus en plus grande.

Les notions élémentaires présentées dans ce chapitre devraient donc vous être utiles à de
multiples reprises au cours de vos études ultérieures.

Un peu d’histoire

La notion de convergence de suite de fonctions était utilisée dès le début du XIXe siècle, et
peut-être avant, en particulier dans le contexte des séries de Fourier. Elle n’était pourtant pas
formalisée de manière rigoureuse.

Une histoire souvent répétée (peut-être en partie fausse) veut que Cauchy (1789-1857) ait
enseigné dans un cours à l’Ecole Polytechnique que la limite d’une suite de fonctions continues
est continue, mais que Abel (1802-1829) ait réalisé quelques années plus tard, en 1826, que des
exemples provenant des séries de Fourier montraient que c’est faux. Ceci conduisit Cauchy à donner
en 1853 un fondement rigoureux à la notion de convergence d’une suite de fonction, et à corriger
l’erreur qu’il avait commise 30 ans plus tôt.

Objectifs du chapitre

Les objectifs du chapitres seront en particulier :
— comprendre la notion de convergence simple et de convergence uniforme d’une suite de

fonction, savoir reconnâıtre les suites de fonctions qui convergent en un sens ou en l’autre,
— connâıtre les principales propriétés de la convergence uniforme,
— savoir faire des raisonnement élémentaires utilisant la notion de convergence d’une suite

réelle, d’une suite de fonctions,
— comprendre les notions de convergence simple, de convergence uniforme, de convergence

normale, pour une série de fonctions,
— savoir calculer le rayon de convergence d’une série entière,

21
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— connâıtre et savoir utiliser les principales propriétés des séries entières dans leur disque de
convergence.

1. Suites de fonction

On va introduire deux notions de convergence pour une suite de fonctions de R dans R, ou
plus généralement d’un intervalle I de R vers R ou vers C.

1.1. Convergence simple. La première notion s’applique lorsque la convergence se produit
en chaque point — on parle de convergence simple.

Définition 1.1. Soit (fn)n∈N une suite de fonctions d’un intervalle I de R dans R. On dit
que (fn)n∈N converge simplement vers f si, pour tout x ∈ I la suite (fn(x))n∈N converge vers f(x).

Forme équivalente : la définition de la limite d’une suite montre directement que (fn) converge
simplement vers f sur I si et seulement si la propriété suivante est satisfaite :

∀x ∈ I, ∀ε > 0,∃N ∈ N,∀n ≥ N, |fn(x)− f(x)| ≤ ε .
Exemple. Considérons la suite de fonctions de R dans R définies par fn(x) = tanh(nx), n ≥ 1.

On peut voir facilement qu’elle converge simplement vers la fonction f définie par f(0) = 0,
f(x) = −1 pour x < 0, f(x) = 1 pour x > 0. En effet :

— fnx(0) = 0 pour tout n ≥ 1, et cette suite converge vers 0,
— limx→∞ tanh(x) = 1, donc limn→∞ tanh(nx) = 1 pour tout x > 0,
— il en est de même pour x < 0 et la limite est −1.
On dispose par ailleurs de quelques propriétés de la convergence simple, par exemple les trois

suivantes.

Proposition 1.2. Soit (fn) et (gn) deux suites de fonctions sur un intervalle I, qui convergent
respectivement vers des limites f et g. Supposons que pour tout x ∈ I et tout n, fn(x) ≥ gn(x).
Alors pour tout x ∈ I, f(x) ≤ g(x).

Démonstration. C’est une conséquence directe de la même propriété pour les suites : si
xn ≤ yn pour tout n et si limxn = x, lim yn = y, alors x ≤ y. �

Proposition 1.3. Soit (fn) une suite de fonctions croissantes, qui converge simplement vers
une limite f sur un intervalle I. Alors f est croissante sur I.

Démonstration. Soit x, y ∈ I, x ≤ y. On va appliquer deux fois la définition de la conver-
gence, et utiliser la croissance des fn.

Choisissons ε > 0. Il existe Nx ∈ N tel que pour tout n ≥ Nx, |fnx(x)− f(x)| ≤ ε. De même,
il existe Ny ∈ N tel que pour tout n ≥ Ny, |fnx(y)− f(y)| ≤ ε.

On prend maintenant n = max(Nx, Ny), sibien que n ≥ Nx et n ≥ Ny. On voit alors que

f(x) ≤ fn(x) + ε ≤ fn(y) + ε ≤ f(y) + 2ε .

Comme f(x) ≤ f(y) + 2ε pour tout ε > 0, on voit que f(x) ≤ f(y), donc la fonction limite f
est croissante. �

Enfin la dernière propriété concerne convexité des fonctions, notion qu’on rappelle d’abord.

Définition 1.4. Une fonction f : I → R est convexe si pour tout x, y ∈ I et tout t ∈ [0, 1],
f((1− t)x+ ty) ≥ (1− t)f(x) + tf(y).

On rappelle que pour les fonctions C2, la convexité est équivalente à la positivité (au sens
large) de la dérivée seconde.
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Proposition 1.5. Soit (fn) une suite de fonctions convexes, qui converge simplement vers
une limite f sur un intervalle I. Alors f est convexe sur I.

La preuve est laissée en exercice.

1.2. Convergence uniforme.

Définition 1.6. Soit (fn)n∈N une suite de fonctions, qui converge simplement vers une limite
f sur un intervalle I. On dit que (fn)n∈N converge uniformément vers f sur I si

lim
n→∞

sup
I
|f − fn| = 0 .

Forme équivalente : on peut montrer facilement que (fn)n∈N converge uniformément vers f sur
I si et seulement si la condition suivante est remplie :

∀ε > 0,∃N ∈ N,∀n ≥ n, ∀x ∈ I, |fn(x)− f(x)| ≤ ε .
Noter la différence avec la convergence simple : on a simplement échangé deux quantificateurs !

1.3. Continuité de la limite.

Théorème 1.7 (Continuité de la limite). Soit (un)n∈N une suite de fonctions continues qui
converge uniformément vers une limite u. Alors u est continue.

Démonstration. Soit x ∈ I, et soit ε > 0. Come (un) converge uniformément vers u sur I,
il existe N ∈ N tel que pour tout n ≥ N , supI |un − u| ≤ ε/3.

De plus, uN est continue en x, donc

∃α > 0,∀y ∈ [x− α, x+ α], |uN (x)− u(x)|ε/3 .
Il suit que pout tout y ∈ [x− α, x+ α],

|u(x)− u(y)| ≤ |u(x)− uN (x)|+ |uN (x)− uN (y)|+ |uN (y)− u(y)| ≤ ε/3 + ε/3 + ε/3 .

Pour résumer on a donc obtenu que

∀x ∈ I, ∀ε > 0,∃α > 0,∀y ∈ [xα, x+ α], |u(x)− u(y)| ≤ ε ,
en d’autres termes u est continue. �

NB. l’exemple donné ci-dessus des fonctions x→ tanh(nx) montre que l’énoncé correspondant
avec la convergence simple est faux.

1.4. Intégrale d’une suite de fonctions. La convergence uniforme permet d’intégrer une
suite de fonctions, de la manière suivante.

Théorème 1.8. Soit (fn) une suite de fonctions continues qui converge uniformément sur un
intervalle I vers une limite f . Alors pour tout a, b ∈ I on a

lim
n→∞

∫ b

a

fn(t)dt =

∫ b

a

f(t)dt .

Démonstration. Soit ε > 0, il existe N ∈ N tel que pour tout n ≥ N , supI |fn(x)−f(x)| ≤ ε.
On voit alors que pour n ≥ N ,∣∣∣∣∣

∫ b

a

fn(t)dt−
∫ b

a

f(t)dt

∣∣∣∣∣ ≤
∫ b

a

|fn(t)− f(t)|dt ≤
∫ b

a

εdt ≤ |b− a|ε .

On en déduit le résultat. �
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1.5. Convergence uniforme sur les compacts. On va parfois utiliser une notion un peu
élargie de convergence uniforme : la convergence uniforme sur les compacts.

Définition 1.9. Soit (fn) une suite de fonctions sur un intervalle I, qui converge simplement
vers une limite f . On dit que (fn) converge uniformément vers f sur les compacts de I si, pour
tout a, b ∈ I, la suite des restriction des fn à [a, b] converge uniformément vers la restriction de f
à [a, b]

Exemple. Reprenons l’exemple ci-dessus des fonctions de la forme x→ tanh(nx). Ces fonctions
ne convergent pas uniformément sur R, et pas non plus sur R \ {0}. Par contre elles convergent
uniformément sur les compacts de R \ {0}.

Théorème 1.10. Soit (un) une suite de fonctions C1 définies sur un intervalle I de R conte-
nant 0, telle que (un(0)) converge vers une limite u0. Supposons que la suite des dérivées (u′n)
converge uniformément vers une limite v. Alors (un) converge uniformément sur les compacts vers
une limite u.

Démonstration. Ca va être une conséquence du théorème 1.8. On montre d’abord la conver-
gence simple. Soit x ∈ I, alors

un(x) =

∫ x

0

u′n(t)dt→
∫ x

0

v(t)dt

ce qui montre que (un) converge simplement vers la primitive de v qui vaut u0 en 0.
Pour montrer que la convergence est uniforme sur les compacts, on va montrer qu’elle est

uniforme sur les intervalles de la forme [−R,R] pour tout R > 0, ce qui démontrera le résultat car
tout intervalle [a, b] est inclus dans [−R,R] pour R assez grand.

Or on remarque que pour tout x ∈ [−R,R] et tout n ∈ N on a

|un(x)− u(x)| ≤
∫ x

0

|u′n(t)− v(t)|dt ≤ R sup
t∈[−R,R]

|u′n(t)− v(t)| .

Le résultat suit donc par définition de la convergence uniforme. �

2. Séries de fonctions

On passe maintenant des suites de fonctions aux séries de fonctions, qui sont des sommes
(infinies) dont l’étude se fait en partie de la même manière. Une nouvelle notion apparâıt, celle de
convergence normale.

2.1. Définitions.

Définition 2.1. Une série de fonction est une expression de la forme

∞∑
n=0

fn ,

où chaque fn est une fonction définie sur un sous-ensemble I de R ou C, à valeurs dans R (ou
dans C).

On peut associer à chaque série de fonctions une suite, celle de ses “sommes partielles”.
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Définition 2.2. Si
∑∞
n=0 fn est une série de fonction, la suite de ses sommes partielles est

la suite de fonctions (Sn)n∈N définie par

Sn =

n∑
k=0

fk .

On définit la suite de ses restes comme

Rn =

∞∑
k=n+1

fk .

On peut maintenant définir les notions de convergence simple et de convergence uniforme d’une
série de fonctions, en se ramenant aux suites de fonctions étudiées dans la section précédente.

Définition 2.3. On dit qu’une série de fonction converge simplement, ou simplement qu’elle
converge, si la suite de ses sommes partielles, considérée comme une suite de fonctions, converge
simplement. On dit que la série converge uniformément si la suite de ses sommes partielles converge
uniformément.

Par définition, la série
∑
n fn converge si et seulement si, pour chaque x ∈ I, la série

(numérique)
∑
n fn(x) converge. On peut donner un critère un peu plus élaboré en utilisant la

suite des restes.

Proposition 2.4. La série de fonctions
∑
k fk converge si et seulement si, pour tout x ∈ I,

la suite (Rn(x))n∈N est bien définie. Elle tend alors nécessairement vers 0. La série
∑
fn converge

uniformément si et seulement si de plus

lim
n→∞

sup
x∈I
|Rn(x)| = 0 .

Démonstration. Soit x ∈ I. La série
∑∞
k=0 fk(x) converge si et seulement si, pour tout

n ∈ N,
∑∞
k=n+1 converge. Donc la série

∑
k fk converge si et seulement si, pour tout x ∈ I et tout

n ∈ N, Rn(x) est bien définie.
De plus, si

∑∞
k=0 fk(x) converge, alors limn→∞

∑∞
k=n+1 fk(x) = 0, et donc (Rn(x))n∈N tend

vers 0.
Supposons maintenant que

∑
k fk converge, soit S sa somme. La convergence est uniforme

si et seulement si la suite des sommes partielles (Sn) converge uniformément vers S, donc si et
seulement si

∀ε > 0,∃N ∈ N,∀n ≥ N, sup
I
|Sn − S| ≤ ε .

Mais pour tout n ∈ N on a

Sn +Rn =

n∑
k=0

fk +

∞∑
k=n+1

fk = S ,

donc (Sn) converge uniformément vers S si et seulement si

∀ε > 0,∃N ∈ N,∀n ≥ N,
∑
I

|Rn| ≤ ε ,

donc si et seulement si (Rn) converge uniformément vers 0. �

On rappelle aussi la définition de la convergence absolue. C’est une notion qui est utile pour
les séries numériques, mais qui s’adapte directement aux séries de fonction.

Définition 2.5. Une série de fonctions
∑
k fk est absolument convergente si la série des

valeurs absolues,
∑
k |fk|, est convergente.
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2.2. Propriétés de la convergence uniforme. On peut tout d’abord relier la converge
d’une série de fonctions à la suite de ses termes. Les énoncés suivants fournissent des outils pour
montrer qu’une série de fonctions ne converge pas simplement, resp. uniformément.

Théorème 2.6. Soit
∑
k fk une série de fonctions définies sur un sous-ensemble I de R ou

C. Si elle converge, alors la suite de fonctions (fn)n∈N converge vers 0. Si la série de fonctions∑
k fk converge uniformément, alors la suite de fonctions (fn)n∈N converge uniformément vers 0.

Démonstration. Le premier point est une conséquence du fait que, si une série numérique
converge, alors son terme général tend vers zéro.

Pour le second point, supposons que (fn)n∈N ne converge pas uniformément vers 0. Traduisons-
le en écrivant la négation de la définition de la convergence uniforme vers 0 :

∃ε > 0,∀N ∈ N,∃n > N,∃x ∈ I, sup
I
|f | ≥ ε .

Mais si (Rn) est la suite des restes de la série
∑
k fk, on a par définition : Rk −Rk+1 = fk. Il suit

que, pour les n qui apparaissent ci-dessus, on a

sup
I
|Rn −Rn+1| ≥ ε ,

et donc soit supI |Rn| ≥ ε/2, soit supI |Rn+1| ≥ ε/2. La suite de fonctions (Rk) ne peut donc
pas converger uniformément vers 0, et il suit de la proposition 2.4 que la série

∑
k fk ne peut pas

converger uniformément. �

Comme pour les suites de fonctions, la convergence uniforme permet de conclure à la continuité
de la somme.

Théorème 2.7. Soit
∑
k fk une série de fonctions, et F sa somme. Si

∑
k fk converge uni-

formément, alors F est continue.

Démonstration. Par définition, si
∑
k fk converge uniformément et sa somme est F , alors

la suite de ses sommes partielles (Sn) converge uniformément vers F . Comme les Sn sont des
sommes finies de fonctions continues, elles sont continues. Ainsi F est limite uniforme d’une suite
de fonctions continues, elle est donc continue. �

On peut par ailleurs intégrer sur une intervalle borné une série de fonctions qui converge
uniformément.

Théorème 2.8. Soit
∑
k fk une série de fonctions qui converge uniformément sur un intervalle

I de R, et soit F sa somme. Soit a, b ∈ I, a < b. Alors∫ b

a

F (t)dt =
∑
k

∫ b

a

fk(t)dt .

Démonstration. Soit (Sn) la suite des sommes partielles. On sait qu’elle converge uni-
formément vers F , si bien que, par un théorème du chapitre prédédent,

lim
n→∞

∫ b

a

Sn(t)dt =

∫ b

a

F (t)dt .

Mais pour tout n on a ∫ b

a

Sn(t)dt =

∫ b

a

n∑
k=0

fk(t)dt =

n∑
k=0

∫ b

a

fk(t)dt .
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Donc

lim
n→∞

n∑
k=0

∫ b

a

fk(t)dt =

∫ b

a

F (t)dt

ce qui montre bien que
∞∑
k=0

∫ b

a

fk(t)dt =

∫ b

a

F (t)dt .

�

2.3. Convergence normale. On introduit maintenant une autre forme de convergence d’une
série de fonctions, plus forte, mais aussi plus facile à vérifier dans beaucoup de cas, que la conver-
gence uniforme.

Définition 2.9. On dit qu’une série de fonctions
∑
k fk définie sur un sous-ensemble I de R

ou C est absolument convergente si la série numérique
∑
k supI |fk| converge.

Théorème 2.10. Si une série de fonction converge normalement, alors elle converge uni-
formément.

Démonstration. Soit n, p ∈ N et x ∈ I. On a

|
n+p∑
k=n+1

fk(x)| ≤
n+p∑
k=n

sup
I
|fk| .

En passant à la limite quand p→∞, on obtient que

|
∞∑

k=n+1

fk(x)| ≤
∞∑
k=n

sup
I
|fk| .

Par hypothèse, le terme de droite tend vers 0 quand n → ∞, donc supI |Rn| → 0 quand n → ∞,
si bien que la série converge uniformément d’après la proposition 2.4. �

Comme pour les suites de fonctions, on peut parler de convergence uniforme, ou de convergence
normale, sur les compacts.

3. Séries entières

Dans la troisième et dernière partie de ce chapitre, on va se concentrer sur des séries de fonctions
très particulières, qui jouent un rôle naturel dans beaucoup de domaines des mathématiques et
de la physique, les séries entières. Ces séries interviennent par exemple quand on veut faire un
développement “de Taylor” d’une fonction à un ordre infini — il se trouve qu’on peut toujours le
faire pour les fonctions analytiques complexes.

3.1. Définition, rayon de convergence. Donnons d’abord la définition générale.

Définition 3.1. Une série entière est une expression de la forme
∞∑
k=0

akz
k ,

où z est une variable complexe et les ak sont des nombres complexes.

Dans certains cas, cette série peut ne converger pour aucune valeur non nulle de z. Mais
dans tous les cas, son comportement est essentiellement déterminé par un nombre, son rayon de
convergence.
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Définition 3.2. Soit
∑
k akz

k une série entière. Son rayon de convergence est défini comme

R = sup{r ≥ 0 | lim
k→∞

|ak|rk = 0} .

Le disque ouvert de convergence Do de la série est l’ensemble des z ∈ C tels que |z| < R. Son
disque fermé de convergence Df est l’ensemble des z ∈ C tels que |z| ≤ R.

En général, le rayon de convergence peut être nul, mais on s’intéressera surtout aux cas où il

est strictement positif. Il peut aussi être infini, par exemple dans le cas de la série entière
∑
k e

n2

zn.

Théorème 3.3. Soit
∑
k akz

k une série entière de rayon de convergence R > 0. Alors

(1) La série de fonctions
∑
k akz

k converge normalement sur les compacts de son disque ouvert
de convergence.

(2) Pour tout z 6∈ Df , la série numérique
∑
k akz

k diverge.

On rappelle qu’un sous-ensemble du plan (ou du plan complexe) est compact s’il est fermé et
borné. De plus, toute fonction continue définie sur un ensemble compact atteint sa borne supérieure
(resp. sa borne inférieure).

Démonstration. Soit K ⊂ Do un compact du disque ouvert de convergence. La fonction
définie comme la distance à 0 est continue sur K, elle y atteint donc sa borne supérieure, soit r,
en un point x ∈ K, et r < R puisque x ∈ Do.

La définition du rayon de convergence indique donc qu’il existe r′ strictement compris entre r
et R tel que limk→∞ |ak|r′k = 0. En particulier, cette suite est bornée, il existe donc C > 0 tel que
|ak|r′k ≤ C pour tout k ∈ N.

On a alors pour tout z ∈ K et tout k ∈ N :

|akzk| ≤ |ak|r′k(|z|/r′)k ≤ C(|z|/r′)k .
Le terme général de la série

∑
k akz

k est donc borné par le terme général d’une série géométrique
convergente, et ce quel que soit z ∈ K. On en déduit le premier point.

Pour le second point on note que si |z| > R alors, par définition même de R, la suite (|ak|.|z|k)
ne tend pas vers 0, et la série entière ne peut donc pas converger en z. �

Corollaire 3.4. Toute série entière converge uniformément sur les compacts de son disque
ouvert de convergence, et sa somme est une fonction continue.

Sachant qu’une série entière converge “bien” dans son disque ouvert de convergence, et qu’elle
diverge en dehors du disque de convergence, on peut se demander ce qu’il en est sur le bord du
disque de convergence (le cercle de rayon R). Mais il est difficile de donner des énoncés généraux
à ce sujet. En fait la restriction d’une série entière à un cercle de rayon r centré en 0 est fortement
liée aux séries de Fourier qu’on verra dans un chapitre ultérieur, puisqu’on peut les écrire sous la
forme

∑
k(akr

k)ekiθ, si z = reiθ.

3.2. Dérivation des séries entières. On étudie maintenant les séries entières restreintes à
une variable réelle qu’on appellera t (pour marquer la différence avec la variable z qui est habi-
tuellement complexe). Les coefficients ak peuvent ici être réels ou complexes.

Théorème 3.5. Soit
∑∞
k=0 akt

k une série entière de rayon de convergence R, de somme S.
Alors S est dérivable sur ]−R,R[, la série entière

∑∞
k=1 kakt

k−1 a pour rayon de convergence R,
et sa somme est la dérivée S′ de S.

En d’autres termes, la série obtenue en dérivant chacun des termes a même rayon de conver-
gence que la série dont on part, et sa somme est la dérivée de la somme de la série de départ.
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Démonstration. Soit maintenant r′ ∈]0, R[, et soit r ∈]r′, R[. Par définition du rayon de
convergence R de

∑∞
k=0 akt

k, on a

lim
n→∞

akr
k = 0 .

Alors pour tout k ∈ N \ {0} on a

kakr
′k−1 = akr

k

(
r′

r

)k (
k

r′

)
.

Mais limk→∞ akr
k = 0 et

lim
k→∞

(
r′

r

)k (
k

r′

)
= 0 ,

si bien que

lim
n→∞

kakr
′k−1 = 0 .

Il suit que le rayon de convergence R′ de la série entière
∑
kakr

′k−1 est au moins égal à R.
Le même argument montre que si r′ > R, alors limk→∞ kakr

′k−1 6= 0, parce que si r ∈]R, r′[
alors limk→∞ akr

k 6= 0 et

lim
k→∞

(
r′

r

)k (
k

r′

)
=∞ .

Il suit que R′ ≤ R, et donc que R′ = R.
On peut maintenant appliquer le théorème 2.8 à la série entière

∑
kakr

′k−1, qui converge
uniformément dans les compacts de l’intervalle ] − R,R[. On voit qu’elle est intégrable, et que sa
primitive qui vaut a0 en 0 est précisément S, la somme de la série entière

∑∞
k=0 akt

k. �

Corollaire 3.6. Soit
∑
k akz

k une série entière, de rayon de convergence R > 0. Alors sa
somme est C∞ dans ]−R,R[, et sa dérivée k-ième est obtenue en dérivant terme à terme.

Démonstration. On peut appliquer le théorème 3.5 récursivement, on obtient que la série
est dérivable à tous les ordres, et que pour chaque ordre sa dérivée est la somme de série entière
obtenue en dérivant k fois chaque terme, le rayon de convergence de cette série dérivée k fois étant
encore R. �

En fait, un résultat plus fort s’applique, que nous ne verrons pas ici mais que vous rencontrerez
probablement plus tard : les séries entières sont en fait dérivables au sens complexe dans leur disque
ouvert de convergence, et même analytiques réelles, ce qui est une notion de régularité plus forte
que la régularité C∞.

3.3. Somme et produit de séries entières. On dispose pour les séries entières d’opérations
utiles de sommes et de produit.

Théorème 3.7. Soient
∑
k akz

k et
∑
k bkz

k deux séries entières, de rayons de convergence
respectivement R et R′ et de sommes S et S′. Alors la série entière

∑
k(ak + bk)zk a pour rayon

de convergence R′′, avec R′′ ≥ min(R,R′). De plus, si R 6= R′, alors R′′ = min(R,R′). Dans
l’intersection des disques ouverts de rayons R et R′, la somme de cette série est S′′ = S + S′.

Démonstration. Soit r < min(R,R′), alors akr
k → 0 et bkr

k → 0, et donc (ak + bk)rk → 0.
Cec montre que R′′ ≥ min(R,R′).

Supposons maintenant que R 6= R′, par exemple que R < R′. Soit r ∈]R,R′[. Alors (akr
k)k∈N

ne converge pas vers 0, alors que bkr
k → 0. Donc ((ak + bk)rk)k∈N ne converge pas vers 0, et donc

R′′ = R = min(R,R′).
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Lorsque les deux séries
∑
k akz

k et
∑
k bkz

k convergent, alors la somme de la série entière∑
k(ak + bk)zk est la somme des deux sommes. �

Exemple. Si a′k = −ak pour tout k, alors R = R′ mais on a R′′ =∞ même si R et R′ <∞.

Définition 3.8. Soient
∑
k akz

k et
∑
k bkz

k deux séries entières. On appelle série produit la
série entière

∑
k ckz

k, avec

∀k ∈ N, ck =
∑
i+j=k

aibj .

Théorème 3.9. Soient
∑
k akz

k et
∑
k bkz

k deux séries entières, de rayons de convergence
respectivement R et R′ et de sommes S et S′. Alors la série produit

∑
k ckz

k a pour rayon de
convergence R′′, avec R′′ ≥ min(R,R′), et, dans le disque ouvert de rayon min(R,R′), sa somme
est le produit SS′.

On verra la preuve dans les exercices.

3.4. Fonctions développables en séries entières. On peut aussi voir les séries entières
d’un autre point de vue : celui des fonctions qu’on obtient comme sommes. La plupart des fonctions
usuelles sont de ce type, on va en voir quelques exemples ci-dessous.

Définition 3.10. Une fonction f : U → C, où U est un sous-ensemble de R ou de C, est
développable en série entière (en 0) s’il existe une série entière

∑
k akz

k de rayon de convergence
R > 0 dont la somme est égale, dans le disque ouvert de convergence, à f .

Théorème 3.11. Supposons f développable en série entière, de développement
∑
k akt

k. Alors

f est C∞ au voisinage de 0, et ses dérivées successives sont données par : f (n)(0) = n!an.

Démonstration. C’est une conséquence du corollaire 3.6. �

On peut en donner quelques exemples, on en verra d’autres en exercice. Les développement
permettent de donner directement des extensions à C de certaines fonctions usuelles définies d’abord
sur R. Dans tous les cas, les coefficients de la série peuvent être obtenus par le théorème 3.11, et
le rayon de convergence calculé directement (on va le voir en exercice).

(1) La fonction exponentielle est développable en série entière, avec un rayon de convergence
infini. Son développement est

exp(t) =

∞∑
k=0

tk

k!
.

Pour le voir, on appelle S la somme de cette série entière, et on vérifie en utilisant le
théorème de dérivation 3.5 que S′ = S et que S(0) = 1, ce qui est une des définitions
possibles de la fonction exp.

(2) Les fonctions cosh et sinh sont les parties paire et impaire, respectivement, de la fonction
exponentielle. Leurs développements en série entière sont :

cosh(t) =

∞∑
k=0

t2k

(2k)!
, sinh(t) =

∞∑
k=0

t2k+1

(2k + 1)!
.

(3) Les développements des fonctions cos et sin sont obtenues en utilisant les formules :

cos(t) =
eit + e−it

2
, sin(t) =

eit − e−it

2i
.



4. EXERCICES 31

Ce sont donc :

cos(t) =

∞∑
k=0

(−1)k
t2k

(2k)!
, sin(t) =

∞∑
k=0

(−1)k
t2k+1

(2k + 1)!
.

(4) La fonction t 7→ 1/(1− t) est développable en série entière de rayon de convergence 1, son
développement est :

1

1− t
=

∞∑
k=0

tk .

4. Exercices

Convergence simple et convergence uniforme.

4.1. Dire si les suites de fonctions suivantes convergent simplement et/ou uniformément, et si
elles convergent, quelle est leur limite.

(1) un(t) = sin(nt), t ∈ R, n ∈ N.

(2) un(t) = sin(t/n), t ∈ R, n ≥ 1.

(3) un(t) = sin(t/n), t ∈ [0, π], n ≥ 1.

(4) arctan(nt), t ∈ R, n ∈ N.

4.2. Soit (un)n∈N une suite de fonctions réelles, qui converge simplement vers une limite u.

(1) Montrer que (sin(un))n∈N converge simplement vers une limite qu’on précisera.

(2) On suppose maintenant que (un)n∈N converge uniformément vers u. Montrer que
(sin(un))n∈N converge uniformément et préciser sa limite.

(3) Que peut-on dire de la suite de fonctions (u2
n)n∈N ?

4.3. *. Soit (un) une suite de fonctions de R dans R qui converge vers une limite u, et soit v
une fonction continue sur R.

(1) Montrer que (v ◦ un)n∈N converge simplement vers v ◦ u.

(2) On suppose maintenant que (un) converge uniformément vers u, et que v est lipschitzienne.
Montrer que la suite de fonctions (v ◦ un) converge uniformément vers v ◦ u.

(3) La condition que v est lipschitzienne est-elle nécessaire ?

4.4. On considère la fonction φ : R→ R définie par :
— φ(x) = sin(x) si x ∈ [0, π],
— φ(x) = 0 sinon.

Pour tout n ∈ N on définit une fonction fn de R dans R par fn(x) = nφ(nx).

(1) Montrer que (fn) converge simplement vers une limite qu’on précisera f .

(2) La converge est-elle uniforme ?

(3) Déterminer la limite quand n → ∞ de
∫

[0,π]
fn(t)dt, et la comparer avec l’intégrale de f

entre 0 et π.
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4.5. *. Pour chacune des assertions suivantes, dire si elles est vraie ou fausse. Si elle est vraie,
en donner une démonstration. Si elle est fausse, donner un contre-exemple.

(1) Si (un) est une suite de fonctions continues de R dans R qui converge simplement vers une
limite u, alors u est continue.

(2) Si (un) est une suite de fonctions C1 qui converge uniformément vers une limite u, alors u
est C1.

(3) Si (un) est une suite de fonctions continues sur [0, 1] qui converge simplement vers une

limite u, alors
∫ 1

0
un(t)dt→

∫ 1

0
u(t)dt.

(4) Si (un) est une suite de fonctions continues qui converge uniformément sur R vers une
limite u, alors

∫∞
−∞ un(t)dt→

∫∞
−∞ u(t)dt.

Suites et séries de fonctions.

4.6. Etudier la convergence simple et la convergence uniforme de la suite (fn) de fonctions
définies pour x ≥ 0 par fn(x) = (1− x/n)n pour x ∈ [0, n], par fn(x) = 0 pour x ≥ n.

4.7. Etudier la convergence (simple, uniforme, normale) de la série de fonctions
∑
k x

k sur
[−1, 1], puis sur [−a, a] pour a ∈]0, 1[.

4.8. On définit un(x) = x/(n2 + x2) pour x ≥ 0 et n ≥ 1.

(1) Montrer que la série
∑
k≥1 uk converge simplement sur R+.

(2) Montrer que cette série converge uniformément sur [0, A] pour tout A > 0.

(3) Converge-t-elle uniformément sur R+ ?

(4) Montrer que cette série converge normalement sur [0, A] pour tout A > 0.

(5) Converge-t-elle normalement sur R+ ?

4.9. *. On considère une suite de fonctions (un)n∈N qui converge uniformément vers 0 sur R,
et on suppose de plus que, pour tout x ∈ R, la suite (un(x)) est décroissante. Montrer que la série
de fonctions

∑
n(−1)nun converge uniformément, et que sa somme est au plus égale à u0.

Séries entières.

4.10. Montrer que les séries entières
∑
k akz

k et
∑
k(−1)kakz

k ont même rayon de conver-
gence.

4.11. Dans les différents cas ci-dessous, déterminer le rayon de convergence la série entière∑
k akz

k.

(1) ak = (−1)k/ log(k + 1).

(2) ak = ek.

(3) ak = (−1)k/k!.

(4) ak = log(k)/k2.

4.12. *. Soit
∑
n anz

n une série entière telle que limn→∞ ak+1/ak = λ 6= 0. Déterminer son
rayon de convergence en fonction de λ.
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4.13. Justifier les développements en série entière suivants, et donner leurs rayons de conver-
gence. Pour chaque exemple on commencera par écrire explicitement les premiers termes de la
série.

(1) Exponentielle :

exp(t) =

∞∑
k=0

tk

k!
.

(2) Cosinus hyperbolique :

cosh(t) =

∞∑
k=0

t2k

(2k)!
.

(3) Sinus hyperbolique :

sinh(t) =

∞∑
k=0

t2k+1

(2k + 1)!
.

(4) Cosinus :

cos(t) =

∞∑
k=0

(−1)k
t2k

(2k)!
.

(5) Sinus :

sin(t) =

∞∑
k=0

(−1)k
t2k+1

(2k + 1)!
;

(6) 1/(1− t) :

1

1− t
=

∞∑
k=0

tk .

(7) 1/(1− t2) :

1

1− t2
=

∞∑
k=0

t2k .

(8) 1/(1 + t) :

1

1 + t
=

∞∑
k=0

(−1)ktk .

(9) 1/(1 + t2) :

1

1 + t2
=

∞∑
k=0

(−1)kt2k .

(10) 1/
√

1− t2 :

1√
1− t2

=

∞∑
0

(2k)!

22k(k!)2
t2k .

(11) 1/
√

1 + t2 :

1√
1 + t2

=

∞∑
0

(−1)k(2k)!

22k(k!)2
t2k .



34 2. SUITES ET SÉRIES DE FONCTIONS

(12) log(1− t) :

log(1− t) = −
∞∑
1

tk

k
.

(13) log(1 + t) :

log(1 + t) =

∞∑
1

(−1)k+1 t
k

k
.

(14) argtanh :

argtanh(t) =

∞∑
0

t2k+1

2k + 1
.

(15) arctan :

arctan(t) =

∞∑
0

(−1)kt2k+1

2k + 1
.

(16) arcsin :

arcsin(t) =

∞∑
0

(2k)!t2k+1

(2k + 1)22k(k!)2
.

(17) arccos :

arccos(t) =
π

2
−
∞∑
0

(2k)!t2k+1

(2k + 1)22k(k!)2
.

4.14. *. Soient
∑
akz

k et
∑
bkz

k deux séries entières, de rayon de convergence respectivement
R et R′, avec R,R′ > 0. Soit (ck)k∈N la suite des coefficients de la série produit, et R′′ le rayon de
convergence de cette série entière.

(1) Montrer que si r < min(R,R′), alors la suite (ckr
k)k∈N converge vers 0.

(2) En déduire que R′′ ≥ min(R,R′).

(3) Trouver un exemple où l’inégalité est stricte.

(4) On note (Sk) et (S′k) les sommes partielles de
∑
akz

k et
∑
bkz

k, et (S′′k ) les sommes
partielles de

∑
ckz

k. Pour tout n ∈ N, écrire SnS
′
n − S′′n comme une somme de termes

faisant intervenir seulement des puissances de z au moins égales à n+1. (On pourra traiter
d’abord les cas n = 0, 1, 2, 3 puis tenter de généraliser au cas général.)

(5) Montrer que pour |z| < min(R,R′) on a bien S′′(z) = S(z)S′(z).



CHAPITRE 3

Espaces de Hilbert

Motivations

Les espaces de Hilbert sont une notion centrale en mathématiques, ils interviennent dans de très
nombreux domaines non seulement des mathématiques mais aussi de la physique et de l’ingénierie.
On peut citer par exemple :

— Les équations aux dérivées partielles, pour lesquelles il est toujours essentiel de bien choisir
et de bien comprendre les espaces fonctionnels dans lesquels on cherche des solutions.
Beaucoup de ces espaces fonctionnels sont des espaces de Hilbert. Ce domaine inclut la
recherche de solutions approchées d’équations aux dérivées partielles qui sont essentielles
en ingénierie, et l’étude d’équations aux dérivées partielles qui décrivent la plupart des
phénomènes physiques.

— L’analyse de Fourier (comme on va le voir dans les deux chapitres suivants).
— La mécanique quantique, où les particules physiques “vivent” dans un espace de Hilbert.
— L’analyse du signal, où les espaces de Hilbert apparaissent aussi de manière prépondérante.

L’importance de la notion d’espace de Hilbert vient du fait que leur définition est simple et permet
d’utiliser des outils puissants, qui s’appliquent dans de très vastes domaines.

Un peu d’histoire

Les espace de Hilbert sont nommés d’après David Hilbert (1862–1943), l’un des grands
mathématiciens de son époque, dont les contributions sont nombreuses et vont de l’algèbre à
la relativité générale en passant par beaucoup de branches des mathématiques. Hilbert et d’autres
mathématiciens ont travaillé à leur étude dans les premières décennies du XXième siècle. C’est
beaucoup plus tard que John von Neumann (1903–1957), un autre grand mathématicien, leur a
donné leur nom, et a créé ce concept unifié qui apparâıt dans des domaines très variés.

Objectifs du chapitre

1. Produits scalaires

On va rappeler ici deux notions de produit scalaire : le produit scalaire réel, et le produit
scalaire complexe (dit hermitien) qui peut être considéré comme une généralisation.

1.1. Produit scalaire réel.

Définition 1.1. Soit E un espace vectoriel sur R. Un produit scalaire sur E est une application
bilinéaire symétrique b : E × E → R qui est définie positive, c’est-à-dire que pour tout x ∈ E, si
x 6= 0, alors b(x, x) > 0.

Sauf mention explicite du contraire, on notera le produit scalaire sous la forme 〈 , 〉.

35
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Proposition 1.2 (Inégalité de Cauchy-Schwarz). Soit E un espace vectoriel muni d’un produit
scalaire, on a pour tout x, y ∈ E :

〈x, y〉2 ≤ 〈x, x〉〈y, y〉 ,

avec égalité exactement quand x et y sont colinéaires.

Démonstration. �

Définition 1.3. La norme associée à un produit scalaire sur un espace vectoriel E est l’ap-
plication

‖.‖ : E → R≥0

x 7→
√
〈x, x〉 .

On définit la distance associée à cette norme comme la fonction

d : E × E → R≥0

(x, y) 7→ ‖y − x‖ .

Avant d’aller plus loin, on rappelle les notions de distance et d’espace métrique.

Définition 1.4. Une distance sur un ensemble E est une application d : E × E → R≥0 qui
satisfait les propriétés suivantes pour tout x, y, z ∈ E :

— d(x, y) = 0 si et seulement si x = y,
— d(x, y) = d(y, x),
— d(x, z) ≤ d(x, y) + d(y, z) (inégalité triangulaire).

Définition 1.5. Un espace métrique est un couple (E, d), où E est un ensemble et d est une
distance sur E.

On peut maintenant revenir aux produits scalaires.

Proposition 1.6. La distance associée à (la norme associée à) un produit scalaire est une
distance sur E.

Démonstration. Pour montrer que d est une distance il faut montrer que :
— d est symétrique : d(x, y) = d(y, x) pour tout x, y ∈ E,
— d(x, y) = 0 si et seulement si x = y,
— d satisfait l’inégalité triangulaire, c’est-à-dire que pour tout x, y, z ∈ E on a d(x, y) +
d(y, z) ≥ d(x, z).

Les deux premiers points suivent directement des définitions. Pour le troisième point, il faut utiliser
l’inégalité de Cauchy-Schwarz. On remarque d’abord qu’il suffit de montrer que pour tout u, v ∈ E,
on a

‖u+ v‖ ≤ ‖u‖+ ‖v‖ ,
puisqu’on peut tirer le résultat cherché en posant u = y − x, v = z − y.

Mais on sait d’après Cauchy-Schwarz qu’on a

〈u, v〉 ≤ ‖u‖‖v‖

si bien que

‖u+ v‖2 = ‖u‖2 + 2〈u, v〉+ ‖v‖2 ≤ ‖u‖2 + 2‖u‖‖v‖+ ‖v‖2 ≤ (‖u‖+ ‖v‖)2 ,

d’où le résultat. �
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1.2. Produit scalaire hermitien. On considère maintenant un espace vectoriel E sur C.
On rappelle qu’une application u : E → C est dite R-linéaire si elle est linéaire depuis E, vu

comme un R-espace vectoriel, à valeurs dans C, vu comme espace vectoriel de dimension 2 sur R.

Définition 1.7. Soit u : E → C une application R-linéaire. On dit qu’elle est antilinéaire
(sur C) si

∀x ∈ E,∀a ∈ C, u(ax) = āu(x) .

Définition 1.8. Soit b : E×E → C une application R-bilinéaire. On dit que b est sesquilinéaire
si elle est linéaire par rapport à la première variable, et antilinéaire par rapport à la seconde
variable.

On peut bien sûr définir de même les notions d’antilinéarité et de sesquilinéarité pour les
applications d’un espace vectoriel complexe vers un autre.

Définition 1.9. Soit b : E×E → C une application R-bilinéaire. On dit que b est hermitienne
si elle est sesquilinéaire et de plus

∀x, y ∈ E, b(y, x) = b(x, y) .

C’est une notion analogue, dans le cas complexe, à la notion de forme bilinéaire symétrique
dans le cas réel.

Remarque 1.10. Si b : E ×E → C est hermitienne, alors, pour tout x ∈ E, on a b(x, x) ∈ R.

Définition 1.11. Un produit scalaire hermitien sur E est une application hermitienne définie
positive, c’est-à-dire que pour tout x ∈ E non nul, b(x, x) > 0.

On considèrera dans la suite un produit scalaire hermitien noté 〈, 〉. On notera aussi ‖x‖ le
nombre réel positif ou nul tel que

‖x‖2 = 〈x, x〉 .

Proposition 1.12 (Inégalité de Cauchy-Schwarz). Pour tout x, y ∈ E, on a

|〈x, y〉| ≤ ‖x‖‖y‖ ,
avec égalité si et seulement si x et y sont colinéaires.

Démonstration. On fixe x, y ∈ E, on peut supposer y 6= 0, sans quoi le résultat est clair.
On considère le polynôme du second degré en z ∈ C :

P (z) = ‖x+ zy‖2 = 〈x+ zy, x+ zy〉
qui s’écrit aussi

P (z) = ‖x‖2 + (z̄〈x, y〉+ z〈y, x〉) + |z|2‖y‖2

et donc encore
P (z) = ‖x‖2 + 2Re(z̄〈x, y〉) + |z|2‖y‖2 .

Mais ce polynôme ne prend que des valeurs positives ou nulles, et on peut prendre

z = −〈x, y〉
‖y‖2

,

on obtient que

‖x‖2 − |〈x, y〉|
2

‖y‖2
≥ 0 ,

d’où le résultat.
En cas d’égalité on voit qu’on a P (z) = 0, soit x+ zy = 0, et donc x et y sont colinéaires. �
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Définition 1.13. La distance associée à un produit scalaire hermitien sur E est définie par

d(x, y) = ‖y − x‖ .

Proposition 1.14. Si 〈, 〉 est un produit scalaire hermitien sur E, alors d est une distance sur
E.

La preuve procède comme dans le cas euclidien, en utilisant l’inégalité de Cauchy-Schwarz
pour montrer que l’inégalité triangulaire est satisfaite.

2. Espaces métriques complets

Pour donner la définition d’un espace de Hilbert, on doit d’abord rappeler des notions de
topologie. On se place ici dans un espace métrique (F, d), c’est-à-dire que d est une distance sur
l’ensemble F .

Définition 2.1. Une suite (xn)n∈N de points de F est une suite de Cauchy si

∀ε > 0,∃N ∈ N,∀p, q ≥ N, d(xp, xq) ≤ ε .

On note que toute suite convergente est une suite de Cauchy. En effet si (xn) converge vers
une limite x, alors pour tout ε > 0, il existe N ∈ N tel que pour tout n ≥ N on a d(xn, x) ≤ ε/2.
On en déduit que pour p, q ≥ N on a aussi

d(xp, xq) ≤ d(xp, x) + d(x, xq) ≤ 2ε/2 = ε ,

donc la suite est de Cauchy.
Par contre la réciproque peut être fausse dans certains espaces. Considérons par exemple

R \ {0}, muni de sa distance usuelle, et la suite définie par xn = 1/n, n ≥ 1. C’est clairement une
suite de Cauchy, mais elle ne converge pas dans R \ {0}. (Elle converge par contre dans R, mais
c’est autre chose.)

Définition 2.2. L’espace métrique (F, d) est complet si toute suite de Cauchy est convergente.

Exemple 2.3. R, muni de sa distance euclidienne usuelle, est complet. On ne va pas le
démontrer ici, c’est une propriété fondamentale de R, qui découle de la propriété de la borne
inférieure (tout ensemble minoré de R admet une borne inférieure).

Exemple 2.4. R \ {0}, muni de la distance euclidienne usuelle, n’est pas complet.

En effet on a vu plus haut que R \ {0} contient une suite de Cauchy non convergente.

3. Espaces de Hilbert

3.1. Définition et sous-espaces. On peut maintenant donner la définition d’un espace de
Hilbert.

Définition 3.1. Un espace de Hilbert sur R (resp. C) est un espace vectoriel muni d’un produit
scalaire réel (resp. hermitien) tel que la métrique associée est complète.

En général on va considérer des espaces de Hilbert de dimension infinie, même si la définition
donnée ici autorise la dimension finie. Certaines définitions se limitent en fait à des espaces de
dimension infinie.

On rappelle la définition d’un sous-ensemble fermé d’un espace métrique.

Définition 3.2. Soit (E, d) un espace métrique. Un sous-ensemble F ⊂ E est fermé si toute
suite convergente d’éléments de F a sa limite dans F .
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Proposition 3.3. Soit (E, 〈, 〉) un espace de Hilbert. Tout sous-espace fermé de E, muni de
la restriction du produit scalaire, est un espace de Hilbert.

Démonstration. On vérifie directement en se ramenant aux définitions que la restriction du
produit scalaire est encore un produit scalaire.

Pour montrer que (F, 〈, 〉) est complet, on considère une suite de Cauchy (xn) dans F . Comme
c’est une suite de Cauchy dans E et que E est complet, elle converge dans E vers une limite x.
Mais comme F est fermé, x ∈ F . Donc F (muni de la restriction du produit scalaire) est complet
et donc de Hilbert. �

3.2. Exemples.

Définition 3.4. On note l2, ou l2(N) l’espace vectoriel des suites complexes dont la somme
des carrés des modules est convergente,

l2 = {u : N→ C |
∑
k

|uk|2 <∞} .

On le muni de l’application bilinéaire suivante :

(1) 〈u, v〉 =
∑
k

ukvk .

On note d’abord que cette application bilinéaire est bien définie, c’est-à-dire que la série qui
la définit est convergente. En effet pour tout p, q ∈ N on a d’après l’inégalité de Cauchy-Schwarz
appliquée dans Cq−p+1 :

|
q∑

k=p

ukvk|2 ≤ (

q∑
k=p

|uk|2)(

q∑
k=p

|vk|2) .

Comme les séries
∑
|uk|2 et

∑
|uk|2 sont convergentes, il existe pour tout ε > 0 un n ∈ N tel que

si p, q ≥ n alors le terme de droite est plus petit que ε, et on en déduit que la série de (1) converge.

Lemme 3.5. La forme bilinéaire définie par (1) est un produit scalaire hermitien sur l2. La
distance associée est complète.

Preuve partielle. On vérifie directement que 〈, 〉 est une forme sesquilinéaire sur l2. De
plus, elle est définie positive, car si (un) ∈ l2 est non nulle, alors

〈(un), (un)〉 =
∑
k

|uk|2 > 0 .

On va montrer que (l2, 〈, 〉) est complet. Soit (un)n∈N une suite de Cauchy dans l2. Ainsi pour
tout n on a un = (unk )k∈N. Considérons k ∈ N fixé. Pour tout p, q ∈ N on a

|upk − u
q
k|

2 ≤
∑
i

|upi − u
q
i |

2 = ‖up − uq‖2 .

Comme la suite (un) est de Cauchy, on voit en appliquant la définition que la suite (unk )n∈N est de
Cauchy, et donc qu’elle converge une limite uk. Ainsi, on peut conclure que la suite de fonctions
données par un = (unk )k∈N converge simplement vers une limite u.

On va admettre ici qu’en fait, la convergence est au sens de la distance de l2, c’est à dire qu’on
a bien

lim
∞
‖un − u‖ = 0 .

�
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Définition 3.6. On note L2(R) l’espace vectoriel des fonctions intégrables u de R dans C
telles que l’intégrale ∫

R
|u(t)|2dt

est convergente, muni du produit scalaire hermitien

〈u, v〉 =

∫
R
u(t)v̄(t)dt .

Théorème 3.7 (admis). L2(R), muni de ce produit scalaire hermitien, est un espace de Hilbert.

Pour la définition suivante, on rappelle qu’on note C∞0 (R) l’espaces des fonctions C∞ à support
compact de R dans C.

Définition 3.8. Soit f ∈ L2. On dit que f est dérivable au sens faible (ou au sens des
distributions) s’il existe une fonction g ∈ L2 telle que pour toute fonction φ ∈ C0

∞(R),∫
f(t)φ′(t)dt = −

∫
g(t)φ(t)dt .

Dans ce cas, on dit que g est la dérivée de f au sens faible (ou au sens des distributions).

Notons que si f est dérivable, on voit par une intégration par parties que g = f ′ satisfait la
définition (on peut intégrer par parties puisque φ est supposé à support compact). Mais beaucoup
de fonctions qui ne sont pas dérivables au sens “fort” ont une dérivée au sens faible.

Définition 3.9. On appelle H1(R) l’espace des fonctions de L2(R) qui ont une dérivée au
sens faible (dans L2(R) donc, par définition).

Théorème 3.10. H1(R), muni du produit scalaire

〈f, g〉 =

∫
f(t)ḡ(t) + f ′(t)ḡ′(t)dt ,

est un espace de Hilbert.

H1(R) est ce qu’on appelle un espace de Sobolev — on peut bien sûr ajouter des dérivations,
et définir un espace de Sobolev H2(R) avec le produit scalaire

〈f, g〉 =

∫
f(t)ḡ(t) + f ′(t)ḡ′(t) + f ′′(t)ḡ′′(t)dt ,

pour des fonctions qui admettent deux dérivées au sens faible. Ces espaces de Sobolev jouent un
rôle central dans beaucoup d’applications, par exemple en analyse numérique.

4. Géométrie dans les espaces de Hilbert

On peut faire de la géométrie dans les espaces de Hilbert, comme dans le plan ou dans l’espace
euclidien. Bien sûr une partie seulement des propriétés qui sont vraies dans un espace vectoriel
de dimension finie s’étendent, mais c’est une partie importante qui joue un rôle essentiel dans les
applications.

Dans cette section on considère un espace de Hilbert E, et on note 〈, 〉 son produit scalaire.
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4.1. L’identité de Pythagore. On dit que deux vecteurs u, v ∈ E sont orthogonaux si
〈u, v〉 = 0, on le notera parfois u ⊥ v.

Lemme 4.1 (Identité de Pythagore). Pour tout u, v ∈ E on a

‖u+ v‖2 = ‖u‖2 + 2Re(〈u, v〉) + ‖v‖2 .

En particulier, si u ⊥ v alors

‖u+ v‖2 = ‖u‖2 + ‖v‖2 .

Démonstration. Exercice. �

4.2. L’identité du parallèlogramme. On note la relation suivante, qu’on utilisera plus
tard.

Lemme 4.2 (Identité du parallélogramme). Soient u, v ∈ E, alors

‖u+ v‖2 + ‖u− v‖2 = 2(‖u‖2 + ‖v‖2) .

Démonstration. C’est une conséquence directe de l’identité de Pythagore. �

On note aussi les identités de polarisation suivantes. Dans un espace de Hilbert réel, on a pour
tout u, v ∈ E

〈u, v〉 =
1

4

(
‖u+ v‖2 − ‖u− v‖2

)
.

et dans un espace de Hilbert complexe,

〈u, v〉 =
1

4

(
‖u+ v‖2 − ‖u− v‖2 + i‖u+ iv‖2 − i‖u− iv‖2

)
.

Une conséquence directe est qu’il suffit de connâıtre la norme pour connâıtre le produit scalaire.

4.3. Projection sur un convexe.

Définition 4.3. On dit qu’un sous-ensemble K ⊂ E est convexe si, pour tout x, y ∈ K et tout
t ∈ [0, 1], tx+ (1− t)y ∈ K.

En d’autres termes, chaque fois que K contient deux points, il contient le segment qui les joint.

Théorème 4.4 (Projection sur un convexe). Soit K un convexe non vide fermé de E. Pour
tout x ∈ E, il existe un unique y ∈ K qui minimise la distance à x, parmi tous les éléments de K.
On appelle y le projeté orthogonal de x sur K.

En d’autres termes, il existe un unique y ∈ K tel que

d(x, y) = inf
z∈K

d(x, z) .

Démonstration. Soit

dx = inf
z∈K

d(x, z) .

Comme K 6= ∅, dx <∞. Il existe donc une suite (yn) de points de K tels que lim∞ d(x, yn) = dx,
soit lim∞ ‖yn − x‖2 = d2

x. Choisissons ε > 0, il existe alors N ∈ N tel que pour tout n ≥ N ,
‖yn − x‖2 ≤ d2 + ε.

On choisit p, q ∈ N et on applique l’identité du parallélogramme avec u = yp − x, v = yq − x,
on voit que u− v = yp − yq, si bien que

‖(yp − x) + (yq − x)‖2 + ‖yp − yq‖2 = 2(‖yp − x‖2 + ‖yq − x‖2) ,
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Supposons que p, q ≥ N . On sait que (yp + yq)/2 ∈ K par définition de la convexité de K, et donc

‖yp − yq‖2 = 2(‖yp − x‖2 + ‖yq − x‖2)− ‖(yp − x) + (yq − x)‖2

= 2(‖yp − x‖2 + ‖yq − x‖2)− 4‖(yp + yq)/2− x)‖2

≤ 4(d2 + ε)− 4d2

≤ 4ε .

Ainsi la suite (yn) est de Cauchy, et donc, comme E est complet, elle converge vers une limite y.
Par continuité de la distance on a bien d(y, x) = d.
Supposons maintenant que y, y′ ∈ K sont tous deux tels que

d(x, y) = d(x, y′) = d .

Alors on voit encore en appliquant l’identité du parallélogramme à x− y et x− y′ que

‖y − y′‖2 = 2(‖x− y‖2 + ‖x− y′‖2)− 4‖x− (y + y′)/2‖2

et donc

‖y − y′‖2 ≤ 4d2 − 4d2

si bien que ‖y − y′‖2 = 0 et donc y = y′, ce qui montre l’unicité de la projection orthogonale. �

Remarque 4.5. Supposons queK est un sous-espace vectoriel (fermé) de E. Alors la projection
orthogonale y de x sur K est caractérisée par le fait que y − x ⊥ K. En d’autres termes, il existe
un unique point z de K tel que x− z ⊥ K et c’est précisément le projeté orthogonal de x sur K.

Preuve dans le cas d’un espace de Hilbert réel. On remarque que si z ∈ K et si u ∈
K alors (

d

dt
‖x− (z + tu)‖2

)
|t=0

= 2〈u, x− z〉 ,

qui s’annule pour tout u ∈ K si et seulement si x− z est orthogonal à K. Donc cette orthogonalité
est réalisée lorsque z est le projeté orthogonal de x sur K.

Mais si y, z ∈ K sont deux points de K tels que x − y ⊥ K et x − z ⊥ K, alors y − z ⊥ K.
Mais y − z ∈ K et donc y − z = 0, donc y = z. �

On laisse en exercice le cas d’un espace de Hilbert complexe.
Cette propriété signifie que, si on se donne un sous-espace vectoriel fermé F de E, tout point

x ∈ E a une “meilleure approximation” dans F , qu’on peut de plus caractériser en termes d’or-
thogonalité à F . C’est une propriété essentielle pour beaucoup d’applications. (On peut penser
par exemple au cas où on souhaite modéliser une fonction par une approximation qui vit dans un
sous-espace vectoriel de dimension finie.)

5. Théorème de représentation de Riesz

On se place à nouveau dans une espace de Hilbert E (réel ou complexe) muni d’un produit
scalaire 〈, 〉.

Définition 5.1. Une forme linéaire sur E est une application linéaire de E dans R (resp. C).
On note E∗ l’ensemble des formes linéaires continues sur E. C’est un espace vectoriel.

On note que, dans un espace de Hilbert, toute forme linéaire n’est pas nécessairement continue !

Exemple 5.2. Soit u ∈ E. L’application de E dans R (resp. C) qui à v associe 〈v, u〉 est une
forme linéaire continue sur E.
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Démonstration. Exercice. (Ne pas oublier de montrer la continuité...) �

Théorème 5.3 (Théorème de représentation de Riesz). Pour tout α ∈ E∗, il existe un u ∈ E
tel que

∀v ∈ E,α(v) = 〈v, u〉 .
Démonstration. On suppose que α 6= 0, sans quoi le résultat est obtenu en prenant u = 0.

Il suit que F 6= E.
On note F = ker(α). On montre d’abord que F est un sous-espace fermé de E, on va lui

appliquer le théorème de projection sur un fermé. (...)
On note ensuite que F⊥ est un sous-espace vectoriel de E de dimension 1, c’est-à-dire une

droite vectorielle. En effet, soit y, z ∈ F⊥, y, z 6= 0. Alors

α(y/α(y)− z/α(z)) = 0 ,

donc y/α(y)−z/α(z) ∈ F . Mais y/α(y)−z/α(z) ∈ F⊥ par définition, et donc y/α(y)−z/α(z) = 0,
donc y et z sont proportionnels.

On choisit maintenant x ∈ F⊥, x 6= 0, et on pose

u =
xα(x)

〈x, x〉
.

On note alors (...) que pour tout v ∈ E on a

〈v, u〉 = α(v) ,

ce qui est le résultat recherché. �

6. Compacité faible

NB : cette partie ne sera pas traitée en cours.
On va donner ici sans preuve une autre propriété essentielle des espaces de Hilbert, très utile

pour certaines applications : la compacité faible de la boule unité, et plus généralement des sous-
ensembles fermés et bornés.

Définition 6.1. Si (xn) est une suite dans un espace métrique (E, d), une sous-suite de (xn)
est une suite de la forme (xσ(n))n∈N, où σ : N→ N est une fonction strictement croissante.

Cette définition signifie que, dans une sous-suite, on ne prend qu’une partie des termes de la
suite, on oublie les autres.

Définition 6.2. Dans un espace métrique (E, d), un sous-ensemble K est dit compact si toute
suite d’éléments de K admet une sous-suite convergente.

Rappel 6.3. Dans un espace vectoriel de dimension finie, la boule unité est compacte : toute
suite de vecteurs de norme au plus 1 admet une sous-suite convergente.

Définition 6.4. Soit (xn) une suite dans un espace de Hilbert E. On dit qu’elle est faiblement
convergente de limite x ∈ E si, pour tout u ∈ E,

lim
n→∞

〈xn, u〉 = 〈x, u〉 .

On admet ici le théorème suivant.

Théorème 6.5 (Compacité faible de la boule unité d’un Hilbert). Dans un espace de Hilbert,
la boule unité est faiblement compacte.

Corollaire 6.6. Dans un espace de Hilbert, toute suite bornée admet une sous-suite faible-
ment convergente.
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7. Bases orthonormées

On va maintenant voir une notion de base orthonormée pour les espaces de Hilbert, analogue
à la notion habituelle dans les espaces vectoriels de dimension finie munis de produit scalaires. On
se place à nouveau dans un espace de Hilbert E.

Définition 7.1. Soit B un ensemble quelconque, et soit (ei)i∈B une famille d’éléments de E.
Le sous-espace vectoriel engendré par (ei)i∈B est l’ensemble des vecteurs de E qui s’écrivent sous
la forme ∑

i∈B
aiei ,

où (ai)i∈B est une famille d’éléments de R (resp. C) qui n’est non nulle que pour un ensemble fini
d’éléments de B (si bien que la somme a bien un sens). On note < (ei)i∈B > ce sous-ensemble de
E.

On peut montrer facilement que < (ei)i∈B > est un sous-espace vectoriel de E. C’est par
définition l’ensemble des combinaisons linéaires d’un nombre fini des ei.

Définition 7.2. Soit F ⊂ E, on dit que F est dense dans E si tout élément de E est limite
d’une suite d’éléments de F .

Définition 7.3. Une base orthonormée de E est une famille (ei)i∈B d’éléments de E telle
que :

(1) les ei sont de norme 1,

(2) ils sont deux à deux orthogonaux,

(3) < (ei)i∈B > est dense dans E.

La définition implique que tout élément de E est limite d’une suite d’éléments qui sont com-
binaison linéaire d’un nombre fini de ei.

Théorème 7.4 (Inégalité de Parseval). Soit E un espace de Hilbert, et soit (ei) une base
orthonormée de E. Pour tout x ∈ E et tout sous-ensemble fini B′ ⊂ B on a∑

i∈B′
|〈x, ei〉|2 ≤ ‖x‖2 .

Démonstration. Soit x ∈ E. Par définition d’une base orthonormée, il existe une suite (xn)
d’éléments de < (ei)i∈B > qui converge vers x. On peut écrire pour chaque n ∈ B :

xn =
∑
i∈B

xinei ,

où la famille des (xin)i∈B n’a qu’un nombre fini de termes non nuls.
On a pour chaque n ∈ N on a ∑

i∈B′
|〈xn, ei〉|2 =

∑
i∈B′
|xin|2

≤
∑
i∈B
|xin|2

≤ ‖xn‖2

(On note que toutes les sommes sont finies dans ces équations, car seuls un nombre fini des xin sont
non nuls.)
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Mais on a aussi pour tout i ∈ B
|〈x, ei〉 − 〈xn, ei〉| = |〈x− xn, ei〉| ≤ | x− xn| ‖ei‖ ≤ ‖x− xn‖ ,

et donc

|〈x, ei〉|2 − |〈xn, ei〉|2 = |〈x, ei〉 − 〈xn, ei〉||〈x, ei〉+ 〈xn, ei〉| ≤ ‖x− xn‖(‖x‖+ ‖xn‖) .
En sommant sur les éléments de B′ on obtient que∑

i∈B′
|〈x, ei〉|2 −

∑
i∈B′
|〈xn, ei〉|2 ≤ #(B′)‖x− xn‖(‖x‖+ ‖xn‖) .

Choisissons maintenant ε > 0, et un n ∈ N tel que ‖xn − x‖ ≤ ε. On a alors ‖xn‖ ≤ ‖x‖ + ε,
et donc ∑

i∈B′
|〈x, ei〉|2 ≤

∑
i∈B′
|〈xn, ei〉|2 + #(B′)‖x− xn‖(‖x‖+ ‖xn‖)

≤ ‖xn‖2 + #(B′)‖x− xn‖(‖x‖+ ‖xn‖)
≤ (‖x‖+ ε)2 + #(B′)ε(2‖x‖+ ε)

Comme cette inégalité est valable pour tout ε > 0, on en déduit le résultat. �

On peut distinguer parmi les espace de Hilbert ceux qui ont une base dénombrable, c’est-à-
dire dont les indices sont dans N. La plupart des espaces de Hilbert qu’on rencontre dans la vie
quotidienne sont soit de dimension finie, soit de ce type.

Définition 7.5. Un espace de Hilbert est séparable s’il admet une base orthonormée
dénombrable, c’est-à-dire indicée par les éléments de N.

Pour les espaces de Hilbert séparables, on peut considérer la somme des |〈x, ei〉|2 sur tout N,
et cette somme est toujours convergente.

Théorème 7.6 (Identité de Parseval). Soit E un espace de Hilbert séparable, muni d’une base
orthonormée (ei)i∈N . On a pour tout x ∈ E :

∞∑
i=0

|〈x, ei〉|2 = ‖x‖2 .

Démonstration. Laissée en exercice. �

Il suit de ce théorème que les espaces de Hilbert séparables sont en fait tous les mêmes, en un
sens assez fort.

Corollaire 7.7. Soit E un espace de Hilbert séparable. Il existe une application φ : E → l2

qui est un isomorphisme d’espaces vectoriels et qui préserve le produit scalaire :

∀u, v ∈ E, 〈u, v〉 = 〈φ(u), φ(v)〉 .

Démonstration. On se donne une base orthonormée (ei)i∈N et on considère simplement
l’application linéaire de φ : E → l2 qui envoie x ∈ E sur (〈x, ei〉)i∈N ∈ l2. On vérifie directement
que c’est une application linéaire, et elle est injective d’après l’indentité de Parseval.

Pour montrer que φ est surjective, on prend u = (un)n∈N ∈ l2, on va montrer que u ∈ Im(φ).
Pour tout n ∈ N, on pose

xn =

n∑
k=0

ukek .
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On remarque que pour tout p, q ∈ N avec p ≤ q, on a

‖xq − xp‖2 = ‖
q∑

k=p+1

ukek‖2 =

q∑
k=p+1

|uk|2 .

Comme u ∈ l2, la série
∑
|uk|2 converge, et donc la suite (xn) est de Cauchy. On note x sa limite,

qui existe car E est un espace de Hilbert. On vérifie alors que φ(x) = u.
D’après l’identité de polarisation, pour montrer que φ préserve le produit scalaire, il suffit de

montrer qu’elle préserve la norme. Or c’est une conséquence directe de l’identité de Parseval, et de
la définition de la norme de l2. �

L’identité de Parseval est aussi liée à la reconstruction d’un vecteur d’un espace de Hilbert par
ses produits scalaires avec les éléments d’une base orthonormée. La preuve du résultat suivant est
laissée en exercice (elle n’est pas très difficile), c’est un énoncé simple mais important, qui nous
sera particulièrement utile dans les chapitre suivant sur les séries de Fourier.

Théorème 7.8. Soit (en)n∈N une base orthonormée d’un espace de Hilbert séparable E. Pour
tout x ∈ E, la série ∑

n∈N
〈en, x〉en

est convergente (au sens de la distance associée au produit scalaire) et sa somme est x.

Notons en particulier que la convergence de la série provient de l’identité de Parseval.

8. Procédé d’orthogonalisation de Gram-Schmidt

Le procédé d’orthogonalisation de Gram-Schmidt est une manière d’obtenir une base ortho-
normée à partir de n’importe quelle famille dénombrable d’éléments de E qui “engendre” E.

On rappelle d’abord deux définitions importantes.

Définition 8.1. On dit que (fi)i∈N est linéairement indépendante si chaque fois qu’on a une
famille (ai)i∈N d’éléments de R (resp. C) dont seulement une partie finie est non nulle, telle que∑

i

aifi = 0

alors on a en fait ai = 0 pour tout i.

Définition 8.2. On dit que (fi)i∈N engendre E si < (fi)i∈N > est dense dans E.

Théorème 8.3 (Procédé d’orthogonalisation de Gram-Schmidt). Soit (fi)i∈N une famille
linéairement indépendante qui engendre E. Il existe une unique base orthonormée (ei)i∈N de E
telle que pour tout n ∈ N :

— < (ei)i≤n >=< (fi)i≤n >,
— 〈ei, fi〉 ∈ R>0.

Description rapide de la preuve. On va construire récursivement la famille (ei).
On note d’abord qu’on a nécessairement

e0 = f0/‖f0‖2 ,
puisque d’une part e0 doit être colinéaire à f0 et d’autre part on doit avoir 〈e0, f0〉 ∈ R>0, et
〈e0, e0〉 = 1.

On suppose maintenant la suite (ei) construite jusqu’à i = n− 1, on va choisir en. On sait que
< f0, · · · , fn > est un sous-espace vectoriel de E de dimension n + 1, alors que < e0, · · · , en−1 >
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est de dimension n. Donc en doit être dans l’orthogonal de < e0, · · · , en−1 > dans < f0, · · · , fn >,
qui est un espace vectoriel de dimension 1. Si on choisit un vecteur non nul u dans cet espace, en
doit être de la forme λu, et λ est uniquement déterminé par les condition que ‖en‖ = |λ|‖x‖ = 1
(qui détermine son modole) et que 〈xn, fn〉 ∈ R>0 (qui détermine son argument).

En appliquant cette procédure récursivement, on trouver une unique suite (en)n∈N qui satisfait
les hypothèses du théorème. �

9. Exercices

Produits scalaires hermitiens.

9.1. On se place dans C2 muni de ses coordonnées z1, z2 usuelles. On considère les applications
suivantes. Dire lesquelles sont sesquilinéaires et lesquelles définissent un produit scalaire hermitien.
On note ici z = (z1, z2), z′ = (z′1, z

′
2).

(1) b(z, z′) = z1z2 + z′1z
′
2.

(2) b(z, z′) = z1z
′
1 + z2z

′
2.

(3) b(z, z′) = z1z′1 + z2z′2.

(4) b(z, z′) = z1z
′
2 + z2z

′
1.

(5) b(z, z′) = z1z′2 + z2z′1.

Espaces métriques complets.

9.2. Les fonctions suivantes définissent-t-elles des distances sur R2 ?

(1) d((x, y), (x′, y′)) = |x′ − x|+ |y′ − y|.

(2) d((x, y), (x′, y′)) = max(|x′ − x|, |y′ − y|).

(3) d((x, y), (x′, y′)) = min(|x′ − x|, |y′ − y|).

9.3. Déterminer lesquels, parmi les espaces métriques suivants, lesquels sont complets. Chaque
réponse sera soigneusement argumentée.

(1) ]0,∞[, muni de la distance usuelle sur R.

(2) [0,∞[, muni de la distance usuelle sur R.

(3) R3, muni de la distance euclidienne usuelle.

(4) ]0,∞[×R, muni de la distance euclidienne usuelle de R2.

(5) R2 \ {(0, 0}, muni de la distance Euclidienne de R2.

9.4. On considère Q, l’ensemble des nombres rationnels, munis de la distance induite par la
distance usuelle de R, soit d(r, r′) = |r′ − r|. Est-il complet ?

Espaces de Hilbert.
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9.5.

(1) Soit E un espace vectoriel de dimension finie sur R, muni d’un produit scalaire 〈, 〉. Montrer
que E, muni de la distance associée à 〈, 〉, est complet.

(2) Même question pour un espace vectoriel complexe muni d’un produit scalaire hermitien.

(3) On considère l’espace vectoriel L2(R) des fonctions de carré sommable, c’est-à-dire les
fonctions u : R→ C (non nécessairement continues) telles que∫

R
|u(t)|2dt <∞ .

On admet pour l’instant (cf cours) que la fonction

〈, 〉 : L2(R)× L2(R) → C
(u, v) 7→

∫
R u(t)v̄(t)dt

définit un produit scalaire hermitien complet sur L2(R). Montrer que l’ensemble des fonc-
tions continues de u ∈ L2(R) est un sous-espace vectoriel mais qu’il n’est pas fermé.

Projection sur les convexes.

9.6. Soit E un espace de Hilbert. On note B la boule de centre 0 et de rayon 1 dans E.

(1) Montrer que B est un convexe fermé de E.

(2) Si x ∈ E, déterminer le projeté orthogonal de x sur E.

(3) Soit (en) une base orthonormée de E, et soit p ∈ N. Soit Fp le sous-espace de E engendré
par e0, · · · , ep. Montrer que c’est un convexe fermé de E.

(4) Quel est le projeté orthogonal sur Fp d’un vecteur x ∈ E ?

Formes linéaires.

9.7. Soit u : E → C une forme linéaire sur un espace de Hilbert E. Montrer que u est continue
si et seulement si son noyau est fermé dans E.

9.8. Soit E un espace de Hilbert sur C, et soit E∗ l’espace des formes linéaires continues sur
E. On note φ : E → E∗ l’application qui à u ∈ E associe la forme linéaire v 7→ 〈v, u〉. Est-ce que
φ est R-linéaire ? Est-elle linéaire sur C, ou bien semilinéaire ? Est-elle injective ? Surjective ?

Bases orthonormées.

9.9. Donner une base orthonormée de l2.

9.10. Base de Haar. On note L2([0, 1]) l’ensemble des fonctions de L2 qui sont nulles en-
dehors de l’intervalle [0, 1].

(1) Montrer que L2([0, 1]), muni de la restriction du produit scalaire de L2(R), est un espace
de Hilbert.

(2) On appelle f0 la fonction qui vaut 1 sur [0, 1] et 0 ailleurs, et une famille de fonctions fn,k,
avec n ∈ N et 1 ≤ k ≤ 2n, comme suit.
— fn,k = −2n/2 sur [(k − 1)/2n, (k − 1/2)/2n],

— fn,k = 2n/2 sur ](k − 1/2)/2n, k/2n],
— fn,k = 0 ailleurs.
Tracer un graphe de f0,1, f1,1, f1,2, f2,1.

(3) Montrer que cette famille forme une base orthonormée de L2([0, 1]).
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Polynôme orthogonaux.

9.11. On se place sur l’intervalle [−1, 1], et on note E = L2([−1, 1]) muni de la restriction du
produit scalaire de L2(R). Pour tout n ∈ N on note

Pn(x) =
dn

dxn
(x2 − 1)n .

(1) Montrer que Pn est orthogonal à tout polynôme de degré au plus n− 1.

(2) Montrer qu’il existe des constantes cn, n ∈ N tel que la base orthonormée obtenue en
appliquant le procédé de Gram-Schmidt au système (1, x, x2, · · · ) est (cnPn)n∈N.

On pourra si nécessaire admettre que∫ 1

−1

Pn(x)2dx = 22n(n!)2 2

2n+ 1
.





CHAPITRE 4

Séries de Fourier

Motivations

Les séries de Fourier sont un outil essentiel tant pour les mathématiques que pour leurs ap-
plications en physique et en ingénierie. Elles jouent un rôle central chaque fois qu’on veut étudier
un système périodique mais aussi comme outil mathématique pour étudier les fonctions et les
équations différentielles ou les équations aux dérivées partielles.

Parmi les applications on peut citer par exemple :
— l’étude des oscillateurs ou des circuits électriques,
— l’équation de la chaleur,
— la forme des fonctions d’onde en mécanique quantique,
— l’analyse du signal (en ingeniérie).

Les séries de Fourier sont aussi centrales en mathématiques, elles constituent le coeur de ce qu’on
appelle l’analyse harmonique, qui les généralise très largement à des situations beaucoup plus
riches.

On verra dans le chapitre suivant la notion de transformée de Fourier, qui s’applique à des
fonctions qui ne sont pas périodiques.

Un peu d’histoire

L’étude des polynomes trigonométriques — qui sont sous-jacents aux séries de Fourier — est
plus ancienne. Mais on peut associer les débuts des séries de Fourier proprement dites d’une part
aux travaux de d’Alembert, Euler et Daniel Bernouilli sur les cordes vibrantes, vers 1750, et d’autre
part aux travaux de Joseph Fourier sur l’équation de la chaleur, publiés d’abord en 1807.

L’étude de la convergence et de la régularité des séries de Fourier a été une direction de
recherche importante et féconde pour les mathématiques au cours du XIXème siècle. On peut
mentionner en particulier les travaux de Dirichlet, dans les années 1820.

Objectifs du chapitre

L’objectif du chapitre sera surtout de de savoir calculer la série de Fourier d’une fonction
périodique, dans le cadre réel et dans le cadre complexe. Mais il sera aussi de savoir utiliser les
principaux résultats “généraux” présentés :

— identité de Parseval,
— formule d’inversion des séries de Fourier,
— théorèmes de convergence des séries de Fourier.
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1. Fonctions périodiques

Les séries de Fourier permettent de donner une décomposition simple des fonctions périodiques.
Pour les fonctions qui ne sont pas périodiques, il faut utiliser la transformée de Fourier, qui est un
peu moins pratique, on la verra dans le chapitre suivant.

Définition 1.1. Une fonction fR→ C est périodique de période T > 0, ou T -périodique, si

∀x ∈ R, f(x+ T ) = f(x) .

Il est facile de voir que si f est T -périodique alors, pour tout x ∈ R et tout k ∈ Z, f(x+kT ) =
f(x).

Remarque 1.2. Soit f : R→ C une fonction T -périodique, et soient a, b ∈ R. On a alors∫ a+T

a

f(t)dt =

∫ b+T

b

f(t)dt .

Démonstration. A voir en exercice. �

Définition 1.3. On note L2
T (R) l’espace vectoriel des fonctions localement dans L2 et T -

périodiques de R dans C. On le munit du produit scalaire hermitien suivant :

〈f, g〉 =

∫ a+T

a

f(t)ḡ(t)dt ,

où a est n’importe quel élément de a. (Le résultat ne dépend pas du choix de a d’après la remarque
précédente.)

Théorème 1.4. L2
T (R), muni de 〈, 〉, est un espace de Hilbert.

Idée rapide de la preuve. A chaque fonction f ∈ L2
T (R), on associe une fonction f̄ : R→

C égale à f sur [0, T ] et à 0 ailleurs. On remarque alors que le produit scalaire entre deux fonctions
f, g ∈ L2

T (R) est égal au produit scalaire usuel de L2(R) pris sur f̄ , ḡ. On en déduit directement
que 〈, 〉 est un produit scalaire hermitien, et avec un peu plus d’efforts la complétude. �

On va s’intéresser dans la suite du chapitre essentiellement aux fonctions périodiques de période
2π, mais cette valeur pourrait facilement être remplacée par n’importe quelle période T > 0.

2. Séries de Fourier complexes

On commence par les séries de Fourier complexes, qui sont un peu plus simples.

Définition 2.1. Pour tout k ∈ Z, on note ek la fonction 2π-périodique définie par

ek(t) =
1√
2π
eikt .

Théorème 2.2. (en)n∈Z est une base orthonormée de L2
2π(R).

Schéma de la preuve. On vérifie directement que pour tout n,m ∈ Z on a

〈en, em〉 =
1

2π

∫ 2π

0

eint−imtdt =
1

2π

∫ 2π

0

cos((n−m)t+ i sin((n−m)t)dt = δnm .

Il reste à montrer que < (en)n∈N > est dense dans L2
2π(R), ce qu’on ne fera pas ici (ça demande

des techniques additionnelles). �
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Définition 2.3. Soit f ∈ L2
2π(R). Ses coefficients de Fourier (complexes) sont les nombres

cn, n ∈ Z définis par

cn(f) = 〈f, en〉 =
1√
2π

∫ 2π

0

f(t)e−intdt .

Remarque 2.4. Certaines définitions diffèrent de celle-ci par le coefficient ! On a choisi une
définition qui donne une relative symétrie à la formule de reconstruction ci-dessous.

On peut appliquer le théorème 7.8 du chapitre précédent, qui montre directement le résultat
essentiel suivant.

Théorème 2.5. Soit f ∈ L2
2π(R), et soient cn ses coefficients de Fourier (complexes). La série∑

n∈N
cnen

est convergente au sens de L2
2π(R), et sa somme est f . On l’appelle série de Fourier (complexe) de

f .

Corollaire 2.6. On a

f(t) =
1√
2π

∑
n∈Z

cne
int ,

et la série converge au sens L2
2π.

On va voir plus bas des théorèmes de convergences un peu plus précis pour les fonctions qui
sont plus régulières.

On peut remarquer que la parité de la fonction f se lit dans les coefficients de Fourier, et
réciproquement. Rappelons que f est dit paire si f(−t) = f(t) pour tout t ∈ R, impaire si f(−t) =
−f(t) pour tout t ∈ R.

Remarque 2.7. (1) f est paire si et seulement ses coefficients de Fourier sont réels, et
impaire si et seulement si ses coefficients de Fourier sont imaginaires purs.

(2) f est réelle si et seulement si c−n = cn pour tout n ∈ Z, et f est imaginaire pure si et
seulement si c−n = −cn pour tout n ∈ Z.

3. Séries de Fourier réelles

Lorsque f est une fonction réelle, les coefficients cn peuvent avoir une partie imaginaire – ça
dépend de la symétrie de f , et non pas de si elle est complexe ou réelle.

Mais on peut utiliser une variante de la transformée de Fourier, qui évite de faire apparâıtre
des coefficients et des fonctions complexes.

Théorème 3.1. La famille de fonctions suivantes est une base orthonormée de L2
2π(R) :

1√
2π
,

1√
π

cos(nt),
1√
π

sin(nt), n ∈ N \ {0} .

Notons que dans cet énoncé on peut prendre f réelle (et considérer un espace de Hilbert réel)
mais on peut aussi considérer de manière générale des fonctions complexes.

Démonstration. On se ramène au théorème correspondant pour les séries de Fourier com-
plexes, et on remarque que pour n ≥ 1 on a

1√
π

cos(nt) =
en + e−n√

2
,

1√
π

sin(nt) =
en − e−n
i
√

2
.

On en déduit le résultat par un argument direct de changement de base. �
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Définition 3.2. Soit f ∈ L2
2π(R) une fonction (réelle), ses coefficients de Fourier réels sont

a0 =
1√
2π

∫ 2π

0

f(t)dt , an =
1√
π

∫ 2π

0

f(t) cos(nt)dt , bn =
1√
π

∫ 2π

0

f(t) sin(nt)dt , n ≥ 1 .

On a alors le théorème de reconstruction suivant.

Théorème 3.3. Soit f ∈ L2
2π(R). La série

a0√
2π

+
1√
π

∞∑
n=1

an cos(nt) + bn sin(nt)

est convergente au sens de L2
2π(R), et sa limite est f . On l’appelle la série de Fourier (réelle) de

f .

Comme pour le cas complexe, on peut relier les symétries de f aux valeurs de ses coefficients.

Remarque 3.4. f est paire si et seulement si bn = 0 pour tout n, et impaire si et seulement
si an = 0 pour tout n.

On peut passer facilement des coefficients complexes aux coefficients réels, pour une fonction
à valeurs réelles, mais aussi pour une fonction à valeurs complexes (dans ce cas les an, bn sont
complexes). On a les formules de transformation suivantes, pour n ≥ 1 :

cn =
an + ibn√

2
, c−n =

an − ibn√
2

,

an =
cn + c−n√

2
, bn =

cn − c−n
i
√

2
.

Comme dans le cas complexe, on peut relier la norme dans L2 de la fonction à celle dans l2 de
ses coefficients de Fourier.

Théorème 3.5 (Formule de Parseval, cas réel). Soit f ∈ L2
2π(R) une fonction à valeurs réelles,

soient an, bn ses coefficients de Fourier. Alors∫ 2π

0

f(t)2dt = a2
0 +

∞∑
n=1

a2
n + b2n .

La preuve suit, comme dans le cas complexe, de la formule correspondante pour les coefficients
d’un vecteur d’un espace de Hilbert dans une base orthonormée.

4. Convergence des séries de Fourier

On dispose de théorèmes plus précis de convergence des séries de Fourier. On va les admettre
ici sans démonstration.

Le premier résultat décrit la convergence en un point de la série de Fourier d’une fonction qui
vérifie des hypothèses de régularité locales en ce point.

Théorème 4.1 (Théorème de convergence simple de Dirichlet). Soit f ∈ L2
2π(R), et soit x ∈ R

un point où f est continue et dérivable à droite et à gauche. Alors la série de Fourier de f converge
simplement vers f(x) en x.

Un autre énoncé, global, s’applique aux fonctions pour lesquelles on dispose d’hypothèses de
régularité globales.

Théorème 4.2 (Théorème de convergence uniforme de Dirichlet). Si f est continue et C1 par
morceaux, alors sa série de Fourier converge uniformément vers f .
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Figure 1. Phénomène de Gibbs, avec trois approximations successives d’une fonc-
tion non continue (source wikipedia)

Phénomène de Gibbs. Pour les fonctions qui ne sont pas continues, le “phénomène de
Gibbs” indique que la convergence ne se produit pas “aussi bien” qu’on aurait pu l’espérer. Non
seulement cette convergence n’est pas uniforme — ce n’est pas possible puisque on a vu que la
somme d’une série uniformément convergente de fonctions continues est continue — mais le “saut”
à la limite est plus important que le saut de la fonction qu’on cherche à reconstruire, de 18% à peu
près.

5. Régularité des fonctions et coefficients de Fourier

La régularité d’une fonction est liée à la décroissance des coefficients de sa série de Fourier. La
raison en est donnée par la proposition simple suivante.

Proposition 5.1. Soit f ∈ L2
2π(R) une fonction C1, et soient (cn) ses coefficients de Fourier.

Alors les coefficients de Fourier de sa dérivée sont les c′n = incn.

Démonstration. C’est une conséquence directe de l’intégration par partie appiquée à la
définition des coefficients de Fourier. �

En conséquence, on a la proposition suivante. On noteH1
2π l’espace des fonctions 2π-périodiques

qui sont localement dans l’espace H1 des fonctions qui sont dans L2 et admettent une dérivée au
sens faible qui est dans L2.

Proposition 5.2. Soit f ∈ H1
2π, alors ses coefficients de Fourier sont tels que la suite (ncn)n∈Z

est de carré sommable.

Démonstration. C’est une conséquence directe de la définition d’une dérivée au sens faible
et de la formule d’intégration par parties. �

En termes de fonctions Ck, on a des relations précises entre dérivabilité et décroissance des
séries de Fourier. On admettra le résultat ici (une partie de l’énoncé se démontre aisément par
intégration par parties).

Théorème 5.3. Soit f ∈ L2
2π(R). Soit k ∈ N.

— Si f est dans Ck, alors nkcn → 0.
— Si (nk+2cn)n∈Z est bornée, alors f est dans Ck.

On peut montrer le premier point facilement par récurrence sur k en utilisant des intégrations
par parties.
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6. Séries de Fourier en plusieurs variables

Pour étudier des équations aux dérivées partielles en plusieurs variables d’espace, on va avoir
besoin de compléter un peu le cours sur les séries de Fourier, en introduisant des séries de Fourier
à plusieurs variables. On se bornera ici à quelques énoncés simples et utiles. On se limite à deux
variables, mais des énoncés analogues sont valables pour trois variables ou plus.

On note ici S1 l’ensemble des réels considérés modulo 2πZ, qu’on peut voir (un peu näıvement)
comme l’intervalle [0, 2π] dans lequel on a identifié 0 et 2π. On note aussi S1 × S1 l’ensemble des
couples (x, y), avec x et y deux éléments de S1.

Définition 6.1. Soit f : S1×S1 → C une fonction qui est dans L2. On définit ses coefficients
de Fourier comme suit, pour k, l ∈ Z :

ck,l =
1

2π

∫
S1×S1

f(x, y)e−i(kx+ly)dxdy .

On a la formule de reconstruction suivante.

Théorème 6.2 (Admis). Supposons que f est C1 (ou C1 par morceaux). Alors on a en tout
point :

f(x, y) =
1

2π

∑
k,l∈Z

ck,le
i(kx+ly) .

De plus, comme pour les fonctions d’une variable, la régularité des fonctions est liée à la
décroissance des coefficients de Fourier. En particulier, on peut définir comme pour les fonctions
de une variable les espaces L2(S1 × S1), H1(S1 × S1), H2(S1 × S1), et on a que

— f ∈ L2(S1 × S1) si et seulement si
∑
k,l∈Z |ck,l|2 <∞,

— f ∈ H1(S1 × S1) si et seulement si
∑
k,l∈Z(|k|+ |l|)2|ck,l|2 <∞,

— f ∈ H2(S1 × S1) si et seulement si
∑
k,l∈Z(k2 + l2)2|ck,l|2 <∞.

On dispose aussi de liens entre la régularité Ck des fonctions et la décroissance des coefficients de
Fourier.

On dispose aussi d’une forme réelle de cette équation, qui peut s’écrire sous la forme de somme
de sin et de cos en x et en y. Alternativement, une fonction f est à valeurs réelles si et seulement
si on a pour tout k, l ∈ Z

c−k,−l = ck,l .

La propriété essentielle pour ce qui nous concerne est la manière dont la dérivation agit sur les
coefficients de Fourier.

Proposition 6.3. Soit f : S1 × S1 → C une fonction C2, soient ck,l, k, l ∈ Z ses coefficients
de Fourier. Alors les coefficients de Fourier de ses dérivées partielles sont ikck,l pour ∂f/∂x, et
ilck,l pour ∂f/∂y.

7. Exercices

Fonctions périodiques.

7.1. Soit f : R→ C une fonction T -périodique, et soient a, b ∈ R. Montrer qu’on a∫ a+T

a

f(t)dt =

∫ b+T

b

f(t)dt .

Séries de Fourier complexes.
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7.2. Calculer les coefficients de la série de Fourier complexe de la fonction f : t 7→ cos(5t).

7.3. Montrer que si f est une fonction continue 2π-périodique, et si cn sont ses coefficients de
Fourier, alors limn→±∞ cn = 0.

7.4. Calculer les coefficients de Fourier complexes des fonctions 2π-périodiques définies par les
relations suivantes.

(1) f(t) = t si t ∈ [−π, π[.

(2) g(t) = 1 si t ∈ [0, π[, g(t) = −1 si t ∈ [−π, 0[.

(3) h(t) = |t| si t ∈ [−π, π[.

7.5. Calculer les coefficients de Fourier complexes de la fonction t 7→ max(0, sin(t)).

Calculs de séries de Fourier et applications.

7.6.

(1) Calculer le coefficients de Fourier complexes de la fonction f 2π-périodique telle que f(t) =
t2 pour t ∈ [0, 2π[.

(2) En déduire les sommes des séries suivantes :∑
n≥1

1

n2
,
∑
n≥1

(−1)n+1

n2
,
∑
n≥1

1

n4
.

7.7.

(1) Calculer le coefficients de Fourier complexes de la fonction f 2π-périodique telle que f(t) =
et pour t ∈ [−π, π[.

(2) En déduire la somme des séries suivantes :∑
n≥1

1

n2 + 1
,
∑
n≥1

(−1)n

n2 + 1
.

Questions générales.

7.8. Montrer (en utilisant l’égalité de Parseval) que si deux fonctions continues 2π-périodiques
ont la même série de Fourier, alors elles sont égales.

7.9. Soit f une fonction 2π-périodique de classe C1 et de moyenne nulle.

(1) Montrer que pour tout t ∈ R on a

|f(t)| ≤
∑

n∈Z,n6=0

|cn(f ′)|
|n|

.

(On pourra utiliser la relation entre les coefficients de Fourier de f et de sa dérivée.)

(2) En déduire que

sup
R
|f |2 ≤ π

6

∫ 2π

0

|f ′(t)|2dt .

(On pourra admettre et utiliser le fait que
∑
n≥1 1/n2 = π2/6.)

Séries de Fourier en plusieurs variables.
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7.10. Calculs de séries de Fourier. Ecrire la décomposition en série de Fourier des fonc-
tions suivantes de R× R dans R et 2π-périodiques en x et en y.

(1) f(x, y) = 1 si x ∈ [0, π] et y ∈ [0, π], f(x, y) = 0 si x 6∈ [0, π] ou y 6∈ [0, π].

(2) g(x, y) = x+ y pour x, y ∈ [0, 2π].

7.11. Fonctions décomposable en produit. On considère deux fonctions f, g : [0, 2π]→ C
continues et C1 par morceaux, et on note f ⊗ g la fonction de [0, 2π] × [0, 2π] → C définie par
f ⊗ g : (x, y)→ f(x)g(y). Exprimer les coefficients de Fourier de f ⊗ g en fonction de ceux de f et
de g.



CHAPITRE 5

Transformée de Fourier

Motivations

Les transformées de Fourier peuvent être considérées comme une continuation naturelle des
séries de Fourier. Elles s’appliquent aux fonctions qui ne sont pas périodiques. Comme pour les séries
de Fourier, leur domaine d’application est très vaste et recouvre une large part des mathématiques
et de la physique, ainsi que certains domaines importants de l’ingénierie.

Objectifs du chapitre

L’objectif principal sera de savoir calculer la transformée de Fourier d’une fonction. Mais il
sera important de connâıtre aussi certains outils utiles :

— la transformée de Fourier inverse,
— la formule de Parseval,
— le produit de convolution et sa relation avec le produit usuel.
Le traitement mathématique rigoureux de la tranformée de Fourier est plus délicat que pour

les séries de Fourier. La plupart des énoncés, dans ce cours pour ingénieurs et physiciens, seront
donc admis sans démonstration. Il faudra par contre comprendre les énoncés et savoir les appliquer
dans les exercices.

1. Des séries de Fourier à la transformée de Fourier

On peut considérer la série de Fourier complexe d’une fonction 2π-périodique comme une sorte
de “fonction discrète”, qui ne prend des valeurs non nulles qu’aux entiers relatifs — et qui prend
la valeur ck en k.

Considérons une fonction f périodique de période non pas 2π mais T . Les coefficients de Fourier
sont alors

ck =
1√
T

∫ T

0

e−2πkit/T f(t)dt ,

et la formule de reconstruction est

f(t) =
1√
T

∑
k

cke
2πkit/T .

En d’autres termes, les coefficients de Fourier peuvent être considérés comme une fonction qui
prend des valeurs non nulles aux points de la forme 2πk/T , pour k ∈ Z.

Si on fait tendre T →∞, on obtient une suite de fonctions, associées aux séries de Fourier, qui
sont non nulles sur un “peigne” de plus en plus fin. A la limite, on voit émerger la notion de série
de Fourier.
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Figure 1. Des séries de Fourier à la transformée de Fourier

2. Définition, formule inverse

On dira qu’une fonction f : R→ C est intégrable sur R si∫ ∞
−∞
|f(t)|dt

existe (donc est convergente). On notera L1(R) l’espace des fonctions intégrables sur R.

Définition 2.1. Soit f une fonction intégrable sur R, sa transformée de Fourier est la fonction

f̂ : R→ R définie par

f̂(ξ) =
1√
2π

∫ ∞
−∞

f(t)e−ixξdx .

Comme f est intégrable sur R, l’intégrale est bien définie pour tout ξ. De plus, la transformée

de Fourier f̂ est bornée, et on a

∀ξ ∈ R, |f̂(ξ)| ≤ 1√
2π

∫
R
|f(x)|dx .

Notons aussi que (comme pour les séries de Fourier) différentes définitions diffèrent en parti-
culier par le coefficient qui est choisi. Celui que nous prenons ici a l’avantage d’être proche de celui
que nous avons déjà utilisé pour les séries de Fourier, et aussi (comme pour les séries de Fourier) de
donner une certaine symétrie entre la transformée de Fourier et la transformé de Fourier inverse,
et à la formule de Plancherel.

Pour la transformée de Fourier, on utilise toujours l’analogue de la série de Fourier complexe,
et non pas une version réelle (ce qui en principe serait possible aussi, mais pas très pratique).

Définition 2.2. Soit g : R → C une fonction intégrable sur R, sa transformée de Fourier
inverse est la fonction

ǧ(x) =
1√
2π

∫ ∞
−∞

g(ξ)eixξdξ .
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On a bien sûr un théorème de reconstruction, qu’on peut énoncer comme suit. On admettra
cet énoncé ici.

Théorème 2.3. Supposons que f ∈ L1(R) est telle que f̂ ∈ L1(R). Alors
ˇ̂
f = f .

Distributions. Dans la pratique, on prend souvent la transformée de Fourier de fonctions
qui ne sont pas dans L1(R), par exemple la fonction t→ cos(t). Pour donner un sens rigoureux à
cette opération, il faut introduire la notion de distribution. Les distributions sont des “fonctions
généralisées” qui fournissent un cadre général pour traiter de la transformée de Fourier — et de
beaucoup d’autres opérations souvent utilisées en physique.

3. Propriétés

On va mentionner ici quelques propriétés importantes de la transformation de Fourier. A chaque
fois, une propriété correspondante peut être énoncée pour la transformée de Fourier inverse.

Proposition 3.1 (Linéarité). Soient f, g ∈ L1(R), et soit a ∈ C. Alors f + ag ∈ L1(R), et
̂(f + ag) = f̂ + aĝ.

La preuve suit de manière immédiate de la linéarité de l’intégrale en x.

Proposition 3.2 (Translation en x). Soit f ∈ L1(R), et soit x0 ∈ R. Soit f0 la fonction

définie par f0(x) = f(x− x0). Alors pour tout ξ ∈ R on a f̂0(ξ) = e−ix0ξ f̂(ξ).

La preuve est à nouveau une conséquence directe de la définition.

Proposition 3.3 (Changement d’échelle). Pour tout a ∈ R, a 6= 0, si on définit une fonction
h ∈ L1(R) par h(x) = f(ax), alors pour tout ξ ∈ R on a

ĥ(ξ) =
1

|a|
f̂

(
ξ

a

)
.

La preuve est encore une conséquence immédiate de la définition. C’est aussi le cas pour la
proposition suivante.

Proposition 3.4 (Conjugaison). Soit f ∈ L1(R). Alors pour tout ξ ∈ R on a ˆ̄f(ξ) = f̂(−ξ).

Corollaire 3.5. f est à valeurs réelles si et seulement si f̂ est hermitienne, c’est-à-dire telle

que f̂(−ξ) = f̂(ξ). f est à valeurs imaginaires pures si et seulement si f̂ est anti-hermitienne,

c’est-à-dire telle que f̂(−ξ) = −f̂(ξ).

Proposition 3.6 (Dérivation). Soit f ∈ L1(R) dérivable, telle que f ′ ∈ L1(R). Alors pour

tout ξ ∈ R, ˆf ′(ξ) = iξf̂(ξ). En conséquence, si f est assez régulière, on a aussi ˆf (n)(ξ) = (iξ)nf̂(ξ)
pour tout n.

Ceci permet, comme dans le cas des séries de Fourier, de relier la régularité d’une fonction à
la décroissance de sa transformée de Fourier. On revient sur ce point plus bas.

4. Produit et convolution

Le produit de convolution est l’analogue, du coté des fréquences, du produit usuel des fonctions.

Définition 4.1. Soit f, g ∈ L2(R). On définit leur produit de convolution f ∗ g par

(f ∗ g)(x) =

∫ ∞
−∞

f(y)g(x− y)dy .
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On peut aussi écrire, de manière plus symétrique mais moins explicite :

(f ∗ g)(x) =

∫
y+z=x

f(y)g(z) .

Remarque 4.2. Sous cette forme on voit facilement que le produit de convolution est :
— commutatif : f ∗ g = g ∗ f ,
— associatif : f ∗ (g ∗ h) = (f ∗ g) ∗ h.

Exemple 4.3. Soit φ la fonction égale à 1/2 sur [−1, 1], et zéro ailleurs. Alors :
— Le produit de convolution φ ∗ φ est la fonction “triangulaire” qui est continue et affine
par morceaux, qui vaut 0 hors de [−2, 2] et 1 en 0 (exercice). Si on fait des produits
de convolution successifs φ ∗ · · · ∗ φ on trouve des fonctions de plus en plus régulières,
polynomiales par morceaux.

— Si f est une fonction dans L1, prendre le produit de convolution f ∗ φ revient à prendre
en chaque point x une moyenne des valeurs de f entre x− 1 et x+ 1.

Proposition 4.4. Si f, g ∈ L1 ∩ L2, alors f ∗ g est bien définie et est dans L1, de plus∫ ∞
−∞
|f ∗ g(u)|du =

∫ ∞
−∞
|f(t)|dt

∫ ∞
−∞
|g(s)|ds .

La preuve est laissée en exercice.
Le produit de convolution a aussi une relation directe avec la dérivation.

Proposition 4.5. Soit f ∈ L1 ∩ L2 et g ∈ L1 ∩ L2 dérivable. Alors f ∗ g est dérivable, et
(f ∗ g)′ = f ∗ g′.

On admettra cette proposition ici, car la démontrer exige des outils techniques (dérivation d’une
intégrale dépendant d’un paramètre), mais la preuve est très simple si on suppose par exemple que
g est à support compact.

5. Formule de Parseval

Il est en fait possible d’étendre la définition de la transformée de Fourier (et de la transformée
de Fourier inverse) aux fonction qui sont dans L2(R). On a alors la propriété essentielle suivante,
qui sera admise ici.

Théorème 5.1 (Formule de Plancherel). Soit f ∈ L2(R), sa transformée de Fourier est aussi
dans L2(R), et on a : ∫ ∞

−∞
|f(t)|2dt =

∫ ∞
−∞
|f̂(ξ)|2dξ .

En d’autres termes, la transformée de Fourier est une isométrie de L2(R). Cette formule a
aussi souvent une interprétation physique en termes d’énergie.

Corollaire 5.2 (Formule de Parseval). Soit f, g ∈ L2(R). Alors∫ ∞
−∞

f(t)ḡ(t)dt =

∫ ∞
−∞

f̂(ξ)¯̂g(ξ)dξ .

Ceci suit du théorème par la formule de polarisation.
La formule de Plancherel a des conséquences intéressantes. D’une part, on peut “reconnâıtre”

les fonctions de L2 en connaissant seulement leur transformée de Fourier : ce sont les fonctions
dont la transformée de Fourier est dans L2. Mais on peut aussi reconnâıtre les fonctions qui sont
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dans H1, c’est-à-dire les fonctions de L2 qui ont une dérivée (au sens faible) qui est dans L2 : ce
sont les fonctions f telles que∫ ∞

−∞
|f̂(ξ)|2dξ <∞ ,

∫ ∞
−∞

ξ2|f̂(ξ)|2dξ <∞ .

6. Exemples

On va voir quelques exemples élémentaires mais très utiles.

Exemple 6.1. La fonction rectangle f égale à 1 sur [−1/2, 1/2]. Sa transformée de Fourier est

f̂(ξ) =
1√
2π

sin(ξ/2)

ξ/2
.

Exemple 6.2. La fonction “Gaussienne” x → e−ax
2

joue un rôle particulièrement important
en probabilités et statistiques. Sa transformée de Fourier est

1√
2a
e−ξ

2/4a .

La gaussienne est donc sa propre transformée de Fourier, à un changement d’échelle près.

7. Transformée de Fourier dans Rn

On peut considérer la transformée de Fourier non seulement dans R, mais plus généralement
dans Rn. On note L1(Rn) l’espace vectoriel des fonctions localement intégrales de Rn dans C, telles
que ∫

Rn

f(x1, · · · , xn)dx1 · · · dxn <∞ .

Définition 7.1. Soit f ∈ L1(Rn), sa transformée de Fourier est la fonction f̂ : Rn → C
définie par

∀ξ ∈ Rn, f̂(ξ) =
1
√

2π
n

∫
x∈Rn

f(x)e−i〈x,ξ〉dx1 · · · dxn .

La transformée de Fourier inverse est alors donnée par la formule :

∀x ∈ Rn, ǧ(x) =
1
√

2π
n

∫
ξ∈Rn

g(x)ei〈x,ξ〉dξ1 · · · dξn .

La plupart des propriétés de la transformée de Fourier de R sont encore valables dans le cadre
de Rn.

8. Exercices

Produit de convolution.

8.1. Soit φ la fonction égale à 1 sur [−1/2, 1/2] et à 0 ailleurs. On note φ∗n le produit de
convolution de φ n fois avec elle-même, par exemple φ3∗ = φ ∗ φ ∗ φ.

(1) Calculer φ ∗ φ. Montrer que c’est une fonction continue, affine par morceaux.

(2) Calculer φ ∗φ ∗φ. Montrer que c’est une fonction C1, à support compact, et qu’il existe un
nombre fini d’intervalles qui recouvrent R sur lesquels cette fonction est un polynôme de
degré au plus 2.

(3*) Montrer que la même description s’applique à φ∗n, mais avec des polynômes de degré au
plus n− 1.
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8.2. Soit ψ une fonction C∞ à support compact, d’intégrale égale à 1. Pour tout n ∈ N, n ≥ 1,
on pose

ψn(x) = nψ(nx) .

(1) Montrer que ψn est encore à support compact et que son intégrale est 1. Quel est son
support ?

(2) Soit f : R→ R une fonction continue. Montrer que pour tout x ∈ R,

lim
n→∞

(f ∗ ψn)(x) = f(x) .

Transformée de Fourier.

8.3. Soit f ∈ L1(R), et n ∈ N telle que fn : x → xnf(x) soit dans L1(R). Exprimer la
transformée de Fourier de fn en fonction de celle de f .

8.4. Calculer les transformée de Fourier des fonctions suivantes.

(1) fa(x) = e−a|x|, pour a > 0.

(2) ga(x) = e−ax
2

pour a > 0.

(3) f(x) = 1 pour x ∈ [−1/2, 1/2], f(x) = 0 ailleurs.

(4) g(x) = x+ 1 pour x ∈ [−1, 0[, g(x) = 1− x pour x ∈ [0, 1], g(x) = 0 ailleurs.

Principe d’incertitude. Soit f : R→ C une fonction C∞ à support compact.

(1) Montrer que ∫ ∞
−∞
|f(x)|2dx = −2Re

(∫ ∞
−∞

xf(x)f̄ ′(x)dx

)
.

(2) En déduire que∫ ∞
−∞
|f(x)|2dx ≤ 2

(∫ ∞
−∞

x2|f(x)|2dx
)1/2(∫ ∞

−∞
ξ2|f̂(ξ)|2dξ

)1/2

.

(3) Montrer qu’on a égalité dans cette inégalité lorsque f est une gaussienne, c’est-à-dire une

fonction de la forme x→ a−bx
2

, b > 0.

L’inégalité obtenue a une interprétation physique : si la fonction f est “localisée” au voisinage de
0, sa transformée de Fourier ne peut pas être bien localisée au voisinage de 0 aussi. En mécanique
quantique, ça se traduit sous la forme du “principe d’incertitude de Heisenberg” : deux variables
conjuguées, comme la position et l’impulsion d’une particule, ne peuvent pas être simultanément
localisées ; si la position est déterminée précisément, l’impulsion ne peut pas l’être aussi.



CHAPITRE 6

Transformée de Laplace

Motivations

La transformée de Laplace peut être considérée comme une extension ou une généralisation de
la transformée de Fourier : au lieu de considérer seulement des fréquences ξ réelles, on considère un
paramètre “fréquentiel” complexe, et on peut s’intéresser en particulier au cas où ce paramètre est
réel. Une différence importante est que la transformée de Laplace admet une transformée inverse
qui est d’une forme assez différente, contrairement à la transformée de Fourier.

Mais les applications de la transformée de la transformée de Laplace sont en partie différentes
de celles de la transformée de Fourier. Si elle sert aussi à résoudre des équations différentielles, la
transformée de Laplace joue un rôle particulier en probabilité, du fait de ses relations avec le calcul
des moments des fonctions. Elle est largement utilisée pour résoudre des équations différentielles
et intégrales en physique et en ingéniérie.

La construction rigoureuse de la transformée de Laplace et aussi plus délicate que pour la
transformée de Fourier. Une grande partie des résultats présentés dans ce chapitre seront admis.

Un peu d’histoire

La découverte de la transformée de Laplace est attribuée à Pierre-Simon de Laplace (1749-
1827), dans le cadre de ses travaux sur les probabilités. Laplace était un mathématicien et astro-
nome, dont les travaux ont eu une influence importante dans divers domaines mais en particulier
en probabilités et statistiques.

Objectifs du chapitre

Comprendre et savoir utiliser les principales propriétés de la transformée de Laplace.

1. Définition et inversion

On peut donner la définition suivante de la transformée de Laplace, qui devra être précisée
pour ce qui concerne les valeurs possibles du paramètre s.

Définition 1.1. Soit f : [0,∞[→ C. Sa transformée de Laplace est la fonction Lf définie par

∀s ∈ C,Lf(s) =

∫ ∞
0

f(t)e−stdt .

Sous cette forme, Lf n’est pas partout définie en général (elle l’est par exemple si f est à
support compact). Si f est dans L1(R) alors Lf est bien définie pour tout s ∈ C dont la partie
réelle est positive ou nulle.

Dans certains cas on est conduit à appliquer la transformée de Laplace à une mesure qui a
un poids non nul en zéro, par exemple la distribution de Dirac δ0. Dans cas il faut utiliser une
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définition légèrement différente pour tenir compte de ce poids en zéro :

∀s ∈ C,Lf(s) = lim
ε→0

∫ ∞
−ε

f(t)e−stdt .

On peut noter une ressemblence, voire une relation assez précise, avec la transformée de Fou-
rier : si on se limite à prendre s = iξ, avec ξ réel, on retrouve la transformée de Fourier (à l’exception

du coefficient de normalisation 1/
√

2π, qui n’est d’habitude pas utilisé pour la transformée de La-
place.

On utilise parfois aussi une transformée de Laplace bilatérale. On ne l’utilisera pas dans le
reste du cours.

Définition 1.2. Soit f : R → C. Sa transformée de Laplace bilatérale est la fonction de C
dans C (définie pour tous les s ∈ C avec Re(s) ≥ 0 si f ∈ L1(R) et qui envoie s ∈ C sur∫ ∞

−∞
f(t)e−stdt .

On dispose d’une transformation inverse, qui est appelée transformation de Mellin. En fait
on peut définir la transformée de Mellin seulement pour les fonctions “méromorphes”, c’est une
notion pas encore vue en cours mais qui est toujours satisfaite par les transformées de Laplace de
fonctions “raisonnables”.

Définition 1.3. Soit F : C→ C méromorphe, sa transformée de Mellin est définie par

(MF )(t) =
1

2πi

∫ ∞
−∞

e(γ+is)tF (γ + is)ds ,

où γ > 0 est choisi de manière que :
— l’intégrale converge,
— en ±∞, F (γ + is) tend vers zéro au moins aussi vite que 1/s2.

Sous ces conditions, l’intégrale ne dépend pas du choix de γ.

2. Propriétés

On dispose pour la transformée de Laplace de propriétés assez similaires à celles de la trans-
formée de Fourier. On considère ici deux fonctions f, g ∈ C∞0 (R), mais dans la pratique vous serez
conduits à utiliser ces propriétés pour des fonctions (ou distributions) beaucoup plus générales.
Sauf précision contraire, les preuves sont élémentaires, du moins pour des fonctions dans C∞0 .

Proposition 2.1 (Linéarité). Soient a, b ∈ C, alors L(af + bg) = a(Lf) + b(Lg).

Proposition 2.2 (Dérivation). On a pour tout s ∈ C :

(Lf ′)(s) = s(Lf)(s)− f(0−)

(Lf ′′)(s) = s2(Lf)(s)− sf(0−)− f ′(0−)

(Lf (n))(s) = sn(Lf)(s)− sn−1f(0−)− · · · − f (n−1)(0−)

où f(0−) = limε→0 f(−ε).

Proposition 2.3 (Dilatation en fréquence). Soit n ∈ N. Alors

L(tnf(t)) = (−1)n
dn

dsn
Lf .

Principe de la preuve. Intégration par parties. �
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On peut exploiter cette relation pour calculer les moments d’une fonction f (ou d’une mesure).
La notion de moment est importante en probabilités. Le n-ième moment de f est défini comme

µn =

∫ ∞
0

tnf(t)dt .

Proposition 2.4 (Relation avec les moments de f). On a :

µn = (−1)n(Lf)(n)(0) .

Pour la proposition suivante on est conduit à considérer une fonction f qui n’est pas
nécessairement dans C∞0 .

Proposition 2.5 (Limites en 0 et ∞). Si f admet une limite en ∞ (resp. en 0+) alors

lim
t→∞

f(t) = lim
p∈0

p(Lf)(p) , resp. lim
t→0

f(t) = lim
p∈∞

p(Lf)(p) .

Proposition 2.6 (Convolution). L(f ∗ g) = (Lf)(Lg).

3. Exercices

3.1. Pour chacune des fonctions suivantes, déterminer sa transformée de Laplace, et préciser
son domaine de définition (l’ensemble des p pour lesquels l’intégrale qui définit la transformée de
Laplace converge).

(1) La fonction de Heaviside H, qui faut 1 sur [0,∞[ et 0 ailleurs.

(2) t 7→ tn, pour n ∈ N,

(3) t 7→ eat, pour a ∈ R,

(4) t 7→ tneat, pour n ∈ Z et a ∈ R,

(5) t 7→ eat sin(ωt), pour a ∈ R et ω > 0,

(6) t 7→ tn cos(ωt), pour n ∈ Z et ω > 0,

(7) t 7→ t2H(t),

(8) t 7→ (t2 + t)e−tH(t).

3.2. Résolution d’équation différentielle. Utiliser la transformée de Laplace pour trouver
les solutions des équations différentielles suivantes sur [0,∞[.

(1) y′(t) + y(t) = t(H(t)−H(t− 1)), avec la condition initiale y(0) = 0.

(2) y′′(t)− y′(t) + y(t) = H(t), avec les conditions initiales y(0) = 0, y′(0) = 0.

(3) y′′(t) + 2y′(t) + 2y(t) = e−2tH(t), avec les conditions initiailes y(0) = 1, y′(0) = 0.





CHAPITRE 7

Introduction aux équations aux dérivées partielles

Motivations

Une équation aux dérivées partielles (EDP) est une équation qui exprime les dérivées partielles
d’une fonction (ses dérivées par rapport aux différentes coordonnées) en fonction d’une autre
fonction, souvent avec des conditions imposées sur une partie de l’espace où on veut les résoudre.

Les EDP jouent un rôle essentiel dans presque tous les domaines de la physique, ainsi que pour
de très nombreuses applications. Leur étude théorique a fait des progrès considérables au cours
des 60 dernières années, mais les possibilités informatiques contemporaines ont aussi permis des
progrès énormes dans leur résolution approchée.

Un peu d’histoire

Les bases des équations aux dérivées partielles, telles qu’elles sont présentées ici de manière
très rapide, sont apparues au XVIIIème et XIXème siècle. On peut citer par exemple Laplace
(1749-1827), Poisson (1781-1840) ou Dirichlet (1805-1859) pour les équations elliptique faisant
intervenir le laplacien, Fourier (1768-1830) pour l’équation de la chaleur, d’Alembert (1717-1783)
ou Lagrange (1736-1813) pour l’équation des ondes.

Mais l’étude de ces équations a continué de se développer au cours du XXème siècle, et il
constitue aujourd’hui une branche très importante des mathématiques. L’étude des équations aux
dérivées partielles a aussi été une motivation essentielle pour le développement d’autres parties des
mathématiques, comme l’analyse fonctionnelle.

Objectifs du chapitre

A l’issue de ce chapitre, les étudiants devraient savoir :
— reconnâıtre différents types d’équations aux dérivées partielles et avoir une idée sur le

comportement de leurs solutions,
— savoir utiliser les séries de Fourier ou la transformée de Fourier (suivant les cas) pour étudier

une équation aux dérivées partielles.

1. Introduction

On va voir d’abord quelques propriétés générales des EDP.

Linéarité. Les EDP qu’on va considérer ici sont linéaires. Ceci signifie qu’elles sont de la
forme

P (u) = v ,

où v est une fonction fixée et u est la fonction inconnue, à déterminer. Ici P est un opérateur
linéaire, c’est-à-dire tel que

P (au+ bu′) = aP (u) + bP (u′)

si u, u′ sont deux fonctions et a, b sont deux constantes.

69
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On fixe souvent aussi des conditions “aux limites”, c’est-à-dire qu’on demande que u ou cer-
taines de ses dérivées prennent des valeurs particulières sur un certain sous-ensemble (une droite,
un plan, etc). On peut leur associer une équation homogène, qui est l’équation

P (u) = 0

et on remplace alors les conditions “au bord” par l’annulation de u (ou de ses dérivées) sur l’en-
semble fixé.

Ces équations linéaires ont des propriétés générales, qui suivent de la définition.
— si u, u′ sont deux solutions, alors u− u′ est une solution de l’équation homogène associée,
— les solutions de l’équation homogène forment un espace vectoriel, en particulier la fonction

nulle est toujours solution.

Différents types d’EDP. On peut distinguer trois types particulièrement importants.
— Les EDP elliptiques, comme l’équation de Laplace. Leurs solutions tendent à être régulières,

et on peut souvent les résoudre en imposant la valeur de la solution au bord d’un domaine.
— Les EDP paraboliques, où une variable (typiquement le temps) joue un rôle particulier.

Leurs solutions tendent à être de plus en plus régulières quand le temps augmente.
— Les EDP hyperboliques, comme l’équation des ondes. Leurs solutions ne sont pas

nécessairement régulières, et on peut typiquement les résoudre en imposant des “condi-
tions initiales” pour un “temps” donné.

2. Cordes vibrantes

C’est l’un des exemples les plus simples d’équation aux dérivées partielles, qui met bien en
lumière le lien avec les séries de Fourier. Elle apparâıt quand on modélise le comportement d’une
corde de violon, par exemple.

On considère l’EDP suivante :

(2)
∂2u

∂t2
= v2 ∂

2u

∂x2
,

où v est une vitesse de propagation, et on se place sur un intervalle de longueur finie, par exemple
x ∈ [0, L]. On considère de plus les solutions u(x, t) qui satisfont aux conditions aux bords :

∀t, u(0, t) = u(L, t) = 0 .

De plus, on cherche des solutions régulières en x et en t, pour que l’EDP (8) ait un sens.
On peut commencer par faire un changement de variable en x et en t pour se ramener au cas

où v = 1 et où L = 2π, de manière à simplifier un peu les notations. L’équation devient :

(3)
∂2u

∂t2
=
∂2u

∂x2
,

avec u(0, t) = u(2π, t) = 0 pour tout t.
On pose ut = u(·, t). Les conditions au bord permettent de “périodiser” ut, c’est-à-dire de la

remplacer par une fonction périodique de période 2π, qui reste continue.
On cherche les solutions en décomposant ut en séries de Fourier :

ut = a0(t) +
∑
k≥1

ak(t) cos(kx) + bk(t) sin(kt) .

En utilisant (3) et en identifiant les termes deux à deux, on obtient que :

a′′0(t) = 0, a′′k(t) = k2ak(t), b′′k(t) = k2bk(t)
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pour tout k ≥ 1 et tout t. On en déduit que ak et bk sont des fonctions de la forme

ak(t) = a′k cos(kt) + a′′k sin(kt)

et de même pour bk(t). Mais alors les a′k, a
′′
k sont les coefficients de Fourier de ut(0), et sont donc

nuls. De même, a0(t) doit être nul, et on obtient donc les solutions sous la forme :

(4) ut(x) =
∑
k≥1

(b′k cos(kt) + b′′k sin(kt)) sin(kx) .

3. Equation de Laplace et équation de Poisson

3.1. Définition. On considère une fonction v : S1 × S1 → R, ou v : R2 → R, et l’équation
suivante, appelée équation de Poisson :

∂2u

∂x2
+
∂2u

∂y2
= v ,(5)

pour une fonction indéterminée u. On note généralement cette équation

∆u = v .

On appelle équation de Laplace l’équation homogène associée, soit ∆u = 0.
On voit apparâıtre cette équation dans des situations très variées, par exemple en

électrostatique, ou dans la gravité newtonnienne. Dans ces cas v est la charge (resp. la masse)
et u est le potentiel électrique (resp. le potentiel newtonnien). C’est une EDP elliptique.

3.2. Sur le tore. On dispose de deux types de résultats pour cette équation. D’une part, un
énoncé d’existence et d’unicité.

Théorème 3.1. Soit v ∈ L2(S1 × S1) une fonction de moyenne nulle. Il existe une unique
fonction u ∈ H2(S1 × S1) de moyenne nulle telle que ∆u = v. Toutes les fonction de la forme
u+ C, avec C une constante, sont alors aussi solution.

Principe de la preuve. Soient ck,l les coefficients de Fourier de v, et c′k,l ceux de u.

L’équation (5) se traduit, sur les coefficients de Fourier, par

−(k2 + l2)c′k,l = ck,l .

Comme v est supposée de moyenne nulle, c0,0 = 0, et pour les autres valeurs de k, l il existe une
unique valeur possible de c′k,l.

Comme on suppose v ∈ L2(S1 × S1), on a∑
k,l∈Z

|ck,l|2 <∞ ,

donc ∑
k,l∈Z

(k2 + l2)2|c′k,l|2 <∞ ,

ce qui montre que u est dans H2(S1 × S1). �
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3.3. Dans R2. Les mêmes idées s’appliquent dans R2, mais il faut alors bien noter qu’un
trouve une unique solution uniquement si on se place dans un espace fonctionnel adapté, dont la
définition “contient” une condition de décroissance de la solution u en l’infini. Par exemple, si on
prend v = 0, on voit que l’équation ∆u = 0 a pour solution toutes les fonctions affines, puisque
leurs dérivées sont nulles. Mais parmi elles seule la solution nulle est dans H2(R2).

Théorème 3.2. Soit v ∈ L2(R2), il existe une unique fonction u ∈ H2(R2) telle que ∆u = v.

Le principe de la preuve est le même que pour le tore, on considère les transformées de Fourier
de u et de v et on voit qu’elles doivent satisfaire l’équation :

−(ξ2 + ν)2û(ξ, ν) = v̂(ξ, ν) ,

ce qui détermine uniquement û.

3.4. Dans des domaines à bord. L’énoncé principal, qu’on ne va pas détailler ici, est que
si Ω est un ouvert borné à bord régulier par morceaux dans R2, alors l’équation ∆u = v a une
unique solution qui prend des valeurs prescrites sur le bord de Ω.

4. Equation de la chaleur

4.1. Définition. L’équation de la chaleur modélise l’évolution de la température d’une plaque
en fonction du temps, en présence de sources de chaleur.

(6)
∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
+ v .

C’est une EDP parabolique. On peut noter que cette équation n’est pas du tout symétrique
quand on remplace t par −t : la “direction” du temps joue un rôle très important. On va voir que
les solutions tendent à être de plus en plus régulières avec le temps.

4.2. Dans S1×S1×R. Si on se place dans S1×S1×R, on peut utiliser la décomposition de
la solution (pour chaque temps fixé) pour montrer qu’une solution existe et est unique pour tout
choix d’une fonction en t = 0. On se limite ici au cas où v = 0.

Théorème 4.1 (Admis). Soit u0 : S1 × S1 → R une fonction dans L2. Il existe une unique
fonction u : S1 × S1 × R≥0 → R, régulière pour t > 0, solution de (6), et telle que u(·, ·, 0) = u0.

Le principe de la preuve de ce résultat est simple (même si une preuve complète conduit à des
petites subtilités techniques). On considère une solution u(x, y, t) = ut(x, y), et ses coefficients de
Fourier en x, y seulement, soit ck,l(t). L’équation se traduit alors sous la forme :

∂tck,l(t) = −(k2 + l2)ck,l(t) .

De plus pour t = 0 les coefficients de Fourier doivent être ceux de u0. Or les équations différentielles
que satisfont les coefficients ont une unique solution qui prennent une valeur donnée en t = 0 :

ck,l(t) = ck,l(0)e−(k2+l2)t .

On voit en particulier que :

(1) L’intégrale de ut est constante (elle correspond, à un coefficient près, à c0,0(t) qui est
constant.

(2) Dès que t > 0, les coefficients décroissent exponentiellement vite avec |k| + |l|. Il suit que
les fonctions ut sont C∞ pour tout t > 0.
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4.3. Dans R2 ×R. On a un résultat très similaire, à condition de se restreindre à une classe
de fonctions adaptée.

Théorème 4.2 (Admis). Soit u0 : R2 → R une fonction dans L2. Il existe une unique fonction
u : R2 × R≥0 → R, régulière pour t > 0 et telle que u(·, ·, t) ∈ L2(R2), solution de (6), et telle que
u(·, ·, 0) = u0.

Le principe de la preuve est le même, et on peut aussi faire les mêmes remarques que dans
S1×S1. Il faut maintenant considérer la transformée de Fourier de ut, et remarquer qu’elle satisfait
l’équation

∂tût(ξ, η) = −(ξ2 + η2)ût(ξ, η) .

5. Equation des ondes

5.1. Définition. C’est l’équation suivante.

(7)
∂2u

∂t2
= ∆u .

C’est une EDP hyperbolique. Elle modélise par exemple le déplacement d’ondelettes à la
surface de l’eau, mais joue aussi un rôle essentiel dans différentes domaines de la physique
(électromagnétisme, etc).

Les solutions ne sont pas nécessairement régulières, par contre elles font apparâıtre des
phénomènes de propagation à vitesse finie.

On remarque que cette équation est symétrique par rapport à la transformation t 7→ −t : le
sens du temps ne joue pas de rôle.

5.2. Dans R× R. L’équation se simplfie sous la forme

∂2u

∂t2
=
∂2u

∂x2
.

On a alors la remarque évidente suivante.

Remarque 5.1. Toute fonction de la forme u(x, t) = f(x−t) ou u(x, t) = f(x+t) est solution.

En fait, la réciproque est (presque) vraie : les solutions de l’équation des ondes en dimension
1 + 1 sont exactement les sommes d’une fonction de x− t et d’une fonction de x+ t. En d’autres
termes on a propagation à vitesse 1, soit vers les x croissants, soit vers les x décroissants.

5.3. Dans S1 × S1 × R. On peut utiliser une décomposition en série de Fourier pour t fixé,
et considérer les coefficients de Fourier ck,l(t), t ≥ 0. L’équation (7) se met alors sous la forme

∂2ck,l
∂t2

(t) = −(k2 + l2)ck,l(t) .

Si on fixe des conditions initiales en t = 0 sous la forme

ut = u0, ∂tut = u1

en t = 0, on voit que les coefficients de Fourier ck,l(t) seront uniquement déterminés par les
conditions que ck,l(0) = c0k,l et que c′k,l(0) = c1k,l, où c0k,l et c1k,l sont les coefficients de Fourier de
u0 et de u1, respectivement. On parle de conditions de Cauchy : on fixe la valeur de u et de sa
dérivée par rapport au temps en t = 0.

De plus, le comportement asymptotique de ck,l(t) en fonction de k, l, et donc la régularité de
ut, est essentiellement controlé par les quantités correspondantes pour u0 et pour u1 (on ne va pas
approfondir ce point ici).
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5.4. Dans R2 × R. Le même argument peut être utilisé dans R2 × R en utilisant les trans-
formées de Fourier au lieu des séries de Fourier. Si on note ût(ξ, η) la transformée de Fourier de ut
en x et en y, on obtient l’équation

∂2ût(ξ, η) = −(ξ2 + η2)ût(ξ, η) ,

d’où une unique solution pour des conditions initiales fixées en t = 0 du type u = u0, ∂tu = u1.

6. Exercices

6.1. Equation des cordes vibrantes. On considère l’équation des cordes vibrantes :

(8)
∂2u

∂t2
=
∂2u

∂x2
,

avec les conditions aux bords :
∀t, u(0, t) = u(2π, t) = 0 .

On se donne des fonctions u0, u1 régulières sur [0, 1] qui s’annulent en 0 et en 2π. Montrer qu’il
existe une unique solution u : [0, 2π]× R→ R qui vérifie (8) avec pour tout x ∈ [0, 2π]

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = u1(x) .

6.2. Equation de Laplace pour les fonctions radiales.

(1) On considère une fonction u : R2 → R radiale, c’est-à-dire ne dépendant que de r =√
x2 + y2 : u(x, y) = ū(ρ). Ecrire le laplacien ∆u de u en fonction des dérivées de ū par

rapport à u.

(2) Déterminer une solution de l’équation ∆u = v lorsque v est la fonction caractéristique du
disque de rayon 1 dans R2.

(3) Déterminer une solution de ∆u = v lorsque v est la mesure de Dirac en 0.

(4) Etendre les résultats précédents pour une fonction radiale de R3 dans R.

6.3. * Equation de la chaleur sans source. Déterminer la solution de l’équation de la
chaleur ∂tu = ∆u correspondant aux conditions initiales suivantes dans R2.

(1) u0(x, y) = 1 pour x, y ∈ [−1, 1], u0(x, y) = 0 ailleurs.

(2) u0 égale à la mesure de Dirac en zéro.

6.4. * Température d’un plan dont on chauffe une région. On considère ici la fonction
v égale à v(x, y) = 1 pour x, y ∈ [−1, 1], v(x, y) = 0 ailleurs.

(1) Donner une description (par exemple par une formule intégrale) d’une solution de l’équation

∂tu = ∆u+ v

avec la condition initiale u0 = 0 en t = 0.

(2) Déterminer la limite u∞ de ut quand t → ∞, et vérifier qu’elle est solution de l’équation
∆u+ v = 0.

(3) Calculer le flux du gradient de u∞ à travers un cercle de rayon R > 2. Donne une in-
terprétation “physique” du résultat.
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