
Cours de maitrise de math, MMB B2

Correction abrégée de la partie 1 du devoir no 2

1 Solides platoniques

1. Polygones du plan

D’après le théorème de Gauss-Bonnet, la somme des angles extérieurs est 2π. Comme les k angles sont
égaux, chaque angle extérieur est égal à 2π/k, donc chaque angle intérieur est π − 2π/k = π(k − 2)/k.

2. Polygones dans S2

2.1 Les bords des demi-espaces sont des plans contenant 0, dont les intersections avec S2 sont des
géodésiques. Donc le bord de P est la réunion d’un nombre fini segments géodésiques.

2.2 On considère le sous-ensemble Q′ de R3 défini comme Q, mais en prenant un vecteur N de norme
quelconque. On remarque que, si V ∈ S2, l’ensemble des vecteurs N ∈ R3 non nuls tels que 〈V,N〉 > 0
est un demi-espace; or Q′ est l’intersection de ces demi-plans lorsque on prend pour V les sommets de P .
Donc Q′ est la réunion d’un ensemble fini de demi-plans, et Q est un polygone de S2.

2.3 D’après le théorème de Gauss-Bonnet, la somme des angles extérieurs du bord de Q est égale à 2π
moins l’intégrale de la courbure sur l’interieur de Q. Comme la courbure de S2 est 1, ce terme est positif,
et la somme des angles extérieurs du bord de Q est inférieure à 2π.

Soit s un sommet de Q, on lui associe l’ensemble des N ∈ S2 tels que le plan orthogonal à N contient
s. Par construction c’est une arête de Q, dont la longueur est égale à l’angle extérieur de P en s.

Soit R ⊂ S2 le sous-ensemble défini comme Q, mais en remplaçant P par Q. On remarque que R = Q:
en effet, si N ∈ S2, la définition de Q indique que:

N ∈ P ⇔ ∀N ′ ∈ Q,N 6∈ N ′⊥

⇔ ∀N ′ ∈ Q, 〈N ′, N〉 = 0
⇔ Q ∩N⊥ = 0
⇔ N ∈ R

En appliquant le résultat précédent en échangeant Q et P , on voit donc que la longueur des arêtes P est
égale à l’angle extérieur de Q aux sommets correspondants.

Donc la somme des longueurs des arêtes du bord de Q est inférieur à 2π.

3. Nombre de faces, etc

Chaque arête borde deux faces, et chaque face a k arêtes, donc en comptant de deux manières le nombre
de couples (f, a) où a est une arête contenue dans la face f , on trouve:

kf = 2a .

De même, chaque sommet est dans p faces, alors que chaque face a k sommets, si bien que:

kf = ps .
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Enfin, la formule d’Euler indique que: f − a + s = 2.
En remplaçant a et s dans cette formule on trouve que:

f − kf

2
+

kf

p
= 2 ,

si bien que:
f(2p− kp + 2k) = 4p ,

et la formule pour f s’en déduit. On en déduit directement les formules pour a et s.

4. Solides platoniques

4.1 On choisit ε assez petit pour que la sphère Sε de centre S et de rayon ε rencontre toutes les faces
de K contenant S mais pas les autres. Alors l’intersection de K avec Sε est l’intersection avec Sε du
domaine borné par les faces de K, donc par un nombre fini de demi-plans contenant S. Donc c’est, par
définition, un polygone de Sε.

Soit f une face de K contenant S, et soit a1, a2 les deux segments contenant f qui bordent f et qui
contiennent S. Soit n1 et n2 les intersections de a1 et a2, respectivement, avec Sε. La distance entre n1

et n2 sur Sε est ε fois l’angle entre les directions de n1 et n2, donc ε fois l’angle intérieur de la face f en
S (NB: il manquait un ε dans l’énoncé).

4.2 On fait subir à Sε une homothétie de facteur 1/ε, pour obtenir une sphère de rayon 1. On note
P ′ l’image de P par cette homothétie, P ′ est donc un polygone de S2. D’après les question 1 et 4.1, les
cotés de P ′ sont de longueur π(k − 2)/k. Comme P ′ a au moins 3 faces, la longueur totale de son bord
est au moins 3π(k− 2)/k. Or pour k ≥ 6, 3π(k− 2)/k ≥ 2π. Or la longueur totale de P ′ est strictement
inférieure à 2π. Donc k ≤ 5.

4.3 La longueur des arêtes de P ′ est alors π(k − 2)/k = 3π/5. Comme la longueur totale de P est
inférieure à 2π, le nombre d’arêtes de P est nécessairement 3. (NB: il fallait lire p = 3 et non p = 4 dans
l’énoncé !).

En utilisant les formules de la question 3, on trouve que:

a = 30, s = 20, f = 12 .

Le polyèdre correspondant est le dodécaèdre, visible sur la partie droite du dessin de Kepler qui se
trouve dans l’énoncé. Comme la question était “optionnelle” on laisse au lecteur la démonstration de son
existence; il s’agit de montrer qu’il y a une unique manière de coller 12 pentagone réguliers, dont les cotés
sont de même longueur, de manière que le résultat soit un polyèdre convexe, dont les intersections avec
des sphères de rayon ε petit, centrées aux sommets, soient des triangles dont les cotés sont de longueur
2πε/5. On obtient alors le dodécaèdre.

4.4 On suppose que k = 4. Maintenant l’angle intérieur des faces est π/2, toujours d’après la question
1, et c’est aussi la longueur des arêtes de P ′. Comme la longueur totale du bord de P ′ est strictement
inférieure à 2π, P ′ a nécessairement 3 arêtes, donc p = 3. (NB: il fallait lire “k = 4” dans l’énoncé !).

La question 3 montre que a = 12, f = 6, s = 8, Le polyèdre cherché est le cube, qui a bien 4 arêtes
par face et pour lequel chaque sommet est bien dans 3 faces.

4.5 Pour k = 3, la longueur des arêtes de P ′ est π/3, il peut donc y en avoir 3, 4 ou 5 (toujours parce
que la longueur du bord de P ′ est inférieure strictement à 2π).

Pour p = 3, on trouve avec la question 3 que a = 6, f = 4, s = 4; on obtient donc le simplexe, pyramide
à base triangulaire.

Pour p = 4, on trouve que a = 12, f = 8, s = 6: c’est l’octaèdre, qu’on obtient par exemple en prenant
pour sommets les points de coordonnée (1, 0, 0), (0, 1, 0), (0, 0, 1), (−1, 0, 0), (0,−1, 0), (0, 0,−1) dans R3.

Pour p = 5, on obtient a = 30, s = 12, f = 20; c’est l’icosaèdre (visible à droite dans la figure de
Kepler). Là aussi la question était “facultative”, et on laisse les détails au lecteur; il suffit de montrer
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qu’il y a une unique manière de faire un polyèdre convexe en recollant 20 triangles réguliers de cotés de
longueur 1, de manière que les intersections avec des sphères de rayon ε petit, centrées aux sommets,
soient des pentagones dont les cotés sont de longueur πε/3.

3


