Cours de maitrise de math, MMB B2 Notes succintes

20 Septembre 2001

Contents

	0.1 0.2 0.3 0.4	Présentation	3 3 4 4
1	Cou	${f r}$ bes dans ${f R}^2$	5
	1.1	Définitions des courbes	5
	1.2	Vitesse, tangentes	5
	1.3	Courbure	6
	1.4	Un peu de topologie	6
		1.4.1 Relevés des applications	7
		1.4.2 Degré des applications	7
		1.4.3 Homotopies	8
		1.4.4 Classification	8
	1.5	Nombre d'enroulement	8
	1.6	Indice d'une courbe par rapport à un point	10
	1.7	Théorème de Jordan	11
	1.8	Inégalité isopérimètrique	12
	1.9	Convexité	13
	$\boldsymbol{\alpha}$	1. 1 D3	- 4
2			14
2	2.1	Définitions des courbes	14
2	$2.1 \\ 2.2$	Définitions des courbes	$\frac{14}{14}$
2	$2.1 \\ 2.2 \\ 2.3$	Définitions des courbes	14 14 15
2	2.1 2.2 2.3 2.4	Définitions des courbes	14 14 15 15
2	2.1 2.2 2.3 2.4 2.5	Définitions des courbes	14 14 15 15 16
2	2.1 2.2 2.3 2.4 2.5 2.6	Définitions des courbes	14 14 15 15 16 18
2	2.1 2.2 2.3 2.4 2.5	Définitions des courbes	14 14 15 15 16
	2.1 2.2 2.3 2.4 2.5 2.6 2.7	Définitions des courbes Repère de Serret-Frénet Formules de Frénet Théorème fondamental Le théorème de Fenchel Noeuds Le théorème de Fairy-Milnor	14 14 15 15 16 18
3	2.1 2.2 2.3 2.4 2.5 2.6 2.7	Définitions des courbes Repère de Serret-Frénet Formules de Frénet Théorème fondamental Le théorème de Fenchel Noeuds Le théorème de Fairy-Milnor Forie locale des surfaces dans R ³	14 14 15 15 16 18 18
	2.1 2.2 2.3 2.4 2.5 2.6 2.7	Définitions des courbes Repère de Serret-Frénet Formules de Frénet Théorème fondamental Le théorème de Fenchel Noeuds Le théorème de Fairy-Milnor Forie locale des surfaces dans R ³ Définitions des surfaces	14 14 15 15 16 18 18
	2.1 2.2 2.3 2.4 2.5 2.6 2.7 Thé 3.1 3.2	Définitions des courbes Repère de Serret-Frénet Formules de Frénet Théorème fondamental Le théorème de Fenchel Noeuds Le théorème de Fairy-Milnor Forie locale des surfaces dans R ³ Définitions des surfaces Applications régulières	14 14 15 15 16 18 18 19
	2.1 2.2 2.3 2.4 2.5 2.6 2.7 Thé 3.1 3.2 3.3	Définitions des courbes Repère de Serret-Frénet Formules de Frénet Théorème fondamental Le théorème de Fenchel Noeuds Le théorème de Fairy-Milnor Forie locale des surfaces dans R ³ Définitions des surfaces Applications régulières Connection dans R ³	14 14 15 15 16 18 18 19 19
	2.1 2.2 2.3 2.4 2.5 2.6 2.7 Thé 3.1 3.2	Définitions des courbes Repère de Serret-Frénet Formules de Frénet Théorème fondamental Le théorème de Fenchel Noeuds Le théorème de Fairy-Milnor Forie locale des surfaces dans R ³ Définitions des surfaces Applications régulières Connection dans R ³ Vecteurs tangents	14 14 15 15 16 18 18 19 19 19 20
	2.1 2.2 2.3 2.4 2.5 2.6 2.7 Thé 3.1 3.2 3.3 3.4	Définitions des courbes Repère de Serret-Frénet Formules de Frénet Théorème fondamental Le théorème de Fenchel Noeuds Le théorème de Fairy-Milnor Forie locale des surfaces dans R ³ Définitions des surfaces Applications régulières Connection dans R ³ Vecteurs tangents Métrique induite	14 14 15 15 16 18 18 19 19
	2.1 2.2 2.3 2.4 2.5 2.6 2.7 Thé 3.1 3.2 3.3 3.4 3.5	Définitions des courbes Repère de Serret-Frénet Formules de Frénet Théorème fondamental Le théorème de Fenchel Noeuds Le théorème de Fairy-Milnor Forie locale des surfaces dans R ³ Définitions des surfaces Applications régulières Connection dans R ³ Vecteurs tangents Métrique induite Invariants locaux	14 14 15 15 16 18 18 19 19 20 20
	2.1 2.2 2.3 2.4 2.5 2.6 2.7 Thé 3.1 3.2 3.3 3.4 3.5 3.6	Définitions des courbes Repère de Serret-Frénet Formules de Frénet Théorème fondamental Le théorème de Fenchel Noeuds Le théorème de Fairy-Milnor Forie locale des surfaces dans R Définitions des surfaces Applications régulières Connection dans R Vecteurs tangents Métrique induite Invariants locaux Connexion sur S	14 14 15 15 16 18 18 19 19 20 20 21
	2.1 2.2 2.3 2.4 2.5 2.6 2.7 Thé 3.1 3.2 3.3 3.4 3.5 3.6 3.7	Définitions des courbes Repère de Serret-Frénet Formules de Frénet Théorème fondamental Le théorème de Fenchel Noeuds Le théorème de Fairy-Milnor \mathbf{corie} locale des surfaces dans \mathbf{R}^3 Définitions des surfaces Applications régulières Connection dans \mathbf{R}^3 Vecteurs tangents Métrique induite Métrique induite Invariants locaux Connexion sur S Géodésiques Géodésiques	14 14 15 15 16 18 19 19 20 20 21 22

4	Surfaces spéciales	
-	4.1 Surfaces réglées et développables	
	4.2 Fonctions sur une surface	
	4.3 Déformations de surfaces	
	4.4 Surfaces minimales	
	4.5 Surfaces à courbure moyenne constante	
5	Le théorème de Gauss-Bonnet	
	5.1 Surfaces abstraites, variétés	
	5.2 Triangulations	
	5.3 Formes différentielles	
	5.4 Lemme de Sard	
	0 11	
	5.6 Gauss-Bonnet dans \mathbb{R}^3	
	5.7 Gauss-Bonnet polygonal	
	5.8 Gauss-Bonnet intrinsèque	
6	Géométrie intrinsèque des surfaces	
	6.1 Coordonnées	
	6.2 Champs de Jacobi	
	6.3 Géodésiques	
	6.4 Surfaces à courbure positive	
	6.5 Surfaces à courbure négative	

Chapter 2

Courbes dans \mathbb{R}^3

Objectifs:

- définitions etc.
- géométrie locale : courbure, torsion, etc.
- théorème fondamental : la courbure et la torsion permettent de reconstruire la courbe.
- théorème de Fenchel : intégrale de courbure $\geq 2\pi$.
- courbes nouées. Un peu de topologie.
- théorème de Fairy-Milnor : les courbes nouées ont une intégrale de courbure au moins 4π .

2.1 Définitions des courbes

Définition Courbes paramétrées, géométriques, orientées, etc.

Définition Tangente à une courbe en un point, vecteur tangent unitaire.

2.2 Repère de Serret-Frénet

Définition Soit $f: I \to \mathbb{R}^3$ une courbe paramétrée à vitesse 1. La courbure de f en s est k(s) := ||f''(s)||.

NB $k(s) \in \mathbf{R}_+$, différent des courbes dans \mathbf{R}^2 !

NB invariant par changement d'orientation.

Définition Si $k(s) \neq 0$, on appelle vecteur normal à f en s le vecteur unitaire dans la direction de f''(s). Noté n(s).

Rappel Produit vectoriel dans \mathbb{R}^3 .

Définition Si $k(s) \neq 0$, on note t(s) := f'(s), et $b(s) := t(s) \land n(s)$. b(s) est le vecteur **binormal**.

Propriété Pour $k(s) \neq 0$, (t(s), n(s), b(s)) forment un trièdre orthonormé, le trièdre de Frénet.

Remarque b'(s) est orthogonal à b(s) et à t(s). En effet :

- $-\langle b', b \rangle = 0 \text{ par } ||b|| = 1.$
- $-b' = (t \wedge n)' = t' \wedge n + t \wedge n' = t \wedge n'$, car t' = f'' = kn, donc $b' \perp t$.

Définition Lorsque $k \neq 0$, le nombre $\tau(s)$ défini :

$$b'(s) = \tau(s)n(s)$$

est la torsion de f en s.

Définition Pour $k \neq 0$, le plan engendré par t(s) et n(s) est le plan osculateur à f en s.

Interprétations par le comportement de la courbe, à l'ordre trois, par rapport à son plan osculateur (utiliser un développement limité).

2.3 Formules de Frénet

Lemme En tout point $s \in I$, on a :

$$\begin{cases} t' &= kn \\ n' &= -kt - \tau b \\ b' &= \tau n \end{cases}$$

Preuve On a (1) et (3) par construction. On note que $n = b \wedge t$, donc:

$$n' = b' \wedge t + b \wedge t'$$

$$= (\tau n \wedge t) + b \wedge (kn)$$

$$= -\tau b - kt ,$$

donc (2).

Vocabulaire

 $-\,$ plan osculateur : engendré par t,n.

- plan rectificateur : par t, b.

- plan normal : par b, n.

2.4 Théorème fondamental

Théorème fondamental de la théorie locale des courbes Soit I un intervalle de \mathbf{R} , $k: I \to \mathbf{R}_+^*$ et $\tau: I \to \mathbf{R}$. Il existe une courbe f paramétrée à vitesse 1 dont la courbure est k et la torsion τ . f est unique aux isométries globales de \mathbf{R}^3 près.

NB Unicité – cad on peut faire un déplacement pour envoyer une solution sur une autre.

Preuve Existence : par existence des solutions aux ODE – à vérifier pour ceux qui connaissent. Unicité : on suppose donnés f, \overline{f} deux solutions, avec $t(0) = \overline{t}(0)$, etc. Alors :

$$\begin{split} \frac{1}{2}\frac{d}{dt}(\|t-\overline{t}\|^2+\|n-\overline{n}\|^2+\|b-\overline{b}\|^2) &=& \langle t-\overline{t},t'-\overline{t}'\rangle+\langle n-\overline{n},n'-\overline{n}'\rangle+\langle b-\overline{b},b'-\overline{b}'\rangle\\ &=& k\langle t-\overline{t},n-\overline{n}\rangle+\tau\langle b-\overline{b},n-\overline{n}\rangle-k\langle n-\overline{n},t-\overline{t}\rangle-\tau\langle n-\overline{n},b-\overline{b}\rangle\\ &=& 0 \end{split}$$

NB Pas vrai pour les courbes fermées – car la courbe qu'on "reconstruit" ne se referme pas en général.

2.5 Le théorème de Fenchel

Théorème Soit $f: S^1 \to \mathbf{R}^3$ une courbe fermée. Alors :

$$\int_{S^1} k \ge 2\pi \ ,$$

avec égalité ssi f est une courbe plane convexe.

Remarque

– pour une courbe paramétrée à vitesse 1, $f: \mathbf{R}/L\mathbf{Z}$, on a :

$$\int_{S^1} k = \int_0^L k(s) ds .$$

- Cas d'égalité clair dans le cas des courbes planes.
- Preuve repoussée après une petite introduction à la théorie des surfaces anticipation sur la suite.

Aire des domaines de S^2 Soit $\Omega \subset \mathbf{R}^2$ ouvert à bord régulier par morceaux, et soit $f: \Omega \to S^2$ un difféo local injectif préservant l'orientation. On définit :

$$Aire(f) = \int_{\Omega} \langle \frac{\partial f}{\partial x} \wedge \frac{\partial f}{\partial y}, f \rangle dx dy .$$

Alors Aire(f) ne dépend que de l'image $f(\Omega)$.

Preuve On se donne un autre couple $(\overline{\Omega}, \overline{f})$ avec $\overline{f}(\overline{\Omega}) = f(\Omega)$. On pose $h = f \circ \overline{f}^{-1} : \Omega \to \overline{\Omega}$. Alors $f = \overline{f} \circ h$. En chaque point de $f(\Omega)$ on choisit un repère orthonormé (u(m), v(m)) de $f(m)^{\perp} = T_m S^2$. On appelle M(x, y) la matrice de $d_{(x,y)}f$ dans les bases (e_1, e_2) et (u, v). Alors :

$$\det(M(x,y)) = \langle \frac{\partial f}{\partial x} \wedge \frac{\partial f}{\partial y}, f \rangle .$$

et donc:

Aire(f) =
$$\int_{\Omega} \langle \frac{\partial f}{\partial x} \wedge \frac{\partial f}{\partial y}, f \rangle dx dy$$
$$= \int_{\Omega} \det(M(x, y)) dx dy$$

On note de même \overline{M} la matrice pour \overline{f} , et N la matrice jacobienne de h. Alors $M(x,y)=\overline{M}(h(x,y))N(x,y)$. Donc :

$$\begin{split} \operatorname{Aire}(f) &= \int_{\Omega} \det(M(x,y)) dx dy \\ &= \int_{\Omega} \det(\overline{M}(h(x,y))) \det(N(x,y)) dx dy \\ &= \int_{\overline{\Omega}} \det(\overline{M}(h(x,y))) dx dy \\ &= \int_{\overline{\Omega}} \langle \frac{\partial \overline{f}}{\partial x} \wedge \frac{\partial \overline{f}}{\partial y}, \overline{f} \rangle \\ &= \operatorname{Aire}(\overline{f}) \;. \end{split}$$

Définition On pose $Aire(f(\Omega)) := Aire(f)$.

Preuve du théorème de Fenchel On considère $f: \mathbf{R}/L\mathbf{Z} \to \mathbf{R}^3$. Il suffit de montrer le théorème dans le cas où k ne s'annule qu'en un nombre fini de points (sinon perturbation).

Tube autour de f, donné par :

$$X(s,\theta) = f(s) - \epsilon(n\cos\theta + b\sin\theta) .$$

Bien défini en dehors des points isolés où k=0. On appelle $N(s,\theta)$ la normale intérieure au tube, cad que $N(s,\theta)=b\sin\theta+n\cos\theta$.

On note:

$$\begin{split} T &= X(\mathbf{R}/L\mathbf{Z}, S^1) \ , \\ R &= X(\mathbf{R}/L\mathbf{Z},] - \pi/2, \pi/2[) \ , \\ \overline{R} &= X(\mathbf{R}/L\mathbf{Z}, [-\pi/2, \pi/2]) \ , \\ S &= X(\mathbf{R}/L\mathbf{Z}, [\pi/2, 3\pi/2]) \ , \end{split}$$

La preuve repose sur les propositions suivantes, qui impliquent la partie inégalité du théorème.

Proposition 1 L'application $N: \overline{R} \to S^2$ est surjective.

Proposition 2 Aire $(N(\overline{R})) = 2 \int_0^L k(s) ds$. La preuve de la proposition 1 repose sur le :

Lemme Si ϵ est assez petit, alors, aux points de R, R reste d'un seul coté de son plan tangent. Aux points de S, S rencontre son plan tangent le long de courbes.

Preuve On calcule le comportement de X par rapport à son plan tangent. Calcul explicite du produit scalaire avec N des dérivées secondes de X par rapport à s, θ . Calcul du déterminant :

$$\det M(s,\theta) = \epsilon(1 + \epsilon k \cos \theta) k \cos \theta.$$

Donc M est définie positive lorsque $\cos \theta > 0$, et définie négative quand $\cos \theta < 0$.

Preuve de la proposition 1 Soit $N_0 \in S^2$. On veut montrer qu'il existe $(s, \theta) \in \overline{R}$ telle que la normale intérieure à X en (s, θ) est N_0 . Pour tout $t \in \mathbf{R}$, on considère :

$$P_t := \{ m \in \mathbf{R}^3 \mid \langle m, N_0 \rangle = t \} .$$

Puis t_0 est l'inf des t tels que intersection non nulle avec T, et on vérifie que ok.

Preuve de la proposition 2 On a :

$$N(s,\theta) = \cos(\theta)n + \sin(\theta)b ,$$

$$\partial_s N \wedge \partial_\theta N = k \cos \theta N ,$$

$$\langle \partial_s N \wedge \partial_\theta N, N \rangle = k \cos \theta .$$

Donc par définition de l'aire :

$$Aire(N(R)) = \int_0^L k(s) \cos \theta d\theta ds = 2 \int_0^L k(s) ds .$$

Cas d'égalité dans le théorème Pour le cas d'égalité, il suffit de montrer que, si l'image de f n'est pas planaire, alors $N_{|R}$ n'est pas injective. Or si f n'est pas planaire, il existe un plan (orienté) P que f traverse 4 fois au moins. On note P_t les parallèles à P à distance (orientée) t. On considère les deux segments (au moins) de $\text{Im} f \setminus P$ qui sont au-dessus de P, et les valeurs maxima des valeurs de t atteintes, soit t_1 et t_2 , atteintes en s_1 et s_2 . On suppose que les P_{t_i} ne sont pas les plans osculateurs de t maxima – sinon on modifie un peu t.

On vérifie alors que la normale orientée à P est dans $N(s_1, |-\pi/2, \pi/2|)$ et $N(s_2, |-\pi/2, \pi/2|)$.

2.6 Noeuds

Définition Soit c une courbe fermée plongée dans \mathbf{R}^3 . c est non nouée s'il existe un plongement $\phi: D^2 \to \mathbf{R}^3$, telle que $\phi(\partial D^2) = c$. Sinon elle est nouée.

Lemme Soit $(c_t)_{t \in [0,1]}$ une famille à un paramètre de courbe fermées plongées. c_1 est nouée si et seulement si c_0 l'est.

Admis (on peut expliquer l'heuristique).

2.7 Le théorème de Fairy-Milnor

Théorème Soit c une courbe plongée nouée dans \mathbb{R}^3 . Si c est nouée, alors l'intégrale de sa courbure est au moins 4π .

Preuve On suppose que l'intégrale de la courbure de c est inférieure à 4π . On reprend le cadre de la démonstration du théorème de Fenchel, on voit qu'il existe un élément de $N_0 \in S^2$ dont un voisinage dans S^2 est atteint une seule fois par $N_{|R}$, et on note P_0 le plan orienté dont la normale est N_0 . D'après le raisonnement précédent, les parallèles P_t à P_0 rencontrent c en deux points au plus.

On change la paramétrisation de c et on effectue un déplacement et une homothétie, pour obtenir une paramétrisation de la forme :

$$f: S^1 \to \mathbf{R}^3$$

 $\theta \mapsto (x(\theta), y(\theta), \sin \theta))$

Pour $z \in [-1, 1]$, on pose :

$$m_+(z) = (x(\arcsin(z)), y(\arcsin(z))), m_-(z) = (x(\pi - \arcsin(z)), y(\pi - \arcsin(z)))$$
.

On définit alors ϕ par :

$$\begin{split} f: & D^2 \to & \mathbf{R}^3 \\ & (X,Z) \mapsto & \left(\frac{\sqrt{1-Z^2}-X}{2\sqrt{1-Z^2}} m_-(Z) + \frac{\sqrt{1-Z^2}+X}{2\sqrt{1-Z^2}} m_+(Z), Z \right) \; . \end{split}$$

On note que ϕ est un plongement du disque dont les valeurs aux bords sont les points de c. q.e.d.

 ${f NB}~$ traitement spécial pour les points maximaux et minimaux de Z sur $D^2,$ à préciser à la fin de la preuve.

Bibliography

- [BG93] M. Berger and B. Gostiaux. Géométrie différentielle : variétés, courbes et surfaces. Presses universitaires de France, 1993.
- [dC76] Manfredo P. do Carmo. Differential geometry of curves and surfaces. Prentice-Hall Inc., Englewood Cliffs, N.J., 1976. Translated from the Portuguese.
- [GHL87] S. Gallot, D. Hulin, and J. Lafontaine. Riemannian Geometry. Springer, 1987.
- [Sed94] V.D. Sedykh. Four vertices of a convex space curve. Bull. Lond. Math. Soc., 26:177–180, 1994.