Cours de maitrise de math, MMB B2 Notes succintes

20 Septembre 2001

Table des matières

	0.1	Présentation	3
	0.2	Objectifs du cours	3
	0.3	Méthode de travail	3
	0.4	Plan	4
		0.4.1 Pratique	4
1	Con	${ m arbes\ dans\ R}^2$	5
_	1.1	Définitions des courbes	5
	1.2	Vitesse, tangentes	5
	1.3	Courbure	6
	1.4	Un peu de topologie	6
	1.1	1.4.1 Relevés des applications	7
		1.4.2 Degré des applications	7
		1.4.3 Homotopies	8
		1.4.4 Classification	8
	1.5	Nombre d'enroulement	8
	1.6	Indice d'une courbe par rapport à un point	10
	1.7	Théorème de Jordan	11
	1.8	Inégalité isopérimètrique	12
	1.9	Convexité	13
	1.0	Convexior	10
2			
2	Cou	${f rbes\ dans\ R^3}$	14
2	Cou 2.1	Définitions des courbes	14 14
2			
2	2.1	Définitions des courbes	14
2	$2.1 \\ 2.2$	Définitions des courbes	14 14
2	2.1 2.2 2.3	Définitions des courbes	14 14 15
2	2.1 2.2 2.3 2.4	Définitions des courbes	14 14 15 15
2	2.1 2.2 2.3 2.4 2.5	Définitions des courbes	14 14 15 15 16
	2.1 2.2 2.3 2.4 2.5 2.6 2.7	Définitions des courbes Repère de Serret-Frénet Formules de Frénet Théorème fondamental Le théorème de Fenchel Noeuds Le théorème de Fairy-Milnor	14 14 15 15 16 18 18
3	2.1 2.2 2.3 2.4 2.5 2.6 2.7	Définitions des courbes Repère de Serret-Frénet Formules de Frénet Théorème fondamental Le théorème de Fenchel Noeuds Le théorème de Fairy-Milnor orie locale des surfaces dans R ³	14 14 15 15 16 18 18
	2.1 2.2 2.3 2.4 2.5 2.6 2.7 Thé 3.1	Définitions des courbes Repère de Serret-Frénet Formules de Frénet Théorème fondamental Le théorème de Fenchel Noeuds Le théorème de Fairy-Milnor orie locale des surfaces dans R ³ Définitions des surfaces	14 14 15 15 16 18 18 19
	2.1 2.2 2.3 2.4 2.5 2.6 2.7 Thé 3.1 3.2	Définitions des courbes Repère de Serret-Frénet Formules de Frénet Théorème fondamental Le théorème de Fenchel Noeuds Le théorème de Fairy-Milnor orie locale des surfaces dans R ³ Définitions des surfaces Applications régulières	14 14 15 15 16 18 18 19
	2.1 2.2 2.3 2.4 2.5 2.6 2.7 Thé 3.1 3.2 3.3	Définitions des courbes . Repère de Serret-Frénet . Formules de Frénet . Théorème fondamental . Le théorème de Fenchel . Noeuds . Le théorème de Fairy-Milnor . Corie locale des surfaces dans \mathbb{R}^3 Définitions des surfaces . Applications régulières . Connection dans \mathbb{R}^3 .	14 14 15 15 16 18 18 19 19 19
	2.1 2.2 2.3 2.4 2.5 2.6 2.7 Thé 3.1 3.2 3.3 3.4	Définitions des courbes Repère de Serret-Frénet Formules de Frénet Théorème fondamental Le théorème de Fenchel Noeuds Le théorème de Fairy-Milnor orie locale des surfaces dans R ³ Définitions des surfaces Applications régulières	14 14 15 15 16 18 18 19 19 19 20
	2.1 2.2 2.3 2.4 2.5 2.6 2.7 Thé 3.1 3.2 3.3 3.4 3.5	Définitions des courbes Repère de Serret-Frénet Formules de Frénet Théorème fondamental Le théorème de Fenchel Noeuds Le théorème de Fairy-Milnor orie locale des surfaces dans R³ Définitions des surfaces Applications régulières Connection dans R³ Vecteurs tangents Métrique induite	14 14 15 15 16 18 18 19 19 19 20 20
	2.1 2.2 2.3 2.4 2.5 2.6 2.7 Thé 3.1 3.2 3.3 3.4 3.5 3.6	Définitions des courbes Repère de Serret-Frénet Formules de Frénet Théorème fondamental Le théorème de Fenchel Noeuds Le théorème de Fairy-Milnor orie locale des surfaces dans R³ Définitions des surfaces Applications régulières Connection dans R³ Vecteurs tangents Métrique induite Invariants locaux	14 14 15 15 16 18 18 19 19 20 20 21
	2.1 2.2 2.3 2.4 2.5 2.6 2.7 Thé 3.1 3.2 3.3 3.4 3.5 3.6 3.7	Définitions des courbes . Repère de Serret-Frénet . Formules de Frénet . Théorème fondamental . Le théorème de Fenchel . Noeuds . Le théorème de Fairy-Milnor . Corie locale des surfaces dans \mathbb{R}^3 Définitions des surfaces . Applications régulières . Connection dans \mathbb{R}^3 . Vecteurs tangents . Métrique induite . Invariants locaux . Connexion sur S .	14 14 15 15 16 18 18 19 19 20 20 21 22
	2.1 2.2 2.3 2.4 2.5 2.6 2.7 Thé 3.1 3.2 3.3 3.4 3.5 3.6	Définitions des courbes . Repère de Serret-Frénet . Formules de Frénet . Théorème fondamental . Le théorème de Fenchel . Noeuds . Le théorème de Fairy-Milnor . Orie locale des surfaces dans \mathbb{R}^3 Définitions des surfaces . Applications régulières . Connection dans \mathbb{R}^3 . Vecteurs tangents . Métrique induite . Invariants locaux . Connexion sur S . Géodésiques .	14 14 15 15 16 18 18 19 19 20 20 21 22 22
	2.1 2.2 2.3 2.4 2.5 2.6 2.7 Thé 3.1 3.2 3.3 3.4 3.5 3.6 3.7	Définitions des courbes . Repère de Serret-Frénet . Formules de Frénet . Théorème fondamental . Le théorème de Fenchel . Noeuds . Le théorème de Fairy-Milnor . Corie locale des surfaces dans \mathbb{R}^3 Définitions des surfaces . Applications régulières . Connection dans \mathbb{R}^3 . Vecteurs tangents . Métrique induite . Invariants locaux . Connexion sur S .	14 14 15 15 16 18 18 19 19 20 20 21 22

4	Sur	faces spéciales	26		
	4.1	Surfaces réglées et développables	26		
	4.2	Fonctions sur une surface	28		
	4.3	Déformations de surfaces	30		
	4.4	Surfaces minimales	31		
	4.5	Surfaces à courbure moyenne constante	33		
5	Le	théorème de Gauss-Bonnet	34		
	5.1	Surfaces abstraites, variétés	34		
	5.2	Gauss-Bonnet pour les surfaces dans \mathbb{R}^3	35		
	5.3	Triangulations	36		
	5.4	Formes différentielles	36		
	5.5	Gauss-Bonnet polygonal	37		
	5.6	Gauss-Bonnet intrinsèque	38		
6	Géométrie intrinsèque des surfaces				
	6.1	Coordonnées	39		
	6.2	Champs de Jacobi			
	6.3	Géodésiques			
	6.4	Surfaces à courbure positive			
	6.5	Surfaces à courbure négative			
		9			

Chapitre 6

Géométrie intrinsèque des surfaces

6.1 Coordonnées

Remarque Soit S une surface, munie localement d'une carte. On a alors un système de coordonnées locales, qu'on note (x^i) . On peut note aussi :

$$e_i := \frac{\partial}{\partial x^i} ,$$

les (e_i) forment alors une base de chaque espace tangent. Chaque champ de vecteurs peut donc s'écrire sous la forme :

$$v = \sum_{i} v^{i} e_{i} ,$$

si bien que v est uniquement déterminé par les fonctions v^i . La métrique riemannienne g est alors déterminée en chaque point par une matrice (g_{ij}) , avec :

$$g(v,w) = \sum_{i,j} g_{ij} v^i w^j .$$

Remarque Notation de sommation implicite sur les indices et exposants.

Définition On note (g^{ij}) la matrice inverse de (g_{ij}) .

Lemme On a:

$$[v,w]^i = v^j \frac{\partial w^i}{\partial x^j} - v^i \frac{\partial w^j}{\partial x^j} .$$

Preuve Par dérivation des fonctions.

Théorème La connexion D de g est définie par la formule :

$$(D_v w)^i = v^j \frac{\partial w^i}{\partial x^j} + \Gamma^i_{jk} v^j w^k ,$$

où:

$$\Gamma^{i}_{jk} = \frac{1}{2}g^{il}(\partial_k g_{jl} + \partial_j g_{kl} - \partial_l g_{jk}) .$$

Corollaire $\Gamma^i_{jk} = \Gamma^i_{kj}$.

Preuve [Attention à avoir des exposants k pour les termes en u pour pouvoir simplifier]

$$2g(D_v w, u) = v.g(w, u) + w.g(v, u) - u.g(v, w) + g([v, w], u) - g([w, u], v) + g([u, v], w),$$

donc:

$$\begin{split} 2g_{ij}(D_vw)^iw^j &= v^i\partial_i(g_{jk}w^ju^k) + w^j\partial_j(g_{ik}v^iu^k) - u^k\partial_k(g_{ij}v^jw^i) + \\ &+ g_{ik}(v^j\partial_jw^i - w^j\partial_jv^i)u^k - g_{ij}(w^k\partial_ku^j - u^k\partial_kw^j)v^i + g_{ij}(u^k\partial_kv^i - v^k\partial_ku^i)w^j \;. \end{split}$$

Puis regrouper les termes contenant des dérivées de u, ensuite des dérivées de v et w, enfin les termes résiduels.

Théorème Soit $(x, v) \in TS$; il existe une unique géodésique issue de x, paramétrée à vitesse constante, et dont la vitesse en 0 est v.

NB à priori c'est seulement un "germe" de géodésique, de longueur arbitrairement petit.

Preuve Théorème de Cauchy-Lipschitz pour le champ de vecteur défini sur TS, dans le voisinage de $s \in S$, par les équations satisfaites par les géodésiques.

6.2 Champs de Jacobi

Définition Soit $c:[0,L] \to S$ un segment géodésique. Un champ de Jacobi Y le long de c est un champ de vecteur le long de c tel qu'il existe une famille à un paramètre de géodésiques, $(c_t)_{t\in[0,1]}$ tel que $c_0=c$, que tous les c_t soient des segments géodésiques (paramétrés à vitesse constante) et que $Y=\partial c_t(s)/\partial t$.

Lemme Soit Y un champ de vecteurs le long d'une géodésique c. Alors Y est un champ de Jacobi ssi la longueur orientée de sa partie tangentielle est affine, et si la longueur orientée y de sa partie normale est solution de :

$$y''(s) + K(c(s))y(s) = 0.$$

Preuve On calcule l'edo satisfaite par les composantes tangentielle et orthogonale de Y; pour ça on note X = c', on a alors [X, Y] = 0, donc :

$$D_X D_X Y = D_X D_Y X = R_{X,Y} X + D_Y D_X X + D_{\lceil X \rceil} X,$$

donc

$$D_X D_X Y = R_{X,Y} X$$
,

et le résultat suit par décomposition en partie tangentielle et orthogonale.

Coordonnées géodésiques Soit $s \in S$. Les coordonnées géodésiques sont les coordonnées (r, θ) obtenues en prenant l'image par l'application exponentielle en s de coordonnées polaires dans T_sS .

Lemme Dans les coordonnées géodésiques on a :

$$g\left(\frac{\partial}{\partial r}, \frac{\partial}{\partial \theta}\right) = 0.$$

Preuve Propriétés des champs de Jacobi (partie tangentielle).

Théorème Soit $s \in S$. Il existe un voisinage U de s tel que, pour tout $x \in U$, il existe un unique chemin minimisant entre s et x, et c'est un segment géodésique.

Définition Soit $c:[0,L] \to S$ un segment géodésique, avec c(0) = p. Un point $c(t_1)$ est conjugué à p le long de c si \exp_p n'est pas inversible en $t_1c'(0)$.

CAD Signifie que si on déplace un peu c'(0), on tombe quand même (au premier ordre) sur le même point $c(t_1)$.

Exemple Sur S^2 , un point n'est conjugué qu'avec le point antipodal, et ce quel que soit la géodésique considérée.

Remarque q est conjugué à p le long de c ssi il existe un champ de Jacobi le long de c qui s'annule en p et en q.

Exemple Champs de Jacobi le long de géodésiques de S^2 .

Exemple Champs de Jacobi le long des géodésiques de \mathbb{R}^2 .

Théorème Soit $c:[0,l]\to S$ un segment géodésique paramétré à vitesse unité. Soit Y un champ de vecteurs orthogonal sur c qui s'annule aux extrémités de c, avec Y=yJc', et soit (c_t) une déformation de c telle que :

$$(\partial_t c_t)_{|t=0} = Y$$
.

Alors la variation seconde de la longueur de (c_t) est donnée par :

$$L_{t=0}'' = -\int_0^l y(y'' + K_0 y) ds .$$

Remarque Intéressant que ça ne dépende que de y!

Preuve On pose $X = c'_t$, on a alors:

$$L' = \int_0^l \frac{\langle \partial_t c_t', c_t' \rangle}{\|c_t'\|^2} ds ,$$

donc:

$$L'' = \int_0^l \partial_t \frac{\langle \partial_t c_t', c_t' \rangle}{\|c_t'\|^2} ds$$
$$= \int_0^l \frac{(\langle \partial_t^2 c_t', c_t' \rangle + \langle \partial_t c_t', \partial_t c_t' \rangle) \|c_t'\|^2 - 2\langle \partial_t c_t', c_t' \rangle^2}{\|c_t'\|^2} ds .$$

Donc:

$$\begin{split} L_{|t=0}^{\prime\prime} &= \int_{0}^{l} \langle \partial_{t}^{2} c_{t}^{\prime}, c_{t}^{\prime} \rangle + \langle \partial_{t} c_{t}^{\prime}, \partial_{t} c_{t}^{\prime} \rangle - 2 \langle \partial_{t} c_{t}^{\prime}, c_{t}^{\prime} \rangle^{2} \\ &= \int_{0}^{l} \langle D_{Y} D_{Y} X, X \rangle + \langle D_{Y} X, D_{Y} X \rangle - 2 \langle D_{Y} X, X \rangle^{2} \\ &= \int_{0}^{l} \langle D_{Y} D_{X} Y, X \rangle + \langle D_{X} Y, D_{X} Y \rangle \\ &= \int_{0}^{l} \langle D_{X} D_{Y} Y + R_{Y,X} Y + D_{[Y,X]} Y, X \rangle - \langle D_{X} D_{X} Y, Y \rangle + [\langle D_{X} Y, Y \rangle]_{0}^{l} \\ &= \int_{0}^{l} X. \langle D_{Y} Y, X \rangle - \langle D_{Y} Y, D_{X} X \rangle - K_{0} y^{2} - y y^{\prime \prime} ds \;. \end{split}$$

Théorème Soit c un segment géodésique. S'il existe deux points p et q conjugués le long de c (qui ne sont pas tous deux des extrémités de c), alors c n'est pas minimisante.

Preuve Par la variation seconde de la longueur, qu'on applique en alongeant un peu l'intervalle entre les points conjugués et en utilisant une solution de $y'' + K_0 y = \epsilon$, pour ϵ assez petit.

6.3 Géodésiques

Définition Applications exp et Exp.

Théorème Pour tout $s \in S$, \exp_s est un difféomorphisme local en 0.

Exemple \mathbb{R}^2 , S^2 .

Théorème Pour tout $s \in S$, il existe un voisinage U de s tel que tout point de U est joint à s par un unique courbe minimisante, qui est une géodésique.

Définition On dit qu'une surface (S, g) est géodésiquement complète si tout segment de géodésique peut être prolongé pour tous temps.

Théorème Soit (S,g) une surface riemannienne complète; alors (S,g) est géodésiquement complète.

Théorème Soit S une surface, munie d'une métrique riemannienne complète. Soit $p, q \in S$. Alors il existe une géodésique joignant $p \ alpha q$, et dont la longueur est d(p,q).

Heuristique minimisation de longueur de courbe. Mais pas facile à mettre en forme de cette manière.

Exemple Sur $S^2 \setminus \{p_+\}$, il existe des paires de points qui ne sont pas joints par une géodésique minimisante (mais toute paire de point est jointe par une géodésique). Sur $S^2 \setminus \{p_+, p_-\}$, il existe des paires de points qui ne sont pas joints par des géodésiques.

Preuve On construit un cercle C_{ϵ} de rayon ϵ autour de p, et on note qu'il existe un point r de ce cercle tel que d(p,q) = d(p,r) + d(r,q) (par compacité de C_{ϵ}).

Si ϵ est assez petit, il est l'image d'un cercle (un vrai) dans T_pS . En particulier r est l'image d'un vecteur de la forme ϵv . On considère la géodésique c issue de p avec c'(0) = v. Ainsi $c(\epsilon) = r$. Pour tout Fin $9/01/01 \in [0, \epsilon]$, d(p, q) = d(p, c(t)) + d(c(t), q).

On appelle t_0 le sup des t' tels que ça reste le cas. Alors la propriété reste valide en t_0 par continuité, et au-dessus de t_0 : par argument de cercle à nouveau, choix d'un nouveau point d'un petit cercle de centre $c(t_0)$ comme avant, et remarque que pas de changement de direction possible.

6.4 Surfaces à courbure positive

Théorème de Bonnet Soit S une surface complète, à courbure $K \ge K_0 > 0$. Alors S est compacte, et son diamètre est borné par $\pi/\sqrt{K_0}$, et son aire est bornée par π^3/K_0 . De plus, $\pi_1(S)$ est fini.

Preuve La borne sur le diamètre découle des ptés des champs de Jacobi, et du théorème de comparaison de Sturm. Puis en déduire aire. Pour le π_1 passer à revêtements, et utiliser que l'aire est finie pour en déduire une borne sur le nombre d'éléments.

Thm de Sturm Soit u et v deux solutions de :

$$u'' + A(s)u = 0 ,$$

$$v'' + B(s)v = 0 ,$$

avec $A(s) \ge B(s)$, et u(0) = v(0) = 0. Si u_0 et v_0 sont les premiers zéros de u et v resp., alors $u_0 \le v_0$.

NB Extension en dimension plus grande.

6.5 Surfaces à courbure négative

Théorème de Hadamard Soit S une surface simplement connexe, complète, à coubure $K \leq 0$. Alors S est simplement connexe, et, entre deux points passent un unique géodésique, qui est minimisante.

Preuve Soit $s \in S$. \exp_s n'a pas de point critique, car il n'y a pas de point conjugués. On note r_0 le sup des rayons tels que \exp_s est un difféo sur les disques de rayon r. On note que pour r_0 on a soit un point conjugué, soit un segment géodésique fermé basé en s. Le premier cas est exclu par les champs de Jacobi, le second par Gauss-Bonnet. Donc \exp_s est un difféomorphisme.

Théorème (admis) Soit (S, g) une surface compacte. Pour tout élément $\gamma \pi_1 S$, il existe une géodésique fermée g telle que $[g] = \gamma$.

Idée de démonstration Minimiser la longueur des courbes dans γ ... Mais difficultés, donc le faire parmi les courbes géodésiques par morceaux

Théorème (admis) Soit (S, g) une surface compacte à courbure négative. Pour tout élément $\gamma \pi_1 S$, il existe une unique géodésique fermée g telle que $[g] = \gamma$.

Bibliographie

- [BG93] M. Berger and B. Gostiaux. Géométrie différentielle : variétés, courbes et surfaces. Presses universitaires de France, 1993.
- [dC76] Manfredo P. do Carmo. Differential geometry of curves and surfaces. Prentice-Hall Inc., Englewood Cliffs, N.J., 1976. Translated from the Portuguese.
- [GHL87] S. Gallot, D. Hulin, and J. Lafontaine. Riemannian Geometry. Springer, 1987.
- [Sed94] V.D. Sedykh. Four vertices of a convex space curve. Bull. Lond. Math. Soc., 26:177–180, 1994.