Géométrie hyperbolique Cours de D.E.A., 2003-04

Jean-Marc Schlenker¹

Oct. 2003 (v0)

¹Laboratoire Emile Picard, UMR CNRS 5580, UFR MIG, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 4, France. schlenker@picard.ups-tlse.fr; http://picard.ups-tlse.fr/~schlenker.

Table des matières

1	Géo	métrie du plan hyperbolique	7
	1.1	La géométrie de la sphère	7
	1.2	Le plan hyperbolique comme quadrique	10
	1.3	Le modele projectif	11
	1.4	Le disque de Poincaré	11
	1.5	Le demi-plan de Poincaré	12
	1.6	Comportements des géodésiques	14
	1.7	Le bord à l'infini	15
	1.8	Horocycles	16
	1.9	Géométrie du triangle	17
2	\mathbf{L} 'es	space hyperbolique	21
	2.1	Les principaux modèles	21
	2.2	Les isométries comme transformations projectives complexes	22
	2.3	Plans géodésiques	24
	2.4	Fonctions de Busemann, horosphères	25
3	Surfaces hyperboliques 27		
	3.1	Les surfaces	27
	3.2	La formule de Gauss-Bonnet, le retour	28
	3.3	Polygones à angles droit	29
	3.4	Pantalons	30
	3.5	Découpage des surfaces en pantalons	31
	3.6	Le revêtement universel	32
	3.7	Les surfaces hyperboliques comme quotient	34
	3.8	Structures conformes sur les surfaces	34
	3.9	Un théorème d'uniformisation	36
	3.10	L'espace de Teichmüller	37
4	\mathbf{Intr}	oduction aux variétés hyperboliques de dimension 3	41
	4.1	Propriétés de base	41
	4.2	Comment construire des variétés hyperboliques	42
	4.3	Conditions topologiques, la conjecture d'hyperbolisation	42
	4.4	Les principaux énoncés	43

Chapitre 3

Surfaces hyperboliques

Motivations

On voudrait aborder les trois visages de la "théorie de Teichmüller".

Géométrique. Construction par recollement de polygones.

Algébrique. Approche par les quotients compacts de H^2 .

Analytique Par les structures conformes et la recherche de métriques à courbure donnée.

3.1 Les surfaces

Notion de variété Définies comme des sous-variétés de \mathbb{R}^N .

Variétés à bord, variétés fermées

Cas particulier des surfaces Classification topologique des surfaces fermées orientées, par leur genre.

Théorème Les surfaces orientées sont classifiées, à difféomorphisme près, par leur genre.

Découpage en pantalons Une manière particulièrement pratique pour construire des surfaces de genre $g \geq 2$, en rapport avec la géométrie hyperbolique.

Définition Pantalons : sphère privée de 3 disques.

Lemme Obtenu par recollement de 2 hexagones le long de 3 de leurs arêtes.

La formule d'Euler

Définition Triangulations des surfaces : décomposer une surface en réunion d'un nombre fini d'images par des difféos de triangles de \mathbb{R}^2 . On demande que les intérieurs soient disjoints, et que l'intersection de deux arêtes d'images de triangles soit une arête de chacun d'entre eux, ou un sommet. Définition des faces, des arêtes et des sommets d'une triangulation.

Définition Cellulation : comme une triangulation, mais on prend es polygones au lieu de prendre seulement des triangles.

Définition Cellulation plus fine qu'une autre : les faces de la plus fine sont incluses dans les faces de la plus grossière.

Théorème (admis) Etant donné deux cellulations, il existe une triangulation qui est plus fine que chacune d'entre elles.

Définition La caractéristique d'Euler : $\chi = 2 - 2g$.

Exemple 2 pour la sphère, 0 pour le tore, etc.

Théorème Formule d'Euler : $f - a + s = \chi$.

Preuve On montre que f-a+s reste constant lorsque on raffine une triangulation. Or deux triangulations ont une triangulation commune plus fine (admis...). Donc le nombre f-a+s est indépendant de la triangulation. On conclut avec des pantalons et des hexagones.

3.2 La formule de Gauss-Bonnet, le retour

Définition Polygones hyperboliques, comme des polygones (euclidiens) vus dans le modèle projectif.

NB On peut aussi admettre des sommets "idéaux", c'est à dire sur le bord du disque.

Définition Angles extérieurs des polygones : le complémentaire à 2π des angles intérieurs.

Théorème Gauss-Bonnet généralisé aux intérieurs de polygones : la somme des angles extérieurs est égale à $2\pi - A$.

Preuve Découpage en triangles, et on applique la formule de Gauss-Bonnet pour les triangles.

Définition Les surfaces hyperboliques sont des surfaces munies de métriques localement isométriques à la métrique du plan hyperbolique.

Théorème Pour une surface hyperbolique, $A = 2\pi \chi$.

Preuve On choisit un famille de points assez nombreuse, et on remarque que, si les points sont assez proches, il existe des segments qui les joignent. On en déduit une cellulation de la surface dont les arêtes sont des segments géodésiques. On applique la formule de Gauss-Bonnet pour les polygones, on trouve que :

$$A = \sum_{f} A(f) = \sum_{f} (2\pi - \pi s(f) + \sum_{s} \theta(f, s) .$$

Mais la somme de tous les angles (intérieurs) est $2\pi s$, donc :

$$A = 2\pi f - \pi \sum_{f} s(f) + 2\pi s$$
.

Or s(f) = a(f) et chaque arête est dans deux faces, si bien que :

$$\sum_{f} s(f) = \sum_{f} a(f) = 2a ,$$

et finalement $A = 2\pi \chi$.

Corollaire Seules les surfaces de genre $g \ge 2$ peuvent admettre une métrique hyperbolique.

3.3 Polygones à angles droit

Définition Polygones réguliers, hexagones réguliers.

Propriété Existence d'un hexagone régulier à angle droit (unique) d'angles égaux à α , pour chaque α compris entre 0 et $2\pi/3$.

Preuve Construction par choix des sommets équirépartis sur un cercle de centre R. On note que l'angle en R=0 est l'angle euclidien, soit $2\pi/3$, alors que l'angle en $R\to\infty$ est nul. Puis par par monotonie et par Gauss-Bonnet.

Corollaire Il existe un hexagone régulier à angles droits.

Proposition Soit d, d' deux géodésiques disjointes de H^2 . Il existe un unique couple (x, x'), avec $x \in d$ et $x' \in d'$, qui minimise la distance entre d et d'. La géodésique δ passant par x et x' est orthogonale à d et à d'.

Preuve Existence d'un couple minimisant la distance par argument de compacité. Unicité: preuve possible par convexité de la distance entre deux géodésiques (exercices du chapitre 1). Alternative: on suppose qu'il existe deux tels couples (x,x') et (y,y'). Alors les segments joignant x à x' et y à y' sont disjoints, sinon pas minimisant. Puis contradiction avec Gauss-Bonnet sinon 4-gone à angles droits, impossible.

Définition Longueurs des arêtes d'un hexagones à angles droits : on ne considère en fait que 3 arêtes, qui ne sont pas adjacentes.

Lemme Soit $l_1, l_2, l_3 > 0$. Il existe un unique hexagone à angles droits dont les longueurs des cotés sont les l_i . (Unicité aux isométries hyperboliques près).

Preuve Dessin! On choisit d'abord une droite d_1 (passant par 0 dans le modèle du disque de Poincaré) puis on fait partir deux droites δ_2 et δ_3 , orthogonales à d_1 , à distance μ l'une de l'autre. On en fait partir deux autres droites d_2 et d_3 , respectivement à distance l_2 et l_3 .

On considère alors la droite δ_1 qui minimise la distance entre d_2 et d_3 , et on remarque que sa longueur est une fonction monotone de μ , etc.

3.4 Pantalons

Définition Pantalons (topologiques), comme la sphère privée de 3 disques.

Définition Pantalons (hyperboliques), comme pantalons topologiques munis d'une métrique hyperbolique pour laquelle les 3 composantes de bord sont totalement géodésiques.

Propriété En recollant deux hexagones réguliers le long de trois de leurs arêtes (alternées) on obtient un pantalon hyperbolique.

Lemme Considérons un pantalon hyperbolique P, avec $\partial P = C_1 \cup C_2 \cup C_3$. Soit u_1, u_2, u_3 des classes d'homotopies disjointes de courbes joignant C_2 à C_3 , etc. Il existe une unique géodésique c_1 dans la classe d'homotopie u_1 , orthogonale à C_2 et à C_3 , et de même pour les deux autres.

Preuve Existence : on utilise la courbe minimisant la distance entre C_2 et C_3 . C'est un segment géodésique, orthogonal aux deux composantes connexes du bord.

Unicité : si deux courbes homotopes joignent une composante connexe à une autre, chacune orthogonale aux deux composantes connexes du bord, alors :

- si les segments sont disjoints, on a une contradiction avec Gauss-Bonnet;
- sinon, on a un triangle dont la somme des angles est strictement supérieure à π , ce qui contredit aussi Gauss-Bonnet.

Corollaire Les pantalons hyperboliques sont uniquement déterminés par les longueurs des composantes connexes de leur bord, qui peuvent prendre n'importe quelle valeur positive.

NB Il n'y a pas du tout unicité de la décomposition (d'un pantalon en hexagones à angles droits) si on ne fixe pas les classes d'homotopies des courbes de découpage.

Preuve Etant donné un pantalon hyperbolique, on peut le découper en deux hexagones à angles droits, qui sont isométriques car les longueurs de leurs cotés sont égales. On utilise alors le résultat sur les hexagones hyperboliques.

NB On en déduit deux points distingués sur chacune des composantes connexes du bord.

Propriété Chaque classe de difféomorphisme de surfaces orientées est réalisable comme une surface hyperbolique.

Preuve Par recollement d'hexagones à angles droits.

Fin du cours 12/2003

3.5 Découpage des surfaces en pantalons

Remarque Etant donné une surface de genre $g \geq 2$, elle admet au moins une décomposition en pantalons. Chacune de ces décomposition est composée de 2g-2 pantalons, et donc de 4g-4 hexagones.

Remarque Soit S une surface de genre $g \geq 2$, munie d'une décomposition topologique en 2g-2 pantalons, chacun composé (topologiquement) de 2 hexagones. Soit g une métrique hyperbolique sur S, dont la restriction à chaque hexagone en fait un hexagone hyperbolique à angles droits. Pour chaque composante connexe de bord d'un pantalon, on a deux nombres :

- sa longueur, qui est un nombre strictement positif;
- l'angle entre les points marqués correspondants à chacun des cotés (dépendant du choix d'un point marqué pour chaque coté), qui est un élément de S^1 .

Théorème Réciproquement, chacune des valeurs possibles est réalisable.

Corollaire L'espace des métriques hyperboliques sur une surface S est une variété de dimension 6g-6.

Définition Courbes fermées non triviales.

Théorème Dans une surface hyperbolique fermée, chaque courbe fermée non triviale se réalise uniquement comme une géodésique.

Preuve Existence : par minimisation de la longueur dans une classe d'homotopie.

Unicité : on suppose qu'il existe deux géodésiques homotopes. Si elles sont disjointes, on a un cylindre hyperbolique à bord géodésiques. On considère le segment géodésique orthogonal aux composantes de bord (existence par minimisation à nouveau). D'où un 4-gones hyperbolique à angles droits, impossible par Gauss-Bonnet.

Si les géodésiques se rencontrent, on a un ou plusieurs 2-gones, à nouveau impossible par Gauss-Bonnet.

Lemme (admis) Soit S une surface, et soient c_1, c_2 deux courbes fermées simples dans S. Soient c'_1, c'_2 deux courbes fermées simples, homotopes respectivement à c_1 et à c_2 . Si c'_1 et c'_2 se rencontrent, l'une des composantes connexes de leur complémentaire est topologiquement un disque.

Corollaire Soit S une surface, munie d'une décomposition topologique en pantalons. Soit g une métrique hyperbolique sur S. Alors S admet une décomposition en pantalons hyperboliques correspondant à la décomposition topologique donnée.

NB Traduction : famille de géodésiques homotopes aux bords des pantalons topologiques donnés, etc.

Preuve On réalise chacune des courbes par une géodésique fermée, et on utilise à nouveau Gauss-Bonnet pour montrer que ces géodésiques sont disjointes (avec le lemme admis).

Conséquence : étant donné une surface S, munie d'une décomposition topologique en pantalons, et des pantalons en hexagones, toutes les métriques hyperboliques sur S sont obtenues par recollement d'hexagones à angles droits comme décrit plus haut.

NB Point délicat : comprendre ce qui se passe quand on augmente les angles de recollement de 2π ! Les métriques hyperboliques obtenues sont les mêmes.

3.6 Le revêtement universel

 π_1 des surfaces. Ce qu'on va dire peut s'étendre aux variétés de dimension quelconque. On considère une surface S, munie d'un point distingué x_0 . On considère l'ensemble des lacets fermés orientés commençant et finissant en x_0 , modulo homothétie, on l'appelle $\pi_1 S$. C'est un groupe, muni de la loi de "composition" qui consiste à faire suivre un lacet par un autre. On l'appelle le groupe fondamental de S.

Remarque En général c'est un groupe non commutatif.

Exemple Le groupe fondamental de la sphère est trivial.

Exemple Le groupe fondamental du tore est $\mathbf{Z} \times \mathbf{Z}$.

Preuve On utilise la description du tore comme $\mathbf{R}^2/\mathbf{Z}^2$. On relève une courbe fermée en une application à valeurs dans \mathbf{R}^2 , dont les extrémités ont les mêmes partie fractionnaires. Puis on la déforme en un segment de droite. Donc deux courbes sont homotopes si et seulement si les différences des coordonnées du point de départ et du point d'arrivée sont les mêmes. Il faut encore vérifier que les lois de composition coïncident.

Théorème Le groupe fondamental du tore percé est le groupe libre à deux générateurs.

Preuve On se ramène au groupe fondamental d'un bouquet de 2 cercles.

Théorème Le groupe fondamental d'une surface de genre $g \geq 2$ a une présentation avec 2q générateurs, et une seule relation.

NB On va se limiter dans la preuve à la surface de genre 2, et indiquer comment étendre la preuve aux autres cas.

Lemme On peut construire une surface de 2 par recollement des cotés d'un octogone. Les huit sommets sont alors identifiés.

Preuve On part d'un octogone régulier dans le plan, avec identification des faces parallèles avec la même orientation. On note ces faces a, b, c, d.

- 1. On identifie les cotés notés c, on obtient un cylindre avec, à chaque extrémité, un triangle avec les cotés b, a, d.
- 2. On identifie les cotés notés a, pour obtenir un tore avec un "trou" qui est un losange de cotés b, d, b^{-1}, d^{-1} .
- 3. On identifie les cotés notés b pour obtenir un tore avec deux trous, dont les bords sont tous deux notés d.
- 4. On identifie les cotés notés d pour obtenir une surface de genre 2.

On remarque que les huit sommets de l'octogone sont identifiés en regardant quelles sont les paires de sommets identifiés sur l'octogone.

 ${f NB}$ Pour le genre g, il suffit d'appliquer un argument de récurrence, et de montrer que, quand on augmente de 2 le nombre de cotés (i.e. on augmente le genre de 1) on ajoute un "trou" dans la surface obtenue, dont le bord est un losange dont on identifie les cotés 2 à 2, etc.

Preuve du théorème : les 4 paires identifiées de cotés de l'octogone correspondent à des éléments du groupe fondamental de la surface (non triviaux). La relation correspond au fait qu'une boucle qui fait un tour autour de l'origine est homotope à 0

Réciproque : plus délicat de montrer qu'il n'y a pas d'autre relation, exercice (pas facile).

Exercice Faire la réciproque, en utilisant qu'une surface de genre 2 est la réunion de deux tores percés dont l'intersection est un anneau.

Définition Variétés simplement connexes : ce sont celles dont le groupe fondamental est trivial.

Définition Revêtement de S par S': une application propre $\phi: S \to S'$ telle que, pour tout $y \in S'$, il existe un voisinage U de y dont l'image réciproque est la réunion disjointe d'ouverts sur lesquels ϕ est un homéomorphisme.

Définition Application associée de $\pi_1(S)$ dans $\pi_1(S')$: on réalise chaque élément de $\pi_1(S)$ comme une courbe fermée, on prend son image dans S' puis la classe correspondante dans $\pi_1(S')$.

Propriété Si $\phi: S \to S'$ est un revêtement, l'application associée entre les groupes fondamentaux est injective.

Théorème Les revêtement de S sont en bijection avec les sous-groupes distingués de $\pi_1(S)$.

Corollaire Chaque surface a un unique revêtement universel, c'est à dire un unique revêtement par une surface simplement connexe, son revêtement universel, noté \tilde{S} .

Fin du cours 7/1/2004

Remarque Soit S une surface munie d'une métrique riemannienne g. Le revêtement universel de S est munie canoniquement d'une métrique riemannienne \tilde{g} . De plus, $\pi_1(S)$ agit par isométries sur \tilde{S} , et le quotient est (S,g).

3.7 Les surfaces hyperboliques comme quotient

Lemme La seule surface hyperbolique complète et simplement connexe est H^2 .

Preuve Soit S_0 une surface hyperbolique complète et simplement connexe. Soit $x_0 \in S_0$, on considère l'application exponentielle $\exp_{x_0}: T_{x_0}S_0 \to S_0$. C'est un difféomorphisme local, d'après le comportement des champs de Jacobi le long des géodésiques, car seule la courbure intervenait dans la description du comportement de ces champs.

De plus elle est injective : sinon il existerait deux géodésiques allant de x_0 à un point x, c'est impossible d'après Gauss-Bonnet. Donc \exp_{x_0} est un difféomorphisme global.

On choisit maintenant $x_1 \in H^2$, une isométrie $\phi: T_{x_0}S_0 \to T_{x_1}H^2$, et on définit une application :

$$\psi := \exp_{x_1} \circ \phi \circ \exp_{x_0}^{-1} : S_0 \to H^2$$
 .

On remarque que les champs de Jacobi sont envoyés sur les champs de Jacobi — le comportement est le même des deux cotés — et on en déduit que ψ est une isométrie de S_0 sur H^2 .

Corollaire Chaque surface hyperbolique est le quotient de H^2 par un sous-groupe discret de PSL(2,R).

Définition Action sans point fixe.

Théorème Soit (S, g) une surface hyperbolique, et soit $\Gamma := \pi_1 S$. Alors $S = H^2/\Gamma$, où Γ agit par isométries, discrètement et sans point fixe.

3.8 Structures conformes sur les surfaces

Structures conformes sur les surfaces

Structures complexes, surfaces de Riemann

Changements conformes de métriques On va voir quelques formules explicites de changement conforme de métrique sur les surfaces.

Lemme Soit g une métrique riemannienne sur une surface S, et soit $\overline{g}=e^{2u}g$. La connexion de Levi-Cività de \overline{g} est :

$$\overline{\nabla}_x y = \nabla_x y + du(x)y + du(y)x - g(x,y)Du ,$$

où Du est le gradient de u.

Preuve On utilise la définition de la connexion de Levi-Civitá :

$$2\overline{g}(\overline{\nabla}_x y,z) = x.\overline{g}(y,z) + y.\overline{g}(x,z) - z.\overline{g}(x,y) + \overline{g}([x,y],z) - \overline{g}([x,z],y) - \overline{g}([y,z],x) \; ,$$

si bien que:

$$2e^{2u}g(\overline{\nabla}_x y, z) = e^{2u}g(\nabla_x y, z) + e^{2u}(2du(x)g(y, z) + 2du(y)g(x, z) - 2du(z)g(x, y)),$$

d'où le résultat.

Remarque Valable aussi en dimension plus grande.

Lemme La courbure \overline{K} de \overline{g} est donnée par :

$$\overline{K} = e^{-2u}(K + \Delta u)$$
.

(Ici Δ est le Laplacien des géomètres, qui est positif sur L^2).

Preuve On choisit un repère mobile orthonormé sur S, soit (e_1, e_2) ; on utilisera aussi $(f_1, f_2) = (e_1, e_2)$, on utilise deux notations distinctes pour ne pas se perdre dans les antisymétrisations (qui seront par rapport à (e_1, e_2)).

On remarque que $(e^{-u}e_1, e^{-u}e_2)$ est une base orthonormée pour \overline{g} , si bien que :

$$\overline{K} = \overline{g}(\overline{\nabla}_{e^{-u}e_1}\overline{\nabla}_{e^{-u}e_2}(e^{-u}f_2) - \overline{\nabla}_{e^{-u}e_2}\overline{\nabla}_{e^{-u}e_1}(e^{-u}f_2) - \overline{\nabla}_{[e^{-u}e_1,e^{-u}e_2]}f_2, f_1) ,$$

$$e^{2u}\overline{K} = g(\overline{\nabla}_{e_1}\overline{\nabla}_{e_2}f_2 - \overline{\nabla}_{e_2}\overline{\nabla}_{e_1}f_2 - \overline{\nabla}_{[e_1,e_2]}f_2, f_1) .$$

On développe suivant le lemme précédent, et on sépare tous les termes qui sont d'ordre 1 en $\nabla_{e_i}e_i$, dont on sait qu'ils disparaitront. Il reste :

- 1. K, par les termes d'ordre 2 en e_i .
- 2. les termes d'ordre 2 en u, qui donnent $-g(\nabla_{e_1}Du, f_1) g(\nabla_{e_2}Du, f_2)$, soit Δu .
- 3. les termes quadratiques en du, qui se simplifient.

Remarque En dimension plus grande les choses sont plus compliquées!

Un théorème d'uniformisation 3.9

Théorème Soit S une surface compacte de genre $g \ge 2$, et soit g_0 une métrique régulière sur S, et soit K une fonction strictement négative sur S. Il existe un unique métrique g conforme à g_0 dont la courbure est K.

Corollaire Dans chaque classe conforme, il existe une unique métrique hyperbolique.

Lemme Soit u, v deux fonctions sur S. Alors:

$$\int_{S} \langle D_0 u, D_0 v \rangle da_0 = \int_{S} (\Delta_0 u) v da_0 .$$

En particulier:

$$\int_{S} \Delta_0 u da_0 = 0 \ .$$

(inégalité de Trudinger) L'injection $u \mapsto e^{2u}$ de H dans L^2 est com-Lemme pacte.

Admis ici. Preuve

Lemme (inégalité de Poincaré) Il existe une constante c > 0 (dépendant de g_0) telle que, pour tout $u \in H'$ (de moyenne nulle) on ait :

$$||u||_2^2 \le c||D_0u||_2^2$$
.

Tout sous-ensemble borné de H est faiblement compact.

Admis ici. Parce que H est un Hilbert.

Preuve A faire en exercice, un peu délicat. Plus simple : le faire seulement sur le tore (muni de la métrique produit de deux cercles).

Preuve du théorème. On pose $g = e^{2u}g_0$, il faut donc résoudre le problème suivant:

$$\Delta_0 u = K e^{2u} - K_0 ,$$

soit (E), où Δ_0 est le Laplacien de g_0 et K_0 est sa courbure. On va utiliser l'espace $H:=W^{1,2}(S,g_0)$, c'est l'espace de Sobolev des fonctions L^2 dont le gradient est L^2 . On introduit aussi le sous-espace H' de H des fonctions de moyenne nulle. On introduit deux fonctionnelles :

$$F(u) = \int_{S} ||D_0 u||^2 + 2K_0 u da_0, \quad G(u) = \int_{S} e^{2u} K da_0.$$

On remarque que F est minorée sur H', d'après les deux lemmes plus haut. Soit u une solution de (E), on devrait avoir :

$$G(u) = \int_{S} K_0 da_0 = 2\pi \chi(S) ,$$

si bien qu'on cherche des minima de F sur l'hypersurface $G(u)=2\pi\chi(S)$. Pour un tel minimum, on doit avoir pour toute fonction $v\in H$:

$$dF_n(v) = \lambda dG_n(v)$$
,

soit, par intégration par parties :

$$\int_{S} (\Delta_0 u + K_0 - \lambda e^{2u} K) v da_0 = 0.$$

Mais par Gauss-Bonnet on devrait donc avoir $\lambda=1$. Il suffit donc de trouver un mimimum de F avec $G=2\pi\chi(S)$.

Comme K < 0, il existe $a \in H$ telle que $G(a) = 2\pi \chi(S)$. Soit m := F(a), on pose :

$$B := \{ u \in H, \ f(u) \le m \land G(u) = 2\pi \chi(S) \}$$
.

Alors par construction B est non vide. De plus, F est bornée inférieurement sur B car, pour tout u_inH , on peut écrire $u=\overline{u}+u'$, où \overline{u} est la moyenne de u est $u'\in H'$, et alors \overline{u} est majoré sur B car $G(u)=e^{2\overline{u}}G(u')$ et $|G(u')|\leq \inf |K|$. Comme $F(u)=4\pi\chi(S)+F(u')$ et F est minorée sur H', on voit que F est minorée sur B.

Il existe donc une suite minimisante (u_n) , qui converge vers la borne inf de F sur B.

Or B est borné dans H car, par les mêmes arguments, F est minorée sur H' est \overline{u} est minoré sur B. Donc B est faiblement compact, et (u_n) converge (après extraction d'une sous-suite) vers une limite u_0 . Comme G est faiblement continue, $G(u_0) = 0$, et donc, d'après les arguments donnés plus haut, donc u_0 est une solution faible de (E).

En fait u_0 est régulière (régularité elliptique) donc c'est une solition forte de (E).

Unicité: c'est une conséquence du principe du maximum. On suppose qu'il existe deux solutions u_1, u_2 distinctes, et on considère le maximum de $u_1 - u_2$; on constate qu'il ne peut pas être positif, sinon on aurait $K(e^{2u_1} - e^{2u_2})$ qui serait négatif. De même le minimum ne peut pas être négatif.

3.10 L'espace de Teichmüller

Définition L'espace de Teichmüller de genre g, \mathcal{T}_g , est l'espace des métriques hyperboliques sur une surface de genre g, modulo les difféomorphismes isotopes à l'identité.

On peut aussi le définir comme l'espace des structures conformes, toujours modulo les difféos isotopes à l'identité.

Théorème \mathcal{T}_g est une boule de dimension 6g - 6.

Principe de la preuve. On se limite à montrer que cet espace est connexe et simplement connexe.

Soit c_0, c_1 deux éléments de \mathcal{T}_g , on les réalise par des métriques g_0, g_1 ; puis on considère le barycentre des deux métriques, qui reste une métrique pour tout

 $t \in [0,1]$. On peut donc en prendre la structure conforme, qui se réalise comme une unique métrique hyperbolique, d'où la connexité.

Pour la simple connexité on considère un chemin $(c_t)_{t \in S^1}$ dans \mathcal{T}_g , on le réalise comme un chemin de métriques $(g_t)_{t \in [0,2\pi]}$, avec g_0 conforme à une métrique équivalente à $g_{2\pi}$ par une isotopie. Quitte à changer le facteur conforme on peut supposer que ces deux métriques sont isotopes. Quitte à faire agir un "chemin d'isotopies" (cf. la définition des isotopies) on peut supposer que $g_{2\pi} = g_0$. On définit alors un disque dont ce chemin est le bord par une procédure de barycentre, comme pour la connexité; on note g le barycentre des g_t , puis, pour chaque (r,t), on définit $g_{r,t}$ par barycentre entre g et g_t . Puis on passe encore à des métriques hyperboliques par un changement conforme, et on obtient la simple connexité.

Définition L'espace des modules de métriques hyperboliques \mathcal{M}_g , sur une surface de genre g, est l'espace des métriques hyperboliques modulo tous les difféomorphismes.

Définition On note Diff(S) le groupe des difféos de S, et $Diff_0(S)$ le groupe des difféos isotopes à l'identité.

Théorème $\mathcal{M}_q = \mathcal{T}_q/\Gamma$, où $\Gamma = Diff(S)/Diff_0(S)$.

Preuve Par construction!

Définition $Diff(S)/Diff_0(S)$ est appelé le groupe modulaire.

Remarque Pour une surface de genre quelconque, le groupe modulaire est compliqué! Mais il est simple pour le tore, dans ce cas c'est $SL(2, \mathbf{Z})$, cf. les exercices.

Remarque On peut aussi considérer les espaces de métriques hyperboliques sur les surfaces à bord, ou sur les surfaces munies de points distingués. Pour les surfaces à bord on se limite en général aux métriques pour lesquelles le bord est géodésique. Pour les métriques avec des points distingués, on considère des métriques hyperboliques complètes sur le complémentaire des points, et d'aire finie.

Exercices

- 1. L'espace des métriques plates sur le tore . On considère le tore T^2 , et deux éléments a,b de son groupe fondamental correspondant à des courbes qui ne se rencontrent qu'un un point.
- $1.1\;\mathrm{Montrer}$ que a et b commutent, et qu'ils engendrent le groupe fondamental du tore.
- 1.2 On considère une métrique plate g_0 sur le tore. Montrer que le revêtement universel du tore, muni de la métrique provenant de g_0 , est le plan euclidien.
- 1.3 Montrer que, étant donné g_0 , on peut associer à a et à b deux vecteurs A et B de \mathbf{R}^2 , définis modulo une rotation agissant sur les deux vecteurs.

- 1.4 On considère maintenant les métriques plates sur le tore, aux homothétie près. Montrer que, étant donné a et b, on peut associer à la classe de g_0 (aux homothéties près) un élément du demi-plan supérieur \mathbf{R}^2 . En déduire que l'espace \mathcal{M}_1 des métriques plates sur le tore, modulo les difféomorphismes isotopes à l'identité et les homothéties, est associé bijectivement au demi-plan supérieur.
- 2. Calculs de groupes fondamentaux. 2.1 Donner le groupe fondamental du tore de dimension n, le produit de n cercles.
- 2.2 Donner le groupe fondamental d'un bouquet de n cercles, la réunion de n cercles recollés en un point.