

Martin Schlichenmaier
Université du Luxembourg

Mathematical Foundations

Exercise sheet 1

- 1.** Let \mathbb{F}_{23} be the finite field with 23 elements. For $\bar{5} = 5 \bmod 23$ calculate its inverse element with respect to the multiplication by using Euclid's algorithm (e.g. via expressing the $\gcd(n, m)$ as integer combination of n and m).
- 2.** (a) Let $a = a_n a_{n-1} \dots a_1 a_0$ be the presentation of a number a by a decimal expansion. Show (using residue calculus) that $3|a$ if and only if $3|(\sum_{i=1}^n a_i)$.
(b) Find a corresponding rule for the divisibility by 9.
- 3.** Determine up to isomorphy all groups of order less or equal 5. Are these groups abelian?
- 4.** Let S_3 be the group of bijective maps from $\{1, 2, 3\}$ to $\{1, 2, 3\}$. Give all elements of this group. Calculate the order of the elements and find all subgroups of S_3 . Is this group abelian?
- 5.** Let $\varphi(n)$ be Euler's phi-function which is defined as the number of elements in \mathbb{Z}_n^* , the group of units in the ring \mathbb{Z}_n . Show that for p and q prime, one has

$$\varphi(p) = (p - 1), \quad \varphi(p \cdot q) = (p - 1)(q - 1).$$

The web-page of the course: <http://www.cu.lu/~schliche/cours-mics>