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Introduction

Let M be a set with a collection of coordinate charts (U;, ¢;)icr, i-€.
Viel, ¢ : Ug CM 5 ¢;(U;) € C™ =2 R*™ where ¢;(U;) is open in C"

M is called a complex manifold if these charts satisfy
a) The chart domains U; cover M : (J,c; Ui = M
b) ¢;(U; NUj) is an open subset of C", Vi,j € I

¢) The locally defined transition maps ¢; o ;" : ¢;(U; NU;) — ¢;(U; NU;) are holomorphic (in n variables).

holomorphic

wi(U: NUj) w;(U; NU;)
In this case, M is a manifold of complex dimension n and of real dimension 2n.

Interpretation :
Complex manifolds locally look like C™ = R?",

Examples of complex manifolds :
1) C™ : non-compact manifold
2) P*(C) = CP"~!, the complex projective space : compact manifold
3) Complex tori (see figure 1); they can for example be constructed as a quotient of the type

T =C/L where L is a lattice over Z>

4) If K = C, algebraic varieties ”without singularities” are non-compact complex manifolds.

5) But not all complex manifolds are of algebraic type.

It turns out that compact and non-compact complex manifolds have a very different behaviour, e.g. if a globally
defined function on a compact manifold is globally holomorphic, it must be constant.

Figure 1: the torus T'= C / L embedded into R3

—

Recalls :
— holomorphic functions in 1 variable
— holomorphic functions in n variables for n > 1
— differentiable manifolds
— holomorphic differentiable forms



Chapter 1

Holomorphic functions in 1 variable

1.1 Notations and definitions

We know that C = R @ iR = R? as vector spaces.
Let € C = 3'x,y € R such that z = x +iy = (x,y) where i? = -1 = x=Rez,y=Imz,z=212—iy

2l =Vat+y? = 2P =22+’ =(a+iy)-(z—iy) =22
Let U C C be an open subset of C. A complez function is a map
fUCC—C:zmw=Ff(z) & f:UCR =R : (z,y)— (u(z,y), v(z,y))

Since C = R?, these are equivalent descriptions of complex functions : f(z) = f(z,y) = u(z,y) +i - v(z,y).

Thus any complex function has the partial derivatives :

af of ou Ou Ov v

90z 7 9r oy 0z’ oy

The relation between the variables is given by x = 252, y = 2% and defines a change of variables, so

o _of 05 0 oy o 1 08 11 (0f  ony -
0z Ox 0z 0Oy 0z Ox 2 0Oy 2i 2 \ox Oy ’
of _of oz of oy _of 1 of -1 _1 (of . of
9z Or 0 oy 9z or 2 oy 2 2 (5 +1 ay)

(1.2)
because of the chain rule. Notice that these are equations on R? since f: U - C & f: U — R2.

1.1.1 Definition A

Let U C C be open, f : U — C be a complex function and w € U. )
Assume that f is differentiable in the real sense with continuous partial derivatives % and %'

f is called holomorphic atw € U & %(w) =0.
f is called holomorphic in U if f is holomorphic at all points w € U.

1.1.2 Definition B

Let U C C be open. A complex function f : U C C — C is called analytic in U if f has a local series expansion
forall w e U, i.e. Vw € U, dag € C such that

f2) =) ar-(z—w)" (1.3)
k=0

and this series converges in a neighborhood of w, e.g. in an open disc around w : D(w,e) ={z € C, |z—w| <e}.
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1.1.3 Remark

As a power series, the convergence will always be absolutely and uniformly, i.e.
o] o0
> ’ ’
ap - (z —w)¥ < oo, Vz € D(w,e) = Z|ak-(z—w) | < o0, Vz € D(w,e)
k=0 k=0
and Vw € U, the convergence of the series is independent of the chosen point z in D(w, ).

Analytic functions are obviously holomorphic since there is no z in (1.3), thus Def. B = Def. A.

1.2 The Cauchy-Riemann equations

Let f =u+i-v. Using (1.2), the condition of f being holomorphic (Definition A) can be rewritten as

af 1 /0f . Ofy_ ou+i-v) . Out+i-v)
e (ax“ ay)_o‘:’ gr T g 0
Ou . Ov . Ou 5 Ov Ju Ov N A
< %_FZ.%_'—Z.@_'—Z .87y_0 < (ax_ay) .<8x 8y)_0
Ju v ou v

= _ = 1.4
< ox Oy an dy Ox (1.4)

The identities (1.4) are called the Cauchy-Riemann differential equations and are equivalent to Definition A.

1.2.1 Theorem

Let U C C be open and f : U — C be a complex function such that f is real differentiable, i.e. the partial

derivatives % and % exist and are continuous. Then the following conditions are equivalent :

1) f is holomorphic in U.
2) f is analytic in U.
3) f satisfies the Cauchy-Riemann differential equations in U.

None of these equivalences is true for functions in real variables!
Thus holomorphic functions are (as power series) differentiable up to every order, i.e. they are of class C*°.

1.2.2 Examples

— holomorphic : polynomial functions P(z), exponential functions exp(z), trigonometric functions sin z, cos z

rational functions 58 (without poles, otherwise they are called meromorphic)

‘ 2

— not holomorphic : conjugates z, modules |z|* = 2Z

1.3 Cauchy integral formula

1.3.1 Theorem
Let D be an open disc in C and assume that f € C°°(D) with f holomorphic in D. Then

f(z)zL &duu VzeD

2 Jop w—z

where JD is traveled in the trigonometric sense.

1.3.2 Generalization

Let U C C be a simply connected open set in C and f : U — C be holomorphic in U. Let v be a simple closed
path in U and z € U such that z ¢ im~. If n(z,v) denotes the winding number of z with respect to ~, then

() 10 = 5 [ 2



Chapter 2

Holomorphic functions in n variables

2.1 Notations and definitions

We know that C™ = (RQ)n =~ R2" is a real vector space of dimension 2n and an n-dimensional complex vector
space. The isomorphism C™ = R?" is given by

(21,-.-,2’”) €C" — (3«"17917$27y2a-~-7$myn) GRZn with 2k :xk+i'yk¢, Vk e {17?n}

It is not possible to define a scalar product (symmetric, bilinear, positive definite) on C™. It must be replaced
by the Hermitian product, defined by

n
(z,w) = Zék ~wy  for z,w e C"
k=1
This product is linear in the second variable, conjugate-linear in the first argument, positive definite and satisfies
(z,w) = (w,z). Finally the module of z € C™ is equal to ||z|| = \/( 2,2 ), hence

n n n n
||Z||\/sz'Zk\/ZIZkIQ\/Z(fEier%)\/ ri+ 3 Ui
k=1 k=1 k=1 k=1 k=1

2.1.1 Definitions

Let U C C” be open, f : U — C be a complex function and w € U. f is called holomorphic at w € U if f is
continuous at w and if for all k € {1,...,n}, the function zx — f(z1,...,2k,...,2n) is holomorphic at wy, i.e. f
is holomorphic in each variable separately.

f is called holomorphic in U if it is holomorphic at every point w € U.

And a function F' : U C C" — C™ is holomorphic < every component function F; : U — C is holomorphic.

i M=

The same argument as in the case n = 1 shows that f : U — C is holomorphic in U < the Cauchy-Riemann
equations are satisfied, i.e. if f = u+i-v for u,v : R?® — R, then

of
87216_07 Vk€{1,7n}

ou oo ow o
Oz Oy oyp Oz’

f holomorphic <

& Vke{l,...,n}

2.2 Power series in n variables

The condition for a complex function in more variables to be analytic in some open set U is more difficult to
formulate since we first need to define multi-index power series.

n
Let z = (21,...,2n) €C", a = (aq,...,a,) € N} and aq = @qy,....a, € C. The length of a is |a] := 3 .
k=1
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-zom then a formal power series in n variables can be written as

9(2)=g(z1,. . zm) = D aa-2"=3_ Y ag-2" (2.1)

a,lal=0 k=0 |a|=k

where the sum ) is finite since o € Njj, i.e. only finitely many o can satisfy |a| = k.
la|=k

2.2.1 Example

Let n = 2 and consider only 0 < k£ < 2, then
2
0.0 1.0 0.1 2.0 1.1 0.2
E g Qg - 2% = appz1 29 + a102125 + Ap12125 + Q2021 29 + Q112729 + Q022125
=0 |ar|= 2 2
k=0al=k = ago + @10 21 + Qo1 22 + G20 27 + @11 21 22 + Qo2 25

Saying that the power series is formal just means that we do not worry about convergence problems for the
moment. If all a, are zero except finitely many, we obtain a usual polynomial in n variables. And for polynomials
we can plug in values for z = (z1,..., z,) since the sum is finite, thus always converges.

2.2.2 Problem

e}
Consider power series of the form > aq - (z — w)®.
la[=0
Recall that convergence of a power series in 1 variable is defined as the convergence of the sequence of partial
sums. This definition is however not possible if n > 1 since there is natural linear ordering defined on Nj ; the

”partial sums” in (2.1) are not indexed, thus there is no "sequence” which could converge in the usual sense.

2.2.3 Definition: convergence for n > 1

Let z € C™. oo
The power series > aq - 2% converges to ¢ € C < Ve > 0, there exist a finite index set Iy C N such that
|a|=0
for all finite set I satisfying Iy C I C Njj, we have : ‘ Zaa S 2% — c’ <e€
a€el
In this case we denote ¢ := lim)_ a, 2% and this limit ¢ is always unique. Moreover this convergence is an

absolute convergence, i.e. if Y a, 2% — ¢, then Y |a,| 2* also converges, but not necessarily to |c|.

2.3 Analyticity

2.3.1 Definition

Let U # () be open in C™ and f : U — C be a complex function on U.
f is called complex analyticin U < Yw € U, there exist a neighborhood U,, C U of w and a power series

o0
Z Ao - (z—w)®  where (z —w)* = (21 —w1)* - (22 —w2)*? - ...+ (2 — wWp)™"
|a|=0
which converges to f(z) for all z € U,,. This means that f can locally be written at any point as a power series

which converges in a certain neighborhood of this point.

f is called real analyticin U < on U, it can locally be expanded as a power series in z and Z.
Obviously : f complex analytic = f real analytic.
2.3.2 Examples

e f(2) = 2% : f is a power series as polynomial ; it is complex analytic since it only depends on z
e g(2) = |z|? = 2z : g is real analytic, but not complex analytic
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2.3.3 Theorem

Let f be a complex function defined on some open set U in C".
Then f is holomorphic in U < f is complex analytic in U.

2.4 Identity Theorem

Let A C Cand a € C. We say that a is an accumulation point of A if any open set U C C containing a intersects
A in some point distinct than a. By taking U = D(a, %) with n — 400, this is equivalent to :
a accumulation point of A < 3 sequence (ay), with a, € A, a, # a, ¥n, such that lilf an = a
n—-+0oo

In particular, the condition a,, # a, ¥V n implies that A must necessarily be infinite.
If B C C, we say that A has an accumulation point in B if 3z € B such that 2y in an accumulation point of A.

2.4.1 Theorem (n =1)

Let U C C be open, connected and U # () and let M C U be such that M has an accumulation point in U.
Let f,g : U — C be holomorphic in U such that f Then f=gon U.

M = Y9

Example :

- M

1 0| 1 2

R

If 2 globally holomorphic functions f,g : C — C are equal on M = { X | n € N}, then they have to coincide
everywhere on C as well.

2.4.2 Theorem (n > 1)
Let U C C™ be open, connected and U # (). Let W C U be such that W # () and W is open.

U

If f,g: U — C are holomorphic in U such that f},, = g, , then f =g on U.

2.4.3 Remark

The condition ”W C U open” is stronger than the condition ” M C U has an accumulation point in U”.

Indeed : Vw € W, 3¢, > 0 such that w € D(w,e,,) C W C U since W is open. Thus one can define a sequence
of distinct points in this open disc converging to the center w = w is an accumulation point of W in U.

In fact, the condition about having an accumulation point is not sufficient for n > 1 :

Consider C? with M = { (21,22) € C? | 2o = 0} = every point in M is an accumulation point of M in C2.
Let g,h : C? — C be holomorphic functions on C? such that g # h outside of M (this always exists) and define

fi(z1,22) = 22 - g(21,22) ,  fa(21,22) := 22 - h(21, 22)

Then f;, fo are holomorphic on C? with f; = f» = 0 on M, but f; # fo on C2 since g # h.

2.4.4 Identity Theorem for power series

If > aq 2z* and Y b, 2* represent the same holomorphic function, then a, = by, Va € N.

Thus : if 3oy € Ny such that a,, # ba,, then the corresponding power series define different holomorphic maps.
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2.5 Maximum Principle

2.5.1 Recall
Let V C R™ be open. For a function h : V' — C of real variables z1, ..., Z,,, the Laplacian is defined as
"L 0%h  0%h  9%h 9%h
Ah = — ==5+ =5 +...
Z ox? Oz} + Ox3 ot 02,

h is called harmonic on V if Ah(z) =0,Vx € V.

Let now f : U — C be a holomorphic function on an open set U C C" and consider the identification C™ = R?",
i.e. we identify f(z1,...,2,) = f(x1,91,---,Zn,yn). Then f, Re f and Im f are harmonic on U (as functions of
2n real variables).

2.5.2 Theorem
Let U # () be open in C™ and f : U — C be holomorphic in U. Then the absolute value function

Il : U=R 20 [f(2) =/ f(2) f(2)

is in general not holomorphic or harmonic (unless f is constant), but |f| is continuous and real analytic in U.
Moreover |f| does not have a maximum in U. B

If U is bounded, this means that its maximum ”lies on the boundary” of U, given by oU := U N (C*\ U).
2.5.3 Example

Consider the case of an open disc U = D(zp,r) with center z9 € C" and radius r > 0 as in figure 2.1.
If | f| is continuous on the compact set U = D(z0,7), we already know that it must have a maximum in U. The
theorem says that this maximum has to be on the boundary OU of U.

Figure 2.1: the open disc U = D(zp,r) with boundary oU

D.r

ou

2.6 Hartog’s Lemma

2.6.1 Recalls

n=1: Let U C C be open and convex with p € U.

If f: U — C is holomorphic in U \ {p} and continuous in U (in particular at p), then f is holomorphic in U.
If f is holomorphic in U \ {p} and bounded in a neighborhood of p (without being assumed to be defined or
continuous at p), then f extends uniquely to a holomorphic function on U, hence f does not have a pole at p.

2.6.2 Definition

Let w = (w1, wa,...,w,) € C" and r € R, r > 0.
A polydisc of radius r centered at w, denoted A(w, ), is equal to the Cartesian product of discs

A(w,r) = D(wy,r) X D(wa,7) X ... X D(wy,,T)

:{(zhzg,...,zn)e(C”, |21 —wi| <7y |za —wa| <7y ..., |zn—wn|<r}

It should not be confused with the usual disc D(w,r) ={z€C", |z —w| <r} CC"
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2.6.3 Hartog’s Lemma

Let n > 2, U C C™ be open and p € U. Assume that f is holomorphic in U \ {p} (see figure 2.2). Then f extends
uniquely to a holomorphic function on U (even if f may a priori not be continuous or bounded at p).

Figure 2.2: f is not holomorphic at p

Proof. The extension is necessarily unique because U \ {p} is open in U. If f has 2 holomorphic extensions, these
will coincide on U \ {p} (as extensions of f), thus by the Identity Theorem 2.4.2 they are also equal on U.

It suffices to prove the statement for n = 2 and for p = (0,0) € C? by applying a shift (which is a holo-
morphic transformation).

Moreover since we work locally around p, it suffices to extend f to a holomorphic function in a small open
neighborhood V' of p and we may assume that V is a polydisc centered at p of small enough radius. Hence

p=1(0,0) €V = 3r>0suchthat V =A((0,0),r) CU

[ is well-defined and holomorphic on U \ {(0,0)}, in particular it is holomorphic on the boundary of V. Define

211 Wy — 29

1
F(z1,22) 127.-/ dez , V(21,22) €V
|wa|=r

where z; is a parameter in the integral. F is well-defined since |wa| =7 >0 = (21, w2) # (0,0).
Moreover (z1,22) € V. = |z2] < r, hence wy — 22 # 0, so numerator and denominator are well-defined.

Thus Vws € C such that |ws| = r, the map

f(zla w2)

(Z1722) — 9(2152277112) = Wy — 29

is holomorphic in V. It remains to check that F' is holomorphic in V as well. Using the complex version of
differentiation of parameter-dependent integrals, we find

z1 — g(z1, 22, w2) is holomorphic in D(0,7), V 23, wq such that |zo| <7, |ws| =7
29+ g(21, 22, w2) is holomorphic in D(0,r), V z1,ws such that |z1]| <7, |wa| =7

wg > g(z1, 22, w2) is continuous on ID(0,r), V z1, z3 such that |z1| <7, |z2] <7

Moreover the partial derivatives 5%917 887’;, 88791 and 88—;; are continuous in all variables (whenever defined), hence

of
oF 1 0 [ f(z1,ws) 1 / 52 (21, w2)
—_— s = —- —_— —_— d = —- ekt SE—— d — 0
071 (21, 22) 271 /|w2|_r 071 ( Wae — 29 w2 270 Jjy|=r W2 — 22 w2

OF 1 0 [ f(z1,ws) 1 / 0 1
gr - . (B e — . dws = 0
9% (21,22) 57 Auzl—r 9% ( s — 2 ) M2 =55 - f(z1,w2) 95 \ s — 5y ) W02

is holomorphic Vws € OD(0,7) and f is holomorphic in all variables with (z1,ws) # (0, 0).

since zo +—
w2 —2z22

Finally F' is holomorphic in both variables z; and 2o in the whole polydisc, i.e. we constructed a function
which is holomorphic in V. In particular we can plug in

21 Wa

F(O,O)—1~/| . JO.w) b e

10
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To show that F" is an extension of f on V, we need that £ . Fix some r; € ]0,7] and define

= flvvim-
V= Vﬂ{(zl,22) €C?, |n|> 7’1}

In order to use Cauchy’s integral formula, we have to exclude 21 = 0, otherwise the map wy — f (0, w2) is not
holomorphic in D(0,r). Hence V (z1,22) € V' :

F(21,22)=21m./| 7f(zl’w2)

W2 — 29
So F = f on V' with F and f holomorphic in V'\ {p}. But V' C V'\ {p} is open, hence by the Identity Theorem
F = fonV\{p}. So F is the required holomorphic extension of f on V, thus on U. O

dwy = f(z1,22) with (21,22) # (0,0)

2|=r

2.6.4 Remark

As a consequence of Hartog’s lemma we obtain that the singularities of holomorphic functions in several variables
cannot be isolated points (since it is possible to extend the function in this case).

It can even be shown that such an extension exists if f is holomorphic in some polydisc A; without knowing its
behaviour in a smaller polydisc Ay and Ap \ A is still connected.

Ay

In this case f can also be uniquely extended to a holomorphic function in the whole big polydisc A;.

This does not hold for arbitrary sets where a function is not defined. Let e.g. n = 2 and consider f(z1,22) = %

f is defined and holomorphic on C\ N where N = {(0,22) | 22 € C}. Since N has however empty interior, the
set of singularities N does not contain any polydisc and the remark does not apply in this case.

2.6.5 Counter—examples

The condition n > 2 is necessary.

Consider e.g. the function z — % on U = C with p = 0. It cannot be extended to C since it is not bounded at 0.
For n > 2, it is also important that the function is holomorphic, e.g. if n = 2, the map

1 1

z = 1\Z z F— e
(1:22) = TR = L E T P

is defined on C™ \ {0} but, since it is not holomorphic, cannot be extended to a holomorphic function on C™.

11



Chapter 3

Real differentiable manifolds

3.1 Introduction
intuitive idea : Real manifolds locally look like R™.
There are 2 possible approaches in order to define manifolds :

— start with an arbitrary set M, define charts domains and coordinate maps ¢; such that the transition
functions satisfy certain properties and construct a topology on M using the atlas of coordinate maps

— start with a given topological space (M, 7T) and a collection of open sets U; and homeomorphisms ;

We choose the second approach in the sequel.
Let (M, T) be a topological space and {U;};c; be a family of non-empty open subsets of M such that

M=JU

ieJ
i.e. the U; are an open covering of the space M. Let also be given a collection of maps (see figure 3.1)
ViEJ,(piZUi—)Wian

where every ¢; is a topological isomorphism : ¢; and ¢; 1 are both bijective and continuous (one also says that
the @; are bicontinuous or homeomorphisms). Hence all W; are open in R™ and the transition maps

vii =09+ @iUinU;) SR — ¢;(U;NU;) CR™
are also homeomorphisms (whenever defined).

Figure 3.1: two overlapping coordinate patches

W; CR” W; CR"

A pair (U;, ¢;) is called a coordinate patch of M and the whole collection (U;, ¢;)ic is called an atlas of M.
Since the transition maps ;; are all continuous, one says that M is a topological manifold.

12
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3.1.1 Definition

A topological manifold M is called a (real) differentiable manifold if the transition maps 1;; are differentiable,
i.e. infinitely often differentiable (of class C*°), V (i,5) € J x J.
Since w;il = 1045, this immediately implies that the transition functions are diffeomorphisms.

One can also impose weaker conditions, e.g. the v;; should only be C' L C?..., or stronger conditions, for instance
that the 1;; have to be real analytic. In this case M would be a C*—manifold, resp. a real analytic manifold.
A topological manifold is of dimension n if p; : Uy — W; CR" Vi€ J.

3.2 Topological properties of manifolds

In order to exclude ”exotic” manifold structures, one often requires that :

— M is Hausdorff

— M is connected

— M is paracompact

Unless explicitly mentioned, we always assume that these 3 conditions are satisfied in a differentiable manifold.

3.2.1 Definitions

Let (M,T) be a topological space.
M is called Hausdorff if any 2 distinct points in M can be separated, i.e.

Vae,ye M, x #y : 3U,, U, open neighborhoods of z,y such that U, N U, =0
M is called regular if any point and a closed set not containing that point can be separated, i.e.
Vo e M, VF C M closed such that « ¢ F : 3U,, Vr open such that x € U, F C Vg, U, NVp =0

M is called normal if any 2 disjoint closed sets can be separated by open neighborhoods.

Let x € M. A basis of neighborhoods B3, of x is a family of neighborhoods of x such that for any neighborhood
U, of x, there is a neighborhood V, € B, such that z € V, C U,. A basis B of M is a collection of open sets
such that any open set in M can be written as a union of open sets from B.

M is called first-countable if every point in M has a countable basis of neighborhoods. M is called second-
countable if it has a countable basis.

M is called connected < (M = U UYV for some open sets U,V with UNV =0 = U =0 or V = 0),
i.e. M is connected if it cannot be written as a disjoint union of 2 non-empty open subsets. An open set U C M
is connected if it is connected with respect to the induced topology.

M is said to be path-connected if Vp,q € M, there is a continuous map ~ : [0,1] = M such that v(0) = p and
(1) = ¢ (see figure 3.2). Such a map + is called a path from p to q.

M is called locally connected if every point in M admits a basis of connected neighborhoods and it is locally
path-connected if every point in M admits a basis of path-connected neighborhoods.

Figure 3.2: 7 is a path from p to ¢

Let now U C T be a family of open subsets of M.

U is called pointwise finite if Vo € M, x only belongs to a finite number of sets in U. U is called locally finite if
Va € M, there is a neighborhood V,, of z such that V,. intersects only a finite number of sets in U.

Assume now that U is an open covering of M. Another family of subsets V C T is called a refinement of U if it
is again an open covering of M and if VV € V, AU € U such that V C U.

13
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M is called a Lindelof space if every open covering of M has a countable subcover. M is called compact if every
open covering of M contains a finite subcover.

M is called locally compact if every point in M admits a compact neighborhood. And finally M is called
paracompact if it is Hausdorff and if every open covering of M has a locally finite refinement.

We also recall that continuous images of compact sets are again compact, i.e.

K C M compact, f : M — N continuous = f(K) C N compact

3.2.2 Results

Let (M, T) be a topological space. One can show the following properties, which we are not going to prove :

— M compact = M paracompact (since any finite covering is a locally finite covering)

— M Hausdorff, second-countable and locally compact = M paracompact

— M second-countable = M first-countable and Lindel6f

— M regular and Lindel6f = M paracompact

— M paracompact and Hausdorff = M regular and normal

— M path-connected = M connected

— M connected and locally path-connected = M path-connected

— If M is locally path-connected, then connectedness and path-connectedness are equivalent.

— Any Hausdorff and second-countable manifold is locally compact, locally connected and locally path-connected.

Conclusion :
Any topological manifold which is Hausdorff and second-countable is also paracompact. Moreover connectedness
and path-connectedness coincide for differentiable manifolds of our purpose (see section 3.2).
The fact that we consider connected differentiable manifolds M ensures that the dimension of M is well-defined.
Otherwise we have to consider each connected component of M separately.

3.2.3 Example

Let M be a manifold and U = {Ui}iel be an open covering : M = {J;c; Us.

Again, a refinement of U is an open covering V = {Vj}jeJ such that M = UjeJ V; and
Vj € J, 3i eI (not necessarily unique) such that V; C U;

Being a Hausdorff and second-countable manifold, we can say that R is paracompact. As an example, let

I,=]-nn] = R= U I,, : open covering (see figure 3.3)
neN

But this covering is not locally finite because [,y In = {0} : 0 € I,,, Vn € N, hence also every neighborhood of
0 intersects infinitely many I,,.

Figure 3.3: the intervals I,, cover R

As long as we have infinitely many I,, necessary to cover R, the cover is not locally finite at any point : every
point of R belongs to infinitely many I,,. But we need infinitely many to cover R. So consider

I, =]-n—n+2[CI, ) IF=n-2n[CI,

n

= {I,|neN}U{L I, | n>3}is again a covering and a refinement of the previous one (even if it contains

more sets than before, see definition). And now one can take the subcover (see figure 3.4)

{L,L, I} 1, |n>3}

14
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It still covers R and is locally finite at 0 since 0 € I, I3 only. And it is also locally finite at any other point of R

since the intervals I;7, I, 7drift off” to + occ.

Figure 3.4: a locally finite covering of R

1 1 hrlhr

Note that this is not a proof of the fact that R is paracompact. In order to show this we need to show that every
open cover of R has a locally finite refinement.

3.3 Differentiable functions

3.3.1 Partition of unity

Let M be a topological space and U = {U,};c; be an arbitrary open covering of M. A family of continuous
functions {7;};cs where 7, : M — [0,1], Vi € J is called a partition of unity if
1) {7i}ies is locally finite, i.e. V2 € M, there is an open neighborhood W of x such that 7;,, = 0 for all but at
most finitely many i € J
2)Voz e M : Y 7(x) =1, which makes sense by 1) since it is a finite sum whenever z is given

i€
A partition of unity is called subordinated to U if suppr; ={z € M | 7(x) #0} CU;, Vi € J.

Partitions of unity can be used for "gluing” local objects.

Let again M be a manifold and & = {U,};c; be an open covering of M. Let v; be local objects defined on U;
(e.g. local functions) such that ¢; = 1; on U;NU;. If there exist a partition of unity 7, : M — [0, 1] subordinated
to U, one can define a global object ¥ by setting

U(@) =Y 7i(x) ()
JjeJ
Then ¢|Ui =1 since z € U; = ¢;(x) = (), Vj, thus y(z) = ZITj(x) i (x) = i(x) - Z]Tj(x) = (z) - 1.
JE JjE
3.3.2 Theorem
Let M be a Haudorff topological space. Then

M is paracompact <> for any open covering of M there exist a partition of unity subordinated to this covering.

3.3.3 Definition

Let M be a differentiable manifold with atlas (U;, ¢;)icr. A map f: M — R is called a differentiable function if
and only if f; ;== fo goi_l : W; CR"™ — R is a differentiable map, Vi € I (see figure 3.5).

Strictly speaking, this condition is not really needed. It already suffices the local condition : Vo € M, 3U C M
open neighborhood of x and 3 (U, ) chart of M at x such that fo ™! : o(U) C R® — R is differentiable.

3.3.4 Bump functions

Proposition : Every differentiable manifold has a differentiable partition of unity, called the bump functions.
(This does not mean that every partition of unity in a differentiable manifold is differentiable.)

15
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Figure 3.5: composition of the functions f and go{l to give amap f; : R®™ - R

M

Let x € M and U be an open neighborhood of . A bump function 7 is a smooth map v : M — [0, 1] with
support contained in U and taking value 1 in a neighborhood V of x. It can be visualized as in figure 3.6.

Figure 3.6: a bump function with support in U

1

==

But there does not necessarily exist an analytic partition of unity since these bump functions are constructed by
using manipulations and transformations of the map

e~V ifx >0
_ (n) _
_ = ¢™M0)=0, YneN
9(x) {0 o< 9™(0) n

Consider small neighborhoods of the points a,b,c,d in figure 3.7 where the bump function v begins to ”go
up” and ”go down”. All the derivatives vanish at these points, so the Taylor series of v will be constant in
any neighborhood of them. Thus v cannot be analytic since it does not coincide with its Taylor series in a
neighborhood of these points.

More generally, bump functions have compact support, but compactly supported functions are never analytic.

Figure 3.7: bump functions are not real analytic

a b

3.4 Orientability of differentiable manifolds

Consider figure 3.8. Let M be a differentiable manifold with atlas (U;, ¢;):er. Since all ¢; are bijective, we have
Vo e W, =g;(U;), a € U; such that p;(a) =x = (v1,...,2,)

The n-tuple (z1,...,2,) represents the coordinates of a € U; in the considered chart or coordinate system.
These coordinates can however change by using another coordinate chart. If 35 # 4 such that a € U; N Uj, then
(@) =y = (y1,...,yn) € W; = ¢;(U;) CR™ as well. The coordinates y and = are then related by the relation

y = ji(z) = (g5 09; ) (x)

16
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Figure 3.8: coordinate change in 2 overlapping charts

The 1);; are thus also called transition functions or coordinate change maps.
y being a function of z, one can now consider the Jacobian matrix

9 g ) P ) )
P agi az; e agi, a;ﬁ (2) agl (@) ... ai}i (x)
() = (%) S R . . . I
axl a?;n aén a?;n ayn. ayn. 9yn.
Gar  Ban v den or(@) Fox(w) ... Fx(x)

J is a matrix depending on the point = € ¢;(U; NU;) C R™ where it is computed.
Since the transition maps 1;; are bijective, we have that det (J(z)) # 0, Vz € ¢;(U; N U;).

3.4.1 Definition

A manifold is called orientable < it admits an atlas (U;, ¢;)ics such that det (J(15;)) > 0, Vi, j € I.
Note that this is an inequality of functions, i.e. for given ¢, j the relation must hold for any point = € ¢;(U; NU;).

Fact :
Complex manifolds are always orientable (proof, see section 4.2.3).
Examples of non-orientable manifolds are the Mobius strip and the real projective plane RP2. Hence by the
above fact it is not possible to endow these manifolds with a complex manifold structure.

3.4.2 Formulation with differential forms

Consider the local coordinates x1, xa, ..., x, with the standard orientation (order) and let 41, yo, ..., ¥ be the
coordinates after the coordinate change. In order to determine the orientation of the coordinate change, we have
to compare the orientation of dxy Adxs A ... ANdx, and dy; Adys A ... A dy,. We have :

n 8 o
Vke{l,...,n} : w;-‘i(dyk)zz e Hdzy = Z oy

8:1:; ox;
=1

where ¢7; denotes the pull-back of a differential form under the diffeomorphism %L
Hence by (3.1) the orientation of both differential forms coincide < det (J(¢;;)) >

3.4.3 Example

Consider the n-dimensional sphere S™ given by
S™ = {x = (x1,T2,...,2p1) ER™ 2|2 =1 } c Rt

S™ is compact in R as it is closed and bounded, hence it is paracompact. Moreover R™*! is Hausdorff and
second-countable, thus S™ is also Hausdorff and second-countable since these properties are hereditary.

17
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We want to endow S™ with a differentiable manifold structure. For this, consider the hemispheres
Uk ={zes" | (1) x>0}, j=01, k=12 n+1

which are open in R"*! and in S™. They form an open covering of S™ (the case n = 1 is given in figure 3.9),
called the standard covering. As charts, we take

h(k,j) Uy — B™(0,1) CR™ & (Z1,.. yThy-evy 1) — (T1y ooy Thely Thply- ooy Tt1)

This just corresponds to dropping the k*" position and hence projecting the point on the sphere down into the
ball B"(0,1) = {y € R", ||y||* < 1}. Intuitively, this projection corresponds to a flattening of the sphere.

> L
o f R
T
’ (1] ‘l R
B™(0,1)
Moreover hy ;) is well-defined because
n+1 n+1
lez < lez =1 = (1,...,%p—1,Tps1,.. ., Tny1) € B"(0,1)
1=1 1=1
I#£k

as xx > 0 for j =0 or zx <0 for j = 1. h ;) is in addition bijective and its inverse map is equal to

h(kb) : Bn(071>—>U(k,]) : <y17"'ayk7"'7yn)’—> (yla cee s Yk—1, (_1)j’l1_zyz2,yk7yk+l7ayn)
=1

3.4.4 Exercise

Show that S™ is a differentiable and orientable real manifold.

Figure 3.9: the standard covering of S* together with a positive orientation

/\5‘1 st
Yoot N

The domains Uy ;) form a covering of S™ and all images are open. It remains to check that ¢ = h ;) o h(_llm) is
differentiable.
Observe that the case k = [ is trivial since either j =m = ¥ =1id or j#m = domy =0 :

domy = h(l7m) (U(l,m) N U(k,j)) = h(l,m) ({ ze St | (—l)j -z >0 and (—l)m cx; >0 })

) {zeR | (-1)7 x>0} itk <l
S\ {2 eRY | (=1)Y capr >0} ifk>1

= ¢(m1,...,xn)=h(k7j)(x1, cee sy Lp—1, (_1)m. 1-— Zx?,xl,ajHl, ,In>
v i=1

2
(xl,...,a:k_l,xk_,_l,...,a:l_l,(—l)m-\/l—in,xl,xH_l,...,xn)

_ (3.2)

/ 2
(x17"'?ml717<_1)m' 1_in7xl7ml+17"'7xk727xk7$k+13-" xn)

18
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The explicit expressions in (3.2) allow to conclude that v, if it is defined, is differentiable and even real analytic
(since identity, square and square root are analytic). This atlas does however not (yet) satisfy the orientability
condition. But it can nevertheless be used to find an appropriate atlas later on. We set

R e R M e B G D AT T n
nim o (1) \/E)— ) L e

Consider the case k > I (k <1 is similar). Then the Jacobian matrix J(¢) is given by

1 1
[—1 1
l Yoo Yi-1 Yro--- Ye—2 Yk—1 Yk -+ Yn
l+1 1
k—1 1
k 0 1
n 1
Y Yi—1 Y Yk-2 Yk Yk+1 Yn Yk—1
1 0
1 0
d _ -1 n—(k—1) 1 0
= det (J(9) = (~1)H - (~1)n D 1 :
1 0
1 0
1 0

and expanding with respect to the last column gives

det (J(i/f)) = (fl)nfkﬂ . (71)n+1 T (71)2n7k+l+1 . (71)m+1 . Th_1

V1= a?
Since (—1)7 - 231 > 0 and 2n is even, we obtain that sign (det (J(1/)))> = sign ((—1)l_k+m+j).
In general this is not always positive. We admit that the factor (—1)!~**™+J can be eliminated by adding

some powers of (—1) in the definition of A, ;) such that the orientation is preserved (see figure 3.9). This
modification will finally define an orientation-preserving atlas for S™.
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Chapter 4

Complex manifolds

4.1 Definition

Consider figure 4.1. Let (M,U) be a real differentiable manifold with atlas U = (U;, ;)ics of (real) dimension
2n and assume that M is connected (as topological space) :
@i U= Wi CR™ 4y @i(UiNU;) CR*™ = 9;(U; NU;) CR*™

where W; C R?" is open and 1;; is differentiable whenever defined.
We identify C" with R?" using the standard identification (which is compatible with the orientation of M) :

(21,22, .,2n) +— (Rez1,Imz;,Re 29, Im 29, ..., Rez,, Imz,) = (21,41, T2, Y25 - « -, Ty Yn)
Denote Uj; = ¢;(U; NU;j) ; then 9;; : Uj; € C™ — C™ becomes a complex map on the open set Uj;; € C™.

Figure 4.1: a differentiable manifold of real dimension 2n

Such a manifold (M,U) is called a complex manifold < the maps v;; are biholomorphic V1, j € J.
Note that it is enough to require that the 1);; are holomorphic only because d)j_il =y :

i, %i; holomorphic = 1);;,;; biholomorphic

As for differentiable manifolds, we always assume in the following that complex manifolds are connected.
A one-dimensional connected compact complex manifold is called a Riemann surface.

Remark :
Two different atlases can define the same manifold if they are compatible. Recall that a chart (U, ¢) is said to
be compatible with an atlas U = (U, ¢;)icr if and only if
— the sets @;(UNU;) and (U NU;) are open in C*, Vi e I
— Vi € I, the functions ¢; o ¢! and ¢ o 901‘_1 are holomorphic whenever defined
Moreover 2 atlases U and V are compatible if every chart of U/ is compatible with V' and vice-versa.
One can then show that adding charts to a manifold which are compatible with the existing atlas will not change
the structure of the manifold. This is why manifolds are in general equipped with an equivalence class of atlases.
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4.2 Complex manifolds are orientable

In the sequel, we use the following short-hand notation. For a function

f:UCC"=>C™ @ (21,...,2n) — (fl(zl,...,zn),fg(zh...,zn), ...7fm(z1,...7zn))
of _ (0fi
5, = (823‘)1-5 Mat(m x n,C)

4.2.1 Definitions

Fix the indices 4, j € J. The holomorphic map #;; : Uj; € C* = C" : 2z +— w = 1j;(2) has the n components

(Vi) U CC" = C, k=1,...,n

awk - 8(’(/1 ‘i)k
0z (Z) B 3;1

For complex functions, one can now define 3 different types of Jacobian matrices :

All components are holomorphic too, thus

(2) =0,Vk,le{l,...,n},Vz e Uj.

€ Mat(n x n,C)

s, 0
holomorphic Jacobian matrix : Jy(2) = a—j(z) = ( Wk (z)>
k,l

0z

fu() 22(:)\ (% %2
. s _ 0z 0z _ 0z 0z
complex Jacobian matrix : J(z) = | J~ it =\ oo o | (,) € Mat(2n x 2n,C)
7:(2) 3:(2) 9 5
B(Re wl) B(Re w1) 8(Rew1) 6(Rew1)
ox1 3y1 Oxa W
A(Im wy) O(Im wy) O(Im wy) O(Imwy)
Ox1 Oy1 Ox2 OYn
: - _|a a a a
real Jacobian matrix : Jrea(2) = (%i?’z) (%Z;Uz) (%Z;w) % (2) € Mat(2n x 2n,R)
a(Irr; Wy) B(In;wn) B(In;wn) B(In;wn)
Ox1 Oy1 Ox2 T Oyn

J can be seen as the complexified version of Jyea).

M is now called orientable < there is an atlas of M such that det (Jreal(z)) >0,Vz e Uj.

Since w = ;; is bijective, all 3 determinants are necessarily non-zero. Obviously J # Jyea (the first one is
complex, the second one real only), but there is a relation between their determinants.

4.2.2 Lemma

For any holomorphic function f : U C C — C, we have f(z) = f(2),Vz € U.

Proof. Let zy € U. Since f is holomorphic, hence analytic at zy, we can write f as a power series in z which
converges in some neighborhood of zj :

oo
F()=) an-(z=2)"
n=0
Hence the result follows from the fact that conjugation is a continuous and linear operation on C. O
4.2.3 Theorem

Any complex manifold is orientable (as a real manifold) and has always even real dimension.

Proof. Even dimension is a consequence of the identification C™ = R2",

Since the wy, = (1;)x are holomorphic in all variables z;, we get Vk,l € {1,...,n} :
Owy, Owy, Oowy, ow ow
FO —0 and Sk = 2% g o P_oZY g
0z an 0z 0z 0z 0z
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w dw 0 . Y
S J=% ) =" ] = det() = det<6w> det(aw>—det <6w> dt<8w>
0o 9z 0 (%}) 0z 0z 0z 0z

because det is a linear expression. Hence

ow

det(J) = ‘det (82

>’ = ’det(Jhol)’2 >0 since det(Jpo1) # 0

It remains to compute det (Jyear(2)). For this, we want to find a relation between det(J) and det(Jyear), using
the relations (1.1) and (1.2) to calculate terms of the type

Owr,  O(Rewy) L I(Imwy) 1 ' I(Rewy) . O(Rewy) i I(Imwy) i O(Im wy,)
azl - azl azl o 2 8$l 8yl 2 83:1 8yl
1 [(O(Rewg) I(Imwy) i (O(Imwg) I(Rewy)
_1 L _ 41
2 ( 8.%[ + ayl + 2 (9561 8yl ( )

Note that the terms 3(%(’ w’“), a(Racw’“), B(Iglw’“ and 80[;“’“ form a 2 x 2-sub-matrix inside Jieq). Similarly
T Y1 Ty Y

ow, 1 [O(Rewr) O(Imuwy) i (O(Imwy) OJRewy)

P ( on ow > Ty ( om | oy > (42)
Owy, _ 1 (8(Rewk) 3 8(Imwk)> i (3(Imwk Rew;€ ) (4.3)
82; 2 (9{1,‘1 8yl 2 Bxl

Owp _ 1. (8(Rewk) N (‘3(Imwk)) i (8(Imw;C B Rew;C > (4.4)
0z 2 ox; dyy 2 oz

Hence by a rearrangement of J (linear combinations, permutations of lines and columns), one obtains det(Jyea1)
from det(J). Indeed consider the base case n =1 :

Ow;  Owy O(Rewy) O(Rew;)
J _ 0z1 0z1 J - oxq 8y1
T\ om  owm ’ real = | HImw,) A(Imw)

071 071 Oz 0y1

Replacing the values in J by (4.1), (4.2), (4.3) and (4.4), we find that det(J) = det(Jea1), hence J is obtained
by linear combinations of the values in Jyea. For n > 2, we then have

dw;  dw; dw;  Ow;

921 02 T 0m  0m | 1
8w2 (9102 8w2 (9“12 2
0z1 0zo e 0z 0ZzZo e

J=1 o, om 0w, 0w nt1
0z1 Ozo e 0z 0zZo e
Owo Owo Owo O
0z1 0zo e 0z 0Zo e n + 2

In order to obtain the 2 x 2—sub-matrices as described above, we have to bring the row n + ¢ to position ¢+ 1 and
similarly for the columns. Since we get the same number of changes for rows and columns, the total number of
permutations is even, hence the sign of the determinant does not change. And in order to obtain Jye, we then
make the same linear combinations as in the case n = 1 in each one of these 2 x 2—sub-matrices, so finally the
whole determinant did not change. Thus det(Jyea) = det(J) > 0, showing that the manifold is orientable. [

4.2.4 Remark

The converse of this theorem is not true : not all orientable manifolds are complex manifolds.
For example S™ is orientable, but S cannot be a complex manifold since dim S$® = 3 is odd. In fact only S? is
a complex manifold since it is equal to S = P1(C) = CP!, the complex projective plane (see section 5.3.8).

More generally one can show that any 2-dimensional orientable compact differentiable manifold admits a complex
structure.
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4.3 Holomorphic functions on complex manifolds

4.3.1 Definition

Let U be an open subset (not necessarily a chart domain) of a complex manifold (M,U) with atlas U = (U;, @;)icJ-
A complex-valued function f : U — C is called a holomorphic function on U < f; := fo cpi_l is holomorphic
on the open set ¢;(UNU;) CC", Vi€ J (see figure 4.2). Note that U N U; can be empty.

Similarly a function F' : U C M — C™ is holomorphic on an open subset U of M if all complex-valued coordinate
functions are holomorphic on U.

Figure 4.2: composition of the functions f and go{l to give amap f; : C* — C

f C

(U NU;) C C™

More generally : Let (M,U) and (N, V) be 2 complex manifolds of dimension m and n respectively with atlases
U= (Ui, pi)ier and V = (Vj,15)jes a fa) CC™ CC™.
A continuous map f : M — N is called a holomorphic map if and only if (see figure 4.3) the maps

viofopit toi(fTHV)NU) CSC™ = (0 f)(fTH(V))NU;) S C
are holomorphic, Vi € I, Vj € J. Note that ¢; (f~(V;) N U;) is open in C™ because

V; open, f continuous = ffl(Vj) open , U; open = ffl(Vj) N U; open
©; bicontinuous = ; (ffl(V]) NU;) is open
We have to restrict ourselves to this smaller open set since otherwise some operations may not be well-defined.

Figure 4.3: a holomorphic map f: M — N

M N

Remark :
It is enough to check this condition for a subcover, e.g. in the case where U or V contain ”superfluous” charts.
This is justified by the fact that manifolds are equipped with an equivalence class of atlases.

4.3.2 Proposition

Let (M,U) be a complex manifold and p € M. For any U € U with p € U, we can add a coordinate chart (U, )
which is compatible with the atlas U such that ¢ : U — C™ and ¢(p) =0 € C".
One says that (U, ) is a centered coordinate chart at p.
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Proof. p € M = there is a chart (U, ) of M such that p € U (because the chart domains cover M). Define

o(x) :=9(x) —Y(p) e C", Ve e U

We denote 7, the translation by w € C", i.e. 7,(2) = z+w. Since 7,1 = 7_,,, this map is clearly biholomorphic.

So ¢ = T_y(p) © ¥, showing that ¢ is also biholomorphic because 1) and 7_y,) are. This already ensures that ¢
is compatible with the existing atlas U. Moreover ¢ trivially satisfies p(p) = 0. O

4.3.3 Consequence

Given a holomorphic function f : M — C and a point p € M, one can always suppose that there exists a
coordinate chart (U, ¢) centered at p. Hence by identifying U with ¢(U) (which is natural because ¢ is bijective
and biholomorphic), one can identify p = 0 and write f, = f o~ ! which is holomorphic, thus f|» can be written
as a (centered) power series in z = (21,...,2,) € C".

4.4 Complex submanifolds

4.4.1 Proposition

Every connected open set in a complex manifold is again a complex manifold of the same dimension.

Proof. Let (M,U) be a complex manifold with atlas U = (U;, p;)icr- Let N € M, N # () such that N is open
and connected. N can be covered by a family of open subsets in U (see figure 4.4). Define V = (V;, 4;);cr, where

Vii=NOUi %= @ijyey,

Then (N, V) is also a complex manifold since V; is open in N and 1); is the restriction of the homeomorphism ;
to an open subset of M, hence 1); is still bijective onto ¥;(V;). In particular we have that dim N = dim M.
Moreover the transition functions ¢; o ¢, L are biholomorphic since they are just restrictions of the @pjo <p,i_1. O

Figure 4.4: an open covering of N C M

M

4.4.2 Model of a submanifold

As an example consider the complex manifold M = C = R? and the closed subset N =S ={z€C, |2|=1}.
Again N can be covered by open subsets in the atlas of M.

Let U C M be open such that UNN # () and define V:=UNN = V isopenin N. V locally looks like R and

loc loc
UZR*=RxR=V xR

This is the model of a submanifold : locally N looks like R in R? = C.
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Remark :
Arbitrary closed subsets of complex manifolds can in general not define submanifolds. Consider figure 4.5.
At the top it is not admissible since it does not look like R in R x R.

Figure 4.5: N is not a complex submanifold of C

loc
But : this is only true if the manifold is complex or differentiable. For topological manifolds, we have that A = R.
Topologically, pointed lines are equivalent to straight lines since no differentiability conditions are required.

4.4.3 Definition

Let M be a complex manifold of dimension n and N C M be closed. N is called a (complex) submanifold of M
< Vy € N, there is a coordinate chart (U, ¢) of M with ¢ : U — W C C", W open, y € U such that

Pluony : UNN = W' =W N (C" x {0})
for some 0 < k < n and where C* < C" is embedded in the standard way, i.e. (z1,...,2) — (21,...,2,0,...,0).
In addition k is then equal to the dimension of N.
Note that this chart must not necessarily belong to the chosen atlas U of M ; it only has to be compatible with
U (since then adding it to the atlas will not change the manifold structure).
In particular, a submanifold should be a manifold itself. Its atlas is given by restrictions of the charts in the atlas
of the manifold in which it is contained (see figure 4.6). This makes sense since, as restrictions, the transition
functions in the submanifold are then still bijective and biholomorphic. However, by definition, submanifolds do
not need to be connected : a submanifold of a complex manifold is thus again a complex manifold if and only if
it is connected.

Figure 4.6: an atlas of N is given by restrictions of the atlas of M

~ 3gg>/x

Concerning the example of S in 4.4.2, it must therefore be said that S is only a real submanifold of C since
dimg S' = 1 is odd. It is not possible to endow S* with a complex manifold structure, thus it cannot be a
complex submanifold of C neither (any connected complex submanifold is a complex manifold).

4.4.4 Equivalent characterization
Using the Implicit Function Theorem and the Constant Rank Theorem, one can show that :

A subset N in a manifold M of dimension n is a complex submanifold of dimension & if and only if it can locally
be written as the zero set of locally holomorphic functions for which the Jacobian matrix has maximal rank, i.e.
Vy € N, there is an open neighborhood U of y in M (we may choose U sufficiently small such that (U, ¢) is a
chart at y) and there are holomorphic functions f; : U — C,i=1,...,n — k (as defined in 4.3.1) such that

n—Fk

UmN:ﬂf;l({o}) : rk(w(z)>;n—k,weUnN (4.5)

9z i\
This does not mean that submanifolds are affine algebraic varieties since the functions f; must be holomorphic,

which is not an algebraic characterization. Note that there must always exist the same number of functions, i.e.
Vy € N and for any set of functions f; describing U N N, exactly n — k of them are necessary and sufficient.
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Chapter 5

Examples of complex manifolds

5.1 C" and open subsets

A global chart is given by (C",id), but this is not the only possibility.
— For any fixed a € C™, one can e.g. take (C", p, =id —a).
— One can also use the fact that C™ is a C-vector space and that any basis defines a global coordinate chart :

VzeC", El!a,'eCsuchthatZZZaiei = ¢(z):=(a1,...,a,) €C"
i=1

where {e;};=1,...» can be any basis of C".
Moreover any open connected subset of C™ is a complex manifold, e.g. the unit ball B" := {2 € C" , |z < 1}.

()

iy

5.2 Submanifolds of C"

5.2.1 Linear subspaces

H C C" is called a linear subspace of C™ if it is the solution set of a system of homogeneous linear equations, i.e.
if there exist k linear forms [; : C™ — C such that

k
H= ﬂ kerli = V(ll,lg,. .. ,lk)
i=1
In particular, linear subspaces of C™ define affine linear varieties in C™ (since linear maps on C™ are polynomials).

Equivalently a linear subspace of C™ can also be given as the solution set of the matrix equation A-z =0 :

aill A1n, Z1
A= : . |,a;€C , z=]: = H={zeC'|A-z=0eCF}
ap1 ... Qgn Zn

In this case, the linear forms [; : C* — C are given by 1;(2) = a;1 21 + a2 22 + . .. + @iy, 2. Thus their Jacobian
matrix J(lq,...,l;) is constant and equal to A. Moreover rk (J(I1,...,lx)) =1k(A) =k < the [, are linearly
independent and in this case a linear subspace defines a submanifold of C™ of codimension k, i.e.

vk (J(l, .. ) =k & dimH=n—k

Indeed this defines a splitting C" = C*¥ x C"~* by the characterization (4.5).
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5.2.2 Singular points

Let K be a complex affine variety in C" defined by p polynomials g1,...,gp.
A point zp € K is called a singular point of K if the rank of the Jacobian matrix of the g; drops at zp, i.e.

2o € K is singular < 1k (J(g1,---,9p)(20)) is not maximal

A smooth variety is an affine variety which does not contain singular points.
Any linear subspace where the defining linear forms are linearly independent is for example a smooth algebraic
variety since J(f1,..., fr)(z) = A is of maximal rank for all z € C™.

5.2.3 Exercise

Let f : C™ — C be a holomorphic function on C™ and consider its vanishing set (which is not a linear subspace!)

V(f)={zeC" | f()=0}=f"({0})
f being holomorphic, thus continuous, V' (f) is closed in C™, but until now it is not yet a submanifold of C™.

0 0 0
VzeC" : grad f(z) = (azfl(z), 873];(Z)7 R 6;(2))

a) Show that V(f) is a (not necessarily connected) submanifold of C* < grad f(z) # 0, Vz € V(f).
Since f is globally defined and V(f) is the zero set of the holomorphic function f, we can take U = C", thus
v(fincr = f({o})

So by (4.5) it is necessary and sufficient to show that the Jacobian matrix associated to f has maximal rank on
the set UNV(f) = V(f). But there is only one (globally defined) function, so n —k = 1 and

k(J()() =1 & J()E)#0 & gad f(z) #0, Yz € V(f)

b) Bi={zeC"| grad f(2) =0} = (grad f)~* ({0})
B is closed since f is holomorphic, i.e. in particular C*°. Show that N := V(f) \ B is a submanifold of C™ \ B.

It is necessary to consider N as a subset of C™\ B since it is the complement of a closed set in a closed set, hence
in general it is not closed in C™ any more. It is however closed in C™ \ B since

N =V(f)n(C*\ B) and V(f) is closed in C"

Moreover C™ \ B is open in C™, hence it is a complex manifold itself.
Proving that N is a submanifold of C™ \ B is now done exactly as in a) since grad f(z) #0, Vz € N.

¢) Show that dim V' (f) =n — 1 if V(f) is a submanifold of C".
This follows from the fact that V(f) is the zero set of a single holomorphic function = n —k =1 and

dmV(f)=k=n—-(n—-k)=n-1
By (4.5) : dimN =k < there are n — k (locally) holomorphic functions f; ; heren—k=1 = k=n—1.
Remark :

If V(f) is a submanifold of C", it is called a hypersurface. And in the case where f is a polynomial function (in
particular it is holomorphic), it is also a hypersurface in the context of affine varieties.
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5.2.4 Examples

For n =2, let g1(z1,22) = 21 — 23 , g2(21,22) = 21 — 23 , g3(21,22) = 27 + 23 , ga(21,22) = 2§ + 23 — 1 on C2.

J(g1)(21, 22) = grad g1 (21, 22) = (1 —222) = rk (J(gl)(zl,zg)) =1, V(z1,2) € C?
J(g2) (21, 22) = grad ga(21, 22) = (221 —222) = rk (J(g2)(zl,z2)) =1 < (z1,22) # (0,0)

J(93)(z1, 22) = grad gs(21, 22) = (221 222) = vtk (J(g3)(21,22)) =1 & (21,22) # (0,0)

J(94)(z1, 22) = grad g4(z1, 22) = (2z1 222) = 1k (J(g4)(21,22)) =1, V(21,22) € V(ga)

V(g1) is a submanifold (hypersurface) of C2.

(0,0) € V(g2),V(g3) is a singular point, thus V(g2) and V(g3) are not submanifolds of C2, but of C2\ {(0,0)}.
Moreover go(21, 22) = (21 — 22) (21 + 22) and g3(z1,22) = (21 — i 22) (21 + 1 22), hence V(g2) and V(g3) consist of
2 complex lines intersecting in the point (0, 0).

(0.0)

(0,0) is also singular for g4, but (0,0) ¢ V(g4), thus grad f # 0 on V(g4), which is hence a submanifold of C™.

5.2.5 (Generalization

Let fi,..., fr be holomorphic functions on C™. Then the common zero set of the f; is
V(fi,o o fr) ={2€C"| fiz) = falz) = ... = fa(2) =0}

It is closed and defines a submanifold of C" < rk (J(f1,..., fr)(2)) is maximal, Vz € V(f1,..., fx).

5.3 The projective space

Consider C"*! and let P be the space of all lines in C"*! passing through the origin (0,...,0) (see figure 5.1).
Since every line is uniquely determined by 2 points passing through it, we hence obtain that every point in
C"*t1\ {(0,...,0)} defines such a line. Now we introduce a relation ~ on C"**\ {(0,...,0)} by

z1~29 & IAe€C*=C\ {0} such that zo =\ 2
i.e. all points lying on a same complex line are identified (figure 5.1). One shows that ~ is an equivalence relation.

Figure 5.1: lines in C"*! passing through the origin and the relation ~

(C?H-l
Z2
21
0
The n-dimensional complex projective space is then given by
P"(C) = CP" := (C™*'\ {(0,...,0)}) / ~ = {[2] | z € C""'\ {(0,...,0)} }
where each equivalence class [2] = {2/ € C""1\ {0} | 2/ ~ 2} represents a line in C"*! passing through the

origin. Elements in P"*(C) are given by such equivalence classes.
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Goal :
We want to show that P"*(C) is a compact complex manifold of dimension n. Compare e.g. the case RP! = St
by identifying antipodal points (see figure 5.2; when arriving at 7, the circle closes again). Thus

St compact = RP' compact

Figure 5.2: RP! is obtained from S by identifying antipodal points

+1
S RP!

0 ™

5.3.1 Topology

First we need to define a topology on P"(C). Consider the canonical projection map
v @ C"M\ {0} - P*(C) : 2z [2]

which maps a point to the line it defines. C"*1\ {0} is open in C"*! hence it is a topological space itself.
Then we endow P"(C) with the usual quotient topology, i.e. the finest topology such that the projection map
v is continuous. This means that U C P*(C) is open < v~ }(U) is open in C"™1\ {0}. By the properties of
preimages, this defines indeed a topology on P"(C).

— Anecdote to the quotient topology :

One can of course endow P"(C) with the trivial topology since v() = @ and v~ (P*(C)) = C"™!\ {0}, thus v
would be continuous. But this topology is too small in order to provide interesting results.

The discrete topology is however not possible since if all points are open in P*(C), then V[z] € P*(C) :

v ({[2]}) = {7 € C"\{0} | v(z)) =[2] } = {2 € C"T'\ {0} | 2/ ~2}={A-z| AeC*}

This is equal to the line in C™*! defined by [z] without the origin, which is not open in C**1\ {0}, thus v is not
continuous with respect to the discrete topology.
Proposition :
v is an open map and hence : U C P*(C) is open < IW C C**1\ {0} open such that v(W) = U.
Proof. Let V.C C™"*1\ {0} be open.
We have to show that (V) is open in P*(C), i.e. that v=*(v(V)) is open in C"™'\ {0}. But
v (V)= (J AV (5.1)
AeC*

C:ifv(x) ev(V),then Jv e Vst v(z) =v(v) & [zg]=v] & z~v & IANeC* st. z = v = z€ XV
D:ifINeC st zeX-V, thenFv eV st. z=Av = [z]=[v] & v(z)=v(@)evV) = zcv(y(V))

Note that v~ (v(V)) represents a cone in C™ ! (see figure 5.3).
And X\ -V is open in C"*1\ {0} since the map ¢ : V — X-V, p(v) = Av is a homeomorphism if A # 0, so

A-V=plV)isopen = U AV =v"(v(V)) is open in C"*" \ {0} as a union of open sets
AeC*

It follows that : U C P*(C) is open < IW open in C"T1\ {0} such that W = v=1(U), thus v(W) =U :
v(W)=v(v '(U)) =id(U) = U since v is surjective and has thus a right inverse

And finally v(W) is open in P™(C) since W is open and v is an open map. O
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5.3.2 Hausdorff

Exercise : Show that P™(C) with respect to the quotient topology is a Hausdorff space.

Let [z],[y] € P"(C) such that [z] # [y] = Jz,y € C"*1\ {0} where z and y do not lie on the same line. Let
51::{)\1|)\€(C*} , éy::{/\y|)\€(C*}

0, N4y = 0. Now choose U open in C" ™!\ {0} such that z € U and U N ¢, =0 (which is possible since x and y
are not on the same line) as in figure 5.3. Denote the cone through U by Cy = { Az | A € C*, z € U}. Then
choose V open in C"*1\ {0} such that y € V and V N Cy = . We obtain that Cyy N Cy = ) too. Hence v(U)
and v(V') are open neighborhoods (v is open) containing [z] and [y] respectively. And v(U) Nv(V) = 0 because
the corresponding cones are disjoint : V_I(Z/(UD = Cy, V_l(V(V)) =Cy and Cy NCy = 0.

Figure 5.3: preimages under the quotient map v correspond to cones in C"+!

vl (v(V))
2.V

1.V

b=
—
4

Note : Not any quotient space of a Hausdorff space is again Hausdorff. Here we really use the fact that we are
dealing with C™*! (which is Hausdorff and regular) and an open projection map.

5.3.3 Compactness
We shall show that P"(C) is compact. Let

v

cr i {0} 1 g2ntl _#? P"(C)
\—/

where C"*1\ {0} = R?"*+2\ {0} is non-compact, 1 (z) = o and ga(y) = [y], Yy € S+l
This diagram commutes because
(2000)() = [1Z] = [ = v(2)

1 is (obviously) continuous and (s is continuous since similarly as in (5.1), VU C P*(C) open :

o' )= Av=U U

In addition 9 is surjective since for [z] € P"(C), we have pg(uj—u) = [z]. Hence since S?"*1 is compact (closed
and bounded in R?"*2\ {0}), we obtain that P"(C) = im ¢3 = ¢2(5?"*!) is also compact (as recalled in 3.2.1).

5.3.4 Atlas

Now we are going to define charts and chart domains for P*(C).

Let {W;}ics be an open covering of M = C"*1\ {0}. Then {v(W;)};c; will be an open covering of P"*(C) since v
is open and surjective. However it will not be a coordinate covering : since v is not bijective, the coordinates on
Cn*1\ {0} do not induce coordinates of P"*(C). "v~1” does not define a global chart of P"(C), so this approach
is not helpful for defining a manifold structure.
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Definition :
To any [z] € P*(C), we associate the homogeneous coordinates

[2]=(20:21:22:...:2,) €P?(C)

where (29, 21, . . ., 2,) are the coordinates of a representative 2 € C"*1\ {0} of [2], modulo the equivalence relation,
ie. 2/ €[z] & IX e C*such that 2/ = A z. Hence

(zo:z1:22: .. :2n) =(A20:A21: A29 ... 0 Az,), YA ECH
Homogeneous coordinates are therefore not unique in general. In particular (0: 0 : ... : 0) ¢ P*(C) since the
origin (0,0,...,0) was excluded from C"™!. If [2] = (20 : 21 : ... : 2,), then Ji € {0,...,n} such that z; # 0.

Now we define for any k € {0,...,n} the subset
Uk—{ (z0:21:...:2n) €P*(C |zk7é0}

This is well-defined since if [2] = (20 : ... : z,) € P"(C) such that z; # 0 in this homogeneous representation,
then zp # 0 in all homogeneous representations since we are only allowed to multiply by non-zero constants .
Thus Uy, is a well-defined subset of P (C).

In particular if [2] € Uy, then we can choose A = i and take as homogeneous coordinates

[z]:(zozzl:...:zk:...:zn):(Z—O:ﬂ:...:l:...:z—n>
Zk Zk Zk

Indeed, in [2] (set of points in C"T!) there is a unique representation of [z] with a 1. Hence if [z] € Uy, we
can assume without loss of generality that [z] = (yo : y1 : ... :1: ... : yp) for some y; € C. Moreover this
representation of [z] is now unique.

Proposition :
Uy, is open in P*(C), Vk € {0,...,n}.

Proof.
v Up) ={2€C"™\{0} |v(z) =[] €Uk } = {2z €C"\ {0} | 2 #0}
and this is an open subset of C"*1\ {0}, thus Uy, is open. O
Proposition :
U, =2 C" Vk€{0,...,n}. Moreover this equivalence is homeomorphic.

Proof. For [z] € Uy, we define the maps

o Uy — C™ [Z]H(@,ﬂ,...,g,...,z—n)
ZE 2k Zk
Y 2 C" — U ¢ (wi,...;wp) —> (w1 twot oo Wiy LWkt ... wy)

@k is well-defined since izz = Zl , Vi k.
This already gives a 1-to-1 correbpondence since @i 0 Y, = iden and Yy o g =idy, = Y = <p,;1.
It remains to check that ¢y is bicontinuous, i.e. a homeomorphism.

— g is continuous : let W C C” be open.

We have to show that ¢} ' (W) is open in Uy < ¢; ' (W) is open in P"(C) since Uy, is open in P*(C) and ¢}, ' (W)
is by definition already contained in Uj. But

V_l(%l(W)) = (pr o u’)_l(W) where v/ = v),-11,)

where one needs to take the restriction of v, otherwise the composition with ) does not make sense.
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The map ~
orov v HUy) CC'M\ {0} — C" - (zo,zl,...,zn)r—>(Z—O,Z—l,...,k,...,z—n)
ZE 2k Zk

is continuous since zx # 0 on v~ (Uy), thus v~ (i}, ' (W)) is open in C"*1\ {0} = ¢ ' (W) is open in Uy.

— @k is open : let U C Uy be open. We have to show that ¢ (U) is open in C™.

2 A2 k ..,z—”)‘[z]eU@ZEV_l(U))

s Y T
Rk Rk 2k

eu(U)={y e C" | y=pi([2]) for some [z] €U } = {(

By denoting fi : C"tt — C", fu(20,...,2n) = (z—(’ ...,75, e Z—”)7 we obtain that

zk’ ’Zk

erU) = { fulz0,- - 20) | 2 € v U) } = fap-1wy (v U))
where V_l(U) is open since U is open and v continuous and fj is an open map since (z,y) — 5 is open on CZ2,

thus the restriction of fi to an open subset of C"*! is still open. Finally o (U) is open in C™. O

5.3.5 Connectedness

P"(C) is connected because v is surjective : P"(C) = imv = v(C"**\ {0}), where C"*1 \ {0} is connected and
v is continuous, hence im v is also connected.

5.3.6 Topological structure

P*(C) is a topological manifold. The U}, are open in the projective space and cover P*(C) since : if [z] € P*(C),
then [2] # (0:...:0),s0 31 € {0,...,n} such that z;, #0 = [z] € U,.

= {Uk}k=0,....n Open covering : U Up = P™(C)
k=0

{Uk}r=o0,... n is called the standard affine covering of P™(C). Hence P"(C) already defines a topological manifold
of complex dimension n (real dimension 2n) since we can take the homeomorphism ¢y, to be the associated chart
to the domain Uy. So U = (U, ¢k )k=0,...,n is a continuous atlas of P*(C).

5.3.7 Complex structure

Figure 5.4: the transition maps v, are holomorphic

ee(UenU) CC* @(UiNUg) CC"

Consider figure 5.4. We have to show that the transition maps
Vi = wroprt - er(Up NU) CC" — (U NTU) C C"
are biholomorphic. We assume without restriction that [ < k, so

UkﬂUl:{[z]E]P’”((C) | zk;«éOandzl;&O} and @k(UkﬂUl):{(wl,...,wn)e(C"’wl;«éO}
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Let (wi,...,w,) € (U NU;), so w; # 0 and by applying ¢, = ¢; o <p,;1 we obtain

-1 . . . . . . 1. . .
mk(wh...,wn):gol(gok (wl,...7wn)):<pl(w1.....wl,l.wl.wlﬂ.....wk,l.l.wk.....wn)
0 (w1 ) CWimt g W Lwe—r 1wy wn)
wy wy wy wy wp  wp wy

wi Wi—1 W1 Wip—1 1 wg W, n
=(—,..., , et ,—,—...,— | €C
wy wy wy wp  wp wp wy

which is well-defined since w; # 0. Thus v is holomorphic from C" \ {w € C" | w; = 0} to C™ as the map
w > Z}—’; is holomorphic in w, Vi # I. This now shows that P"(C) is a complex manifold of complex dimension n.

5.3.8 Particular case

CP! := PY(C) is called the Riemann sphere or the projective line. Since there are only 2 chart domains in this
case, it can be decomposed as :

Up={(20:21) €P(C) | 20 #£0} ={(1:w) |[weC}=C

IP’I((C)\UO:{(O:zl) | zleC*}:{(Ozl)}:{pt}
Since (0 : 0) ¢ P(C), P*(C) \ Uy consists of exactly 1 point. This point (0 : 1) is often also denoted by oo and
called the point at infinity. Hence we obtain the decomposition

PHC) = CU{c0} = 52 (5.2)

The first isomorphy is nothing else than the Alexandroff compactification of C and the second one is obtained
by the stereographic projection since topologically R? U {oo} =2 S2. Of course (5.2) also holds true with U; = C
and P'(C) \ U; = {oco} where (1:0) = oo in this case.

Using such a compactification argument in order to show that P™(C) is compact however only works for n = 1.
In general one has the following decomposition (which is not a 1-point compactification) :

PH(C)=C"UPH(C)=C"UC T UP"3(C)~...2C"UC™ U ... UC*UC U {x}

where C" = Uy, C"~1 =2 P*(C) \ Uy, etc. This shows in particular that there is no unique way to set co; one
always has to specify if one chooses co = (1:0:...:0),00=(0:1:...:0),...,0orco0=(0:0:...:1).

5.4 Submanifolds of P"(C)

5.4.1 Proposition

Consider the compact complex manifold P*(C) and let N be a connected submanifold of P™(C).
Then N is also a compact complex manifold.

Proof. Submanifolds are closed by definition and a closed set in a compact set is again compact. Moreover N is
a complex manifold because it is connected (see section 4.4.3).

More generally : Let X be compact and FF C X be closed.
We want to show that F' is also compact, i.e. if {U;};cs is an open covering of F, it admits a finite subcover.
U; open in F means that U; = V; N F for some V; open in X, Vi € J. Since {U; };cs covers F, we get

F:UUZ»:U(WHF):EJWQF = FclJv
ieJ ieJ v ieJ

Hence {V;}ies U{X \ F'} is an open covering of X (F is closed). As X is compact, finitely many of them will
cover X : 31 C J finite such that {V;},e; U{X \ F} covers X, so the corresponding {U;};e; will cover F. [
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5.4.2 Examples

1) zero sets of locally holomorphic functions on P (C)
2) zero sets of homogeneous polynomials

We know that P"(C) is a compact manifold. In section 6.1, we will show the following properties :

— On a compact complex manifold there are no globally defined non-constant holomorphic functions.

— Let M C C” be a (connected) compact submanifold of C*. Then M is a point : 3¢ € C" such that M = {c}.
Thus it does not make much sense to consider zero sets of globally holomorphic functions on P"(C). Note that
2) is not a particular case of 1) since polynomials are not functions on the projective space P"(C)!

A polynomial on C™*! with coefficients in C is called homogeneous of degree m if it is of the form
g
F(Xo, Xuoe i Xn) = D g X3 X X o, €C

Let g(Xo, X1) = X0X1, then is homogeneous of degree 2. But g is not a function on P*(C) since evaluation is not
well-defined. Indeed let [2] € P1(C) be represented by z = (29, 21) € [2] = ¢(2) = 20 21. But if 2/ = (2}, 2}) € [2]
with z/ = A z;, then [2] = [2/] = (20 : 21) = (A\20 : A21), but g(2') = (A20) (A21) = A\? - 20 21 # g(2) in general.

The zero set of a homogeneous polynomial is however well-defined : if f is homogeneous of degree m, then

YAeC : f(Az)=A""-f(2), hence f(2)=0 & f(Az)=0, VAeC"

5.4.3 Definition

A smooth projective variety of P™(C) is a non-singular (see 5.2.2) zero set of finitely many homogeneous polyno-
mials. Hence any smooth projective variety is a (closed) submanifold of P"(C). And we even have :

5.4.4 Chow’s Theorem

Any (closed) submanifold of P"(C) is a smooth projective variety. We will not prove this result.

5.5 Complex tori

Complex tori are examples of compact complex manifolds which are not submanifolds of P"*(C).

For n = 1, a tori T can be visualized as in figure 1, p.3 (only the surface; it is "hollow” inside). T is compact
as a subset of R3 and can be embedded into R* =2 C2. But because of 5.4.2, there are no non-trivial compact
complex submanifolds in C2. So there is no chance to see the complex structure on this picture; one only sees
the topology. As we will see in the following : a way of constructing T starting from C is to define T = C /L
where L = (1, 7)7 is the lattice generated by 1 and 7 € C, Im 7 > 0 (see figure 5.5).

5.5.1 Definitions

L C C" is called a lattice in C™ of real dimension 2n if it is of the form
2n
L:<w17w27 7w2n>Z:{ Zm]w] ‘ m; GZ}
j=1

where w; € C" are linearly independent over R.

Remark :
The w; cannot be linearly independent over C since m > n vectors in an n-dimensional vector space are always
linearly dependent. But it is possible over R since C" has dimension 2n over R. Consider e.g.

e 1 and 7, Im7 > 0, are linearly dependent over C since 1+%1-7':0
e over R: let o, € Rsuch that -1+ 8-7=0 = [-7¢€ C\R since Im7 > 0, hence =0 and also a =0
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L is a discrete subspace of C™, i.e. ¥z € L, there is a neighborhood U, of z in C" such that LNU, = {z} as it
can be seen in figure 5.5.

Figure 5.5: a (discrete) lattice generated by 1 and 7 € C, Im7 > 0

- " -

/ /

Let 2,2’ € C™*. We define the relation z ~y, 2/ & 2’ —z2€ L & Jw € L such that 2/ = z + w.

Exercise :
~p is an equivalence relation on C™.

— reflexive : z ~p zforw=0€ L

— symmetric: 2’ =z+4+w = z2=2+(—w)sincewel = —welL

— transitive : 2’ =z+4w, ' =2 +w = ' =z+ (w+w) withw,w €L = w4+w €L

Hence one can define equivalence classes of ~; and the quotient of C™ by ~, :
[z]={7€Cl|Z~pz}={2+w|wel}

As a set, C" / ~p, can now be identified with F, set consisting of all points from C™ which are not equivalent to
any other element in F. F is called the fundamental parallelogram of L and given by (see figure 5.6)

2n
.F:{ ZCYjOJj‘O<C¥j<1}
j=1

F is neither open nor closed in C", but it gives a 1-to-1 correspondence to the equivalence classes of ~. One
also considers the (topological) closure of F (see figure 5.6), which differs from F just by a set of measure zero :

2n
.7::{ Zajwj‘ogajgl} : closed in C™
j=1

Figure 5.6: the fundamental parallelogram F and its closure

Definition :
The n-dimensional complex torus T" is defined as the quotient of C™ by the equivalence relation ~p, i.e.

™ :=C"/~,=C"/L = T"=F assets

T™ and F are in bijection only and don’t even have the same topological properties. F is for example simply
connected, but the torus is not.

5.5.2 Topology

We again endow T with the quotient topology, i.e. with the finest topology such that the natural projection
map v : C* = T" : z+— [2] is continuous, so

W CT"isopen < v (W) is open in C"
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Proposition : v is an open map.
Proof. Let U C C™ be open. v is open < v(U) is open in T" & 1/*1(1/(U)) is open in C". But
= v ' (v(U)) = U (U +w)
w€eL

if v(z) € v(U), then [z] = [u] for some w € U = Jw € L such that x = u +w
:if 2 = u+ w for some u € U, w € L, then v(z) = [z] = [u+w] = [u] € v(U) = z € v (v(U))

U N

Figure 5.7: preimages under the projection map v correspond to translations

And U + w is open in C™ since the map ¢ : U = U + w, ¢(u) = u + w is a homeomorphism Vw € L, so

U+w=¢{U)isopen = U (U+w) = u_l(y(U)) is open in C" as a union of open sets
weL

5.5.3 Compactness

T™ is compact (hence also paracompact). For this, let {U;};cr be an open covering of T™.
By definition the »~*(U;) are open in C" and they form an open covering of C™ since

Uv i) = y*l( U Ui) =T =Cc" = F=J@ 'U)NF)
i€l el iel
F being compact, one can extract a finite subcovering {v~1(U;) N F };e, (see figure 5.8), thus 7" = Ujes U :

[2] e T" = 3z € [z], we Lsuch that z+w e F C U (v U)NTF)
JjeJ

i.e. 3j € J such that 2+ w € v 1(U;) = [z] = [z +w] € v(v ! (U;)) = Uj since v is surjective.
Figure 5.8: a finite open covering of F

F

5.5.4 Hausdorff

T™ is Hausdorfl. For this, let [z],[y] € T™ such that [z] # [y]. [z] and [y] are represented by z,y € C™ and
Jw,w’ € Lsuch that ¢’ =z 4w, ¥y =y +w' and o', y’ € F with o’ # ¢/ since [z] # [y].

Assume first that z,y € F° (interior of F). Then there are open neighborhoods U, and U, of 2’ and y’ such that
U, NU, = 0 since F° C C" is Hausdorff (see figure 5.9). v is open, so v(U,) and v(U,) are open neighborhoods
of [z] = [2'] and [y] = [¢'] in T™. Moreover v(U,) Nv(U,) = () since otherwise

2] e v(U,) Nv(Uy) = Fw,w € L such that z4+w € U, z+w' €U,

which is a contradiction since there is a unique representative of [z] in F.
The proof is similar if at least one of 2’ or y’ lies in F \ F°. The only difference is that the identification will
”disconnect” the neighborhoods in C" (see figure 5.9). But v(U,) and v(U,) will not change in this case.
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Figure 5.9: open neighborhoods of 2’ and %’ inside of F

5.5.5 Connectedness

T™ is connected since it is the image of the continuous surjective map v : C* — T™ where C" is connected, hence
imv = p(C") = T™ is connected as well.

5.5.6 Complex structure

We have to define charts and chart domains for 7". In particular we want the map v to be holomorphic (as
defined in 4.3.1) with respect to this atlas.

Let [z] € T™ and let zx be the unique representing element of [z] in F. We consider an open ball B, in
C™ around zr, small enough such that B, does not meet other points 2’ € [2] : B, Nv=({v(zr)}) = {z7}.
Note that B, is not completely contained in F if zx lies on the boundary of F.

Repeating this argument for any [z] € T™, we obtain a covering of F by these B., hence by compactness it
suffices to consider only finitely many of them. We denote this finite number of B, by B; for j € J finite. Let

Vied : Uj:=v(B;)={[s]eT" | z€c B}

U, is open in T™ since v is open and {U;};es is an open covering of T" since
Uui=UwB)=v(UBj) =v(F) =1
j€s J€s jed

In addition, B; C v~ !(Uj). More precisely, we have that v~ (U;) = U,V (see figure 5.10), where the V] are
open in C, V§ = B; and each VJ gives a 1-to-1 correspondence with Uj.

Figure 5.10: v~(U;) consists of several pieces

O O% O

Now we can define the atlas

W: (Wjougoja)(j,a)e‘]xl/ ) Wjoz = Uj? VOL (S L
via 2 Uj= Vi lalmaa o e i Vi2 Uy [y (5.3)

where z,, is the unique representative of [z] in VJ, hence ¢;, is indeed bijective. Moreover goj_al = V}yg, SO gaj_al
d

is continuous and for U C V,J open, we have (p;al(U) = v(U), which is open, hence gj, is continuous as well.
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It remains to check that the maps ¢jq o @,:Bl s org(Up NU;) € C* — ¢;o(U; NU,) € C™ are holomorphic.
Consider figure 5.11. If y € (U N U;) C V,@’ﬂ then
(Pja© 015) W) = @ja(ers ) = ©ja([U]) = va € VI

where y — ¥, is just a translation by o — 3 € L, hence it is holomorphic with respect to y.
Finally, W defines an n-dimensional atlas of 7™, so the torus is a complex manifold of dimension n.

Figure 5.11: the transition maps are holomorphic

15 '»?jn([/j N L‘k)

ers(Ur N Uj)

Uy

With respect to this atlas, one can now show that v : C™ — T™ is holomorphic (as defined in 4.3.1) because
V(j,a) e Jx L, pjaovoid : 1/_1(Uj) CC"—VIicC" : yr— gﬂja([y]) = Yq
where I/_l(Uj) = UﬁeLVg as above. Thus y — y, is again a translation, but here the shift depends on y since

v~1(Uj) is a union of V,g (see figure 5.10). This dependence is however holomorphic since Vg ﬂVﬁj, ={for B # 43,

so no discontinuities appear : the shift is constant on any Vg . We thus conclude that ¢;, o v is holomorphic.

Remark :
By 4.3.2, we can always assume that the atlas YW also contains a centered chart at [z] for any [2] € T™.

5.5.7 Proposition

Let My and M be 2 complex manifolds. Then M; x My carries a natural structure of complex manifolds such
that the natural projections p; : M; x My — M; are holomorphic maps and the injections i; 4 : M; — M; x My

for j€{1,2}, ae M; : i14(m1) = (m1,a), izq.(Mm2) = (a,m2)
define submanifolds of M; x My which are isomorphic to M;. Furthermore dim(M; x M) = dim M; + dim M.

Proof. m € My x My < m = (mq,mg) for some m; € M,

Let U = (U;, ¢i)ier be an atlas of My and V = (Vj,%;);es be an atlas of Ms. Then we can define an atlas of
My x My by setting U x V := (U; x Vj, ;i X ;) jyerx.s where {U; x V;} is an open covering of M; x My and

(91 X 45)(m) = (o1 x ), ma) = (i), 5 (m2)) € T M Cim Vs
With respect to this atlas, the projections are holomorphic since in any local coordinate chart, we have
(ion om0 (i x 1)) (@) = ok (pa (677 (21), 07 (2)) ) = (7 (21)) = (w0 97 1) (1)
(1/% op2 o (pi X wj)_1>(93) = g (Pz(@fl(xﬁ,l/}]l(ﬂﬁz))) = ¢k(¢;1($2)) = (Yr o 1#;1)(962)
and this is holomorphic since the transition maps are holomorphic. Concerning the injections, we have
i1,0(M1) = My x {a} = pgl({a}) and i2,0(Mz) = {a} x My = pl_l({a})

hence i1 4(M7) and ig,4(M2) are closed with respect to the product topology. In order to show that they indeed
define submanifolds of M; x Ms, we use the characterization in (4.5). Denote ny = dim M;, ny = dim My and

m e My x My = (p; X ¢;)(m) =2=(21,2) = (zil),ziz),...,zim) zél),zém, . zén2))

b )
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m = (my,mg) € My x My = 3V; € V such that (mq,mg) € My x V;. For l € {1,...,na}, let
fi 1 My xV; —C : (mq,ma) — (¢;(mg) — wj(a))(l) . I coordinate

So fi(mi,m2) =0 < (1/1j(m2))(l) = (1/1j(a))(l) and fi(mi,me) =0,Y1] & ¢;j(ma) =1¢;(a) & mg = a, hence
(1 x Vi) 0 (M1 x {a}) = My x {a} = () £ ({0})
1=1

and this is exactly (4.5) with U = My x V;, n — n1 + ng and k = n;. And the f; are holomorphic since locally

O]

(fro (@i x )" ) (21, 22) = filepi ' (21),5(22) 1) = (%‘ (1hj(22)7") — wj(a)) =) — () (54)

It remains to check that the rank of the Jacobian matrix is maximal. But by (5.4), this is simply given by

0 01 0 0

0 0 0 1 0
J(f17"’7fn2): :

0 0 00 1

since f; is independent of z; and just a projection with respect to zo. Finally My x {a} = M is a submanifold
of My x My of dimension nq. O

5.5.8 Additive structure

Next we want to define an additive structure on 7.

As a vector space (C",+) (addition of vectors) is an abelian group. The lattice L C C” is an additive subgroup
of C™, thus also called the free abelian group generated by 2n elements. L being abelian, hence normal, the
quotient T" = C" / L carries a natural group structure given by [z] + [y] = [z + y] and [2]7! = [—2].

Exercise :
The group operations 4+ : 7" x T — T™ and ~! : T™ — T™ are holomorphic.

1) To check this, we have to compose 4+ with the charts of T™ given in (5.3). If we work locally, then
(4a 0+ (2o X 01) ™) (@1, 72) = w30 (i3 (21) + 07, (22)) = @y ([21] + [12])
= Pja ([551 + 12]) = (21 + 72)a
i.e. locally we only add the components of = (x1,x2), followed by a constant shift. This is holomorphic.

2) Similarly we obtain for ~! :

(wia o owid) @) = wsa((ip @) ) = ia(12]7) = wsa([=2]) = (=2)a

Locally we just take the inverse of the coordinate and shift it again by a constant, so this is holomorphic too.
Hence T™ admits a holomorphic group structure.

5.6 Complex Lie groups

5.6.1 Definition

Let (G,-) be a complex manifold with a group law - : G x G — G. (G,-) is called a complex Lie group if
1) the multiplication - : G X G — G is a holomorphic map with respect to the product structure
2) the inverse operation ! : G — G : g+ g~ is also holomorphic.

(T™,+) is thus a complex Lie group by the previous exercise.
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5.6.2 Example

Consider the space of matrices M = Mat(n x n,C) = C*™.
This is complex manifold with respect to the global coordinate chart ¢ : A = (a;5)i; — (a11,a12,...,a n) But
M is not yet a group since there is no inverse : A~! does not exist for any A € M. So let GL(n,C) C M

B A€ GL(n,C) & Aisinvertible < det(A) #0

Denote Y := { A € M | det(A) =0} =det™" ({0}). det is continuous and holomorphic since it is a polynomial
function in the entries a;; of A, so Y is closed in C"™ and GL(n,C) = M \'Y # 0. GL(n,C) is thus an open
subset of M. Moreover GL(n, C) is connected since it is path-connected. Indeed :

n?—k
Y=MnY =det™" ({0}) = () £({0})
=1

which is (4.5) with U = M, n — n?, k=n?—1 and f; = det. Moreover if A = (a;j);; € Y, then

staen)(a) = (222D (a) M2 (0 BT (0 ) 20 (55)

8&11 8&12 8ann

since the expression det(A) cannot be independent of all its coordinates a;;. This shows that Y is a 1-complex
codimensional submanifold of M.

Remark :
det is a homogeneous polynomial of degree n since det(X - A) = A" - det(A). Hence Euler’s relation holds :

n

ZZa” 6det”) n - det(A)

=1 j5=1

Now consider figure 5.12 : codim¢ Y = 1, which means that codimg Y = 2, so in the real picture one can always
connect any A, B € GL(n,C) by a continuous path which does not intersect Y. Finally GL(n,C) is open and
connected in M, hence it is a complex manifold itself.

Note that GL(n, C) cannot be a submanifold of M since it is not closed. Moreover we recall that GL(n, C) carries
the structure of an affine variety of C™™.

Figure 5.12: GL(n,C) is path-connected, but GL(n,R) is not

Mat(n x n, C) Mat(n x n,R)

A A
Y B
B

The above argument is not valid in a real manifold X. If Y is of codimension 1 in X, then X \ Y is in general
disconnected. Consider again figure 5.12 : if for example A, B € GL(n,R) with det(A) < 0 and det(B) > 0,
then any path relating A and B must pass through a matrix with determinant zero since there is no continuous
way to pass from negative to positive numbers in R without passing through 0. In C, this is however possible by
”going around” 0 using complex-valued determinants.

Figure 5.13: passing from negative to positive numbers without hitting 0 is not possible in R
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5.6.3 Proposition
(GL(n; C), ) with respect to matrix multiplication is a complex Lie group.

Proof. First of all GL(n,C) is closed with respect to - and ~! since for A, B € GL(n;C), we have :

1
~ det(A)

det(A - B) = det(A) - det(B) # 0 , det (A1) #0

1) For showing that - is holomorphic, we prove that ¢ o-o (p~! x ¢©~1!) is holomorphic on C*™ x C™™. Let

A, B € GL(n,C) with A = (a;j), B = (b)) and C = A- B, so C = (¢,s) where

-1

n
Crszzarkbks = (9000“0 X(p_l))(allw-wannablla---7bnn>:(Clla-“ycnn)
k=1

—1

crs 18 just a polynomial expression in the entries a;; and by, thus ¢ o-o(¢~! x ¢~1) and hence - are holomorphic.

2) For the inversion of A, recall that A= = m -t(A*) where A2 is the algebraic adjoint of A given by
(A*0)ij = (=1)"*7 - det(A")

where A% is the (n — 1) x (n — 1)-submatrix of A obtained by erasing line i and column j :
A =

For example in the case n = 2, this gives det(A) = ad — bc # 0 and

_fa b ad_ [ d —c IR | d -b
A_<c d) = 4 _(b a) = 4 T ad—bec \—c a

Hence in a local coordinate, we obtain in general

1 1 1 o 3
ATY = (f(AM)) . = (A, = - (=1)" . det (AT
A= qam (A = qamy W = gagmy (V- det@)
det is a (non-vanishing) polynomial in a;; and the entries in *(A2d) are also polynomials, hence ~! is holomorphic.
So GL(n,C) is a complex Lie group of dimension n?. O
Remark :

In the real case, - and ~! are therefore real analytic operations = GL(n,R) is a real Lie group.

Similarly one can show that U(n,R) and SU(n,R) are also real Lie groups. However U(n,C) and SU(n,C) are
not complex Lie groups since the definitions of these involve the conjugate-transpose matrix A*, whose entries
are not holomorphic functions in the variables a1, aja, - - ., ap,. A more general theorem even states that :

Any compact connected complex Lie group is holomorphically isomorphic to a torus 7™. (no proof)

5.6.4 Exercise

Show that SL(n,C) = { A € GL(n,C) | det(A) =1} is a closed submanifold of GL(n,C) of dimension n? — 1.
SL(n,C) = det™! ({1}), hence SL(n,C) is closed in GL(n,C). If f : GL(n,C) — C : A det(A) — 1, then

SL(n,C) = f~*({0})

which is (4.5) with U = GL(n,C), n — n? and k = n? — 1. Moreover rk (J(f)) = 1 since f differs from det only
by a constant, hence J(f)(A) is the same expression as in (5.5).

Remark :
Since f is a polynomial expression, SL(n,C) is even an affine variety of C™™.
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5.7 Grassmannians

This is in fact a generalization of the projective space P"(C) :

Instead of considering the lines in C™ passing through the origin, one can also look at the set of linear subspaces
of C™ of dimension k < n (for the projective space, k = 1 since lines are 1-dimensional).

By a similar construction, one then obtains the so-called Grassmannians, denoted by Gr(n, k). It consists of the
k-planes in C™ and will again define a compact complex manifold. In particular, Gr(n + 1,1) = P*(C).
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Chapter 6

Sheaf of holomorphic functions

6.1 Global holomorphic functions on a compact complex manifold

6.1.1 Theorem

Let M be a (connected) compact complex manifold and f : M — C be a global holomorphic function on M.
Then f is constant, i.e. there are no non-constant globally holomorphic functions on a compact complex manifold.

Proof. f is holomorphic, hence continuous. So |f| is also continuous on M (compact). Therefore |f]| takes its
maximum value on M : Jzg € M such that |f(zo)| > |f(z)|, Vo € M. Let

S={zeM]| f(z) = f(zo) } = ({f(z0)})

Then S is a closed subset of M since f is continuous and the points are closed in C*. S # () because o € S. We
want to show that S = M.

Consider figure 6.1. Let (U, , ¢ = (21, .., 2n)) be a local complex coordinate chart around and centered at xg
(which exists by 4.3.2), i.e. ¢(z0) = 0 and we denote z := ¢(z), Vo € U,,. Let also F := f o1 and consider

g : C—C : Ar—g.(N)=F(\2)

where z € p(U,,) € C" is a parameter. By construction g. is holomorphic in the variable A and it satisfies
g:(1) = F(z) = (f o 1) (p(x)) = f(x). Moreover |g.| takes its maximum value at A = 0 because

19:(0) = [F(0)] = |(f 0 ™ )(0)] = [£ (¢ (0)] = |f (x0)|

Figure 6.1: centered coordinate chart at z¢

M

Hence |g,(A)| < |g.(0)], VA € C. By the maximum principle of holomorphic functions in 1 variable (X) :

The absolute value of a non-constant holomorphic functions cannot take its maximum value in the interior of its
domain of definition (see section 2.5.2). But |g,| takes its maximum at 0 € C = C°, so g, must be constant. In
particular ¢,(0) = g,(1), Vz € o(Us,,). Now we let z vary, i.e. if Vz, 2" € p(Uy,), we have

F(2') = g./(1) = g.:(0) = f(20) = g-(0) = (1) = F(2)
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g. and g,/ are both constant and coincide at 0 (see figure 6.2), hence they are equal and
F(')Y=F(2), V2,2 € o(Uy,) & f(2')=f(x), Va,2' € U,,
ie. f(x) = f(xo), Vo € Uy,. f is constant in the coordinate neighborhood around =zg.

Figure 6.2: g, and g,/ coincide everywhere

Now let y € M be arbitrary. Since the manifold M is connected, hence path-connected by 3.2.2, there is a
continuous path « : [0,1] — M such that v(0) = zo and (1) = y. Consider a covering of open sets in M of this
path (see figure 6.3), for example

im~y C U U

reimy
where U, denotes a small open neighborhood of x in M. But im~ = ’y([O, 1]), so im+y is compact and we can
extract a finite subcovering open neighborhoods U,,, ¢ =0, ..., n.

Figure 6.3: im+ can be covered by finitely many U,,

We hence know that f is constant on U,,. Uy, NU,, is non-empty and open in U, UU,,, hence by the Identity
Theorem (via using local coordinates), f is constant on U, U U,, since it is holomorphic. Iterating this process
(finitely many U,,) finally gives that f is constant on Uy, U ... UU,, withy € U, ,ie. f(y) = f(zo).

Since this can be done for any y € M, we obtain that f is constant everywhere. O

6.1.2 Theorem

1) There are no connected compact submanifolds in C™ but the points.
2) Any (not necessarily connected) compact submanifold of C™ only consists of finitely many points.
Hence there is no non-trivial compact complex substructure in C™.

Proof. 1) Let M C C™ be a connected compact submanifold and 7 : M < C™ the canonical injection. Then
Mt P ¢

where ¢ is holomorphic (since it the restriction of the identity) and p; : C* — C are the coordinate functions,
which are also holomorphic. Thus the f; := p; o¢ are holomorphic from M to C, hence all f; are constant by the
previous theorem since M is connected. This means that the coordinate evaluation on M always gives the same
value : Vz € M, f;i(2) = pi(z) = z; = ¢; for some ¢; € C, i.e. all points in M have the same coordinate. This
implies that M can only consist of a single point : M = {c¢} = {(c1,...,cn)}.

2) Now let M be an arbitrary compact submanifold of C™. Since M is locally connected (see section 3.2.2), the
connected components C; of M are open and closed and M writes as M = |J, C;. By compactness, there is a
finite subfamily of C; covering M. Since the components do not intersect, this implies that M can only have
finitely many connected components, which are in addition compact since they are closed. It follows from 1) that
every of these finitely many components is just given by a point, hence M consists of finitely many points. [J
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6.1.3 Conclusion

As a consequence we conclude that Whitney’s Embedding Theorem does not apply to complex manifolds since
non-trivial compact complex manifolds of dimension & (which exist) cannot be embedded into C2***. Moreover
we cannot deduce the structure of a compact complex (sub)manifold from its algebra of holomorphic functions
(since there are no interesting ones). For this we have to introduce the notion of a sheaf.

6.2 Sheaves : definitions

Let M be a complex manifold and U C M be open, so U is again a (not necessarily connected) complex manifold.
We denote
O(U):={f : U— Cis aholomorphic function on U }

This definition makes sense since holomorphic functions on U do not need to be restrictions of globally holomor-
phic functions. By convention O(()) = {0}, the zero function.

6.2.1 Proposition
O(U) is a C—algebra for all U C M open.

Proof. 0 € O(U)

frgeOU) = f+ge€OU) and feOU),aeC = a-fecO(U),so (OU),+) is a vector space over C
moreover f,g € O(U) = f-g€ O(U) and - is compatible with +, thus (O(U),-) is a (commutative) ring
Hence is an algebra over C. O

O(M) denotes the C—algebra of globally holomorphic functions.

Let U,V C M be open such that V' C U. If f is holomorphic on U, then fjy is holomorphic on V' because
holomorphy is a local condition, i.e. f€ OU) = fjv € O(V).

Restriction of holomorphic functions can be seen as a map pf} : O(U) — O(V) : f + fjy where O(U) and O(V))
are both C-algebras. This restriction is compatible with the C-algebra structures, e.g.

f+awv=fivtav , (- Nv=a-fiyv , (f-9v=1»fv gv (6.1)

6.2.2 Definition

A sheaf F of abelian groups / vector spaces / rings / algebras is an assignment U — F(U) where U is an open set
in M and F(U) is an abelian group / vector space / ring / algebra, such that VV C U open, there are maps

pY s FU) = F(V) : fes g% = fiv

called the restrictions morphisms, which are a family of homomorphisms of abelian groups /linear maps between
vector spaces / ring homomorphisms / algebra homomorphisms such that

1) pf = idr), VU € M open
2) for any open sets V. C U C W, we have p}Y = p¥ o pl/
For any open set U C M and any open covering {U;};c; of U, the following conditions hold :
3) if f,g € F(U) such that pg(f) = pgi(g) < flv, =9w,,VieJ, then f=g
4) if f; € F(U;) such that fu,nv, = fjjvinu,, Vi,J € J, then 3 f € F(U) such that fiy, = fi, Vie J
Remarks :
— By 3), the f in 4) is always unique. Consider figure 6.4 for an interpretation of 4).
— Note that f and g are not necessarily functions and that pg is not necessarily the restriction of functions.

— However, when considering functions with the usual restriction, then 1), 2) and 3) are always satisfied.
— If F only satisfies the conditions 1) and 2), then F is called a presheaf.
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Figure 6.4: f; and f; coincide on U; N U;

L’Tg‘ (,"r j'

fiv.nu, = v,

6.2.3 Theorem
The holomorphic functions on a complex manifold M define a sheaf of C—algebras.

Proof. because holomorphy is a local condition and the restriction is compatible with the C-algebra structure :
pUf+9) = o) +o0(9) o sV 9) = pU(f) - pV(9) -

The sheaf of C-valued holomorphic functions on a complex manifold M is denoted by Op;. Similarly one can
show that the differentiable and the analytic functions on M also define sheaves, denoted by C37 and CY;.

If M is a compact complex manifold, we know by 6.1 that O/ (M) = C. This is not true for C*°(M).
Moreover Oy (U) can be non-trivial for some (non-compact) open subset U C M because if U is small enough,
it can be identified with some open subset of C", which has a lot of holomorphic functions.

6.2.4 Counter—example

Consider the complex plane M = C and B(U), the C-algebra of bounded holomorphic functions on U C M open
together with the restriction of functions p¥. Thus 1), 2), 3) are satisfied. But 4) is violated because boundedness
is not a local property. Indeed consider the case U = C and U is covered by {U; };cn where

U={z€eC, |z|]<i}

are open, i.e. C = J;cyUi. Let f; € B(U;) be given by fi(z) = 2. So any f; is bounded on U; and the f; glue at
the intersections : f;jv,nv, = fjjv.nv;, Vi,J € N. But there is no global holomorphic function which extends the
fi since B(C) = C : by Liouville, every bounded globally holomorphic (entire) function on C must be constant.
Hence no one of the f; can be extended to C since it is non-constant in any neighborhood of every point in U;.

other argument :
If there is an extension f of the f;, it is necessarily of the form f(z) = z (this is the only candidate). But this f
is not bounded on C : A K € R such that |f(2)| = |2| < K, Vz € C. Finally

3 f € B(C) such that filu, = fi, VieN

6.2.5 Exercise

Let M = C and consider F : U+ F(U) = Jyo3(U) where Jo3(U) = O(U) if 0 ¢ U and for 0 € U, we set
Ty (U) = {f € Oc(U) | f(0) =0} & Oc(V)

(strict inclusion because of the non-zero constant functions) together with the usual restriction of functions p¥.
Show that F is a sheaf on M. It is called the vanishing sheaf of the point 0 € C. More generally, one can also
consider the vanishing sheaf of arbitrary subsets of a more general manifold M (see section 6.5.2).
The conditions 1), 2) and 3) are satisfied. So let U C C be open with an open covering U = |J
fi € J{O}(Ui) such that fi|UiﬁUj = fj\UiﬁU]w Vi,j€J.

If 0 ¢ U, then 3 f € J03(U) = Oc(U) such that fiy, = fi, Vi € J since Oc is a sheaf (see figure 6.5).

Hence we can assume that 0 € U. Vi € J, f; € Jy03(Us) C Oc(U;) = 3f € Oc(U) such that fiy, = fi, Vi € J.
We have to check that this f satisfies f(0) =0. 0 € U = 3Fig € J such that 0 € U;,, hence

f(O) = f|Ui0 (O) = fio(o) =0 since fio € J{O}(Ulo) = fe€ J{O}(U)

iy Ui and let
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Figure 6.5: if 0 ¢ U, then Jypy coincide with the sheaf of holomorphic functions on U

L-ri_ [J"

Ji0y(U) = Oc(U)

6.2.6 Definition

Since Oy is a sheaf of C—algebras, Oy, (U) is in particular a commutative ring for any U C M open. Hence one
can consider modules over these rings.

A sheaf F with restrictions p¥/ is called a sheaf of Oyr—modules if F(U) is a module over Oy (U) for any U C M
open and the module structure is compatible with the restrictions, i.e.

YU C M open, VfeF({U), Vhe Ou(U) : py(hxu f) = py(h) =v pv(f) = hyy v o3 (f)  (6.2)

where hxy f € F(U) and hyy =v pY(f) € F(V).

6.2.7 Examples

1) If F is a sheaf of Op;—modules and M is compact, then F(M) is a module over Oy (M) = C, i.e. F(M) is a
vector space over C.

2) Jyoy is a sheaf of Oc—modules with the definition h* f := h- f for h € Oc(U), f € J;03(U), U € C open. This
is well-defined because (h - f)(0) = 0 too, hence h - f € Jy}(U). Moreover this module structure is compatible
with the restrictions as in (6.1).

3) Oy is a sheaf of Op—modules since any commutative ring Ops(U) can be considered as a module over itself.

6.3 Morphisms of sheaves

Let F and G be sheaves of the same type, i.e. both are sheaves of abelian groups / vector spaces / rings or algebras.
Denote the restrictions of F by p{;; and those of G by p%/U. A morphism of sheaves ¢ : F — G is a family
{Yv}vcm of maps ¢y : F(U) — G(U) indexed by the open sets in M such that if V' C U are open :

g _ F
s lpgu Py © YU =Yy o pyy

FV) 2 g(v)

and any ¢y is a homomorphism of abelian groups /linear map between vector spaces / ring homomorphism or
algebra homomorphism.
If F and G are sheaves of Op/—modules, it is in addition required that VV C U open :

O (U) x F(U) —Lm F(U) —m G(U) <2 O(U) a1 x G(U) O (1) (6.3)
On(V) x F(V) o F(V) 2 G(V) < 00 (V) x G(V)  Oa(V)

where any ¢y is a module homomorphism, i.e. Yy (h*y f) = h*p vy (f), Vh € O (U), ¥V f € F(U).
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6.4 Restriction of sheaves

6.4.1 Definition

Let F be a sheaf over a complex manifold M and U C M be open. The restriction of F to U, denoted by F|,
is defined by Fjy(U’) := F(U"), VU' C U open (hence U’ is also open in M).

The restriction morphisms of Fj;; are coming from the restrictions of . Hence Fy is a sheaf on U since the
conditions 1), 2), 3) and 4) hold for any open set in M, thus also for U and open subsets of U.

Example :
If M is a complex manifold, U € M open, non-empty and connected, then (O )y = Oy.

6.4.2 Definitions

A sheaf F of Op;—modules is called a free sheaf of rank k € Ny if F = Oﬂ = Oy @ ... D Oy as sheaves of
Opr—modules. F =2 O, means that F and O, are isomorphic in the category of sheaves of Oy;—modules. As a
consequence, we obtain that for all U C M open :

FU)=ZOpu (U =0y U) x ... x Opn(U) (6.4)

In general (6.4) is however not sufficient to say that F = Oy @ ... ® Oy since the compatibility conditions with
the restrictions still need to be satisfied. In fact : F =2 Ok, « (6.4) and (6.3).

It is however sufficient if the Oy (U)-module F(U) consists of functions and p¥ is the restriction of functions
since (6.3) is always satisfied for functions with usual restriction.

A sheaf F of Op;—modules is called locally free of finite rank k
& Vz e M, Jk € Ny and there is an open neighborhood U of x in M such that Fj; = 05 = ((OM)|U)k.

This k is necessarily the same for any x € M :

Let x,y € M with x € U, y € V, U,V C M open such that F(U) = O¥(U) and F(V) = OY(V). M being
(path-)connected, let v : [0,1] — M be a continuous path from x to y. For any z € im~y, consider an open
neighborhood U, of z such that F(U,) = O%:(U,). im+ is compact, hence there are finitely many z; such that

im~y C U Uu, = im’yCCJUi
z€im 5 i=1
with Uy = U, U, =V and F(U;) = O%(U;), Vi € {1,...,n}, k = ki, | = k,,. In particular, we have for example
FO)=0kU) , FUNU)=20"UNU) , FUs) 20" (U;) , F(U2NU)=0"UnNU)
hence OF(U NUy) = OF2(Uy N U), which implies that k = ko since the rank of a module is uniquely given. By

induction, we obtain that k = ko = k3 = ... = k,_1 = k, = [ since there are only finitely many indices.

6.4.3 Examples

1) Let M = C. Then Jyoy is a sheaf of Oc-modules as shown in 6.2.7. Moreover Jy) is a free sheaf of rank 1 :
J01(C) = Oc(C) -p where p : C — C, p(z) = z = p(0) = 0. This means that V¢ € Jy)(C), 3¢ € Oc(C) such
that ¢ =9 - p : ¢ has no constant term. ¢ is holomorphic on C, hence saying that ¢ € J;}(C) means that the
power series expansion of ¢ around 0 satisfies ag =0 :

gp(z):Zak-zk:0+z-Zak~zk = ¢(0)=0
k=0 k=1

In order to satisfy the compatibility conditions of the restrictions, we thus need that Jyoy(U) = Oc(U) - pj for
all U € M open. But this is true, hence (6.4) is satisfied with k = 1 and we get Jy0y = Oc .

2) Let M = P!(C) with a = (0: 1) # oo, U C P*(C) open and define
Jo(U):={f€OuU) |ifacU, then f(a) =0}

48



Complex Manifolds Section 6.5 SCHLICHENMAIER, Leytem

Jo is a sheaf on P1(C) (same proof as for Ji0y), called the vanishing sheaf of a. It is locally free of rank 1 because
C={(a:1)|aecC}anda=(0:1),s0 Jo(U) = Ji;(U) for all U C P*(C) open.

Jo is however not a free sheaf because there are no non-zero holomorphic functions on P!(C) that vanish at a
given point :
Ou(PHC)) =C , J.(PHC))={0} = Ju(M)%On(M)

Thus (6.4) is not satisfied, meaning that J, cannot be free of rank 1.
other argument :
Assume that J,(M) =2 Op(M). Since Op (M) has rank 1 (basis given by f = 1), J,(M) must therefore also be

generated by 1 element over Oy (M), i.e. 3g € Op (M) such that J,(M) = Op (M) - g. Since J, (M) = {0}, we
have g = 0. In order to satisfy the compatibility conditions of the restrictions, we thus need that

Jo(U) = On(M) - gy = On (M) - Oy = {0}
which is not true since J,(U) # {0} for a small open set U C P1(C) (because U locally looks like C).

6.5 Ideal sheaves
6.5.1 Definition

Let M be a complex manifold and Oy; be the sheaf of C-valued holomorphic functions on M.
A sheaf J on M is called an ideal sheaf if J is a subsheaf of Oy, i.e. J(U) C Op(U), VU C M open, denoted
by J C Oy, such that J(U) is an ideal in the commutative ring Oy, (U) for any U.
This implies in particular that J is also a sheaf of Oy;—modules since every ideal is a module over the considered
ring by setting :

On(U) % TW) — W) : (b, f)— hx fi=h-f € T(U)

6.5.2 Example
Let A C M be an arbitrary subset of the complex manifold M. For U C M open, we define
JaU) :={feOu) | f(z) =0, Ve c ANU }

Ja(U) is an ideal in Op(U) : for all h € Op(U), b - f still vanishes at any . € ANU if f € Ta(U).
Ja defines an ideal sheaf and is called the vanishing sheaf of A over Oyy.

Proof. The conditions 1), 2) and 3) are satisfied since we consider functions and usual restrictions.

Let U € M be open and U = |J,; U; be an open covering. Denote U,; := U; N U;.

U U

@

For all i € I, let f; € Ja(U;) such that fyu,, = fjjv,,, Vi,j € I. We have to show that 3 f € Ja(U) such that
fiu, = fi, Vi € I. By 3), the only candidate for functions with the canonical restriction is

f(z) = fi(x) if x € U; for some i € T
a) f is well-defined since if € U; N Uj, then fi(x) = fyu,, (z) = fju,, (z) = fi(z) = f(x).

icl

b) f is holomorphic on U since holomorphy is a local condition, i.e. it is sufficient to check it on a small open
neighborhood of any point € U. But this is true since Vo € U, Jip € I such that z € U;, and f|Ui0 = fi, is
holomorphic on the open set U, since f;, € Oan(Us;,) by assumption.

c) check that f(z) =0,Va € ANU :
ANU=AnY,U;=U;,(ANT;)

Hence if € ANU, then 34 € I (not necessarily unique) such that z € AN U;, implying that
f(z) = fi(x) =0 since f; € Ta(U;) O
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6.5.3 Proposition
If AC M isopen, A# () and U C M is open and connected such that ANU # 0, then J4(U) = {0}.

Proof. follows from the Identity Theorem : If f € Oy (U) where U is connected and contains the non-empty
open set ANU on which f vanishes, then f vanishes on the whole open set U. O

Remark :
This result does not have much applications in practise since one often requires that A has to be closed, e.g.

M=C*, A={(0,00} = JaU)={fec0On(U)] f(0,0)=0 if (0,0) €U} = Jyo,0(U)

6.6 Germs and stalks

Let M be a complex manifold and z € M be fixed.
The idea of germs and stalks is to consider holomorphic functions in a (non-determined) neighborhood of x.

6.6.1 Definition
Let U and U’ be open in M such that x € UNU’ and let g € Op(U), f € Op(U'). We define

(9,U) ~ (f,U') & IW CUNU' open, z € W such that gjw = fiw

i.e. two functions with their corresponding domains are equivalent with respect to x if there exists a smaller open
neighborhood of  on which both functions concide.

U

~, is an equivalence relation (reflexivity and symmetry are clear).
— transitivity : if gy = fljw and fiw+ = hjw, then gwaws = hjwaws where W N W' is open and non-empty

We denote the equivalence class simply by [f] = f. := { (g,U) | (f,U") ~z (g,U) } ; the domain of f does not
need to be specified. Such an equivalence class is called a germ of holomorphic functions. And the set of all
germs of holomorphic functions (the set of all equivalence classes) is called the stalk at = and denoted by

Oum,e = { fo | f holomorphic in some open neighborhood of z }

We point out that germs do not have a domain of definition, but the representatives of a given germ have one.

This construction can also be done for arbitrary sheaves :
Let F be a sheaf on M and U,V C M be open. Fix x € UNV and let f € F(U), g € G(V). Then

freg & AW CUNV open, x € W such that pl,(f) = piy(9)

The germs are again given by the f, and the stalk at = (the set of all germs) is denoted by F,.

6.6.2 Proposition
F. has the same algebraic properties as the "objects of F”, i.e. as the F(U) where U C M is open.

Proof. Consider for example the case where F(U) is an abelian group. We have to show that JF, can also be
endowed with an abelian group structure. Let U,V C M open, z e UNV, f € F(U), g € F(V) and set

[F1+19] == [f + 9] := [flunv + 9uav] (6.5)

where fiunv, gjunv € F(U NV) since the sum of f and g can only be defined in a smaller neighborhood.
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This definition is also independent of the representing elements of f and g. Let f' ~, f and ¢’ ~, g with
fiw = f\lw and gy = 9\/W/' Since x belongs to all of these open set, we have that A:=UNVNWNW' #0:

fla=fla and  ga =g,
= flatga=flatga = f+g ~ f+yg
Finally definition (6.5) implies that [f]+[g] has exactly the same properties as f+g, so F is an abelian group. [

Remark :
A more sophisticated way to prove this result is to use the concept of a filtrant inductive limit. Indeed :

Fy = limy F(U)
Usz

which intuitively means that we take F(U) and let U — {z}. Inductive limits preserve the properties of F(U).

6.6.3 Corollary

O,z is a C-algebra for all x € M. In particular it is a commutative ring.

Proof. follows from proposition 6.6.2 since Oy (U) is a C—algebra for all U C M open (as showed in 6.2.1) O

6.6.4 Proposition

Vo e M, Oy, is a local ring, i.e. a ring which contains only one maximal ideal.

Proof. Recall that a ring R is a local ring < R\ R* is an ideal. We define
M, = { [f] € Onra ’ f(z) 20}

M, is well-defined since if g ~, f and f(z) = 0, then g(x) = 0 too since x belongs to any open neighborhood
around z : all representatives of [f] have the same value at .

Moreover M, is an ideal in Oy, with the definitions [f1] + [f2] = [f1 + f2l, V[f1],[f2] € DM, as above and
[g] - [f] = [g - f], where [g] € O, and the product g - f is done in the neighborhood U NV if the representing
elements are f € Oy (U), g € Op (V) because f(z) =0 = (g- f)(z) =0 too.

It remains to show that the elements in Oy, \ M, are invertible. Let [g] ¢ M, = g(z) #0, Vg € [g].
Let (g,U) be a representing element of [g]. Since g is holomorphic, hence continuous on U, 3U’ C U open such
that € U’ and g(y) # 0, Vy € U’. Thus % is well-defined and holomorphic on U’. Moreover

[g] " =[;] since [g]-[5] =[1]
Thus (é, U’) satisfies all the conditions and [g] is invertible in Ops . This shows that Ops, \ M, C (’)X/[w

And OIT/[@ C Oume \ M, because My # Onrp. If an element in M, would be invertible, then [1] € M, hence
M, = On o because it is an ideal. This contradiction finishes the proof. O

Remark :
This does not hold for arbitrary F, (since not any F, must be a ring).

6.7 Remarks on sheafification

Assume that G is only a presheaf on M. Then G, also exists for all z € M y G,. Set |G| := | | G, and consider
zeM
VeeM, p. : Go—{z} : [g]—x
|G| is defined as the disjoint union of all the G, and called the total space of presheaves. Hence all the maps p,
induce a map P : |G| = M : [g] — x where z is the unique z such that [¢g] € G, (see figure 6.6).
We endow |G| with the initial topology with respect to P, i.e. the smallest topology that makes P continuous.
This topology hence consists of all the preimages under P of open sets in M.
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Figure 6.6: for any [g] € |G| there is a unique € M such that [g] € G,,

g, Ga G|
JP
: - M

Y )

G(U):={s:U— P Y(U) C |G| such that s is continuous and P o s = idy }

For U C M open, we then define

Such an element s GAQA (U) is called a continuous section on U. R
One can show that G is now a sheaf; it is the associated sheaf of G. And if G was already a sheaf, then G = G.
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Chapter 7

Meromorphic functions

7.1 Construction of meromorphic functions

7.1.1 Proposition

Let M be a complex manifold and U C M be open and connected.
Then Oy (U) is an integral domain, i.e. if f,g € Oy (U) are such that f-g =0 on U, then f =0 or g = 0.

Proof. Let f-g =0 and assume that f # 0. We have to show that g =0 on U, i.e. g(z) =0, Vz € U.

We first consider the case where U is completely contained in some chart domain V. Let (¢, V') be the associated
coordinate chart. f #0 = Iz, € U such that f(z9) # 0. f continuous = IW C U open such that zo € W
and f(z) # 0, Vz € W. By bijectivity of ¢, W is in 1-to-1 correspondence with (W), i.e. any z€ W CU CV
can uniquely be written as z = ¢~ 1(x) for some x € (W) C p(U) C p(V).

VeeW :0=(f g)(2) = f(2) - g(2) = f(2) - (go ™ ')(z) with f(2) #0
= (9o )(x) =0, Vo€ p(W) C p(U)
g o »~ 1 is holomorphic on ¢(U) C C", which is open and connected (as image of U, which is connected), and
vanishes on (W) C ¢(U), which is open and non-empty since ¢(z9) € @(W). Thus go p~! =0 on ¢(U) by the
Identity Theorem and since ¢ is bijective this exactly means that g =0 on U.

Now let U € M be covered by chart domains : U = J,;c; Vi. f#0 = J2z0 € U and Fig € I such that z € V;,
with f(z0) # 0. Moreover AW C V;, C U open such that zop € W and f(z) # 0, Vz € W. By the same argument
as above, we conclude that g =0 on V;,. Let y € U be arbitrary. We have to show that g(y) = 0 too.

Since U is connected (hence path-connected), there is a continuous path v : [0,1] — M such that v(0) = zo
and v(1) = y. im+ is compact and covered by the V;, hence it can be covered by finitely many of them, say
Vies Vi,..., Vi, with y € V,,. We know that g = 0 on Vj, hence it is also zero on V;, N Vi, which is non-empty
and open in Vj, hence (again via local coordinates), g = 0 on V;. We repeat this argument until V;,, so finally
g=0o0nV, and g(y) =0. Hence g = 0 on U since y € U was arbitrary. O
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Remark :
This is not true for C3f or CY; if M is a real differentiable manifold. Consider e.g. the following example :

Figure 7.1: C'57 is not an integral domain

R

fl@)=0,Vz>0and g(z) =0,V <0 = f-g=0onR,but f#0and g#0

7.1.2 Definition 1

Let U C M be open and connected. Since Oy (U) is an integral domain, it does not contain zero divisors, hence
M(U) == Quot (O (U)) = SO (U)

exists and is a field, where S = Oy (U) \ {0} is a multiplicative set. Its elements are called meromorphic ”func-
tions” on U. This definition however implies a certain number of problems.

1) An element h € M(U) is given by an equivalence class h = 5 where f,g € Op(U), but it is not a function.

!
Recall : / ~ f—/ s f-gd—f-9g=0
g g

If h is represented by f and g, we may define

h :U—=C, h(z) = ) (division)

9(2)

First of all, this is only a function on U \ V(g) where V(g) = {z € U | g(2) = 0} is the zero set of g.
bl
g""

At the moment we are not yet able to solve this problem. For this we need the notion of analytic sets (this will
be explained in section 7.4).

Problem : This is not independent of the representatives f, g since maybe V(g) C V(¢') if 5 ~

2) For n > 1, putting h(z) := oo if z € V(g) does not work, see example 7.1.3.

3) M is in general not a sheaf. Consider an open subset U which is not connected, i.e. U = Uy UUsy, Uy NUs = ()
for Uy,Us C M open. Then Oy (U) contains zero divisors, e.g.

fi(z) = : fa(z) =

0 ifze U,

1 ifzelh
1 ifzeU,

{0 if z € Uy

f1 € Ou(U), fo € Om(U), fr #0, f2 #0, but f1 - fo =0.
But Quot(R) is not defined if R is not an integral domain (since R\ {0} is not multiplicative), hence the mapping

U+— M(U)
is not even well-defined and M cannot be a sheaf.

In order to solve this problem, one can do the following (which we do not develop in detail) :

Since the manifold M is locally connected, it admits a basis consisting of connected open sets, on which the
mapping U + M(U) makes sense. This can be extended to all open sets and M will define a presheaf on M.
And finally we may take as M the sheaf associated to M.
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7.1.3 Example
n =1 : in local coordinates, 2 holomorphic functions f and g on M can locally be written as

f)=G-2)"f() . g()=(-20)" 3> .
where zo € C, f(z0) # 0, §(20) # 0 and k.l € Z can be zero. Then one defines h(z) := (z — z9)* ! - f(z)

— if k > [, h is a holomorphic function with a zero at zg

— if k=1, h is a holomorphic function with with a non-zero value at zg

— if k < I, then h is not holomorphic at zg, but we can put h(zp) := oo

In this last case, we say that zg is a pole of order k — [ of h. Moreover one can show that the definition of & is
independent of the chosen coordinates.

n > 1 : poles are in general not well-defined for n > 1
Consider M = C? and f(2) = f(21,22) = 2 = V() = {(21,0) | 21 € C}. Let z = (21,0) € V(f); we
approach z from different directions (see figure 7.2). Let « and 8 be zero-sequences and set

= (21 + a(n n T :ZlJra(n): - e
o= (a4 a0+ B(m) = flan) = St = s g

If 21 # 0, then ‘ﬁ’ — 00, hence |f(z,)| — o0, so the points (z1,0), 21 # 0 could be considered to be poles.

However for z; = 0 and z = (0,0), we get f(zy,) = ZEZ; By definition lin%) f(2) exists if we obtain the same limit
z—r

for any zero-sequence. But this is not satisfied here, e.g. for ¢ € C, let

a(n):%,ﬂ(n):% = f(zp)=c—casn— +o0
a(”):%vﬂ(n):% éf(xn):%—>0asn—>+oo
a(n):%,ﬂ(n):% = f(zp)=n— 00 asn — 400

We conclude that by approaching (0,0) from different directions, one can obtain any complex value, including 0
and oo. Hence putting f(0,0) := oo is not a good choice.

Figure 7.2: approaching the point x from different directions
Z2

My
o 2= (10

7.1.4 Conclusion

If h € M(U), then h = 5 and one can define h(x) := gg; as a function as long as

2 ¢V(g)={yeU|gly)=0}

V(g) is closed since g is holomorphic, hence continuous. We assume that g has no essential singularities.

A meromorphic function is only a (holomorphic) functions outside of this zero set. Moreover if 5 ~ ;—: where ¢’
has other zeros than g, we have to look for the smallest set of points we have to take out.

7.2 Definition using UFDs

Recall :
Let m,n € N and d = ged(n, m).
n and m are relatively prime < d=1 < n and m do not have common prime factors.
Z is a unique factorization domain ("unique” means up to order of the factors and multiplication by units).
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7.2.1 Theorem
If M is a complex manifold and « € M, then the local rings O, are UFDs. No proof will be given.

Hence f,9, € O, are relatively prime < 3JU,V,W C M open, f € Op(U), g € On(V) such that

W CUNV and fiw, gyw are relatively prime (i.e. they do not have common factors).

Given g € Oy (U), we can decompose g as g = p- gy - ... - g; where all factors are holomorphic, p is a unit and

all g; are indecomposable (up to units). The units are the holomorphic functions f without zeros in U (since the
1

inverse % is then still holomorphic in U).

Example : for c € C\ {0}, 2125 -c=c- 21 - 29 - 23 - 22 and ¢ is a unit.

7.2.2 Definition

A Weierstrass polynomial of degree m is a function W : C™ — C of the form

—

m—

Wi(z1,...,2n) =2 + Z aj(21, oy 2n1) - 2

j=

where the a; are holomorphic functions in a neighborhood of (0,...,0) € C"~! and a;(0,...,0) = 0. Hence a
Weierstrass polynomial is a monic polynomial in the variable z,, whose coefficients are holomorphic functions in
the remaining variables and vanish at the origin.

7.2.3 Weierstrass preparation theorem

Let p € C" and f : U — C be a holomorphic function on an open neighborhood U C C" of p = (p1,...,pn). Let
k be the order of p,, as a zero of f(p1,...,Pn—1, -) (where k = 0 is possible; k > 1 means that f(p) = 0).

Then locally around p (e.g. in some small polydisc) f writes uniquely as f(z) = h(z) - W(z — p) where h is a
holomorphic function in a neighborhood of p with h(p) # 0 and W is a Weierstrass polynomial of degree k.

Example : if £k = 0, then one can choose h = f and W = 1.

7.2.4 Definition 2
Let U C C" be an arbitrary open subset. We define

M) := { objects that are locally given as quotients of 2 holomorphic functions }

ie. Vf € M(U), there exists an open covering {U;};cs of U such that fi, = ¥ where g;,h; € Op(U;) are
relatively prime and g; - h; = g; - h; on U; N Uj, i.e. '

(%)\Umljj - (%)IUJWU]' y Vi jeJ (7.1)

This is an alternative definition of meromorphic functions on U. Note that it suffices to define M(U) for open
sets in C" instead of open sets in a general complex manifold M since the definition of M only depends of the
local structure of U and M locally looks like C™.

M with restriction of functions defines a sheaf since all conditions are local, so 3) and 4) are immediately satisfied.

In general, M(U) # M(U) for U C M open and connected. Let e.g. M be a compact complex manifold. Then
Ou(M)=C = M(M)= Quot (On(M)) =Quot(C) =C
but M(M) € M(M) since M(M) is given by quotients of locally holomorphic functions (no global condition).

Proposition : (no proof) o
If U C M is contractible (in particular connected), then M(U) = M(U).
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7.2.5 Remark

Elements in M(U) can also be interpreted as functions outside of a certain set A. Let f € M(U) with an open
covering U = J;U; = fju, = 7* and f is a well-defined (holomorphic) function on U; \ V/(h;). Vo € U; N Uj -

Gi 9j
1= (), 01 (), 0= U)o ) = 1=, 4 onin,
because of (7.1). Now let A :=J, V(h;). Using local compactness of U and the fact that g; and h; are relatively
prime (all common factors are already taken out, which is possible in a UFD, so h; may only change by a unit),
one can show that A # U, hence f is a holomorphic function on U \ A # (.

7.3 Definition using exceptional sets

In this approach, we are looking for the smallest possible set A which must be removed in order to define
meromorphic functions on a complex manifold M that are holomorphic on M \ A.

7.3.1 Definition 3

A meromorphic function on a complex manifold M is a pair (A, f) where A C M, f is a holomorphic function
on M\ A and A is minimal, i.e. Vzy € A, there exist an open neighborhood U of zy and holomorphic functions
g, h on U such that

a) ANU=V(h)={ze€U|h(z)=0}

b) the germs g,, and h,, are relatively prime (as defined in 7.2.1), i.e. have no common factors except the units

o) flx) = {3, Vo cU\ A

A is called the exceptional set of f. In particular, f is holomorphic on M < A = 0.

7.3.2 Remarks

These conditions already imply that A cannot be open (in particular A # M), otherwise V/(h) = ANU is open,
non-empty since it contains zo and h =0 on ANU C M, hence h = 0 on M by the Identity Theorem (via local
coordinates) since h is holomorphic on the non-empty open set ANU C U.
A is minimal means that A N U is exactly equal to the vanishing set of h, i.e. exactly all the zeros of h have to
be removed so that f is well-defined. This is the case because g,, and h,, are relatively prime, i.e. g cannot
compensate a vanishing factor of h in the denominator.
The functions g and A may differ from neighborhood to neighborhood, but they always need to define the same
function on non-empty intersections : if f = 7> on U; \ A and if f = Z—JJ on U; \ A, then we need

9 _ Gj

gi(z) - hj(z) = gj(z) - hi(z), Ve e U;NU; = f= h =g, on U;nU;)\A

7.4 Analytic sets

7.4.1 Lemma

For n = 1, the zero set V(f) of a non-constant holomorphic function f on an open set U is a discrete set, i.e.
Vz € V(f), there is an open neighborhood V of z such that VNV (f) = {z}.

Proof. Assume that V(f) C U is not discrete. Then 3 zg € V() such that any open neighborhood of z intersects
V(f) in some point which is distinct from zg, i.e. zp is an accumulation point of V(f) (see section 2.4). But
since f =0 on V(f) and f is holomorphic on U, the Identity Theorem for n = 1 implies that f = 0 on U, which
contradicts the fact that f is non-constant. Hence V(f) must be a discrete set. O

Remark :
This does not hold for n > 2. Consider e.g. f(z1,22) =21 = V(f) ={(0,22) | 22 € C} is not discrete.
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7.4.2 Definition

Let M be a complex manifold. A C M is called an analytic set if Vz € M, there exist an open neighborhood U
of zand 3 f1,..., fr € Om(U) such that (see figure 7.3)

k
ANU={zeU| fi(z)= falz) =...= fu(z) =0} = nfj—l({o}) (7.2)

Hence analytic sets locally look like the zero set of finitely many holomorphic functions. These functions are not
uniquely determined by A. Moreover k may depend on z since the functions f; are in general not the same for
any z € M. Note that (7.2) is trivially satisfied if ANU = ) by taking f1 =1 € Oy (U). If V C M is open and
connected, we can also talk about analytic sets in V.

Figure 7.3: A C M is an analytic set

Equivalently, A is an analytic set if and only if there is an open covering {U;};cs of M such that Vi € J,
3fi- o [, € Om(U;) satisfying ANU; ={z € U; | fi(z)=...= f; (x) =0}.

Note that the k; are not uniquely given since there may be many possibilities to describe A N U; as a zero set.
But one can always extract a minimal number of functions which are necessary and sufficient to describe AN U;.
In particular if A is connected, then it is possible to choose k; = k;, Vi,j € J.

7.4.3 Examples
1) Zero sets of holomorphic functions are by definition analytic sets (take U = M).

2) Algebraic varieties in C™ are analytic sets since they are given by the zero set of finitely many polynomials,
which are globally holomorphic functions on C".

3) The exceptional set A of a meromorphic function (A, f) is always an analytic set by condition a). In particular
if A # (), then any exceptional set is a 1-codimensional analytic subset of M (since there is just 1 function).

4) For an analytic set, A = M is possible by taking the zero function everywhere : ANM = {x € M | 0(xz) =0}.

5) There are analytic sets which are not of codimension 1. Consider e.g. M = C? and A = {(0,0)}. In or-
der to show that A is an analytic set, we have to find an open covering {U; };c; of M and holomorphic functions
[l [ € On(Us) such that ANU; = V(fi,..., fi)NUs.

Take i = 1, Uy = C2, f1(2) = 21 and fa(2) = 2 for 2 = (21, 22) € C2. Hence fi, fo € O (C?) and

V(fi,f2)NUi={2€C?| fi(z2) = fo(2) =0} ={(21,22) €C* | 1 =20 =0} ={(0,0)} =A=ANT,
Thus A is an analytic set, but it is not of codimension 1 in C2.

6) Points, a finite number of points and, more generally, any discrete set is an analytic set.

Let M be a complex manifold and A C M be discrete, i.e. Va € A, there is an open neighborhood V, of a such
that V,, N A = {a}. By choosing the V,, small enough, we may assume that (V,, ¢,) is a coordinate chart around
a. Hence one can take as open covering of M the collection V = {U,V, |a € A} where U C M is open and chosen

such that U UJ,c 4 Vo = M and ANU = (). This is possible since M is Hausdorff, e.g.

U= UUQJ where F:M\UVa
zel acA

and U, is a small open neighborhood of 2 € F not containing any points from A (see figure 7.4).
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Figure 7.4: U and the V,, form an open covering of M

Since ANU = (), we can take the constant function 1 on U. And on V, we may consider the holomorphic function
[ (@) = pa(r) —@ala) = [ (2) =0 & @u(z) =¢ala) & z=a

since ¢, is bijective. Hence f* € Op(V,) and ANV, ={a} ={z eV, | f*(x)=0}=V(f*)NV,, Va € A.

7) But not all analytic sets are discrete, as e.g. zero sets of holomorphic functions in several variables. Now we

show that such a zero set cannot "end” somewhere.

Figure 7.5: A = V(f) cannot "end” at a certain point

M

Let U C M open, f € Op(U) and assume that A = V(f) is "bounded in U”. Consider an "endpoint” a € A
and a chart (V) ¢) around it (see figure 7.6). In the local situation ¢(V) C C", we obtain that ¢(ANV) is closed
in (V) since ¢ is a homeomorphism and zero sets of holomorphic functions are closed. Moreover

e(ANV)=pA)Ne(V) = closed in ¢(V)
pAnV) =¢({z eV | f2)=0}) = {p(@) €p(V) | fl) =0} = {2 €C" | (foup™)(2) =0} =V(fop™)
Hence we can choose a polydisc A in C™ such that ¢(ANV) C A C (V) and denote V' := (V) \ A. Let

o
(fep™h)(2)

g is well-defined and holomorphic in V' since V(fop~1) C A. A consequence of Hartog’s Lemma (section 2.6.4)
then states that g can be holomorphically extended on the polydisc A, i.e. g extends to a holomorphic function
on ¢(V). By uniqueness of this extension we obtain that g must exist everywhere on A, which means that fop™!
cannot have zeros on A and hence that f has no zeros in ANV : contradiction since a € ANV and f(a) = 0.

g(z) = ,VzeV’

Figure 7.6: the local situation at the ”endpoint”

U

Remark :
Such an argument does not apply if A is "not bounded” in U because if such a polydisc A exists, then (V) \ A
is not connected and Hartog’s Lemma does not apply (see figure 7.7).
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Figure 7.7: ¢(V) \ A is no longer connected

7.4.4 Exercise

Show that any submanifold of a complex manifold is an analytic set.

This directly follows from characterization (4.5). In fact, being a submanifold is a stronger condition than being
an analytic set since the maximal rank condition also needs to be satisfied.

The converse is false : not any analytic set A defines a complex submanifold since A may have singularities, i.e.
points at which the rank of the Jacobian matrix drops (hence the maximal rank condition is not satisfied).

7.4.5 Proposition
Let M be a complex manifold, U C M be open and A be an analytic set in U. Then A is closed in U.

Proof. Recall that M, hence U, is by definition a topological space. However since we require that the coordinate
charts are homeomorphisms, this topology must be locally homeomorphic to the standard topology of C™.

IfA=U,then A=ANU={x €U |0(x)=0}: closed in U. Hence we may assume that A # U. We have to
show that U \ A is open in U.
Let g € U \ A. Since A is an analytic set, we know that there is a neighborhood V' of z¢ in U such that

AﬂVz{xEV|fl(x)z...:fk(x)z()}

for some suitable f; € Op(V), i € {1,...,k}. Not all ¢ satisfy f;(xg) = 0 since otherwise 290 € VN A C A.
Assume for example that fi(zp) # 0. Since f; is holomorphic on V| we get by continuity that 3W C V open
such that xo € W and fyw # 0, ie. fi(y) #0,Vy e W. Thusy ¢ VNAVye WCV = y¢ A VyecW.
Hence W N A =0 (see figure 7.8), which precisely means that W C U \ A with zq € W. O

Figure 7.8: W is an open neighborhood of zy not intersecting A

7.4.6 Recall
Let X be a topological space and A C X. The topological boundary of A is given by

aA::AOX\A:{:EGX‘VUQXopensetcontainingx, 3y,z€Usuchthaty€Aandz¢A}
Moreover we have the relations
A°CACA , A=AU0A |, A=A°U0A , A°=A\0A , X\A=X\A° , 0A°COA

where A° = {x € X | 3U open neighborhood of x such that U C A} contains all interior points of A. A° is
always open and JA is always closed, but may be different from 0A° = 9(A°).

In particular : 90 = @ and X =0, but A # 0, VA ¢ {0, X}. Any non-trivial subset of X has boundary points.

7.4.7 Proposition
Let A be an analytic set in M such that A # M. Then A has empty interior, i.e. A° = (.
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Proof. We already know that A is closed, hence A = A. Assume that A° # (). Then A° # () too because
A#M = A°CM = A°CACM = A°CA=ACM with A°=(A4°)° U J(A°) = A° U 9A°

If 0A° = (), then A° = A°, which means that A° is closed and open. Since A° # () and M is connected, this
implies that A° = M = A = M, which is a contradiction to our hypothesis. So let zo € 9A° C A° = any
open neighborhood U, of xg intersects A° : U, N A° # () and this intersection is still open.

Now take such a neighborhood U = U,, which is connected and small enough (chart domain) such that

AnU={zeU | filz)=...=fi(z)=0}
for some f; € Op(U) (which is possible since A is an analytic set). Hence Vi € {1,...,k}, we have
fijanu =0 = fijunae =0 with U N A° open, non-empty

Since U is connected and contains U N A° # (), we obtain by the Identity Theorem (via local coordinates) that
fijp =0, ¥i, ie. f; =0 as functions in Op(U).

U

This implies that ANU = U = U C A, which contradicts the fact that U contains elements which are not
in A. Indeed, U is a neighborhood of zy € 9A° C 9A, hence U N (M \ A) # 0 and this is not compatible with
U C A. Therefore A° = (). O

Consequence :
If A is an analytic set in a complex manifold M, then A is either equal to the whole space or has empty interior.
In particular, not all closed sets in M are analytic sets, as e.g. in the following example :

Figure 7.9: A has a non-empty interior and is hence not an analytic set

7.4.8 Corollary
If A # M is analytic, then M \ A is open and dense in M, ie. M\ A= M.
Proof. M\ A is open since A is closed. Moreover M\ A= M\ A° =M\ 0 =M. O

Example :
If M = C?, A; is a point and A, is a line in C? (both are analytic sets), then C2 \ {pt} = C2\ line = C2.

Figure 7.10: the complement of a point or a line in C? is dense

(CZ

e
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7.5 Application to meromorphic functions

Let M be a complex manifold and (A, f) be a meromorphic function on M, i.e. f € Op(M \ A), where the
exceptional set A is an analytic set as shown in 7.4.3. Then it is possible to extend f to a bigger set (maybe f
cannot be extended on the whole A, but at least as far as possible).

7.5.1 Lemma

Let U C M be open, xo € U and g, h € Op(U) be relatively prime such that h(xg) = g(z¢) = 0. Then in every

neighborhood V of zg and for every ¢ € C, 3z € V such that ZE?; =c.

The proof of this lemma uses the Weierstrass preparation theorem. As an example, consider the function
f(z1,22) = % at (0,0). In 7.1.3 we saw that f takes all possible complex values, including oo, around (0, 0).

7.5.2 Proposition

Let Y C M be an open and dense subset of M and f € Oy (Y) be holomorphic on Y. Assume that Vag € M\Y,
U open set containing zg and 3 g, h € Op(U) such that h(x) - f(x) = g(x), Vo € U and the germs g,, and hy,
are relatively prime (as defined in 7.2.1). If we define

A:={zoe M\Y |VreR, YV open neighborhood of zg, Iz € VNY such that |f(z)| >} (7.3)

then there exists a unique holomorphic extension f of f to M\ A DY such that (A, f ) is a meromorphic function.

Remark : The condition in (7.3) is not uniform since we only require that 3z € VNY instead of V2 € V NY.

Proof. Let o € M \'Y = 33U small open neighborhood of z¢ and 3 gy, hy € Op(U) such that
gu(z) =hy(z) - f(z), Ve e U (7.4)

If hy(zo) # 0, then by continuity 3W C U open such that o € W and hyjw # 0. Hence 72 will be bounded
in this neighborhood W around z¢, which means that zo ¢ A.

If hy(zo) = 0 and gy(xo) # 0, i.e. gyw # O for some open neighborhood W' of g, then (7.4) implies that
0- f(zo) # 0, i.e. ”f(xg) = 0”. More precisely, this means that |f| will be uniformly unbounded in any small
neighborhood W around xzq. It follows that zy € A.

If hy(xo) = gu (o) = 0 where gy and hy are relatively prime, lemma 7.5.1 shows that xo € A. Hence

AﬂU:{x€U|hU($):O} = A= U(AﬂU) since AC M\Y C U U
U>szo U>szo

This shows in particular that A is an analytic set.

Moreover this whole argument is independent of the choice of gy and hy since they are relatively prime, i.e.
different representatives only differ by units on U (holomorphic functions which have no zeros on U), hence ANU
is always the same. Now one can extend f as follows : first we set

fo : (M\NANU —C, fu(z):= iU(x) = fu(x)
v(x)

This exists since A (the zero set of all hy;) has been removed. Moreover fu is well-defined on the intersections :
if Uy, Us have a non-empty intersection Us := Uy NUs # 0 with fy, = % and fy, = 222 then
1

= 32,
7 ~ (9u, _ _ (90U, _(f
(o) 0, = <hUl)|U12 = (i), = (w2, = (m)wu = Uvadion,
Since ACM\Y = Y C M\ A, we then can define
- sy f(x) ifreY
fiMAA—C, f@) '_{fU(x)z }%Ei; ifre M\Y,zeU
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This gives indeed a holomorphic extension of f since hy - fjy = gu by assumption = fjy = Q—U after A has
been removed. It remains to show that the extension is unique.

Let f' be any extension of f to M \ A. By definition, this means that fl’Y =f= ﬁy, hence f and f' coincide on
Y. Differences can thus only happen on M \ Y. But this is not the case since Y is dense in M. Every point in
M\'Y is a limit of sequences from Y, i.e.

Voo ¢Y : F(xn)n, CY such that x,, — zg as n — +00

In particular, if zp € M \ A, then f(z) and f(x) exist and by continuity, we have f'(z,) — f’ ( 0) Tp €Y

implies that f’ (xn) = f(xn) = f(xn) = f(xo). By uniqueness of the limit we finally obtain that f(z¢) = f(zo)
too, i.e. f and f’ coincide on M\ AD Y. O

7.5.3 Example

Consider C? and denote the coordinate axes by I = {2 € C? | 20 =0} and I, ={2€ C? | 2, =0}.

Let Y :=C?\ (I; Uly) = Y is open and dense in C? and consider the function f(z) = 2L, which is well-defined
onY. Define A as in (7.3) = A Cl;Uly. By 7.1.3, we have that [; C A since |f| — oo when approaching z € [
where z # (0,0); on I; \ {(0,0)}, | f| even goes uniformly to co. However no point from I3 \ {(0,0)} belongs to A
since f is not unbounded in any neighborhood of these points.

i 2
y il =

I 0,00 A

|
|
|
|
|
s
1
I
|
I

Moreover z; and z5 are relatively prime, hence A = [y and f can be extended to a holomorphic function f on
C2\ I;. This is the maximal extension of f.

7.5.4 Theorem

Let M be a (connected) complex manifold.
Then the set of all meromorphic functions M(M) is an algebra and a field extension of C.

Proof. C C M(M) since any constant € C can be written as ¢ = { with V(1) = ). Now we have to define
additive and multiplicative structures on M(M). Let (A, f) and (A4’, f’) be 2 meromorphic functions on M.
Since A and A’ are analytic sets (see 7.4.3), we know that A, A" are closed and that M \ A and M \ A’ are dense
in M. ThusY := M\ (AUA") = (M\A)N(M\ A') is open and dense in M (as intersection of 2 dense subsets).
Thus f + f/ and f - f" are defined on Y and can be extended by proposition 7.5.2 to some bigger set M \ A4,
where A; is again an analytic set. Hence M(M) is already a C-algebra.

In order to construct the inverse of e.g. (A, f), we write f locally as f = £ with A = V(h) and B = V(g). This

h
is independent of the choice of g and h because if f = 7* = g? on U; NU; (where numerator and denominator
]

are relatively prime), then g; - h; = g; - h; on U; N Uj. ThlS implies that there cannot exist zeros on U; N U; for
one representative which are not zeros for the other one. Now, as zero sets of holomorphic functions, A and B
are analytic sets and so is AUB. f Y = M \ (AU B), then % = % is defined on Y and we can extend it to a

meromorphic function (As, %) € M(M) such that M \ Ay is the maximal domain of definition of % O

7.5.5 Remarks

It is important to always extend the objects to the maximal domain. Consider e.g. the meromorphic functions
(A, f) and (A,—f). Then f+ (—f) = 0, but 0 is not only defined on M \ A. Extending it will define 0 as a
meromorphic function on M.

Hence by extending, one can (sometimes) reduce the exceptional set of a meromorphic function.

One can show that the extension M(M) D C is a transcendental field extension. Moreover the dimension of
the manifold M is closely related to the transcendence degree of this extension. In fact they are often, but not
always, equal. We have for example equality in the case where M = C" or if M is a projective variety.
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Chapter 8

Analytic sets and singularities

8.1 Hypersurfaces
8.1.1 Recalls

Let M be a complex manifold. A C M is called an analytic set if there is an open covering {U; };c; of M such
that Vie J, 3f1,..., fi, € Om(U;) satisfying

ki
AU ={z e U] file) =... = fi,(x) =0} = [ (f) 7" ({0})

Let A be an analytic set. We have showed that :

a) A is closed in M.

b) A= M or A° = (see figure 8.1).

c)if A+ M, then M \ A is open and dense in M (see figure 8.1).

Figure 8.1: analytic sets have empty interior and their complement is dense

M
i ® A M\A=M

Submanifolds of M are analytic, but the converse is not true; complex affine varieties can e.g. have singularities
(points where the rank of the Jacobian drops). In order to make them analytic, one first has to remove all
singularities . This will be the aim of this chapter.

8.1.2 Definition

A hypersurface is a non-empty analytic set that can locally be given by 1 non-constant function, i.e. A C M is
a hypersurface if there is an open covering {U;};,c; of M such that Vi € J, 3 f; € Op(U;) satisfying

ANUi ={z €U | filx)=0} = 7 ({0})

Not every analytic set can be written under such a form. Note that this does not mean that k; = 1, Vi € J since
k; is not uniquely given (see section 7.4.2). Moreover it does not imply that A is of codimension 1 since A is not
a manifold (we first need to define the codimension of an analytic set, see section 8.3.2).

By definition, M cannot be a hypersurface. Indeed if A = M, then ANU; = M NU; = U; = fi_l({O})7 SO
f =0 on U;, which is non-empty and open, i.e. f =0 on M by the Identity Theorem and this was excluded.
In addition one has to take care that A is well-defined on the intersections, i.e. if U; and U; are open such that
(A N Uz) N Uj 75 0 with AN U, = V(fz) for fi S OM(UZ) and AN Uj = V(f]) for fj S O]V[(Uj), we need that

V(fz’|UmUj> == V(fj\UiﬂUj) - {3’5 S Ul N Uj ’ f1<$) = O} == {3’5 S Ui n Uj ’ fJ(QT) = O} (81)
If (ANU;)NU; =0, then (8.1) is not a restriction (see example 8.1.3).

64



Complex Manifolds Section 8.2 SCHLICHENMAIER, Leytem

8.1.3 Example

Let M = P1(C) and {Uy, U1} be the open covering of M given by the affine sets
Uoz{(zo:zl)|z07é0}:{(1:zl)|z16(C} , Uy={(20:21) | 21#0} ={(20:1) | 20 € C}

where e.g. Up = {w [w € C} by (20:21) = (1:2) = (1:w). Let f € On(U1) be given by

frUGPC) T, flz:m) = 2

z

Let A={(0:1)} with f € Opn(U1) and g € Op(Up) given by g = 1. With this we obtain

f is well-defined on Uy and independent of the representative since %(1) = 2. Moreover f~ ({0}) ={(0: 1)}

ANUy=0=g""({0}) . ANU, =A=' ({0})

with (ANUy) NU; = ), hence A is a well-defined analytic subset of P}(C) and it is even a hypersurface since any
ANU; is given by 1 holomorphic function.

Note that f cannot be extended to Uy U U; by definition, but also since f is non-constant and there are no
non-constant global holomorphic functions on P1(C) since it is compact.

8.2 Regular and singular points

8.2.1 Definitions
Let M be a complex manifold with dim¢ M = n and A C M be an analytic set.

a) g € A is called a regular point (or a smooth point) of A if there is a chart (U, ¢) around z and there exist
holomorphic functions fi,..., fi € Op(U) such that (see figure 8.2)

UNA= {xé U | filz) =... = fi(x) :0} , J(xo) = (W(<p(x0))> (8.2)

6zj

where the k x n—Jacobian matrix J(zg) evaluated at ¢(zg) € C™ has maximal rank (i.e. rank k), if the local
coordinates are ¢ = (z1,...,2,). We will see in section 8.3.2 that k > n is not possible if this is the case.

Figure 8.2: xg is a regular point of the Jacobian matrix has maximal rank

Note that the condition of U N A being a zero set of a finite number of holomorphic functions is always satisfied

since A is analytic. We require that there are holomorphic functions which satisfy both conditions.

In the following, we may omit the composition with the chart map ¢~! and simply write gfj () instead.

b) If zp € A is not a regular point, then it is called a singular point (or a singularity) of A.
c) We denote S(A) :={z € A | z is singular }.

8.2.2 Examples
Let M = C? be the complex plane and consider A = V; = V(f;) for f; = fi(21,22) given by

fi=z —da(a+ 1) (a1 —1) , fa=z-28 |, fa=z , fa=zmz2 ., f3=7z
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Consider the trivial covering U = C?; all functions are holomorphic on C2. Hence any V; is an analytic set as
the zero set of a holomorphic function and using the notation in (8.2), we always have k = 1. This implies that
the 1 x 2-Jacobian matrix has maximal rank at a point xy € V; if and only if

(5@ Ghan) #(0.0)

) 2—2(21,32) =—4(z1+1)(z1 — 1) —421(21 — 1) —421(z1 + 1) %(2’1,22) =229

Together with the condition that (21, 22) € Vi, the singular points of V; are given by the solutions of the system
23 —4z1(z1 +1)(21 = 1) =0 z1(z14+1)(z1—1)=0 (1)
(1+D(z1 =D+ 2z =D+ 21(z1+1) =0 & < 322-1=0 (2)
220 =0 20 =0

where (1) and (2) are not compatible since (1) < 2z; € {—1,0,1} and none of these is a solution of (2). It
follows that S(V1) = 0 since the system has no common solution : Vj is a curve without singular points. It is
actually given by a plane elliptic curve, which is a non-singular cubic. Figure 8.3 shows how V) looks like in the
real case. In the complex case the curve will become connected.

b
) fa(z1,22) =0 25—z =0
%(21722):0 & -3z =0 & 21 =2 =0 with (0,0) € V2

Hence (0,0) is a singular point of V5 (the only one) and S(V2) = {(0,0)}. Vs is called a cuspidal cubic (see figure
8.3). Another type of such curves is the nodal curve.

Figure 8.3: an elliptic, a cuspidal and a nodal curve

4 ’ & _h*‘-\_\\ i
Bl v / \‘\":__z

1 0 (0,0)] ™ \ e ""\._\.

\\.\‘ \‘\ .
\ \
c) 0fs 0fs

—2 =1 —— =0 = 1,0 0,0
021 (Zl’z2) ) 029 (21,22) ( ) ) 7& ( ) )

Hence V3 has no singular points (which is intuitively clear since it is just a line, see figure 8.4) : S(V3) = 0.

d) 0
fa(z1,22) = 2122, 87,]2(21’22) =2 , —(2,2)=2n

82’2
For Vy, (0,0) is the only candidate for a singular point and it is also one (see figure 8.4) : S(Vy) = {(0,0)}.
e) af of
2 5 5
= _— = 2 _— =
fs(21,22) = 21, B2, (21,22) =221, B2 (21,22) =0

Hence the candidates for singularities are all points of the type (0, 22), V 2o € C. We have (0, 23) € V5, V25 € C.
But V5 = {(0, 22) | 22 € C}. Does this imply that all points of the curve are singularities ?
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Figure 8.4: V3 and Vj only consist of the coordinate axes

No, because the definition of a singular point says that there does not exist any finite number of holomorphic
functions which satisfy both of the conditions in (8.2). Indeed, f5 is not the good choice, but f3 works because

Vs=V3=C*nVs = f;'({0})
and its Jacobian has rank 1. We took the wrong function to describe the analytic set V5. In fact, the vanishing

ideal of Vj is given by (21 ), and not by (2?) since 27 is not irreducible. Finally, S(V5) = S(V3) = 0.

Remark :
In practise, when dealing with a system of (polynomial) equations like

f(Zh z2)=0 (1)
azl L(z1,20) =0 (2)
I (21,2)=0 (3)

it is easier to solve (2) and (3) first and then check if (1) is also satisfied because (1) is of higher degree than (2)
and (3). Solving (1) is in general much more complicated.

8.2.3 Proposition

The Jacobian matrix J(xg) in (8.2) obviously depends on the local coordinates ¢ = (z1,...,2,). However :
The rank of J(xg) does not depend on the chosen local coordinates.

Proof. This follows from the chain rule. Let (U, ) and (V, %) be 2 coordinate charts around xg and set
p=(21,0i2) , V=(wi,..wn) , p=vop Tt gi=fiopTt . hi=fioy™!
We have to show that the associated Jacobian matrices as given in (8.2) have the same rank. Note that
Vie{l,....k} : gi=fiop ' =fio topopt=h;op
= J(g1)(¢(20)) = J(hi 0 p)((w0)) = J(hi) (p((20))) 0 T (p) (6(x0)) = J(hi) (1(w0)) o J(p) (¢(z0)) ~ (8.3)

Figure 8.5: a coordinate change from (U, ¢) to (V, )

[{,‘T 17

Equation (8.3) thus shows that for any fixed indices i € {1,...,k} and j € {1,...,n}:
| . " oh w
(), = H5 2 ot = 22 o) = 32 g 00) - 2% )
- I(f; 0 -1 0
-3 D (0(a0) - S () = (Totao) - TGo) (oo

where J(p)(¢(20)) denotes the Jacobian matrix of the coordinate change p evaluated at the point ¢(zg) € C™.
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Using matrix notation, this means that

Tolwo) = Jo(z) - J(p)(pla)) & Julo) = Jo(ao) - [J(p) (plo)]

The n x n-matrix J(p)(¢(xo)) is invertible at any point since p is a change of variables; in particular it has
maximal rank. Hence J,(x¢) and Jy(x¢) have the same rank since they are related by an invertible matrix. [

8.2.4 Theorem

Let M be a complex manifold and U C M be non-empty and open. Let A C M be an analytic set and S(A) be
the set of singular points in A. Assume that S(A)NU = @, i.e. U does not contain singular points of A. Then
ANU is a submanifold of U.

In particular, if S(A) = 0 (A has no singular points), then the analytic set A is a submanifold of M.

Proof. Being a submanifold is a local statement, so let g € U N A. Since A is analytic, we know that A is locally
at xo given by holomorphic functions f1,..., fx. o ¢ S(A) because S(A) NU = @, so the matrix

o o 9

o (z0) G(zo) ... §E(x0)
o 9 "
a]ch (xO) aﬁg (550) cee aic: (IEO)

is of rank k. By permuting and renumbering the coordinates, we may assume that the first £ columns are linearly
,k} #0

independent, hence
ofi
det | ( ) e
¢ [ azj( @) ;i ok

J
Let (U’,¢) be a chart around zy and denote 2(9) := o(z¢). Then we define the map F : ¢(U’) C C"* — C" by

F(z1y ..y 2n) i= ((f1o@_l)(zl,...,zn)7...,(fkogp_l)(zl,...7zn),zk+1—z,(£,217...,zn—z£0))
ofi
7( 0) i=1,....k
(8zj )j17 & ><
Sy~ | 00 0 |10 0
= JIE)(ET) 0 0 0 |0 1 0
0 0 0 0 0 1
In addition : F(2(®) =0 since ¢ 1 (V) =20 e UNA={2 €U’ | fi(z) =...= fu(z) =0} and

det(J(F)(<)) dt[(afj(o))i_l ,,,,, k]-1-...-17é0

§=1,...k

By the Inverse Function Theorem, we can thus invert the function F' locally, i.e. there is an open neighborhood
V' of 2(9 in o(U’") € C™ and an open neighborhood W of 0 in C™ such that F(V') C W is open and

F“V’ . VIQQD(U/)—}WQC’”

is biholomorphic on V’. Since ¢ : U’ — ¢(U’) is a homeomorphism, we may assume that V' = ¢(V') for some
open neighborhood V of zg in U’ C U. It follows that zg € V C U and

(Fop)iy : VCU-—WCC"

is also biholomorphic (by definition). Moreover since VN A CU' N A, ie. f;(VNA) =0, Vi, we obtain that
k
(Fop)VNA) ={weW |w =... ﬂ piw) " ({0})
where p; : C* — C is the projection onto the i*" coordinate, which is holomorphic.
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We conclude that (F o ¢)(U N A) is a complex submanifold since it is locally a zero set of holomorphic functions
and the rank of the Jacobian of the projections is obviously maximal. Finally U N A is a complex submanifold
as well since F' o ¢ is biholomorphic on V', i.e. the complex structure of U N A is preserved under this map. [

8.3 Irreducibility

8.3.1 Definition

An analytic set A is called reducible < 3 A, Ao analytic sets such that A # A, A# Ay and A= A; U As.
A is called irreducible if it is not reducible.

Example :
Consider the examples in 8.2.2. We see that Vy = V(z122) = V(21) UV (22) is reducible.
Vi1, Vo and V3 are irreducible (where we recall that V7 is not disconnected in the complex picture).

8.3.2 Results

In the following, we state a number of facts without (detailed) proof :

1) If A C M is an analytic subset, there exists a countable set of irreducible analytic sets {A;};cs such that

a) A:UjeJAi

b) The system is locally finite, i.e. Y2 € M, 3U, open neighborhood of x such that U, N A; # 0 only for
finitely many j € J (see figure 8.6)

c) If Aj, # Aj,, then A;, ¢ A;,. This is the maximality condition: the irreducible parts are maximal.
This ”decomposition” of A is called the decomposition into irreducible components.

Figure 8.6: a locally finite decomposition of A

VAU

In particular : if M is a compact complex manifold, then J can be chosen to be finite because

M= UU, = M=U : Ifinite
zeM i€l

and every U; satisfies U; N A; # 0 only for finitely many j € J, hence there can only be finitely many A; since
{U;} is a covering of M.

c) is for example not satisfied in the following case :

f'lg 411
The line A; is irreducible and contains other irreducible subsets as e.g. the point Ay, hence A1 = A U As, but
Ag 7’5 Ay and Ay C A4
2) Let A C M be an analytic set and S(A) be the subset of singular points of A.

Then S(A) is an analytic set which is nowhere dense in A ("nowhere” means that it is not dense in any component
of A; because "not dense” does not exclude that it may be dense in some component of A).
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Intuitive idea : let J be a k x n—Jacobian matrix. Then rk J(z) < k at any point € A. How to check that rk .J

drops at a point zg € A?
J@) = (i)
o 82’]'

Recall that a minor of J is a submatrix of J obtained by removing one or more lines and columns from J. The
rank of J is then given by the dimension of the biggest minor inside J which is a square-matrix and has non-zero
determinant. Hence the rank at a point drops if all £ x k—subdeterminants in J are zero. Consider for example

i=1,...,k
j=1,....n

J:(““ 12 ‘”3) = 1k(J) <2
a21 Q22 423

tk(J) <1 < det (a11 a12> =0, det <a12 a13) =0 and det (all alS) =0

az; a2 az2 A23 a21 a3

Let now z9 ¢ S(A) be a non-singular point = rkJ(zg) = k. Since determinants are polynomial functions,
hence continuous, this implies that there is a neighborhood U of xy on which the rank is still equal to k, i.e. all
point in U are non-singular points. It follows that S(A) cannot be dense in A since we cannot approach zp € A
by singular points.

3) If an analytic set A C M is irreducible, then A\ S(A) is connected.
Here we need the assumption that is A irreducible (see figure 8.7).

Figure 8.7: A\ S(A) is no longer connected since A is not irreducible

‘A

‘S(A)

4) If an analytic set A C M is irreducible, then A\ S(A) is a (connected) complex manifold.

This follows from 2), 3) and 8.2.4 since S(A) is analytic, hence closed, so by choosing U = M \ S(A), we obtain
that ANU = A\ S(A) is a complex submanifold of M, which is in addition connected by 3).
In particular, A\ S(A) has now a well-defined dimension given by the definition of a complex manifold. We set

dim A := dim (A \ S(A)) , codim A := dim M — dim (A \ S(A))

Conclusion :
A has well-defined dimension and codimension (after removing singular points) < A is irreducible.

5) Let n = dimM. If A = V(fy,...,f;) is the vanishing set of a finite number of holomorphic functions
such that A is irreducible, then dim A > n — [. Hence by adding an additional function to the zero set, the
dimension of A goes down by at most 1 (it may remain the same).

8.4 Divisors

8.4.1 Definitions

A prime divisor is an irreducible analytic subset of codimension 1, i.e. an irreducible hypersurface.
A divisor D is a formal sum

D= ny-Y, ny€Z (8.4)
Y

where we "sum” over all prime divisors Y with the condition that the sum is locally finite, i.e. Vo € M, U,
open neighborhood of x such that only finitely many of the Y with Y N U, # @ have a non-zero coefficient ny-.
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In other words this means that for all z € M, the set
{Y prime divisor | U, NY # 0 and ny #0}

must be finite. All values for ny such that this condition is satisfied are allowed.

8.4.2 Examples

If M is compact, we can again replace "locally finite” by "finite”, i.e. D =)y ny - Y with ny # 0 for at most
finitely many Y. In general, this condition is too strong, as shows the example in section 8.4.3.

Let M = C (or in general : a complex manifold of dimension 1). In this case the prime divisors are the points
because codimy; Y =1 = dimp Y = 0 and irreducibility implies that ¥ must be a single point (not many
points). The set of all prime divisors is thus the set of all points in M.

8.4.3 Divisor associated to a meromorphic function
Let h € M(M) be a meromorphic function and p € M. The order or multiplicity of h at p is defined as

0 if h is holomorphic at p with h(p) # 0

ord, () k if p is a zero of multiplicity &k of h
T =
P —Fk if h has a singularity of order k at p

oo if h is identically zero

Now consider M = C and let f : C — C be a meromorphic function. The divisor associated to f is given by

(f) = _ordy(f)-{p}

peC

The previous example shows that (f) is indeed a divisor (points are the only prime divisors). This sum is in
addition locally finite since the zero set of a (non-zero) holomorphic function on C is discrete. For example

() =140} . (H=2-{0} , (:—a)=1-{a}
We also see that one can obtain all the prime divisors (all points) by choosing all a € C. Moreover we have :
VEGEMQ) ¢ (f-g)=(f)+(9) and (3)=—(f)
since ord,(f - g) = ord,(f) + ord,(g) and ordp(%) = —ord,(f) if f #0.

Example :

Let R: C— C, f(z) =sin(wz). Then V(f) =7 and (f) = >_ 1-{k}, which is locally finite (see figure 8.8).
kezZ
Hence we see that requiring a finite sum in (8.4) is too restrictive (C is not compact).

Figure 8.8: the divisor associated to z +— sin(mz) is locally finite, but not finite

C
Z R

In general one can define (f) for any meromorphic function f € M(M) where M is a 1-dimensional complex
manifold (i.e. a Riemann surface) since points are the only prime divisors in this case. still locally finite?
A divisor D is called a principal divisorif 3 f € M(M) such that D = (f).

For dim M > 2, (f) is in general not a divisor. However, one can then associate to a meromorphic function

f+ M — C and a prime divisor Y the number (f,Y) — ny € Ny such that f is holomorphic in YV and vanishes
along Y with multiplicity ny .
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Chapter 9

Holomorphic vector bundles

9.1 Biholomorphic functions

Theorem
Any bijective holomorphic function f : U C C* — f(U) C C" is biholomorphic.

We are going to discuss this result for n = 1. It also holds for n > 1, but this is much more difficult.

Open mapping theorem : (no proof)
If U is an open connected subset of C and f : U — C is a non-constant holomorphic function, then f is open.

This already implies that the inverse of a bijective holomorphic map is continuous.
Hence by the Inverse Function Theorem it remains to show that %(zo) #0, V2 € U (since f~! will then be
holomorphic in a neighborhood of f(zy), i.e. in a neighborhood of any point in f(U)).

approach 1 :
Since f is holomorphic, it is also analytic and V zg € U, it can be written in a neighborhood of z; as
f(z):ia (z—z20)f =ap+a1(z—20)+a(z—2)*+ where a :l@(z)
2 k 0 0+ ai 0 2 0 e BT gk 0

Assume that %(zo) =0, then a; = 0 and f locally writes as f(z) = ag + a2(z — 29)? + . . ., which implies that f
cannot be injective near zy. Hence bijective holomorphic functions never have vanishing first derivatives.

approach 2 :
We know that f~! is holomorphic around any point f(zo) such that %(zo) = 0. Since % is also holomorphic,
we know that its zero set is discrete (% is not identically zero because f is bijective). Let p be a zero of %.
Then f~! is continuous on f(U,) and holomorphic on f(U,)\ {f(p)}, where U, is a small open neighborhood of
p not containing other zeros of %. It follows that f~! is holomorphic on f(U,) (see recall in section 2.6.1). This

holds for any point of the discrete zero set, hence f~! is holomorphic on f(U).

For n > 1, the task is more complicated since matrices are involved, i.e. non-vanishing conditions must be
replaced by maximal rank and non-zero determinant conditions. Moreover the analytic expansion of a holomor-
phic function in several variables is more complicated (see section 2.3).

9.2 Vector bundles : basic notions

9.2.1 Definitions

Let M and FE be complex manifold and 7w : F — M be a surjective holomorphic map. 7 is called a foot-map.
For any m € M, we denote the fiber over m of m by E,, := W‘l({m}). By abuse of notation, we will denote
E,, = 771(m) in the following (7 is not necessarily bijective, see figure 9.1).
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Figure 9.1: fibers correspond to preimages under the foot-map

E Em

m < [J =

If U C M is open, then 7=!(U) is open in E since 7 is holomorphic (hence continuous) and the assignment
denoted by |y : 7Y (U) — U gives a "local situation”. E is called a fibration over the base manifold M.

7 E — M is called a family of vector spaces (over C) if E,, = 7~1(m) is a vector space over C for all m € M.
We only consider finite-dimensional vector spaces because otherwise E will be a infinite-dimensional manifold.

Let m: E— M and p : F — M be two families of vector spaces (over the same base manifold M).
A morphism of families of vector spaces is a holomorphic map f : E — F such that the diagram

f
E— ™F
™
P

M

commutes, i.e. po f = m, and such that for all m € M, the function f,, given by
fm = f|7r*1(m) s By — By

is a linear map over C between the finite-dimensional vector spaces E,, and F,,.

Note that f,, is well-defined because of (9.1) : Vo € 7~ 1(m), p(f(z)) = 7(z) =m = f(z) € p~'(m) = F,,.
Hence f preserves the fibers of ' and F' : it maps a fiber over m of 7 to a fiber over m of p.

9.2.2 Example : the standard trivial family

Let M be a complex manifold of dimension n, k € Ny, E := M x C¥ and 7 = p; (first projection).
p1 is holomorphic since M and M x C* (product) are manifolds. Moreover ¥m € M :

7L m) = pr* ({m}) = {m} x C* = C*
where {m} x CF is a vector space with respect to the operations
(myv1) + (m,v2) = (myv1 +v2) , A (mv)=(m,Av) , Op:=(m,0)

for vy, v9,v,0 € C¥, A € C. Hence p; : M x CF — M is a family of vector spaces (see figure 9.2) and it is called
the standard trivial family of rank k.

Figure 9.2: the standard trivial family

E c*
LW
-_ M

T

The idea of a vector bundle is now that a bundle should be locally look like this standard trivial family.
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9.2.3 Definition

A family of vector spaces w : E — M is called a (holomorphic) vector bundle < there is an open covering
{Ui}ies of M such that for all i € J, the fibration 71 (y,) : 7Y (U;) — U, is isomorphic (as family of vector
spaces) to the standard trivial family p; : U; x C¥ — U;. In other words, for any U; there is a morphism 1y,

such that
Yu;
—_— T
7Y U;) U, x Ck (9.2)
U;

e

where 1y, is bijective and holomorphic (< biholomorphic) and the map ¥y, jx-1(m) : Em — {m} x C* is a linear
isomorphism, Vm € Uj.

Note that mj-1(g,) is still surjective since 7(7~1(U;)) = U; (r is surjective). One calls {U;}ics a trivializing
open covering for the vector bundle F.

In the case where M is a compact complex manifold one can always achieve this with finitely many U;.

9.2.4 Rank of a vector bundle

For a trivializing open covering {U; };c s, we denote the vector bundle restricted to U; by (see figure 9.3)
E\Ui = (7T|7r*1(Ui) : 7T_1(Ui) — Ul) = (pl : U; X (Ck — (Ck)

The same construction can be done for some arbitrary open set U C M, i.e. a vector bundle 7 : E — M can
always be restricted to w : Ejy =7 '(U) = U.

Figure 9.3: restriction of a vector bundle to a trivializing open set

E'a
E
|

U
%
o LV

Us;

Due to the isomorphism vy, in (9.2), every fiber in a vector bundle E has in particular dimension k& and we
define the rank of E as rk F := k. By connectedness of M, this number k is the same for all m € M :
Assume for example that for m € U; and m’ € U; open with U; N U; # (), we have

By, 2U;xCF | By, 2U;xCv = dmE, =k , dimE, =k
but : (Ui Uy) x C = (Bw,)yy, = (Biu,) y, = UiNT;) x € (9:3)

The linear isomorphism implies that the dimensions are the same : k; = k;.
Let now z,y € M be arbitrary. By path-connectedness, there is continuous path from x to y which can be
covered by finitely many chart domains. Repeating argument (9.3) for any of these finitely many open sets, we

obtain that the fibers over x and y are isomorphic. In particular : dim F, = dim I, = k.

Y

T

We only consider vector bundles of finite rank (rank equal to 0 is possible). In particular, a vector bundle of
rank 1 is also called a line bundle (see section 10.5).
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9.2.5 Example
The tangent bundle TM := || T,,M with foot-map = : T, M — M : v,, — m is a vector bundle of rank n.

meM
It is however not globally trivial, i.e. TM % M x C™. In fact, globally trivial bundles are very rare (an example

is M = C™ since there is just 1 chart in this case). Note that for any vector bundle E, we have :

E:W_l(M):w_l( U {m}): || = '({m}) = | | Em= || C*2 M xcCH

meM meM meM meM

since all k-dimensional vector spaces over C are isomorphic to C*. BUT : this ”isomorphism” is only set-
theoretical, i.e. it is just a bijection between sets ; it is neither a (bi)holomorphic, nor a continuous identification.

Remark :
There are complex vector bundles over real differentiable manifolds which are not holomorphic.

9.3 Sections

For short, we say that F is a vector bundle over M if we mean that 7 : £ — M is a vector bundle.

9.3.1 Definition

Let E be a vector bundle over M and U € M be open. Then E|y is a vector bundle over U.

A holomorphic map s : U — E|y is called a (global) section of E|y; or a local section of E if o s = idy.
Consider figure 9.4 : in particular, s(m) € E,, = 7~ *(m), Vm € U since 7(s(m)) = m. Moreover s is injective
since it has a left inverse, thus s(U) = U and s is biholomorphic onto its image. We denote

V(U) := { (global) sections of the vector bundle E }
We will see that V defines indeed a sheaf of local sections of E.

Figure 9.4: a local section of a vector bundle

E|.{.-'
s(m)
S /‘\ J/}TH_.'

= m Gl =

M

9.3.2 Sheaf of sections

First of all, V(U) # 0, VU € M open : it always contains the zero section 6 : U — Ejy : m — 0 € E,,, where 0
is the unique zero element in the vector space E,, (see figure 9.5). Indeed Vm € U :

m(0(m)) = 7(0) =m  because 0 € E,,, =7 '(m) and w(7r "' (m)) = {m}
6 is in addition holomorphic on U since its local form on a small neighborhood of m € U is given by
6 : U—UxCF : m+— (m,0)
where the first coordinate indicates the fiber and the second one the element in the fiber to which m is mapped.
This is obviously holomorphic, so finally 6 € V(U).
Next we want to define a structure on V(U) for any open set U C M.

1) V(U) is a complex vector space with respect to the pointwise additional structure

51,82 € V(U) = s1+53€V(U) by (51 + 82)(m) := s1(m) + s2(m) € B,
seVU), eC = A-s€V(U) by (A-s)(m):=X-s(m) € E,

However we cannot say anything about its dimension (in fact dim V(U) = oo in most cases).
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Figure 9.5: the zero section

E, Em

M

m m’
2) V(U) is a module over O (U). Let f € Op(U) be holomorphic on U, s € V(U) and define f x s € V(U) by

VYmeU : (f*s)(m):= f(m) w € E,, (vector space)
€cC €E,

This is still a section : Vm € U, 7((f * s)(m)) = m since f(m) - s(m) € E,, = 7 *(m). Moreover the module
axioms as e.g. 1xs=3s, (f+g)*xs=f=*s+g=s, etc. are trivially satisfied.
It remains to check that f * s is again holomorphic on U. Its local form is given by (see figure 9.6)

s U—UxCF : m— (m,s(m)) , fxs: U—UxCF:m— (m, f(m) s(m))

since (f *x s)(m) is still in the fiber over m of 7. f and s being holomorphic, we get that f * s is holomorphic too.

Figure 9.6: multiplication with complex numbers preserves the fiber E,,

Em E

L
—
1¥-]

o i
3_3
L B, 2.

e
5
=
3
=
=

3) V: U+ V(U) is a sheaf of complex vector spaces with the canonical restriction
Py  V(U) —V(V) 1 s— sy
if V. C U. The gluing property 4) of a sheaf is satisfied since holomorphy is a local condition.
4) V : U — V(U) is a sheaf of Op—modules by the operation
* : Op(U) xVU) — V) : (f,8)—> fxs
This structure is compatible with the restrictions : Vm' € V. C U, (f xs)(m') = f(m') - s(m’), thus as in (6.2) :
(fxs)v = fiv xsv = py(f*u s) = fiv *v pi(s)

5) V is a locally free sheaf of Op—modules of rank k = rk E, i.e. 3 open covering {U; };c; of M such that

Vied : Vy, = (0p,)" (9.4)
This follows from the fact that if {U;} is a trivialization cover of the bundle F, then Eyy, = U; x CF and this
implies that V(U;) = Oy, (U;) X ... x Oy, (U;) as Oy, (U;)-modules because the trivialization allows us to see a

holomorphic section locally as a usual holomorphic function whose image has k components. Since we are dealing
with functions and compatible restrictions of functions, (9.4) now follows by the remark in section 6.4.2.
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9.3.3 Example
For any vector bundle F with a trivialization {U;};c; we have certain standard sections é; given by
& Uy — Y U) =2 py H(U) =Us x CF 2 mo— (m, e))

where ¢; = (0,...,1,...,0) is the I*h standard basis vector of C*. é; is a holomorphic section with respect to
p1 since pp (él(m)) = p1(m, e;) = m by definition. We want to show that {é }i=1.. x is an O (U;)-basis of the
module V(U;), i.e. V(U;) is a free O (U;)-module of rank k.

k
— linear independence : assume that > f; - & = 0 for some f; € Op(U;), which means that
=1
ec

K A
Vme M : Zfl(m)'él(m)zo = Zfl(m)'(mael)zo
=1 =1

{er}i=1,..k is a basis of C¥ = {(m, e;)}1=1,. x is a basis of {m} x C¥, so f(m) =0 for all € {1,...,k}.
This holds for all m € M, which means that f; = 0 (zero function), VI € {1,...,k}.

— generating set : can all sections in V(U;) be written as an Oy (U;)-linear combination of the &7 Let

s : U —U; xCF mr—>(m,§(m)) where § : U; — CF

.....

Hence as a candidate we consider the functions g; : m — g;(m) = s= > g;- ¢ is clear.
=1
It remains to check that these functions are holomorphic on U;, i.e. g € Opr(U;). Consider the sequence

Ui—s>Ui><(CkL>CkL>C

where p; : (a1,...,a;) — a;. The map p; ops o s : U; — C is holomorphic since s, p; and p; are.
But ps 0 s = § and p; o ps 0 s = g; by definition of g;(m) :

k
(prop2 o s)(m) = pi(p2(s(m))) = p (p2 (m, é(m))) =pi(8(m)) = pz( > gi(m) - ez) = gi(m)
=1
Hence every section on a trivializing open set can (uniquely) be written in such a form.

9.3.4 Examples
Sections of the tangent bundle TM of a complex manifold M are nothing but holomorphic vector fields on M :

X: M—TM : m— X(m)=X, € T, M

Similarly the sections of the cotangent bundle T*M are the differential 1-forms.

9.3.5 Definitions

A vector bundle E over M is called a trivial vector bundle if it is globally isomorphic to the standard trivial
family, i.e. E = M x CF as isomorphism of family of vector spaces. In this case, we even get that V = Oﬂ, i.e.
V will be a free sheaf of Oy;~modules of rank k. The proof in the same as in 5).

Two vector bundles E and F over the same base manifold M are said to be isomorphic if there exist two mor-
phisms of families of vector spaces f : F — F and g : F — FE such that fog=1idpr and go f = idg.
An isoclass is just the set of equivalence classes of the equivalence relation E ~ F < E X F.

Our next goal is to prove the following theorem :
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9.3.6 Theorem

The category of isoclasses of holomorphic vector bundles of rank k over a manifold M is equivalent to the category
of locally free sheaves of Oy;—modules of rank k.

(Saying that the categories are equivalent means that there is a 1-to-1 correspondence between the objects.)

As a corollary, the isoclass of a trivial vector bundle is uniquely given by V =2 O%,.

By the above, we already showed that to any vector bundle F of rank k£ one can associated a locally free sheaf
of rank k given by V), the sheaf of local sections of F.

It remains the question : How to assign a vector bundle of rank k to a locally free sheaf F of rank k7?7

For this, we have to introduce the notion of cocycles.

9.4 Cocycles

9.4.1 Construction

Let m : E — M be a vector bundle of rank k with a trivializing covering U = {U;}ics and let U,V € U be
trivializing open subsets of M such that U NV # (). By definition, we have

\4

IR®

M U)=Ey 2UxCF | 7 NU)=Ey =2V xCF

where oy @ By — U X C* and ¢y : Ey —V x C* are morphisms of families of vector spaces as in (9.2).

Pviunv Pujlunv
(UNV)xC" = Epny = (UNV)xCF
= PYulunv © ((leUmv)il : (U N V) X Ck — (U n V) X Ck (95)

Let x € UNV be a base point. ¢y and ¢y being morphisms, they have to respect the base point, i.e.
v (Es) = pujnv (Bx) C {a} x C* and ov(Ey) = oviunv (Ez) C {2} x CF
Let v € C*. We can express the map in (9.5) as
(euunv © (pvivav) ™) (,0) = (2, guv(@)(v)) = (2, guv(z) -v)
where (@V‘Um/)’l (z,v) € E, (fiber over ) and gy is a function depending on  and v induced by the restrictions
CUIr1(x) : EBe = {z} % c* and OVin-1(z)  Eo—{x} X ck

which are linear isomorphisms by definition (9.2) of a trivialization. Indeed gyv (z) : C¥ — CF is given by

guv(z)(v) = p2 (@Uhl(gﬂ) ((@V\rl(z)) e, U))) (9.6)

Hence gyv(z) : C¥ — C* is a linear isomorphism for any fixed z € UNV (p2 : {z} x C¥ — C* is linear
and bijective) and since all vector spaces are finite-dimensional, it can thus be represented by an invertible

k < k-matrix : VeeUNnV : gyv(z) € GL(Kk,C)

Moreover gy is holomorphic with respect to z since the morphisms ¢, ¢y are holomorphic, hence so is the
composition ¢y yay © (@V‘Um/)_l. guv is the second projection of this expression, thus it is holomorphic by
definition of the product manifold. Finally gy is a holomorphic matrix-valued function on (U NV) x CF.
Equivalently, one can consider gyy € GL (k, On(UN V)) : matrix whose entries are holomorphic functions.

guvi, guvip .-+ GUVi guvi, (l‘) Ju i, (l‘) <o guvyg (JJ)

guvay, GUVay  --- GUVay Ju s, (1’) Ju s, (1’) ceo GUVy (1')
guv = : : . : = guv(r) = ) . .

GuVir GUVie -+ GUVi JU Vi (l‘) JUVia (l‘) s GU Vi (m)
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This matrix is invertible for all =, i.e. det (ng(ac)) % 0,Vx € UNV, hence one can also consider

1
g = detlgo) - (transpose of the adjoint of gyyv) € GL (k, Op (U NV))

Since the determinant is non-zero everywhere on U NV and taking transpose and adjoint are polynomial opera-
tions, gy is also a holomorphic function on (U N'V) x C*.

Such a construction of gy and g[}‘l, can be done for any trivializing sets U,V € U.

Note in addition that gy is uniquely determined by the vector bundle E and the covering U since is made up
of the trivialization morphisms oy and ¢y .

9.4.2 Properties

Let U = {U; }ics be a trivializing covering of a vector bundle E over M. For all U, V,W € U, we have
1) guu = ld.7 i.e. gUU(.’E) =1Id e GL(k‘,C), Ve eU

2) guv = (gvu) TNV #0

HUUNVNW £, then gyv - gyw = guw on U NV NW (matrix multiplication), i.e.

guv(z) - gvw(z) = gyw(z), Yo e UNV AW

Proof. 2) and 3) are true because
-1 -1\ !
PU|r—1(x) © (‘PV|7T*1(96)) = (@Vhr*l(a:) © (‘pUhr*l(z)) )

-1 —1 —1
PU|r—1(z) © (‘pW|ﬂ'*1(r)) = (@U\rl(m) © (SOV\rl(m)) ) © (@V\rl(x) © (@W\rl(z)) )
By using 1) and 2), condition 3) is equivalent to :
3)fUNV AW #0, then guv - gvw - gwu = guv = idunvaw 0

1),2),3) are called the cocycle conditions for the family (guv)vveu-

9.4.3 Definition

Let M be a complex manifold and U be a set of open subset of M which is a covering of M. An object g is called
a cocycle if VU,V € U, we have gyy € GL (k, Oou(Un V)) with the convention gy = id if UNV = () such that
the cocycle conditions 1),2),3) are satisfied.

Examples :
1) M : complex manifold with & = {M} and gasp = id
2) U is given by all open sets in M and gyy =id, VU,V e U
Setting everything equal to identity is of course always true. The important fact is to see that cocycles always
come together with an open covering of M.

9.4.4 Inverse construction

In 9.4.1 we started with a vector bundle F and constructed, after choice of a trivialization covering U, a cocycle
(guv)u,veu with gyy € GL (k:, Oou(UnN V))7 VU,V € U. This cocycle depends on the chosen trivialization.
Now we take the opposite direction : Given a cocycle, we want to construct a (unique) vector bundle such that
its associated cocycles exactly correspond to the starting cocycle. More precisely :

Theorem :
Let M be a complex manifold. Suppose that we are given an open coordinate covering {U, }ocs of M together
with a cocycle (gag)a,ses- Then there exist a unique holomorphic vector bundle E over M such that {Uq}acs
is a trivializing open covering for E and the canonical cocycles of E are exactly given by the (gog)a,pet-
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Proof. Let (gag)a,pes be a cocycle such that every U, is a chart domain in M. We define
E = |_| (Ua X (Ck)
acJ

Being defined as a disjoint union, E’ is not connected and therefore not a vector bundle (since it’s not a manifold).

In order to make E’ a vector bundle, we first have to connected the different components U, x CF (which
are all open). There is nothing we can do if U, N Ug = 0 (see figure 9.7). So assume that U, NUg # 0; we have
to glue the overlapping parts on the intersection (figure 9.7). If go3 = id, this is not a problem. Otherwise we
do the following :

In order to identify the fibers, we introduce the equivalence relation ~ on E’ given by

(2,v) €Uy x CF | (y,w) € Usg x C* : (z,0) ~ (y,w) & =y and v = gap(y) - w
Note that = = y already implies that U, N Ug # 0 since x € U, and y € Up.

Figure 9.7: gluing the individuals parts of E is only possible on non-empty intersections

Uy x CF Ug x C* Uq

UaNUszg =0 UaNUg #0

Ug

Exercise : Show that ~ is an equivalence relation on E’.

This follows from the conditions 1),2), 3) of being a cocycle. It suffices to check it on the second argument.
— reflexivity : (z,v) ~ (z,v) since gpo = id, thus v = gaa(z) v =1d - v

— symmetry : if (z,0) ~ (y,w) with v = gag(y) - w = w=g_5(y) v = gga(y) - v

— transitivity : if v = gap(y) - w and w = gg,(2) - u, then v = gag(y) - gp1(2) - U = gary(2) - u since z =y = z.

Hence we can glue the disjoint union E’ via the cocycle g. In general, this gluing is done in a non-trivial
way since g, is not necessarily given by the identity. Since {U, }aes is a coordinate covering of M, i.e. every
chart domain intersects at least one other chart domain (M being connected), we obtain that

E=FE/~
is connected and induces a projection map p: E — M : [z,v] — x (well-defined since (z,v) ~ (y,w) = = =y).

In order to show that E is a complex manifold, we introduce the following notation :

Let [z,v] € F with a (unique) first representative € M. Consider all the open chart domains U, of M such
that z € U,. We denote v, := the unique second representative of [z, v] such that (z,v,) € U, x CF. v, is unique
since E’ is a disjoint union of open sets of the type U, x C*. Hence we have a well-defined bijective map

ov, + E— Uy xCF : [x,0] — (2,v4) for a € J fixed

We denote the quotient map by v : E/ — F and endow E with the quotient topology with respect to v. As chart
domains of E, we then take V,, := v(U, x C¥). V, is open in E for any o because

V_1<Va) = I/_1<Z/(Ua X (Ck)) = |_| (Uﬂ X (Ck) : open in E’
U[-}ﬁUa?éw

Hence {V,}acJ is an open covering of E and v is an open continuous map. As chart maps, we take
bo @ Vo — C"F ¢ [z 0] — ((pa(x),v(,) € 0o (Uy) x CF

where n = dim M and (U,, ¢4 ) is the corresponding chart of M at x.
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¢ is well-defined since we are restricted to V, and U, x CF, i.e. they only cocycles which may appear are the
Jaa = id. Moreover ¢, is a topological homeomorphism since the chart (p, x id) of the product manifold is one.
The transition maps are holomorphic because

$a0d5' : @s(Up) x C¥ — 0a(Us) x C* & (2,0) — (sﬁa (¢35 (), gas(x) '”U)
where ¢, o cpgl and g, are holomorphic. It follows that (Va, ¢a)acs is an atlas of E and dim F = dim M + k.

With respect to this atlas, p is surjective (as projection) and holomorphic because
Pa o0 st 1 9a(Ua) X CF — @a(Ua) 1 (2,0) — pa(py'(2) =2 (9.7)

is holomorphic (the local form of the projection is again a projection).
Moreover the restricted bijective maps ¢y, v, @ Va — Uy X C* are biholomorphic (as defined in 4.3.1) because

(0o xid) oy, =da and  (pu,) " =V, xcr
Now let z € U, C M be fixed. We want to find the fiber over x of p. For this, note that
(powp)(@,v) =2, VveC" = ¢; (2,C") Cp(a)

And if u € p~!(z), then p(u) =2 = wu € V,, hence v € CF such that u = wﬁi (z,v) since ¢y, is bijective on
V.. It follows that
p~H(z) = ¢yl (x,CY)
This space carries a complex vector space structure with respect to the definition
Vo,weCF, VYAeC : wl}i(m‘,v) + @Ei(x,w) = @Ei(gg,v +w) , A (p[}i(x,v) = (pai(a;,)\v)
This definition moreover implies that the restriction to the fiber ¢y |,-1(y) is trivially linear and hence
PUlp-1@) P (x) = {a} x CF (9.8)

is a linear isomorphism between k-dimensional vector spaces. We also have to add that this definition does not
depend on the choice of « since if x € U, N Ug, then wl}i (z,Ck) = (pl}; (x,Ck). This follows from the fact that

¢y, (z,CF) ¢y, (z,CF)

@UW\L i‘PUﬂ
Pu

-1
aoLPUﬁ

{z} x C¥ ——— {z} x C*
where the considered restrictions of ¢y, and ¢y, are linear isomorphisms as shown in (9.8) and
(pu, © (p[}ﬁl)(x,v) = (7, gap(x) -v) , Yo e C*
with gag(x) € GL(k,C). Thus go{]; o(py, © go,};) o ¢y, , restricted to go,}i (x,C*), is an isomorphism too.

Similarly as in (9.8), one also shows that for all a € J,

Ua

_ 1 LPQ k
Ey =p " (Uy) = U, xC 9.9
‘ @

Thus {Ug }aes is a trivializing open covering for FE and it finally follows that ¢, is a morphism of families of
vector spaces and that p : E' — M is indeed a vector bundle. Now let U, NUg # 0 and consider its cocyles gu, v,
as given in (9.6) :

. -1 _
G,us (2)(v) = po <m.pl<m> ((vap 1) @ v))) =2 (spu. (#02(2,0)) ) = gap(®) - v = gas (@) (v)
We hence recover the initial cocycles : gu,u; = gags-

And uniqueness of F follows now from the fact that the cocycles of a vector bundle are uniquely given once a
trivialization has been fixed, which as shown in (9.9) is the case here. O
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9.5 Isomorphic bundles

Let E and F be vector bundles over the same base manifold M such that £ = F (as defined in 9.3.5). We choose
a common trivialization covering {U, }qacs of E and F' (take intersections of the 2 individual trivializations).

¢ Ya kWa
E=ZF = E‘UQgUaXC %EUQ,VQGJ

where o, @ Fiy, — Uy ¥ CF and 9, : Ey, — Uy x C*. ¢, and 1), are morphisms of families of vector spaces
and their restrictions to the fibers ¢, p, and 9, |g, are linear isomorphisms onto {z} x Ck,Vz € U,. Let also

d) F—F = d)a ::d)anZ E\Ua—>F|Ua

= Pa0pqothyt Uy xCF— U, xCF : (z,0) — (z, ca(z) - v)

The last map being a biholomorphic morphism of families of vector spaces (hence the base point « is preserved),
we obtain that ¢, () is an invertible k x k—matrix for all © € U,. Moreover ¢, is holomorphic with respect to z
on U,, thus

ca €GL (k, On(Ua)), Ve J (9.10)

One can show that the opposite direction is also true, i.e. if we start with a collection (¢4 )qe. satisfying (9.10), one
can associate isomorphic vector bundles E and F to this collection whose ¢, defined as above exactly correspond
to the initial ones.

9.5.1 Definition

Given a trivialization {U, }aec.s, we introduce a relation on cocycles gopg given by
ggﬁ ~ gop < I(ca)acs with ¢, € GL (k, (’)M(Ua)) such that g;ﬁ =Cn 0 gag O cgl, Va,8€ J
We call 2 cocycles cohomologous if they are equivalent with respect to the relation ~.

Exercise : Show that ~ is an equivalence relation.

— reflexivity : choose a collection with ¢, =id, Va € J = ¢gaa = id o gaa © id~!

— symmetry : since the ¢, are invertible, we get gZXB =Cq 0 gaB© cgl = gap=c ' 0 9&5 o (c[;l)’l
— transitivity : if ggﬁ =(q 0gaB O c[;l and gg,y = C% o g;h o 0’7_1, then

-1

iy = o (cpogpyoc;t)odt = (0'5005)09570(0'7067)71, VB, yed

9.5.2 Theorem

We state without proof :

If we start with 2 cohomologous cocycles, the associated vector bundles constructed as in 9.4.4 are isomorphic.
This implies that the isoclasses of vector bundles are in 1-to-1 correspondence with the cohomology classes of
cocycles (after the choice of a common trivialization of the bundles).

9.5.3 Proof of theorem 9.3.6

Let F be a locally free sheaf of Oy;—modules of rank k. We have to find an associated vector bundle such that
the sheaf of sections V of this vector bundle is again given by F (up to isomorphism).

wa
Proof. Since F is locally free, there is an open covering {Uy, }aes of M such that F(U,) =

where 1), is a module isomorphism. If Uyp := U, NUg # 0, we hence obtain

(Om(UL))", Va € J,

(UM Vg
(Oar(Ua NU))* <22 F(U, 0 Ug) =2 (Onr(Ua N Ug))"
1

= Palvas © (Vsi0.s) (OM(Ua NUR)" — (Or(Ua N UB))"
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Since ((9 M (Ua N Ug))]C corresponds to a vector of k holomorphic functions, the isomorphism ¢y, , © (1/15‘[]& 5)71

can uniquely be given by a cocycle gop € GL (k, O (Uy NUg)) (same construction in 9.4.1).

Let F' be the vector bundle over M which is constructed by these cocycles as in 9.4.4 and V be its sheaf of local
sections, i.e. VU C M open : s € V({U) = pos=idy where p: F — M : [z,v] — z. Since both sheaves are
locally free, it suffices to consider the case where U is a trivializing open set. The local form (9.7) of p is then

p:UxClr —=U: (z,v)— 2

and a local section s € V(U) is necessarily of the form s(z) = (z,5(x)), where § : U — C* is holomorphic. This
form is also sufficient, hence s can be identified with §, which can again be seen as a k-tuple of holomorphic
function U — C. It follows that .

V(U) = (0n(U))" = F(U)

for any trivializing open subset U C M, so V = F as sheaves of Oj;—modules. Hence the vector bundle F' satisfies
all the assumptions of the theorem. O

9.5.4 Bundle maps

Let 7 : E— M and p : F — N be 2 arbitrary vector bundles (not necessarily over the same base manifold). A
bundle map is a pair (f,g) of holomorphic maps f : E — F and g : M — N such that po f = gow and the
restriction fr-1(;) 1 Bz — Fy(z) is a linear map for all x € M.

E4f>F

M2 N

A bundle map is in fact the generalization of a morphism of families of vector spaces and it allows us to form
the category of vector bundles since bundle maps are precisely the morphisms in this category.

9.6 Frame of a vector bundle

9.6.1 Definition

Let F be a holomorphic vector bundle of rank k£ over a complex manifold M. A frame of E over an open set
U C M is a set of sections ¥ C V(U) such that Yz € U, the set of sections evaluated at x is a basis of the fiber
E,. This immediately implies that ¥ must have exactly k elements, i.e. ¥ = {01, 09,...,01} for o; € V(U), Vi.
Thus the set {o1(z),02(x)...,0r(z)} is a basis of the vector space E,. In particular o;(z) € E,, V1.

Remarks :
1) This does not imply that {o1,03,...,0} is a C-basis of V(U) (since dim V(U) = oo in general).
2) Frames do not exist over all open sets U C M.
3) But : given a trivialization covering {U, }acs and a local trivialization By, = U, x C*, there always exists a
frame over U, given by {éi,...,éxr} where é;(z) = (x,¢;), Vi € {1,...,k}. Since {(z, e;)}i=1,...x is a basis of the
vector space {r} x C¥ = E, {é,(z),...,éx(x)} is thus a basis of E,.

.....

We conclude that, since any vector bundle is locally of this form (locally trivial) :

For any vector bundle E over M, there is a covering (the trivializing covering) such that there exists a frame
over any open set in this covering. In particular, frames of vector bundles depend on the chosen covering of M.
Furthermore there is even a stronger statement about this fact :

9.6.2 Theorem

There exists a frame of over an open set U C M < Ejy is a trivial vector bundle (i.e. Ejy = U x CF).
In particular, if there is a global frame of F, then F must be the trivial bundle. In other words, only the trivial
vector bundle has a global frame.
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Proof. <= : This was shown above : the frame is given by {é;,...,éx}.

= : Let U C M be open and assume that a frame {o1,...,01} of E over U is given. We want to construct a
morphism of families of vector spaces ¢ : Ejyy — U x CF. Let u € Ey ; since By is equal to the disjoint union
of its fibers E, for x € U, we know that there is a unique element x € U such that u € E,, hence

k
U= Z)‘i coi(x)
i=1

and the coefficients A; are uniquely given since we have a basis. Then we set p(u) := (a:, (A1, .- .,/\k)). @ is
obviously surjective and injective since the coefficients are unique and it is (bi)holomorphic since it’s a projection.
Moreover ¢|g, is a linear isomorphism for all x € U (once x is fixed, E, and {z} x C* are two k-dimensional
vector spaces over C, hence isomorphic). So all conditions in (9.2) are satisfied and ¢ defines a trivialization. O

9.6.3 Frames, sections and cocycles

Another construction that one can do by using frames is the following :
Let F be a vector bundle of rank & and assume that a frame {oy,...,04} of F over an open subset U C M is
given. Let s € V(U) be a holomorphic section. Since s(x) € E,, Vo € U, we can decompose

k k
VeeU : s(x)= Z/\f coi(x) = Af1,..., fr € Op(U) such that s = Z:fZ -0 (9.11)
i=1 i=1
where the functions f;(z) = A? are holomorphic by a similar argument as in example 9.3.3. Thus one can assign
E
S 0= (fl,fg,...,fk) € ((’)M(U))
Hence there is a 1-to-1 correspondence between holomorphic sections and k-tuples of holomorphic functions :
: k
V(U) = (On(U))

because the f; are uniquely determined by the section. Note that this identification requires the fixing of a frame.

Let U and V now be 2 trivializing open sets with UNV # (), so there is a frame {¢V }; over U and a frame {UJV}j
over V. We want to know what happens on U NV.

Let gyy be the cocycle given as in (9.6) which defines the vector bundle, i.e. we have gyy = "¢y o <p‘_/1” where
Yy E|U —— U x (Ck s PU|r—1(z) * E, — {l‘} X (Ck
Yy E|V -V x (Ck s PVir—t(z) * E, — {.’13} X (Ck

We want to show that the 2 frames are related via gyy .
Let s € V(UNV); using (9.11), s can now be decomposed in both frames as

s fi=(fi,for- s fr), i€OuUNV) and s+ f = (f1,f5,-... fr), [i €Ou(UNV)

9.6.4 Theorem
f=guv - f’, where - denotes the matrix multiplication.

Proof. From linear algebra, we know that the transformation law for the coefficients is f = M - f/ where f are
the old coordinates, f’ the new ones and M is the basis change matrix from {o¥}; to {0} };. Hence it remains
to find the matrix M. Indeed the basis transformation is given by the cocycles because Vx € UNV :

Ch = {2} x C* VO B = (6V(2),...,0V ) = (¥ (2),...,00 ) = B, " "3 {4} x CF = CF

where the basis change {oV}; — {U]V }; induces a basis change in C*. Hence we know that the coordinate change

is given by oy |r-1(a) © (gpv‘ﬂ_l(w))fl. But this is exactly the definition of the cocycles, so M = gy . O

9.6.5 Conclusion

Sections of E correspond to local vectors of functions with respect to certain frames which transform in a certain
manner, essentially given by the defining cocycles of the vector bundles.
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Chapter 10

Operations on vector bundles

10.1 Induced operations on vector bundles

Let E and M be complex manifold and 7 : E — M be a surjective holomorphic map. We know that a vector
bundle of rank k is defined by

1) an open trivialization covering {Uy }qcs of M

2) local trivialization morphisms ¢y, : Ey, — Uy x CF that are biholomorphic and linear isomorphisms
when restricted to the fibers

3) the cocycles (also called patching functions) gag : Us NUg — GL(k,C) that are holomorphic such that
Jap = "QuU, © gpl_];” and satisfying the cocycle relations

Problem :
Given a vector bundle, we want to construct a new one by using these data.
In the following, let 7 : £ — M and p : F — M be 2 complex vector bundles of rank k and [ respectively over
the same complex base manifold M. We choose a common trivialization {U, },cs and denote the cocycles of F
by gag and those of F' by hqag.
Let also V and W be complex vector spaces of finite dimension k = dim V', | = dim W with bases B = {e; }i=1,...k
and B’ = {e}},=1,.. 1 respectively. The goal is to show that operations on vector spaces induce the same operations
on vector bundles. The idea is to apply the operations in each fiber (which is a vector space) of the bundle.

10.1.1 Dual bundle
Recall that the dual space of V is given by

V* =Homg(V,C) = {¢ : V= C | ¢ linear and continuous } = dimV* =k

It is in fact not necessary to require continuity since any linear map in finite dimension is also continuous. We
also recall that for a linear map T : V — W, one defines its dual map *T : W* — V* (which is also linear) by

VaeW*, 'T(a) :=aoT & 'T(a)(v) =a(T(v)) €C, VveV

Whenever well-defined we have the relations (‘T")~! = {(T1) and (T} o Ty) = Ty o 'T7.
Moreover if T is given by the matrix A (after choice of a basis), then the matrix associated to T is ' A (transpose).

Proof. The matrix A = (a;;) is defined by the relation T'(e;) = Zj ajie;-, Vie {l,....k}. Let {e"}i=1,. x and
{€’"}i=1,. .k be the standard bases of V* and W* associated to B and B, i.e. '(e;) = 5”(69) = 5;, Vi, j. Then

) =" oT =Y bjied €V = (") (ex) =Y. bjiel (ex) = by
J J
D ex) = (0 T)ex) = 4 (Ter)) = = ( Saue)) = T (e) = ane
J J
Hence the coefficients of the matrix associated to ‘T satisfy bij = aj; = taij : we get the matrix tA. O
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Now we want to define the dual bundle E* — M. We know that E = || E, is locally given by

PU, zEM
E|UQ = Ua X (Ck

Each fiber E, being a vector space, we can take its dual space (E,)* and we define the dual bundle E* as

E* = | | (B
i.e. we take the same foot-map 7 : E* — M with 7—1(x) = (E*)

« = (E;)* (take the dual in each fiber). In order
to describe the structure of E* we have to find its trivialization and its cocycles. For this, we consider the map

Pr ‘= PUL|E, * E, — {$} X (Ck

which is a linear isomorphism and a basis of E, is given by {p; (2, e;)}iz1,. k. Thus tp, : {z}x (C*)* = (E,)*
is an isomorphism too and a basis of (E,)* is given by {*¢.(z,e%)}i=1

,,,,,

k- Finally we obtain that
—1 %~ *
(‘px) " (Ba)" = {a} x (CY)

This holds for any € M, hence a trivialization of E* is given by 9y,

(E*)u, — Uq x (C*)* where {Us}aes
B -1
Yo, 0¥y, = (fev.) oleu, = ((t@Uﬁ) ' Ot@UQ) = (t (¢p,) © tSDUa)

is the same trivializing open covering as for £ and ¥y, = (tgan)fl. For the cocycles this now implies that

—1

-1
= (t (SDUQ o WE;))
. ; t -ty -
= JaB Us N UB — GL(kv(C) : ]a,@(x) = (I(gaﬁ(x))) = /((gaﬂ(x))
These j.g are in addition holomorphic and satisfy the cocycle relations : joo = id, jga

) = "(gpa())
= (jaﬁ)_l and
Jop(x) © oy (2) =" (gpa(2)) 0 (gy8(2)) = "(915(x) © gga(2)) =" (gya(@)) = Jay (@)

In particular E* is again a vector bundle of rank k.
10.1.2 Direct sum bundle

The ”direct sum” of V and W is defined as

VeWw =V xW={(v,w)|veV, weW}

Hence dim(V @& W) = k + [ and a basis is given by B U B’ (here we do not mean the direct sum of 2 vector
subspaces of some bigger vector space). If V/ and W’ are 2 other vector spaces and we are given the linear maps
S:V =V and T : W — W', we can define the direct sum S @ T by

If S and T are represented by matrices A and B (after choice of a basis), the matrix associated to S @ T in the
induced basis given as above is

A 0
SoT = (0 B) (10.1)
since S only acts on V' and T only acts on W.

We are now able to define the direct sum of 2 vector bundles E and F. As in 10.1.1 we have the local situation

SeT : VoW — V' oW  (SaT)(v,w) = (Sv),T(w))

PUA k YU, .
E|U(, = Ua x C s F|U(, = Ua x C
E, and F, being vector spaces for any x € M, we can take their direct sum F, & F, and hence define

EoF = | | (B, @F)
rzeM

i.e. the fibers of the direct sum E & F are given by (E® F), = E, ® F,,. We again have to find the trivialization
and the cocycles of this new vector bundle.
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Consider the linear isomorphisms
Qg 1= <pU0|Em : Em;){(E}X(Ck s iﬁz ::wUQ\Fm : ng;){x}X(Cl

They induce the map ¢, ® ¥, : E, ® F, — {z} x (C¥ @ C*) which is again an isomorphism because of (10.1).
It follows that the local trivialization of E @ F is given by

pu, : (E®F)py, = Uy x (CFa&C)

with py, = ¢u, ® Yy, and E @ F is a vector bundle of rank k + [. For the cocycles note that
-1
A 0 A7t 0 _ _ _ _
(G0 (5 ) = et
and hence pu, © p; = (pu, ©Yu,) © (v, ®¥y,) = (¢u, © ¢p,) ® (Yu, 0¥y, ) so that finally

Jap + UaNUs — GL(k+1,0) : jas(®) = gap() ® has(z) = <ga%($) hat?(x))

This is obviously holomorphic and j,s satisfies the cocycle conditions since g,g and hqg do.

10.1.3 Tensor product bundle
The tensor product of V-and W is given by
VoW =Ly(V xW*, C)={¢: V' x W* = C | ¢ bilinear }

i.e. elements of the tensor product are bilinear forms defined on the corresponding dual spaces. They write as a
finite linear combination of terms of the form v ® w for some v € V, w € W, defined by the condition

(v@w)(f,g) = f(v)-g(w) € C

and extended by linearity. Moreover a basis of V' @ W is given by {e; ® €’ }; ;, thus dim(V @ W) =k - .
If V' and W’ are again 2 other vector spaces and S : V — V' and T : W — W’ are linear maps, they induce
the tensor map

SRT : VoW — VoW , (SeT) (vew):=5S{v)®T(w) (10.2)

again extended by linearity. We will not discuss the matrix representation of this map. Moreover it must be said
that the representation of an element of the tensor product as a finite linear combination is not uniquely given,
hence (10.2) may a priori not be well-defined since it must be linearly extended. One can however show that the
map is independent of this decomposition and that (10.2) is always well-defined.

Concerning the tensor product of 2 vector bundles E and F', we again have the local situation

Yu

By XU xck Fy = U, xC!
U — a 5 U = a X

and define the tensor bundle E ® F again as the disjoint union of the tensor products of all individual fibers, i.e.

EQF = | | (B, ®F,)
zeEM

The constructions being exactly the same as in 10.1.2, we will omit the details and end up with the trivialization
v, ¢ (E®F)y, = U, x (Ck @ Ch
where py., = vu, @ Yy, , thus E® F is a vector bundle of rank %k - [. And the cocycles are given by

Jag + UaNUg — GL(k-1,C) : jag(z) = gap(x) @ hap(x)
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10.1.4 Exterior power bundles
For any r € {0,1,2,...,k} we can define the ' exterior powers of V, given by
QV=L,(Vx..xV"C)={p: V'x...xV*"=C ‘ ¢ linear in each argument }
ANV =AV*"x..x V" C)={peL,(V'x...x V* C) | ¢ alternating }
ie. pE AV & eV and p(al,...,a") =sign(o) - (a®® .. .,a®M) Val,...,a" € V* Vo €S,.
This implies that A"V = {0} if » > k. By convention, we set @’V = A°V = C.
A basis for @V is given by {e;, ® ... ®e;.};,,....j,. where {e;}i=1, .k is the standard basis of V' and
(ejy ®...®e;)(a,...;a") :=al(e) ... a"(ej) €C, Val,...,a" € V*
It follows that dim(®"V) = k" and that any element from ®”V writes as a linear combination of such functions.

For T'€ A"V and S € A®V, we define the wedge product T A S € A"T*V pointwise by

(T A S)(Ox17 o ,OzT+S) — ek Z sign(o) - T(aa(l)’ s aa(r)) . S(aU(T—H), s aa(r+s))
T (TEST+S
One can show that this product is associative, distributive and anti-commutative. Moreover a basis of A"V is
given by {e;; A...Ae; hi<iy<..<i.<k, hence dim(A™V) = (k)

s

If T:V — W is a linear map, it induces the 2 following exterior power maps :
QT : @V —=W, @T(ej; ®...®¢e;.):=T(ej,)®...0T(ej,)
ANT : AV — AW, AT(e; N...Nei, ) :=T(ei, ) N... ANT(e;)

extended by linearity. One can again show that this is indeed well-defined. If S : Z — V is another linear map
and whenever T is a linear isomorphism, then ® T and A"T are again isomorphisms and they satisfy

(@T)'=0"(T™") , @(ToS)=0"Tox"S , (A'T) ' =A"(T"') , A"(ToS)=A"ToA"S (10.3)

Let E now be a vector bundle with local trivialization ¢y, : Ejy, — Uqa X CF. As before we define the exterior
power bundles ®" E and A" E by taking the exterior powers in each fiber :

@E=||(@E) , NE=||WE)
zeM zeM
Similarly as in the previous examples, we then obtain the local trivializations
Yu, + (®E)y, = Uax (®CF) ,  py, + (ANE)y, = Us x (A"CF)
showing that ®" F and A"E are holomorphic vector bundles of rank k" and (’:) respectively. The cocycles
Jap + UaNUsg — GL(K",C) : jap(z) = @ (gap(x))
lap + UaNUs — GL((;),C) + lap(x) = A" (gap(2))

are holomorphic and satisfy the cocycle conditions because of (10.3).

10.1.5 Particular case

For k = dim V', A*V is a vector space of dimension (’;) = 1, hence A*E will be a vector bundle of rank 1. It is a
line bundle, called the top exterior power of E. It is also called the determinant bundle and denoted A¥E = det E.
The reason is the following :

Let Vect;(C) be the category of finite-dimensional vector spaces over C and consider the functor

A" : Vect;(C) — Vects(C) : V+— A"V
Homg(V, W) — Homc(A"V,A™W) : T +— A"T

Take W = V. Since A*V is 1-dimensional, we obtain that A"T : A"V — A"V, i.e. A"T is a linear map from a
1-dimensional space to another 1-dimensional space. Hence AT € Mat(1,C) = C and A"T is just given by the
multiplication with a complex number. It actually turns out that A"T'(A\) = detT - A\, VA € A"V.
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10.1.6 Generalization

We have seen that the construction of these new vector bundles is essentially always the same; all you need is
an operation on vector spaces that induces an associated operation on linear maps between vector spaces. Thus
we have the following generalization :

If Vect ;(C) denotes again the category of finite-dimensional vector spaces over C, the morphisms of this category
are given by linear maps between these vector spaces. Let F : Vect(C) — Vect;(C) be a vector space functor,
for example :

F=*= F(V)=V*and F(T)="'T

F=A = FV)=A"Vand F(T)=A"T

where * is a contravariant and A" is a covariant functor. Then F induces a functor F’ on the category of vector
bundles given by the following data :

To a vector bundle 7 : E — M with trivialization Ejy, = U, x CF and cocycles gag : Uy N Ug — GL(K,C), F’
associates the vector bundle 7 : F(E) — M defined by

F(E) = |_| F(Ez)
reM

with the trivialization F(E)p, = Uy x F(C*) and cocycles F(gag) : UaNUg — GL(K', C) where k' = dim F(C*).

Remark :
The same of course also applies for constructions involving bifunctors of vector spaces, as e.g. ® and ®.

10.2 Sub-bundles and quotient bundles

10.2.1 Definition

Let w : E — M be a holomorphic vector bundle of rank k.
A wector sub-bundle of E is a family of vector subspaces {F, C E}zen, indexed by M, such that

F::|_|FI

zeM

is a complex submanifold of the manifold £ and mr : F — M is itself a vector bundle of rank [ < k. This
implies that V. € M there is an open neighborhood U of & in M and a trivialization ¢y : Ejy — U x CF such
that the restriction to Fjy satisfies eulpy - Fluo — U X ClCUxCFforl<k.

The intuitive idea of a vector sub-bundle is that F' C F such that for any point in M there is an open neighborhood
on which both bundles F and F are trivial and the trivialization maps for F' are nothing but the restrictions to
F of the trivialization maps of F.

10.2.2 Examples

1) For an open set U C M, Ejy is not a sub-bundle of E since it is not indexed over M. In a sub-bundle F' the
fiber over any point x € M must be non-empty and of dimension [ (see figure 10.1).

Figure 10.1: F' is a sub-bundle of F

2) Any vector bundle E is a sub-bundle over itself.
3) The zero-bundle given by F, = {0}, V& € M is a sub-bundle of any vector bundle E.
Moreover it is in 1-to-1 correspondence with M since | | .,,{0} = M.
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10.2.3 Vector space quotients

Let V and W be vector spaces of dimension k and [ and consider the vector subspaces V! C V and W’/ C W of
dimension &' < k and I’ <[. Assume that bases for V and W are given by {e;}i=1,... 1 and {e;};=1,...; such that
{ei}i=1.... 1 and {e}};=1,. 1 are bases of V' and W".

The quotient space V/V' is defined by the equivalence relation z ~ y < Jv € V'’ such that x = y +v'. We
denote the equivalence class of x € V' by z. It follows that dim(V/V’) = k — k¥’ and a basis of V/V" is given by
{&}i=k'+1,... k. Any element v € V' satisfies v = 0.

Let now f : V. — W be a linear map such that (V') C W', i.e. f preserves the vector subspaces. In the bases
of V.and W, f is then given by a matrix of the type

.....

A B

f:(aij)m_:(o D) for A:U'xk ,B:U'x(k—FK),D:(1-1)x(k—-Fk)

This happens because for any e; with i € {1,...,k'}, we have e; € V! = f(e;) € W', hence

4 l
Vie{l,... K} : fle)=> aue;+ > 0-¢f = a;=0 Yje{l+1,... 1}
j=1 j=U+1

or in other words : a;; = 0 if 7 is "big” and j is "small”. We moreover see that fy- : V' — W’ is represented by
the matrix A. f now induces the map f : V/V' — W/W' defined by

f(@) = f(z)

This is well-defined since f is linear and satisfies f(V') C W' : f(x +v) = f(z) + f(v) = f(x) for any v € V'
because f(v) € W’. Moreover f is then given by the matrix D since all first basis vectors vanish in the quotient.

10.2.4 Definition
Let E be a vector bundle of rank k and F' be a sub-bundle of E of rank I. The quotient bundle E/F is defined by

E/F = | | (E:/F,)

zeM

i.e. the fibers of E/F are given by the quotients of the individual fibers : (E/F), = E,/F,.

10.2.5 Cocycles for sub-bundles and quotients

Let E be a vector bundle of rank k, F' a sub-bundle of E of rank [ and FE/F be the quotient bundle. If z € M
and U,V are 2 trivializing open sets for E with UNV # 0, then oy : Ejy — U x Ck, oy - Ey —Vx CF and

(o) =g oy = (V) V) < gLk

with hyy (2) : Ix 1 kpy(x) : Ix (k=1),ipv(z) : (k=1)xland jyv(z) : (k—1) x (k—=1). First of all we need
that igy = 0 since F' is a sub-bundle of E, hence the subspace C! ¢ C* must be preserved. This is true because

v =vup,  Fu == UxC = gyy(z) = (hUV(x) EUV(I)) : CF—C*
0 Juv ()

The cocycles of F' are induced by 9y o 1/)‘71, i.e. by a simple restriction of ¢y o gp‘_/l and hence given by the first
I components of gy in order to preserve the subspace C! C C*. Finally the cocycles of F are the

hyy : UNV — GL(l,(C)
In order to find a trivialization and cocycles of E/F, let {U,}ocs be a trivializing open covering for E with

ov. : Bu, = UaxC* gy s, = ¢z 0 Bz 5 {a} xC* oy, ik, = ¢aip, + Fo = {2} xC!
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This induces the map @, : E,/F, — {z} x C*¥/C! = C*~! and we construct similarly
Yu, ¢ (E/F)p, = Uy x CF

@, arising from the lower-right (k — 1) x (k — ) matrix describing ., ¢y, is given by a similar expression and
the cocycles are induced by the ¢, o wl}ﬁl, i.e. the cocycles of E/F are the lower-right part of gyy :

juv : UNV — GL(k —1,C)

10.3 Pull-back bundles

10.3.1 Definition

Let w : E — M be a holomorphic vector bundle of rank k and f : N — M be a holomorphic map of complex
manifolds. The pull-back of E along f is the vector bundle over N defined by

f*E:={(z,u) e NxE| f(z) =n(u) }

with the first projection p; : f*E — N as foot-map. Hence the following diagram commutes by definition :

T

— M

*

The fiber of p; over « € N is therefore given by
(f*E)e =py ' (a ):{( uwefEly=z}={(z,u)|uek, f(z)=mr(u)}
={(z,u) |uenr l(f(m)) }={a} x Tr_l(f(x)) = {2} X B¢ = By

It follows that the rank of f*F is also equal to k. Using the Implicit Function Theorem one can moreover show
that f*FE is a complex submanifold of N x E. In order to show that f*FE defines indeed a vector bundle, we have
to find a trivialization and the associated cocycles.

Let vy, : By, — Ua X C* be a trivialization for E with cocycles gap : Uy NUp — GL(k,C) and U,, U open
sets in M such that U, NUg # (. f being continuous, the sets V,, = f~1(U,) are an open covering of N (note
however that V,, can be empty even if U, # 0)). Now consider

YyeM, ¢, : B, > {y} xC*
= Vz €N, Pf(z) * Ef(z) - {f(x)} X (Ck = {l‘} X (Ck (104)
where f(z) € U, if © € V,,. This is not really a composition (¢4 # @z © f), but we can nevertheless take
Vv, @ (f*E)y, = Vo x CF

where ¢y, ="y, of” as a trivialization for f*FE. But (10.4) suggests that the cocycles are given by an expression
where any = has been replaced by f(z). And this is indeed true because we can take

Jag @ VaNVg — GL(k,C) : jas(z) = gag (f(x))
i.e. jag = gap © f, and this composition is well-defined. The relations can be summarized as follows :

Jap

Ua NUs —=2 GL(K, C)

fT _
Jap

Ve ﬂVg

Remark :
In the case where i : N < M is the inclusion, i* E' will be the restriction of the vector bundle £ to E|x.
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10.3.2 Problem

Let 1y : E— M and w3 : ' — M be 2 vector bundles over the same base manifold M and ¢ : E — F be a
holomorphic morphism of families of vector spaces, i.e. o 09 = 71 such that 1) preserves the fibers.

E—w>F

o)

M

Moreover the map v, : E, — F, is linear (but not an isomorphism in general), hence we can consider the
finite-dimensional vector spaces ker v, and im ¢,. The idea is to define

ker := |_| kery, C E and imy := |_| imy, CF

reM reM

There are however a certain number of problems with these definitions; in particular kery and imt do not
necessarily define sub-bundles of F and F. First of all im, is in general not always closed, hence ker is
not closed and cannot be a complex submanifold of F'. But the bigger problem is that, for both of them, the
dimensions of the fibers can ”jump” : dim(ker,) and dim(im,) are not uniquely determined by F and F', but
strongly depend on the linear maps v,. Hence ker ¢ is only a sub-bundle of E if the maps v, all have the same
rank. And for im it is in addition required that all images im 1, are closed.

Conclusion :
There are no kernels or cokernels in the category of vector bundles. In particular, since the category of (isoclasses
of) vector bundles of rank k is equivalent to the category of locally free sheaves of rank &, the locally free sheaves
do not admit kernels or cokernels neither. If one wants to consider kernels and cokernels, one has to pass to the
so-called coherent sheaves (sheaves where the rank can ”jump”).

10.4 Associated frames
Let M be a complex manifold and 7 : E — M be a holomorphic vector bundle of rank k& with local trivialization
YU E|U U x (Ck

We recall that a frame for E over U (which always exists since U is a trivializing open set, see section 9.6.1) is a
collection {01, ...,0x} of local sections of E over U such that for all z € U, {o1(z),...,0r(z)} is a basis for the
fiber E, (k-dimensional vector space).

Let F' be another holomorphic vector bundle over M with the same trivialization as F, i.e. locally

Ey=2UxCFr | Fpyp=UxC

and assume that {o1,...,04} is a frame for E over U and {r1,...,7;} is a frame for F over U. We want to find
expressions for the frames over U of the associated vector bundles constructed in 10.1.

1) The dual bundle E* locally looks like (E*);y = U x (CF)*. We have to find a basis of (E,)*, Vz € U.

Since a basis of E, is already given, we simply take the canonical basis of the dual space. Thus a frame of E*
over U is given by {o},...,04}, where 0} : U = (E;)* = o/ (z): E; — C and ¢ (x) is linear, Vo € U. And
to define the o} (x) on E,, it is by linearity sufficient to give its value on each basis vector o;(z) of E,. We set

oi(x) : By = C, of(z)(0;(z)) == dyy

3

2) The direct sum E & F locally looks like (E & F);y = U x (C* & C) and a frame over U is given by

{o1,..., 0k, T1,...,T1}

Indeed, Vo € U, {o1(z),...,01(z)} is a basis for E, = CF and {r1(x),...,7(x)} is a basis for F, = C!, hence
we know from linear algebra that {oy(x),...,ox(z), 71 (z),...,7(z)} is a basis for E, & F, = CF g C.
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3) The tensor product E @ F locally looks like (E ® F); 2 U x (C* ® C') and a frame over U is given by

where 0; @ 7;(2) := 0i(z)®7;(2) € B, ® F, 2 C*@C!, Vo € U. Again this is the case because {o1(z),...,ox(x)}
and {m(x),...,n(x)} are bases for E, and F,, hence {o;(z) ® 7;(x)}; ; is a basis for E, @ F, = (E ® F),.

4) The exterior powers ®*E and A”E locally look like (®"E);y = U x (®"C*) and (A"E);y = U x (A"CF).
Hence as in 10.1.4, frames over U are given by {0, ® ...®0;j,};,,..j. and {05, A... A0y }i <. <i,., Where

(0j, ®...®0;)(x) =0;,(2)®...Q0;5.(x) and (o5, A...N0;)(x) =05 (x)N... N0y, (x)
In the case of the determinant bundle det E = A*E of rank 1, this frame becomes
(o1 A Aap)(x) = o1 (@) A... Aog(z) € A¥(E,) = A¥(CF) = C

and actually corresponds to taking the volume form in each fiber.

10.5 Line bundles

10.5.1 Definition

A line bundle over a complex manifold M is a holomorphic vector bundle of rank 1, i.e. locally on a trivializing
open covering {Uy, }ac it looks like U, x C and all fibers are 1-dimensional.
An advantage of line bundles is that a lot of the vector bundle properties simplify in this case.

a) The cocycles are given by gyy : UNV — GL(1,C) = (C\ {0},-) with invertibility condition Jov = gvu,
so we need that gyy(x) # 0, Vo € UNV. More precisely, gyy is a map that associates to any x € UNV
the linear map given by multiplication with the non-zero complex number gy (z), i.e. gyy is holomorphic with
respect to x and can be identified with a map U NV — C. Hence gyy € O*(U NV), where O* is the sheaf of
nowhere-vanishing holomorphic functions to ensure that QU% is well-defined and holomorphic again.

b) A frame for a line bundle E over an open set U C M is just a holomorphic function ¢ € O*(U). Since
the fibers are 1-dimensional (hence isomorphic to C), we just need 1 non-zero vector (which can thus be identi-
fied with a non-zero complex number) to define a basis. This must be satisfied for any = € U, hence the function
o : U — C should not vanish on U (since if o(x) = 0 for some z € U, then {o(x)} is not a basis of E, = C).

1

¢) The dual bundle E* is again a line bundle and its cocycles are juv = (‘guv) ™ = g = gvu = QU%, ie.

— Yz eUNV

Jov(@) = guv ()

The reason why the dual map has no affect on gy is that a linear map T can be identified with its dual map
T in dimension 1 (because if T is represented by the matrix A, then the matrix of *T is A = A too); T and 'T'
are not the same maps, but they have the same associated matrix and are hence equivalent.

d) The tensor product of 2 line bundle E and F' over M is again a line bundle since tk(E® F) =tk E -tk F = 1.
By choosing a common trivialization for E' and F', we have locally Ej;; = U x C and Fjyy = U x C, hence

(E@F)jy=2Ux(CeC)=2UxC
If the cocycles of E and F' are gyy and hyy, then the cocycles of the tensor bundle £ ® F' are given by
jov(z) = guv(z) @ hyv (z) = (v = guv(z) - hyv () -v) (10.5)

where gyy (x) € C, hyy(z) € C and the tensor product ® in dimension 1 is nothing but the usual multiplication.
After identification we thus can write that jyv € O*(UNV) is given by juv(x) = guv(z) - hpv(x), Ve € UNV.
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10.5.2 Theorem

The set of isoclasses of line bundles over a complex manifold M is an abelian group under the ®-operation. This
group is called the Picard group.

Proof. Recall that E ~ F < FE 2 F as vector bundles as defined in 9.3.5

For associativity and commutativity we have to show that E® (F® G) 2 (F F)@Gand EQ F 2 F® E.
By theorem 9.5.2, we know that cohomologous cocycles define isomorphic vector bundles. Hence in our case it
already suffices to show that both vector bundles have the same cocycles (hence cohomologous cocycles). If the
cocycles of E, F,G are gyv, hvu, juv, then (10.5) shows that the cocycles of the tensor products are

E®(FeG) — guv-(hvu-juv) , (E®F)®G — (guv -hvu) - juv
E®F — guv-hvy , FFE — hvy-guv

Hence these 2 properties follow from associativity and commutativity of the complex numbers.
For the neutral element we have to find a line bundle Ey such that £y ® F =2 E® Ey = F for any line bundle E.
We take Ey := M x C, the trivial bundle, whose cocycles are given by gyv(x) =1, Va € U NV since we have

wu @ Egy —UXxC = ¢y =id, VU C M open = gUV:”goUogo‘_,l” =1id as well

Concerning the inverse, given a line bundle E, we want to find £~! such that E®Q E~! 2 E-1 @ F = E;. We

* _ p— * 1 1 _
take the dual bundle E* = E~! because the cocycles of E* are Juov SO guv(z) - v @ = L,VeeUNV. O

10.5.3 Proposition
A line bundle is trivial < it admits a nowhere-vanishing global section.

Proof. By theorem 9.6.2, a trivialization on an open set U C M is equivalent to the existence of a frame over U.
= : If a line bundle F is trivial, it admits a frame over M. But since the fibers are 1-dimensional, there must
exists a global section o : M — E such that {o(x)} is a basis for E,, Vo € M. Moreover o must be nowhere-
vanishing since o(x) = 0 would not define a basis.

<= : If there exists a nowhere-vanishing global section o, then {¢} defines a frame over M since any non-zero
vector defines a basis of a 1-dimensional vector space : o(x) # 0 = {o(x)} is a basis for E,, Vo € M. Hence
we can see 0 € O* (M) by considering o(x) € E, = C. Theorem 9.6.2 then implies that the line bundle is trivial.
We recall that the morphism of families of vector spaces is given by ¢ : M x C = L, p(z, ) := - o(x).

L%MXC

Remark :

Note that this is only true for line bundles and does not hold for vector bundles of higher rank.

10.5.4 Definition

Recall that vector bundles over a complex manifold M corresponds to locally free sheaves over M, given by the
sheaf of holomorphic sections. Hence the line bundles over M correspond to locally free sheaves of rank 1, also
called invertible sheaves. Finally we have seen in section 9.3.6 that the trivial vector bundle M x C* is uniquely
given by the free sheaf O%,. Hence the trivial line bundle M x C corresponds to the sheaf Oy of holomorphic
functions, in particular because sections of the trivial bundle satisfy p; o s =id = s(z) = (z,§(z)) € M x C,
where § : M — C can be any holomorphic function. Therefore sections of the trivial line bundle can be identified
with holomorphic functions. f € Oy < f: M — C is a holomorphic section of the trivial bundle M x C.

In the following we denote by L the sheaf of holomorphic sections of a line bundle (i.e. £ =V, but we want to
point out that we are dealing with a line bundle).
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10.5.5 Proposition

Let m : L — M be a line bundle over M and s € L(M) be a global holomorphic section such that s Z 0, i.e. s is
a globally holomorphic map

s : M — L= |_|Lz P x— v, € L,
zeM

Then the set (s) :={x € M | s(x) =0} (where 0 ¢ C, but 0 € L,) is an analytic subset of M.

Proof. Recall that analytic subsets of M are locally given by zero sets of finitely many holomorphic functions (i.e.
sections of the trivial line bundle). Note however that (s) is not an analytic set by definition since s ¢ Op (M) ;
sisnot a map M — C and (s) # V(s). But s locally corresponds to a holomorphic C-valued function. If U C M
is a trivializing open set for L, then Ljy = U x C and

siy =8 where sy : U — Ly = s(x) = (v,3(x)), §€ Oy(U), Ve eU

Now if € U is such that s(z) = 0, the local form is given by  — (2,0) € U x L, 2 U x C. U being a trivializing
open set, we know by theorem 9.6.2 that there is a frame {o} over U. Since s(z) € L, for all z and {o(z)} is a
basis for the 1-dimensional fiber, we obtain that

Vo € U, 3], € Csuch that sjy(z) = Ay - o(x)

Define f: U = C, f(z) = Ao = sjp(x) = f(z)-o(z), Yo € U where f is holomorphic in U by a similar
argument as in example 9.3.3. Since ¢ is nowhere-vanishing on U, we have
sip(z) =0€ L, & f(x)=0€eC
= (s)NU={z€U |s(@)=0}={zeU|syl@)=0}={zeU| flz)=0}=V(f)
with f € Op(U), hence the trivializing covering for L defines a covering of M such that (s) is given by the zero
set of a holomorphic function on each open set. It follows that (s) is an analytic subset of M.

We also have to show that this description of (s) is independent of the chosen frame, i.e. independent of the
trivialization of L. If {7} is another frame over U, we can write

sip(r) = f(x)-o(x) = g(x) - 7(z), f,g € Ou(U), Vx €U

and x € U is a zero of s & f(r) =0 = g(x). Since {o(z)} and {7(x)} are bases of L, there is a basis change
matrix A = A(z) € GL(1,C) such that 7(z) = A(z)-o(z), Vo € U. A(z) being invertible for all x € U, meaning
that A(x) #£0,Va € U, we get A € O*(U) and it follows that

VeeU : sy(x)= f(x) o) =g(x) 7(z) = g(x) - A(z) - o(x) with A(x) # 0

Hence f(z) =0 < g(z)=0and (s)NU =V (f) =V(g) : we get the same local zero set independently of the
choice of the frame. O

Remark :
Note that there exist line bundles which do not admit non-zero global holomorphic sections.

10.5.6 Proposition
Let m : L — M be a line bundle over M and s € L(M) be a global holomorphic section such that s # 0. Then

either : 1) (s)=0 = L=M xCand L= Oy

or : 2) (s) #0 = the irreducible components of (s) have codimension 1

Hence if (s) is non-empty and irreducible, then it is a connected complex submanifold of codimension 1 after
removing the singular points in (s) (see section 8.3.2).

Proof. 1) is just a consequence of proposition 10.5.3 and theorem 9.3.6

2) If (s) # 0, we already showed that it is analytic, hence closed. If we supposed that it is irreducible, we know
by 8.3.2 and theorem 8.2.4 that (s) \ S((s)) is in addition a connected submanifold of M. Moreover (s) is locally
defined by the zero set of 1 holomorphic function f, hence its codimension is 1.
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Intuitively this can also be interpreted as follows : in local coordinates z1, ..., z, where n = dim M, (s) is defined
by the condition f(z1,...,2,) = 0. So we have n coordinates with 1 constraint, which yields n — 1 degrees of
freedom.

In general (s) is neither irreducible nor connected ; it may have different irreducible components, but all compo-
nents have codimension 1 (after removing singularities) by the previous argument. And then one can define

dim ((s)) := maximum of the dimensions of the components = 1

10.5.7 Sections and divisors

If 7 : L — M is a line bundle over M and s € L(M) a global non-zero holomorphic section, we want to assign a
divisor D to the analytic set (s) :
D=Y ny-Y
Y

where ny € Z, Y are irreducible analytic subsets of M of codimension 1 and the sum is locally finite. In order
to consider (s) as a divisor, we set ny to be the vanishing order of s along Y. This is possible since L is a line
bundle, i.e. the section s can be represented by a frame {o} and a holomorphic function f € Oy (U) such that
sip(r) = f(x) - o(x), Vo € U where U C M is a trivializing open set. Then we set

ord;(s) :=ord,(f), Ve €U
This is independent of the chosen frame since sections defining frames do not have zeros in the trivializing set :
si(z) = f(z) -o(x) = g(x) - 7(x) = ords(s) = ord.(f) = orda(g)

where {7} is another frame over U and g € Oy;(U). This is why we consider line bundles for this construction.

In the end we have defined a map £(M) — Div(M) : s+ (s)% := 3>y ordy(s) - Y. Note that Y is in general not
given by a point ; this is only the case if dim M = 1.
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Chapter 11

Tangent vectors and differentials

11.1 The real picture

Let M be a complex manifold of complex dimension n. For the moment we forget about the complex structure,
i.e. we consider M as a real differentiable manifold of real dimension 2n. For this, we have the coordinates

Vke{l,...,n} : zx=ap+iyx = (T1,Y1,...,%n,Yn) : real coordinates

11.1.1 Definitions

We denote by C7; the sheaf of R-valued real differentiable functions on the manifold M. It is a sheaf of rings.
A point derivation of C*°(M) at m € M is a linear map D,,, : C°°(M) — R which satisfies the Leibniz rule :

VfgeC®(M), VAXER : Dy(A-f+9) =X Dp(f) + Dm(g)
Din(f - 9) = Din(f) - g(m) + f(m) - Di(g)

A tangent vector at m is a point derivation at m, i.e. given m € M, a tangent vector is a derivation rule 0,, for
functions which are locally defined at m (in the germ of m) such that 0y, : Cf7 ,, — R is linear and

V9 €Ciim + On(f-9) = Onf)-g(m)+ f(m) - (Omg)

The set of all tangent vectors at m is called the (real) tangent space at m and is denoted by T,,M. We know
that T,, M is a 2n-real dimensional vector space and a basis is given by

{ 0 0 0 0 }

Ozy |m” Oy lm” 7 O |m By Im

(partial derivatives evaluated at m). For short, we denote them in the following by Oy, |m, Oy, |m, etc.

11.1.2 The tangent bundle
The (real) tangent bundle of the manifold M, denoted by TrM, is defined as TgM := || T,, M.
meM
Since T,, M = R?", the foot-map 7 : TeM — M : v = 0,, — m defines a real vector bundle of rank 2n and its
fibers are m=1(m) = T,, M, Vm € M. Moreover TgM is a 4n-real dimensional manifold with chart maps

VYo T HUs) D TinM = 040 (Uy) x R?™ C R
U= 0n = ;i Op,|m + Zj Wj Oy |m (cpa(m) , (v1, w1, ... ,vn,wn)) (11.1)
where (Uy, 9o )acs 18 a 2n-real dimensional atlas of M. A local frame is
Y= {811a6y17~-~ 7awn’8yn}
where e.g. 0;, : Uy — TrM|y, : m +— Op,m- Note that partial derivatives only exist in the charts since,

strictly-speaking, we do not calculate Oy, f, but 9, (f o 1) if f € C5(Uy).
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po 0y, =1idy,, so 0y, and 0y, are sections of TrM. And it is indeed a frame since

{6961 (m)’ ) 8yn (m)} = {a'mlmv s 7ayn\m}

is a basis of T, M for all m € U,. By theorem 9.6.2 this shows in addition that a trivializing covering for Tr M
is indeed given by a coodinate covering of M : Tr M|y, = U, X R2",

Finally we want to compute the cocycles defining the tangent bundle. For this, consider the trivialization
TeMy, = Us x R* via ¢ urr (m, (v1,w1,...,0,,w,))

where m is the unique m € U, such that u € T,,M and (vy,w,...,v,, w,) € R?™ are the coefficients of the
decomposition of w in the basis of T,,, M as in (11.1).

Let now U, and Ug be 2 chart domains with non-empty intersection and associated charts ., s and the
respective coordinates (x,y1,...,20,y,) and (z1,y1,...,Tn,Yn). If (m, (v1, w1, ..., Un, wn)) € Us x R?", then

N ((bgl(m’ (vy, w1, ... ,vn,wn))> = (;Sa(ivi “Ogim + iw]— .8yj|m>
i=1 j=1

n n
= d)a(Zv; “ Ol m +Zw3 . 8y3‘m> = (m, (vi,wi, ..., v}, w,))
i1 j=1

Thus gu,v,(m) : (vi,w1,..., 00, wy) = (v, wy,...,v,,w,) and the relation between these coefficients is given

by the basis change {0y, m, 9y;im} — {02! m. 8y3_|m} in the tangent space T,,, M. But we have the formula :
vl = Z Jji - pt where Jji = Oyi (Uj)‘m : Jacobian matrix

when changing the local coordinates {u‘} — {v7} and the coefficients vary {u’} — {v7}, i.e. as vectors v = J - .

The same happens here by changing the coordinates {z1,y1,...,Zn,yn} — {21,941, ..., 2}, ¥, }, hence
.t ti, / / Iy aib t
gu.us(m) = "V, W, U, W) = (U, WU, W) = 9. 7) v, wey e, U, W)

where ¢ = @, 0 gpgl is the transition function (2/,y") = ¥ (z,y). The cocycle gy, v, is therefore given by the
2n x 2n—Jacobian matrix of the transition map 1. The coordinate change 1 being bijective, the determinant of
the Jacobian matrix is in addition non-zero.

11.1.3 Vector fields

A local vector field on M is a local section of the tangent bundle Tgr M. We denote the sheaf of local sections of
TgrM (i.e. the sheaf of local vector fields on M) by Tg. Hence X is a vector field on U < X € Tr(U). As sheaf
of local sections, Tg is thus a locally free sheaf of Oy;—modules of rank 2n.

In a coordinate neighborhood U, a local vector field X € Tg(U,) (a local section) hence writes uniquely as

n n
X = Zfi Oy, + Zgj -0y, for some f;, g; € Cp37(Us) as in (9.11)
i=1 j=1

A global vector field on M is a differentiable map X : M — TrM such that Vm € M, X(m) € T,, M and there
is an open neighborhood U C M around m such that Xy is a local vector field as defined above.

11.2 The complex picture

Now we introduce the complex structure into the tangent space and the tangent bundle. Recall that

R A YRR RN O A
ko k Yk 82’1€72 8$k 8y;€

95 =3 )  Vke{l,....n}  (11.2)

oz ' oy

This transformation is biholomorphic and hence defines a holomorphic change of coordinates on M.
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11.2.1 The complex tangent bundle

Let n = dimc M. We define the complex tangent space at m € M as Tc M := T,,, M ® C. Intuitively this just
means that we now also allow complex-valued functions. It is indeed the complexified version of the real tangent

space. The dimension of this space now strongly depends on whether we consider it as a real or a complex vector
space. First of all : dimg(T,, M) = dimc(T,, M) = 2n.

Proof. We know that dimg(T,,M) = 2n and a basis over R is given by {94, |m; 0y, m> - -+ O, |m> Oy, |m - Hence

T,, M only contains ”real values” since any u € T,, M writes as a real linear combination of these basis vectors.
Now we want to find a basis of T,,, M over C. And it is not given by {9.,|m; - .-, 0, |m} since even complex linear
combinations of the 9,,,,, do not generate all the real partial derivatives 0,,|,, and 0y, ,. In order to satisfy
(11.2), we need to add at least all the 0;,,,. This is also sufficient, hence a basis of T,, M over C is given by
{6zl‘m, ceey 8zn\ma 821\7717 ceey 65n‘m} = dimc(TmM) = 2n as well. O

Note that this is not the only possibility : {9u,m; Oy, jm> - - > Oy jm> Oy, |m} Of course also defines a C-basis of

T,.M (since it is already a basis over R). The converse however is not true! Inverting relation (11.2) yields

Vke{l,...,n} :

0 7] 0 0 _ (8 8) (11.3)

don Oz 0z O O \Ox 0%

Since only real linear combinations are allowed it is not possible to generate all the 9,,},, and 9,,,, only with
the set {0, m, -0z, |m» Oz |m> - - -, Oz, |m} Which is therefore not an R-basis of T,, M.

The complex tangent space is obtained by tensorizing the real tangent space with C, hence

dim¢ (TC,mM) = dim¢ (TmM ® (C) = dim¢(T,,, M) - dimc(C) n-1=2n

=2
dimg (T¢, M) = dimg (T, M ® C) = dimg(T,, M) - dimg(C) = 2n -2 = 4n

The occurrence of 4 can be interpreted as ”dividing” a complex C-valued function into real and imaginary part.
By the tensor property we moreover conclude that bases of T¢ ,,, M are

over C : {azl|m,...,azn|m,321|m,...,6gn|m}

over R : {8¢1|m, 8y1|m,..., 8%‘,%, 8yn‘m, ) ~8mm, ) ~ay1‘m,..., ) ~8xn‘m, ) ~8yn‘m}

Now the complex tangent bundle is defined as TcM = || TemM.
meM
As in the real case, we obtain that 7 : TcM — M is a complex vector bundle over M of complex rank 2n and

real rank 4n. But : it is NOT a holomorphic vector bundle! This happens because the second part of the basis

{8zl\m7 e -aazn\m7821|ma .. -aaén|m}

of T m M is not holomorphic (2 is involved).
More precisely, if U is a chart domain with local coordinates (21, ..., z,), then a frame for Tc My is

{0.0,...,0:,,05,...,0:,} = {00,,0yss -, 00, 0y, }

One can however define the holomorphic tangent bundle Ty M, which is of rank n and where a local frame is
given by {0,,,...,0,,}.

11.2.2 Complex vector fields

A local complex vector field X is a local section of the bundle T¢ M and is hence locally of the form
n n
Xo3 0,30 (11.4)
i=1 j=1

for some C-valued real differentiable functions «; and €;. But they are not necessarily holomorphic since TcM
is not a holomorphic vector bundle, hence local sections do not need to be holomorphic neither.
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We denote the sheaf of local complex vector fields by 7¢. Such a vector field on an open set U C M is of

o the type (1,0) ife; =0, Vj € {1,...,n} (only derivatives in the holomorphic directions).

e the type (0,1) if 7, =0, Vi € {1,...,n} (only derivatives in the anti-holomorphic directions).

e holomorphic type if it is of the type (1,0) and the ; are holomorphic in U, i.e. 9% — 0, Vk,ic {1,...,n}.

0z

A global complex vector field on M is a differentiable map X : M — T¢M such that Ym € M, X(m) € Tc, M
and there is an open neighborhood U € M around m such that Xy is a local complex vector field as in (11.4).
And a holomorphic vector field is a global complex vector field that it locally of holomorphic type.

As usual, we want that vector fields do not depend on the chosen coordinates. But this is satisfied here be-
cause M is a complex manifold, i.e. all coordinate changes w = v(z) are holomorphic :

ow du  Jw duw
d oz d .
(5‘2)20 = J(w):<a; (95}):((; aﬂ)) : 2n X 2n-matrix
9z 0z GE
Hence when changing coordinates, permutations can only happen within the individual parts of X in (11.4). It

follows that the type of a vector field is independent under holomorphic coordinate transformations.
Note that this does not hold for real coordinate changes.

11.3 Differential forms

11.3.1 The cotangent bundle
The cotangent bundle is the dual bundle of the tangent bundle. Here again we can define the real, the complex

and the holomorphic cotangent bundle. We quickly go through some constructions :

Consider the dual space T, M, which is again of real and complex dimension 2n. A basis (over R and C)
is given by {dx1jpm, dY1jm; - - - AT jm> AYpjm }, Whereas {dzqjpm, - . ., dznjm; AZ1jm; - - - 5, AZp| } is @ C-basis only. We
recall that dz;,, is the dual element associated to 0, i.e.

i) (O 1m) = Wil (O 1m) = AZijn (Ozm) = dZijm (Oz;1m) = 0
Similarly the dual space 'JI‘C*MM is of complex dimension 2n and admits the same C-basis. Then we set
TeM = (TeM)" = | | T¢,.M
meM

and it follows that a local frame over a chart domain U, C M is given by {dz1,...,dzy,dZ1,...,,dZ,}, where
dz; : U, HTEM‘UQ tom o dzy,

This is again not a holomorphic vector bundle, but one can define the holomorphic cotangent bundle ’]T;OIM ,
which is of rank n and where a local frame is given by {dz,...,dz,}.

Finally one can also consider the exterior powers A" (TSM ) for 7 € {0, 1,...,2n} which have the local frame

{dziy Ao Ndzig NdZ A NAZG L

11.3.2 Definitions

We denote by £ the sheaf of C-valued functions on M which are differentiable with respect to the real structure.
Let V. C M be open. A I-differential on V is a differentiable map w : V — ']I‘EM such that Vm € V|,
w(m) € ']I‘(C*MM and there is an open neighborhood U C V' of m such that wyy defines a local section of the
cotangent bundle over U. Hence a 1-differential is locally of the form

wiy = Zai-dxi—&-ij-dyj :Zgi -dZi-i-Z(Sj-dij
i=1 j=1 i=1 j=1

where a;,b;,¢;,0; € £E(U) and by using the decomposition 2, = 2 +iyr = dzi = day +idyg, Yk € {1,...,n}.
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The sheaf of I-differentials is denoted by £'. Moreover we set :

e wecEMON(V) & §;,=0,Vje{l,...,n}, ie. Wy = ;€ - dz for g; € E(U)

e weEON(V) & g =0,Vie{l,...,n}, Le wy = >2;6;-dz;j for 6; € E(U)

The type of these 1-differentials is respected by holomorphic coordinate changes, but not by real ones. We have

gl — 8(170) @5(0,1)

i.e. any element w € £'(V) can uniquely be decomposed as w = wi + wy with w; € EL(V), wy € £OV(V) and
this decomposition is independent of the chosen coordinates.

Note that £, €39 and £O1 are locally free sheaves of E-modules of rank 2n, n, n respectively and hence
correspond to the sheaf of sections of a certain real vector bundle (for complex manifolds, we need Op;—modules).

The sheaf of holomorphic 1-differentials is denoted by Q}, and it consists of 1-differentials which are locally

over some open set U C M of the form n

Wiy = Z% ~dz;  with v, € Oy (U)
i=1
i.e. the coefficient functions 7; have to be holomorphic in U (not only differentiable).
Q1, is not a sheaf of E-modules since f -7 is not necessarily holomorphic if f € £(U) and v € Op(U). But it is a
locally free sheaf of Op;—modules of rank n and hence corresponds to the sheaf of sections of some holomorphic
vector bundle of rank n. And this is not the cotangent bundle 'JTEM , but the holomorphic bundle T}TOIM .

11.3.3 Concept of a differential : real picture

Let M be a complex manifold of complex dimension n with complex coordinates (z1, ..., z,) and real coordinates
{z1,91,- .-, Zn,yYn}. Let also V. C M be open and f € £(V) be a real differentiable function on V. To f we want
to associate a 1-differential, denoted by df and called the differential of f.

Let {U, }acs be a coordinate covering of M. Then df is defined by the local condition

~ Of — of

VOZEJ . df‘UaﬂV: : 87:1;7( dl’z+zaiyj dyj
=1 J=1

where {0z,,0y,,...,04,,0y,} and {dz1,dyi, ... ,dr,,dy,} are frames over U, of the tangent and cotangent bun-

dle respectively. Thus df is not a function any more : df ¢ £(V), but df € EL(V).

Properties :
1) df is well-defined, i.e. it is independent of the chosen local coordinates.
2) The differential satisfies the Leibniz rule : V f,g € E(V), d(f -g) =df - g+ f - dg.

Proof. 2) is clear since partial derivatives are linear and satisfy the Leibniz rule

1) For simplicity, assume that we are given a real differentiable manifold of real dimension m with a coordinate
covering {Uy }aecs. Choose U, and Ug such that U, N Uz # 0 with local coordinates x = (x1,...,%,,) and
y = (y1,-...,Ym) respectively, related by the differentiable coordinate change y = ¢ (z) with invertible Jacobian
matrix J(¢) = (J;;). Let also f € £(V) for some open set V. We have to show that locally

af Z dyj

i=1

Given the respective covariant and contravariant transformation laws, we obtain :

0 _ Ox;
8% Zﬂ~— Zaii'a@ L dm=Y(J 1>¢kdyk;a§kdyk

k
dy; Of Ox; B Oy Ozi\ Of
; 896]1 dy; Oyk dyr = ]%:z (895]1 ' 8yk) dy; Ay
_ o) 9 N O g N9
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11.3.4 The complex picture
Under the same assumptions as in 11.3.3, let f € £(V') be a C-valued differentiable function on V. We set locally

"9 "9 -
df:zza—i dzi—l—za—;_i dz; = 8f +0f
i=1 i=1

Hence d = 0+ 0 where 0 consists of the derivatives in the holomorphic direction and d contains all derivatives in
the anti-holomorphic direction. Note that 0 and O are well-defined (i.e. independent of the chosen coordinates)
because we already showed in 11.2.2 that holomorphic coordinate changes do not mix the holomorphic and
anti-holomorphic parts. For V' C M open we thus constructed the maps

d:EV)—EWV) ,  9:E&V)—EMNNWV) , d:EWV)— 0NV

We see that f € £(V) is holomorphic in V' < of = 0.
This is the case because f =0 on V = 0fjy = 0 for any open set U C V, hence if U is small enough :

0:5f|U:Z%dz = Z%(m)w&i(m)zzaf(m)-d2i|m:0, VmeU

[ 7 827;
af . . _ _ . .
= ?(m) =0, VmeU, Vie{l,...,n} since dZijm; - - -, dZp|m are linearly independent
Zi
af . . . -
= 9% 0in U, Vie{l,...,n} = f is holomorphic in U
Zi

which means that f is holomorphic in a small neighborhood of any point in V, i.e. f is holomorphic in V.
Hence Oy = ker 0 and this equality even holds in the sheaf-theoretical sense : Oy (V') = ker 9(V') for any open
set V' C M. Moreover kerd is given by the sheaf of locally constant functions because (without details) :

6f af _  Dbasis 6f af .

In particular : kerd(V) = C if V is a connected open set.
Finally one can also consider d, @ and 0 as morphisms of sheaves, i.e. we have the sequences of sheaves

-4t e Lo g 2 gD

The idea is now to continue these sequences to higher orders. In particular we are interested in the questions :
— Does any 1-differential come from a function, i.e. is d surjective 7
— How to integrate a differential form ?

e-Ler L. g L0l

11.3.5 Differentials of higher order

We recall that if W is an n-dimensional vector space, we can define its dual space W*, consisting of all linear
forms on W, and then the exterior power AP(W*), consisting of all p-linear alternating maps on W x ... x W.
In the case of a complex manifold M we hence obtain the tangent bundle T¢c M, the cotangent bundle ']I‘(C*M and
the exterior power bundle AP (T(;M ), all of them not being a holomorphic vector bundle. If U is a coordinate
neighborhood with local coordinates (z1,...,2,) = (1,Y1,- - -, Tn, Yn), & frame over U of these bundles is

TeM {4y, 0yys e On, 0y, } 2 {00,000 02,,05,, ..., 05, )
TeM = {dey,dyr,... deg,dy,} = {dz,. .. dzy, d5 . dZ, )
AP(TEM) : {daiy Ao Adzg, Adyg, Ao Adyg, } 2 {dzay Ao Adz, AdZ; Ao A )

fors+t=p, 1<i1 <...<iz3<n,1<j1<...<j <n.
We already know that local vector fields and 1-differentials are local sections of the tangent bundle and the
cotangent bundle respectively, the associated sheaves being denoted by T¢ and £*.
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Let V C M be open. A p-differential (or differential p-form) on V is a differentiable map w : M — AP(TsM)
such that Vm € V, w(m) € AP(TC*MM) and there is an open neighborhood U C V' of m such that w)y is a local

section of AP(T-M) over U. As a local section it is thus locally given of the form

wy =Y ay dui, AL Adw, Adyg, AL Ady;, =Y Brdzg AL Adz, AdZ AL A dE, (11.5)
I I

where ag, 8y € £(U) and we denoted for short
IT={(ir,....ig,fa,-.sft) | s+t=p, 1<it<...<ig<n, 1<ji<...<ji<n}

Since the individual parts dx;, dy;, dz; and dz; are 1-differentials and the wedge product is anti-commutative,
we obtain that

dr; Ndx; = dy; Ndy; = dz; Ndz; = dzZ; Adz; =0, Vi,j € {1,...7n}
d.’EZ' AN diCj = —dl'j AN dl’l s dyZ AN dy] = —dyj AN dy1 5 dZZ A de = —de AN le 5 dii AN déj = —dfj A dfi

Moreover the descriptions with real coordinates x;,y; and complex coordinates z;, Z; are equivalent (but only
over C!), so both notations can be used without risk of confusion. The relation between both of them is :

dzNdz = (dx +idy) A (de —idy) =dex ANdx —ide ANdy +idy ANdx + dy ANdy = —2idx A dy

We can even see the change (z1,y1,...,Zn,Yn) < (21,--+,2n, 21, -, 2n) as a usual coordinate change on M since
they are related by (11.2) and (11.3), which define a differentiable (but not a holomorphic) change of coordinates.

The sheaf of p-differentials (local sections) is denoted by EP. Moreover if such a form has s holomorphic differ-
entials dz; and t anti-holomorphic differentials dz; as in the second part of (11.5), then we write £'. Hence

&= p et
s+t=p

EP is given by all the possibilities to decompose p € {0,...,2n} into s holomorphic and ¢ anti-holomorphic parts.
As an example consider £2 = £20 @ €11 @ £92, 50 all possible complex types of 2-differentials locally write as

n o n
Z (aim dZil A\ dZm) + Z Z <ﬂ” le A\ de) + Z (’Y’ili2 dfil N df@)
1<ii<iz<n i=1j=1 1<i3<iz<n

for some locally differentiable functions o, i,, Bij, Viiis-

11.3.6 The exterior derivative

The goal is now to extend the definition of the differential of a function to all differential forms. Let w € EP(V).
Then locally over U, w looks like >, aydxr =, Brdzr for ar, Br € £(U). Here we used the short-hand notation

de::dmil/\~~~/\d1’is/\dyj1/\~-~/\dyjt 5 dZ]ZZdZil/\.../\dZis/\dzjl/\.../\dfjt

Then we define dw € EPT1(V) by the local condition (over some small open set U C V)

dwy —Zz%d%/\dw[-ﬁ-zzaw dyz/\dxf—zz%dzz/\dj iz
i=1 1

i=1 I i=1 I

dz; Ndz; (11.6)

Zi

One can show that this is always well-defined (not only for holomorphic changes) and independent of the chosen
local coordinates, in particular the 2 above definitions coincide. Hence a global definition for dw is also given.
The map d : EP(V) — EPTL(V) : w s dw is called the exterior derivative and is a generalization of df.

Properties :

1) The map d is linear and satisfies dod = 0.
D VwelP(V),nell (V) :dlwAn)=dvAn+ (=1 -wAdn.
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Proof. 2) is admitted
1) We only show how the computation is done in the sum involving dz; ; all other terms are similar. Locally :

d(dw) :d(zz% d:ci/\d:m) :ZZ;;;; dwj A dz; A day
i I ¢ ij I v

5'2041 .
= E ( ——F— dx; Adx; A dx;) since dx; Ndx; =0
7 it 8331695]

8201 82041
_Z( 2 D0, dacj/\da:i/\dx1+zaxia$j dxj/\dxi/\dxl)
I 1<j >y

82041 82(1[
_ ZI:; (axiaxj doj A doi Ny + 5om dog Ada A da; )

O%ar 0?ay
= ——F— dz; Ndz; Ndrr — dr; Ndz; Nd =0
EI:Z: (6.131833] i v o 8xl8m] e LC (E[)

where the last equality follows from Schwartz’ Theorem (partial derivatives commute) and anti-commutativity
of the wedge product. O

11.4 De Rham and Dolbeault cohomology

11.4.1 Definitions

Let M be a complex manifold of complex dimension n and V' C M be open. The vector space of all differential
forms on V is given by

E(V):=per(v)
p=0

hence any w € E(V) writes uniquely as w = wo + w1 + ... + way, with w, € EP(V), Vp € {0,...,2n}. Note that
EP(V) = {0} for p > 2n because a linear alternating form with more than 2n arguments in always zero.

By linearity we can thus see the exterior derivative as a map d : E(V) — E(V) with the additional condition
d(EP(V)) c EPTY(V), Vp € {0,...,2n}. So we can consider the sequence of sheaves

0—&-Lgt g2 d, Ligm d (11.7)

which means that for any open set V' C M (not necessarily a coordinate neighborhood), we have the sequence of
finite-dimensional vector spaces

0}y — V) L erv) L vy L L ey L o) (11.8)
Since d o d = 0, we hence know that (11.7) is a complez of sheaves.

Let w € E(V) be a differential form. We say that w is closed if w € kerd, i.e. dw = 0. w is called ezact if
w € imd, i.e. there is a form n € E(V) such that w = dn. We also define the two vector spaces :

ZE (V) i=kerdN&’(V) ,  BiR(V):=imdn&(V)=d(EP~1(V))

Hence Z&; (V) contains all closed p-forms, called cocycles or cochains, and Bhp (V) contains all exact p-forms,
called coboundaries. The p'* de Rham cohomology of V is then given by

Hig (V) = Zgr (V) / Big (V)
This now allows us to compute the cohomology of the sequence (11.8), which encodes the topology of M on V.

(11.8) is called an ezact sequence if HYp (V) = {0} for all p, i.e. if Zh (V) = Bi(V), Vp € {0,...,2n}. Hence
the cohomology "measures” the exactness of the sequence.
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11.4.2 Results

Since d o d = 0, we obtain that any exact form is closed. The converse however is not always true and depends
on the considered open set V. Actually :

the sequence (11.8) is exact < Zip (V) = Biz(V),Vp < Vp: closed p-forms are exact on V

In other words, the sequence is exact if and only if we can integrate the differential forms on V. And we have
the following important result :

Lemma of Poincaré :
If V.C M is a contractible open set, then Hi. (V) = {0}, Vp > 1.

An open set V' C M is called contractible if there is an zp € V' and a differentiable maps ¢ : [0,1] x V' — V such
that ¢(0,z) = xg and ¢(1,2) =z, Vz € V.
Examples of contractible sets are e.g. R™, C" open balls and star-shaped sets.

Remark :
Since the kernel of d : £(V) — £1(V) is given by the locally constant functions on V, one usually extends the
sequence (11.7) to the augmented complex
0—Cye-be L2l  Lignm dyy

where 7 is the inclusion map and Cj; denotes the sheaf of locally constant functions on M.

11.4.3 Holomorphic p-forms

Recall that Q}, is the sheaf of holomorphic 1-differentials which are locally of the form w = >, fi - dz; where the
coefficient-functions f; are holomorphic whenever defined.

In a similar way one can also define holomorphic differentials of higher order. Let V' C M be open. A holomorphic
p-form on V is a differential p-form that is locally over U of the form

Wiy = Zf[ le'l /\le'2 /\.../\dZip
I

for f € Oy (U) and 1 <43 < ... < i, < n. The vector space of holomorphic p-forms on V is denoted by QP (V),
with Q°(V) = O (V). Then we set

Qv) =P arw)

p=0

Since QP(V) C £P(V) for all p, the exterior derivative d also applies to such forms, but the result may no longer
be a holomorphic form : d((V)) € Q(V). Thus we have to consider the decomposition d = 9 + 8 and extend
the operators 9 and 0 as well. Let w € EP(V) = @ E5'(V). We denote again

dzr :=dz;, Ndziy Ao Ndz, A d?jl N dez VANRAN dzjt
Hence if w locally writes as w = Y ; o dzy, we define dw and Ow locally as
8w:iz%dz-/\dz &u:znjz@d?/\dz
e aZl i I ) =4 aZj J 1

i.e. it is just the decomposition of definition (11.6). Similarly as for d, one also shows that 9o 9 = 9o d = 0.
This implies a certain number of properties :

0L V) UTV) D EM(V) s £
Q) ={0} . 8 ENV) — NNV

In particular we can now see the map as 9 : Q(V) — Q(V) with 9(QP(V)) Cc QP+H(V).
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We thus again have the (augmented) complex of sheaves
0—Cy o0y -Lao Lol Lo Lo
If for V' C M open we denote dj, := 0jqr(v), We can also define the holomorphic de Rham cohomology by

HY(V, Q%) :=kerd, / imd,_;

11.4.4 Dolbeault cohomology

We already know that if w € £9¢(V) is a (s, t)-form, then dw is a (s + 1,t)-form and dw is a (s, + 1)-form.
Now fix p € {0,...,n} and consider the (augmented) complex of sheaves

i 5] 0 5} 0 0
00— Qr Ly er0 Zygrt Oy gp2 9, Fern 9y

where the kernel of 9 : EP0(V) — EP1(V) is equal to QP (V) since (p, 0)-forms locally write as
_ n o
w :ZQI dzi, Ndziy N... Ndz;, = Ow :Zzi—{ dzj Ndzi, Ndziy, N ... Ndzg,
1

z
j=1 I 8J

and Ow = 0 means that the derivatives of the coefficient-functions a; vanish with respect to all Zj, i.e. the ar
are holomorphic and w € QP (V). The ¢"* Dolbeault cohomology is then defined by

par . Ker (8 EPUV) - grati(v))
Ho V) =50 @ - v 1(v) > eva(v))

o

Result :
If A C C" is a polydisc, then HZ'*(A) = {0}, Vg > 1.
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