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Homework To be returned via email by Jan 27 at latest

Proofs given in the course need not be repeated but should be quoted properly.

1. Let Xt be a standard Brownian motion on R2 and let u ∈ C2(R2) be a harmonic function,
i.e. ∆u = 0 on R2.

(a) Evaluate the differential of u(Xt) by means of Itô’s formula.

(b) Suppose that u ≥ 0. Explain in terms of the Brownian motion Xt why u must be
constant.

2. Explain why a 2-dimensional Brownian motion Xt winds clockwise and anti-clockwise
arbitrarily many times about the origin, but returns to a neighbourhood of the origin
unwound infinitely often.

3. Let D = B(x;R) denote the open ball of radius R in the Euclidean space Rn centered
at x. Assume that u ∈ C2(D) ∩ C(D̄) is harmonic, i.e. ∆u = 0 on D.

(a) Explain in probabilistic terms why u must be positive on D if u is positive on the
boundary ∂D.

(b) Explain in probabilistic terms why u must take its maximum on the boundary of D.

4. Let A0, A1, . . . , Ar be vector fields on a differentiable manifold M . Consider the partial
differential operator on M given as

L = A0 +
1

2

r∑
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i .

(a) Describe how to construct L-diffusions on M .

(b) Let D be an open, relatively compact domain in D and suppose that τD(x) < ∞
almost surely for each x ∈ D where τD(x) is the first hitting time of ∂D for the
L-diffusion with starting point x. Let u ∈ C(D̄) ∩ C2(D) be the solution of

Lu− u+ 1 = 0 on D, u(x) = 1 if x ∈ ∂D .

Give a representation of u in terms of the L-diffusion.

(c) Consider the following parabolic equations on M :

(i)
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on ]0,∞[×M subject to the boundary condition: u is continuous on [0,∞[×M and
u(0, ·) = f where f : M → R is a given bounded measurable function.

In each of the two cases (i) and (ii) give a stochastic representation of the solution u
in terms of an appropriately chosen diffusion process.


