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Abstract

A gradient-entropy inequality is established for elliptic diffusion semigroups on arbitrary complete
Riemannian manifolds. As applications, a global Harnack inequality with power and a heat kernel estimate
are derived.
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1. The main result

Let M be a non-compact complete connected Riemannian manifold, and Pt be the Dirichlet
diffusion semigroup generated by L = ∆+∇V for some C2 function V . We intend to establish
reasonable gradient estimates and Harnack type inequalities for Pt . In case that Ric − HessV is
bounded below, a dimension-free Harnack inequality was established in [14] which, according
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to [15], is indeed equivalent to the corresponding curvature condition. See e.g. [2] for equiva-
lent statements on heat kernel functional inequalities; see also [8,3,7] for a parabolic Harnack
inequality using the dimension–curvature condition by shifting time, which goes back to the
classical local parabolic Harnack inequality of Moser [9].

Recently, some sharp gradient estimates have been derived in [11,18] for the Dirichlet semi-
group on relatively compact domains. More precisely, for V = 0 and a relatively compact open
C2 domain D, the Dirichlet heat semigroup P D

t satisfies

|∇P D
t f |(x) ≤ C(x, t)P D

t f (x), x ∈ D, t > 0, (1.1)

for some locally bounded function C : D×]0,∞[→]0,∞[ and all f ∈ B+b , the space of bounded
non-negative measurable functions on M . Obviously, this implies the Harnack inequality

P D
t f (x) ≤ C̃(x, y, t)P D

t f (y), t > 0, x, y ∈ D, f ∈ B+b , (1.2)

for some function C̃ : M2
×]0,∞[→]0,∞[. The purpose of this paper is to establish inequalities

analogous to (1.1) and (1.2) globally on the whole manifold M .
On the other hand however, both (1.1) and (1.2) are, in general, wrong for Pt in place of

P D
t . A simple counter-example is already the standard heat semigroup on Rd . Hence, we turn to

search for the following slightly weaker version of gradient estimate:

|∇Pt f (x)| ≤ δ
[
Pt ( f log f )− Pt f log Pt f

]
(x)+

C(δ, x)

t ∧ 1
Pt f (x),

x ∈ M, t > 0, δ > 0, f ∈ B+b , (1.3)

for some positive function C : ]0,∞[×M →]0,∞[. When Ric − HessV is bounded below,
this kind of gradient estimate follows from [2, Proposition 2.6] but is new without curvature
conditions. In particular, it implies the Harnack inequality with power introduced in [14] (see
Theorem 1.2).

Theorem 1.1. There exists a continuous positive function F on ]0, 1] × M such that

|∇Pt f (x)| ≤ δ (Pt f log f − Pt f log Pt f ) (x)

+

(
F(δ ∧ 1, x)

(
1

δ(t ∧ 1)
+ 1

)
+

2δ
e

)
Pt f (x),

δ > 0, x ∈ M, t > 0, f ∈ B+b . (1.4)

Theorem 1.2. There exists a positive function C ∈ C(]1,∞[×M2) such that

(Pt f (x))α ≤ (Pt f α(y)) exp
{

2(α − 1)
e

+ αC(α, x, y)

(
αρ2(x, y)

(α − 1)(t ∧ 1)
+ ρ(x, y)

)}
,

α > 1, t > 0, x, y ∈ M, f ∈ B+b ,

where ρ is the Riemannian distance on M. Consequently, for any δ > 2 there exists a positive
function Cδ ∈ C([0,∞[×M) such that the transition density pt (x, y) of Pt with respect to
µ(dx) := eV (x)dx, where dx is the volume measure, satisfies

pt (x, y) ≤
exp

{
−ρ(x, y)2/(2δt)+ Cδ(t, x)+ Cδ(t, y)

}√
µ(B(x,

√
2t))µ(B(y,

√
2t))

, x, y ∈ M, t ∈]0, 1[.
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Remark 1.1. According to the Varadhan asymptotic formula for short time behavior, one has
limt→0 4t log pt (x, y) = −ρ(x, y)2, x 6= y. Hence, the above heat kernel upper bound is sharp
for short time, as δ is allowed to approximate 2.

The paper is organized as follows: In Section 2 we provide a formula expressing Pt in terms
of P D

t and the joint distribution of (τ, Xτ ), where X t is the L-diffusion process and τ its hitting
time to ∂D. Some necessary lemmas and technical results are collected. Proposition 2.5 is a
refinement of a result in [18] to make the coefficient of ρ(x, y)/t sharp and explicit. In Section 3
we use parallel coupling of diffusions together with Girsanov transformation to obtain a gradient
estimate for Dirichlet heat semigroup. Finally, complete proofs of Theorems 1.1 and 1.2 are
presented in Section 4.

To prove the indicated theorems, besides stochastic arguments, we make use of a local gradient
estimate obtained in [11] for V = 0. For the convenience of the reader, we include a brief proof
for the case with drift in the Appendix.

2. Some preparations

Let Xs(x) be an L-diffusion process with starting point x and explosion time ξ(x). For any
bounded open C2 domain D ⊂ M such that x ∈ D, let τ(x) be the first hitting time of Xs(x) at
the boundary ∂D. We have

Pt f (x) = E
[

f (X t (x)) 1{t<ξ(x)}
]
, P D

t f (x) = E
[

f (X t (x)) 1{t<τ(x)}
]
.

Let pD
t (x, y) be the transition density of P D

t with respect to µ.
We first provide a formula for the density hx (t, z) of (τ (x), Xτ(x)(x)) with respect to

dt ⊗ ν(dz), where ν is the measure on ∂D induced by µ(dy) := eV (y)dy.

Lemma 2.1. Let K (z, x) be the Poisson kernel in D with respect to ν. Then

hx (t, z) =
∫

D

(
−∂t pD

t (x, y)
)

K (z, y) µ(dy). (2.1)

Consequently, the density s 7→ `x (s) of τ(x) satisfies the equation:

`x (s) =
∫

D

(
−∂t pD

t (x, y)
)
µ(dy). (2.2)

Proof. Every bounded continuous function f : ∂D→ R extends continuously to a function h on
D̄ which is harmonic in D and represented by

h(x) =
∫
∂D

K (z, x) f (z) ν(dz).

Recall that z 7→ K (z, x) is the distribution density of Xτ(x)(x). Hence

E[ f (Xτ(x)(x))] = h(x) =
∫
∂D

K (z, x) f (z) ν(dz).

On the other hand, the identity

h(x) = E[h(X t∧τ(x)(x))]
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yields

h(x) =
∫

D
pD

t (x, y)h(y) µ(dy)+
∫
∂D
ν(dz)

∫ t

0
hx (s, z) f (z)ds

=

∫
D

pD
t (x, y)

(∫
∂D

K (z, y) f (z)ν(dz)

)
µ(dy)+

∫
∂D
ν(dz)

∫ t

0
hx (s, z) f (z)ds

=

∫
∂D

f (z)

(∫
D

pD
t (x, y)K (z, y) µ(dy)+

∫ t

0
hx (s, z)ds

)
ν(dz),

which implies that

K (z, x) =
∫

D
pD

t (x, y)K (z, y) µ(dy)+
∫ t

0
hx (s, z)ds. (2.3)

Differentiating with respect to t gives

hx (t, z) = −∂t

∫
D

pD
t (x, y)K (z, y) µ(dy). (2.4)

Since ∂t pD
t (x, y) is bounded on [ε, ε−1

] × D̄ × D̄ for any ε ∈]0, 1[ , Eq. (2.1) follows by the
dominated convergence.

Finally, Eq. (2.2) is obtained by integrating (2.1) with respect to ν(dz). �

Lemma 2.2. The following formula holds:

Pt f (x) = P D
t f (x)+

∫
]0,t]×∂D

Pt−s f (z)hx (s, z) dsν(dz)

= P D
t f (x)+

∫
]0,t]×∂D

Pt−s f (z)P D
s/2h.(s/2, z)(x) dsν(dz).

Proof. The first formula is standard due to the strong Markov property:

Pt f (x) = E
[

f (X t (x))1{t<ξ(x)}
]
= E

[
f (X t (x))1{t<τ(x)}

]
+ E

[
f (X t (x))1{τ(x)<t<ξ(x)}

]
= P D

t f (x)+ E
[
E
[

f (X t (x))1{τ(x)<t<ξ(x)}|(τ (x), Xτ(x)(x))
]]

= P D
t f (x)+

∫
]0,t]×∂D

Pt−s f (z)hx (s, z) ds ν(dz). (2.5)

Next, since

∂s pD
s (x, y) = LpD

s (·, y)(x) = L P D
s/2 pD

s/2(·, y)(x)

= P D
s/2(LpD

s/2(·, y))(x) = P D
s/2(∂u pD

u (·, y)|u=s/2)(x),

it follows from (2.1) that

hx (s, z) = P D
s/2h.(s/2, z)(x). (2.6)

This completes the proof. �

We remark that formula (2.6) can also be derived from the strong Markov property without
invoking Eq. (2.1). Indeed, for any u < s and any measurable set A ⊂ ∂D, the strong Markov
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property implies that

P
{
τ(x) > s, Xτ(x)(x) ∈ A

}
= E

[(
1{u<τ(x)}

)
P
{
τ(x) > s, Xτ(x)(x) ∈ A|Fu

}]
=

∫
D

pD
u (x, y)P

{
τ(y) > s − u, Xτ(y)(y) ∈ A

}
µ(dy),

and thus,

hx (s, z) = P D
u h.(s − u, z)(x), s > u > 0, x ∈ D, z ∈ ∂D.

Lemma 2.3. Let D be a relatively compact open domain and ρ∂D be the Riemannian distance
to the boundary ∂D. Then there exists a constant C > 0 depending on D such that

P{τ(x) ≤ t} ≤ Ce−ρ
2
∂D(x)/16t , x ∈ D, t > 0.

Proof. For x ∈ D, let R := ρ∂D(x) and ρx the Riemannian distance function to x . Since D
is relatively compact, there exists a constant c > 0 such that Lρ2

x ≤ c holds on D outside the
cut-locus of x . Let γt := ρx (X t (x)), t ≥ 0. By Itô’s formula, according to Kendall [6], there
exists a one-dimensional Brownian motion bt such that

dγ 2
t ≤ 2

√
2γt dbt + c dt, t ≤ τ(x).

Thus, for fixed t > 0 and δ > 0,

Zs := exp
(
δ

t
γ 2

s −
δ

t
cs − 4

δ2

t2

∫ s

0
γ 2

u du

)
, s ≤ τ(x)

is a supermartingale. Therefore,

P{τ(x) ≤ t} = P
{

max
s∈[0,t]

γs∧τ(x) ≥ R

}
≤ P

{
max

s∈[0,t]
Zs∧τ(x) ≥ eδR2/t−δc−4δ2 R2/t

}
≤ exp

(
cδ −

1
t
(δR2

− 4δ2 R2)

)
.

The proof is completed by taking δ := 1/8. �

Lemma 2.4. On a measurable space (E,F , µ̃) satisfying µ̃(E) < ∞, let f ∈ L1(µ̃) be non-
negative with µ̃( f ) > 0. Then for every measurable function ψ such that ψ f ∈ L1(µ̃), there
holds:∫

E
ψ f dµ̃ ≤

∫
E

f log
f

µ̃( f )
dµ̃+ µ̃( f ) log

∫
E

eψ dµ̃. (2.7)

Proof. This is a direct consequence of [12] Lemma 6.45. We give a proof for completeness.
Multiplying f by a positive constant, we can assume that µ̃( f ) = 1. If

∫
E eψ dµ̃ = ∞, then

(2.7) is clearly satisfied.
If
∫

E eψ dµ̃ < ∞, then since
∫

E eψ dµ̃ ≥
∫
{ f>0} e

ψ dµ̃, we can assume that f > 0

everywhere. Now from the fact that eψ 1
f ∈ L1( f µ̃), we can apply Jensen’s inequality to obtain

log
(∫

E
eψ dµ̃

)
= log

(∫
E

eψ
1
f

f dµ̃
)
≥

∫
E

log
(

eψ
1
f

)
f dµ̃
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(note the right-hand-side belongs to R ∪ {−∞}). To finish we remark that since ψ f ∈ L1(µ̃),∫
E

log
(

eψ
1
f

)
f dµ̃ =

∫
E
ψ f dµ̃−

∫
E

f log f dµ̃. �

Finally, in order to obtain precise gradient estimate of the type (1.4), where the constant in
front of ρ(x, y)/t is explicit and sharp, we establish the following revision of [18, Theorem 2.1].

Proposition 2.5. Let D be a relatively compact open C2 domain in M and K a compact subset
of D. For any ε > 0, there exists a constant C(ε) > 0 such that

|∇ log pD
t (·, y)(x)| ≤

C(ε) log(1+ t−1)
√

t
+
(1+ ε)ρ(x, y)

2t
,

t ∈]0, 1[, x ∈ K , y ∈ D. (2.8)

In addition, if D is convex, the above estimate holds for ε = 0 and some constant C(0) > 0.

Proof. Since δ := minK ρ∂D > 0, it suffices to deal with the case where 0 < t ≤ 1 ∧ δ. To this
end, we combine the argument in [18] with relevant results from [16,17]. Let t ∈ (0, 1∧ δ], t0 =
t/2 and y ∈ D be fixed, and take

f (x, s) = pD
s+t0(x, y), x ∈ D, s > 0.

(a) Applying Theorem A.1 of the Appendix to the cube

Q := B(x, ρ∂D(x))× [s − ρ∂D(x)
2/2, s] ⊂ D × [−t0, t0], s ≤ t0,

we obtain

|∇ log f (x, s)| ≤
c0

ρ∂D(x)

(
1+ log

A

f (x, s)

)
, s ≤ t0, (2.9)

where A := supQ f and c0 > 0 is a constant depending on the dimension and curvature on D.
By [7, Theorem 5.2],

A ≤ c1 f
(

x, s + ρ∂D(x)
2
)
, s ∈]0, 1], x ∈ D, (2.10)

holds for some constant c1 > 0 depending on D and L . Moreover, by the boundary Harnack
inequality of [4] (which treats Z = 0 but generalizes easily to non-zero C1 drift Z ),

f
(

x, s + ρ∂D(x)
2
)
≤ c2 f (x, s), s ∈]0, 1], x ∈ D, (2.11)

for some constant c2 > 0 depending on D and L . Combining (2.9)–(2.11), there exists a constant
c > 0 depending on D and L such that

|∇ log f (x, s)| ≤
c
√

s
, x ∈ D, s ∈]0, t0] with ρ∂D(x)

2
≤ s. (2.12)

(b) Let

Ω =
{
(x, s) : x ∈ D, s ∈ [0, t0], ρ∂D(x)

2
≥ s

}
and B = supΩ f . Since ∂s f = L f , for any constant b ≥ 1, we have

(L − ∂s)

(
f log

bB

f

)
= −
|∇ f |2

f
.
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Next, again by ∂s f = L f and the Bochner–Weizenböck formula,

(L − ∂s)
|∇ f |2

f
≥ −2k

|∇ f |2

f
,

where k ≥ 0 is such that Ric−∇Z ≥ −k on D. Then the function

h :=
s|∇ f |2

(1+ 2ks) f
− f log

bB

f

satisfies

(L − ∂s)h ≥ 0 on D×]0,∞[. (2.13)

Obviously h(·, 0) ≤ 0, and (2.12) yields h(x, s) ≤ 0 for s = ρ∂D(x)2 provided the constant b is
large enough. Then the maximum principle and inequality (2.13) imply h ≤ 0 on Ω . Thus,

|∇ log f (x, s)|2 ≤ (2k + s−1) log
bB

f
, (x, s) ∈ Ω . (2.14)

(c) If D is convex, by [16, Theorem 2.1] with δ =
√

t and t = 2t0, we obtain (note the
generator therein is 1

2 L)

f (x, t0) = pD
2t0(x, y) = pD

2t0(y, x) ≥ c1ϕ(y) t−d/2
0 e−ρ(x,y)

2/8t0 , x ∈ K , y ∈ D

for some constant c1 > 0, where ϕ > 0 is the first Dirichlet eigenfunction of L on D. On the
other hand, the intrinsic ultracontractivity for P D

t implies (see e.g. [10])

f (z, s) = pD
s+t0(z, y) ≤ c2 ϕ(y) t−(d+2)/2

0 , z, y ∈ D, s ≤ t0,

for some constant c2 > 0 depending on D, K and L . Combining these estimates we obtain

B

f (x, s)
≤ c3 t−1

0 eρ(x,y)
2/8t0 , x ∈ K , s ≤ t0,

for some constant c3 > 0 depending on D, K and L . Hence by (2.14) for s = t0 we get the
existence of a constant C > 0 such that

|∇ log pD
2t0(·, y)|2 ≤ (t−1

0 + 2k)

(
C + log t−1

0 +
ρ(x, y)2

8t0

)
for all y ∈ D, x ∈ K and t0 ∈]0, 1[ with t0 ≤ ρ∂D(x)2. This completes the proof by noting that
t = 2t0.

(d) Finally, if D is not convex, then there exists a constant σ > 0 such that

〈∇X N , X〉 ≥ −σ |X |2, X ∈ T ∂D,

where N is the outward unit normal vector field of ∂D, and T ∂D is the set of all vector fields
tangent to ∂D. Let ψ ∈ C∞(D̄) such that ψ = 1 for ρ∂D ≥ ε, 1 ≤ ψ ≤ e2εσ for ρ∂D ≤ ε,
and N logψ |∂D ≥ σ . By Lemma 2.1 in [17], ∂D is convex under the metric g̃ := ψ−2

〈·, ·〉. Let
∆̃, ∇̃ and ρ̃ be respectively the Laplacian, the gradient and the Riemannian distance induced by
g̃. By Lemma 2.2 in [17],

L := ∆+∇V = ψ−2
[
∆̃+ (d − 2)ψ∇ψ

]
+∇V .
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Since D is convex under g̃, as explained in the first paragraph in Section 2 of [17],

g̃(∇̃ρ̃(y, ·), ∇̃ϕ)|∂D < 0,

so that

σ̃ (y) := sup
D

g̃(∇̃ρ̃(y, ·), ∇̃ϕ) <∞, y ∈ D.

Hence, repeating the proof of Theorem 2.1 in [16], but using ρ̃ and ∇̃ in place of ρ and ∇
respectively, and taking into account that ψ → 1 uniformly as ε→ 0, we obtain

pD
2t0(x, y) ≥ C1(ε)ϕ(y)t

−d/2
0 e−C2(ε)ρ̃(x,y)2/8t0

≥ C1(ε)ϕ(y)t
−d/2
0 e−C2(ε)C3(ε)ρ(x,y)2/8t0

for some constants C1(ε),C2(ε),C3(ε) > 1 with C2(ε),C3(ε)→ 1 as ε→ 0. Hence the proof
is completed. �

3. Gradient estimate for Dirichlet heat semigroup using coupling of diffusion processes

Proposition 3.1. Let D be a relatively compact C2 domain in M. For every compact subset K
of D, there exists a constant C = C(K , D) > 0 such that for all δ > 0, t > 0, x0 ∈ K and for
all bounded positive functions f on M,

|∇P D
t f (x0)| ≤ δP D

t

(
f log

(
f

P D
t f (x0)

))
(x0)+ C

(
1

δ(t ∧ 1)
+ 1

)
P D

t f (x0). (3.1)

Proof. We assume that t ∈]0, 1[, the other case will be treated at the very end of the proof.
We write ∇V = Z so that L = ∆ + Z . Since P D

t only depends on the Riemannian metric
and the vector field Z on the domain D, by modifying the metric and Z outside of D we may
assume that Ric−∇Z is bounded below (see e.g. [13]); that is,

Ric−∇Z ≥ −κ (3.2)

for some constant κ ≥ 0.
Fix x0 ∈ K . Let f be a positive bounded function on M and Xs a diffusion with generator L ,

starting at x0. For fixed t ≤ 1, let

v =
∇P D

t f (x0)

|∇P D
t f (x0)|

and denote by u 7→ ϕ(u) the geodesics in M satisfying ϕ̇(0) = v. Then

d
du

∣∣∣∣
u=0

P D
t f (ϕ(u)) =

∣∣∣∇P D
t f (x0)

∣∣∣ .
To formulate the coupling used in [1], we introduce some notations.

If Y is a semimartingale in M , we denote by dY its Itô differential and by dmY the martingale
part of dY : in local coordinates,

dY =

(
dY i
+

1
2
Γ i

jk(Y ) d〈Y j , Y k
〉

)
∂

∂x i
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where Γ i
jk are the Christoffel symbols of the Levi–Civita connection; if dY i

= dM i
+dAi where

M i is a local martingale and Ai a finite variation process, then

dmY = dM i ∂

∂x i .

Alternatively, if Q(Y ): TY0 M → TY.M is the parallel translation along Y , then

dYt = Q(Y )t d
(∫ .

0
Q(Y )−1

s ◦ dYs

)
t

and

dmYt = Q(Y )t dNt

where Nt is the martingale part of the Stratonovich integral
∫ t

0 Q(Y )−1
s ◦ dYs .

For x, y ∈ M , and y not in the cut-locus of x , let

I (x, y) =
d−1∑
i=1

∫ ρ(x,y)

0

(
|∇ė(x,y) Ji |

2
+
〈
R(ė(x, y), Ji )Ji +∇ė(x,y)Z , ė(x, y)

〉)
s

ds (3.3)

where ė(x, y) is the tangent vector of the unit speed minimal geodesic e(x, y) and (Ji )
d
i=1 are

Jacobi fields along e(x, y) which together with ė(x, y) constitute an orthonormal basis of the
tangent space at x and y:

Ji (ρ(x, y)) = Px,y Ji (0), i = 1, . . . , d − 1;

here Px,y : Tx M → Ty M is the parallel translation along the geodesic e(x, y).
Let c ∈]0, 1[. For h > 0 but smaller than the injectivity radius of D, and t > 0, let Xh be the

semimartingale satisfying Xh
0 = ϕ(h) and

dXh
s = PXs ,Xh

s
dm Xs + Z(Xh

s ) ds + ξh
s ds, (3.4)

where

ξh
s :=

(
h

ct
+ κh

)
n(Xh

s , Xs)

with n(Xh
s , Xs) the derivative at time 0 of the unit speed geodesic from Xh

s to Xs , and
PXs ,Xh

s
: TXs M → TXh

s
M the parallel transport along the minimal geodesic from Xs to Xh

s . By
convention, we put n(x, x) = 0 and Px,x = Id for all x ∈ M .

By the second variational formula and (3.2) (cf. [1]), we have

dρ(Xs, Xh
s ) ≤

{
I (Xs, Xh

s )−
h

ct
− κh

}
ds ≤ −

h

ct
ds, s ≤ Th,

where Th := inf{s ≥ 0 : Xs = Xh
s }. Thus, (Xs, Xh

s ) never reaches the cut-locus. In particular,
Th ≤ ct and

Xs = Xh
s , s ≥ ct. (3.5)

Moreover, we have ρ(Xs, Xh
s ) ≤ h and

|ξh
s |

2
≤ h2

(
κ +

1
ct

)2

. (3.6)
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We want to compensate the additional drift of Xh by a change of probability. To this end, let

Mh
s = −

∫ s∧ct

0

〈
ξh

r , PXr ,Xh
r

dm Xr

〉
,

and

Rh
s = exp

(
Mh

s −
1
2
[Mh
]s

)
.

Clearly Rh is a martingale, and under Qh
= Rh

·P, the process Xh is a diffusion with generator L .
Letting τ(x0) (resp. τ h) be the hitting time of ∂D by X (resp. by Xh), we have

1{t<τ h} ≤ 1{t<τ(x0)} + 1{τ(x0)≤t<τ h}.

But, since Xh
s = Xs for s ≥ ct , we obtain

1{τ(x0)≤t<τ h} = 1{τ(x0)≤ct}1{t<τ h}.

Consequently,

1
h

(
P D

t f (ϕ(h))− P D
t f (x0)

)
=

1
h

E
[

f (Xh
t )R

h
t 1{t<τ h} − f (X t (0))1{t<τ(x0)}

]
≤

1
h

E
[

f (Xh
t )R

h
t 1{t<τ(x0)} − f (X t (0))1{t<τ(x0)}

]
+

1
h

E
[

f (Xh
t )R

h
t 1{τ(x0)≤ct}1{t<τ h}

]
,

and since Xh
t = X t this yields

1
h

(
P D

t f (ϕ(h))− P D
t f (x0)

)
≤ E

[
f (X t )1{t<τ(x0)}

1
h
(Rh

t − 1)
]

+
1
h

E
[

f (Xh
t )R

h
t 1{τ(x0)≤ct}1{t<τ h}

]
. (3.7)

The left hand side converges to the quantity to be evaluated as h goes to 0. Hence, it is enough
to find appropriate lim sup’s for the two terms of the right hand side. We begin with the first term.
Letting

Y h
s =

∣∣∣∣Mh
s −

1
2
[Mh
]s

∣∣∣∣
and noting that 〈n(Xh

r , Xr ), PXr ,Xh
r
dm Xr 〉 =

√
2 dbr up to the coupling time Th for some one-

dimensional Brownian motion br , we have

Rh
t = exp

(
Mh

t −
1
2
[Mh
]t

)
≤ 1+ Mh

t −
1
2
[Mh
]t + (Y

h
t )

2 exp(Y h
t )

= 1+ Mh
t −

∫ t

0
|ξh

s |
2ds + (Y h

t )
2 exp(Y h

t ).

From the assumptions, exp(Y h
t ) and Y h

t /h have all their moments bounded, uniformly in h > 0.
Consequently, since f is bounded,

lim sup
h→0

E
[

f (X t )1{t<τ(x0)}

1
h

(∫ t

0
|ξh

r |
2 dr + (Y h

t )
2 exp(Y h

t )

)]
= 0,

which implies
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lim sup
h→0

E
[

f (X t )1{t<τ(x0)}

1
h
(Rh

t − 1)
]

≤ lim sup
h→0

E
[

f (X t )1{t<τ(x0)}

1
h

∫ s

0

〈
ξh

r , PXr ,Xh
r

dm Xr

〉]
.

Using Lemma 2.4 and estimate (3.6), we have for δ > 0

E
[

f (X t )1{t<τ(x0)}

1
h

∫ s

0

〈
ξh

r , PXr ,Xh
r
dm Xr

〉]
≤ δP D

t

(
f log

(
f

P D
t f (x0)

))
(x0)

+ δP D
t f (x0) log E

[
1{t<τ(x0)} exp

(
1
δh

∫ ct

0

〈
ξh

s , PXs ,Xh
s
dm Xs

〉)]
≤ δP D

t

(
f log

(
f

P D
t f (x0)

))
(x0)+ δP D

t f (x0) log E
[

exp
(

1

δ2h2

∫ ct

0

∣∣∣ξh
s

∣∣∣2 ds

)]
≤ δP D

t

(
f log

(
f

P D
t f (x0)

))
(x0)+ δP D

t f (x0)
ct

δ2

(
1

c2t2 + κ
2
)

≤ δP D
t

(
f log

(
f

P D
t f (x0)

))
(x0)+

C ′

cδt
P D

t f (x0),

where C ′ = 1 + (cκ)2 (recall that t ≤ 1). Since the last expression is independent of h, this
proves that

lim sup
h→0

E
[

f (X t )1{t<τ(x0)}

1
h
(Rh

t − 1)
]

≤ δP D
t

(
f log

(
f

P D
t f (x0)

))
(x0)+

C ′

cδt
P D

t f (x0). (3.8)

We are now going to estimate lim sup of the second term in Eq. (3.7). By the strong Markov
property, we have

E
[

f (Xh
t )R

h
t 1{τ(x0)≤ct}1{t<τ h}

]
= EQh

[
P D

t−ct f (Xh
ct )1{τ(x0)≤ct<τ h}

]
≤ ‖P D

t−ct f ‖∞Qh
{
τ(x0) ≤ ct < τ h

}
. (3.9)

Since ρ(Xh
s , Xs) ≤ h ct−s

ct for s ∈ [0, ct], we have on {τ(x0) ≤ ct < τ h
}:

ρ∂D(X
h
τ(x0)

) ≤ h
ct − τ(x0)

ct
.

For s ∈ [0, τ h
− τ(x0)], define

Y ′s = ρ(X
h
τ(x0)+s, ∂D),

and for fixed small ε > 0 (but ε > h), let S′ = inf{s ≥ 0, Y ′s = ε or Y ′s = 0}. Since under
Qh the process Xh

s is generated by L , the drift of ρ(Xh
s , ∂D) is Lρ(·, ∂D) which is bounded in a

neighborhood of ∂D. Thus, for a sufficiently small ε > 0, there exists a Qh-Brownian motion β
started at 0, and a constant N > 0 such that

Ys := h
ct − τ(x0)

ct
+
√

2βs + Ns ≥ Y ′s , s ∈ [0, S′].

Let



3664 M. Arnaudon et al. / Stochastic Processes and their Applications 119 (2009) 3653–3670

S = inf {u ≥ 0, Yu = ε or Yu = 0} .

Taking into account that on {τ(x0) = u},

{Y ′S′ = ε} ∪ {S
′ > ct − u} ⊂ {YS = ε} ∪ {S > ct − u},

we have for u ∈ [0, ct],

Qh
{

ct < τ h
|τ(x0) = u

}
≤ Qh

{YS′ = ε|τ(x0) = u} +Qh {S′ ≥ ct − u|τ(x0) = u
}

≤ Qh
{YS = ε|τ(x0) = u} +Qh

{S ≥ ct − u|τ(x0) = u}

≤ Qh
{YS = ε|τ(x0) = u} +

1
ct − u

EQh [S|τ(x0) = u] .

Now using the fact that e−NYs is a martingale and Y 2
s − 2s a submartingale, we get

Qh
{YS = ε|τ(x0) = u} =

1− e−Nh ct−u
ct

1− e−Nε ≤ C1h

and

EQh [S|τ(x0) = u] ≤ EQh

[
Y 2

S |τ(x0) = u
]

≤ ε2 Qh
{YS = ε|τ(x0) = u}

= ε2 1− e−Nh ct−u
ct

1− e−Nε ≤ C2
h(ct − u)

ct
for some constants C1,C2 > 0. Thus,

Qh
{

ct < τ h
|τ(x0) = u

}
≤ C1h +

1
ct − u

C2
h(ct − u)

ct

≤ C1h + C3
h

ct
≤ C4

h

t

for some constants C3,C4 > 0 (recall that t ≤ 1). Denoting by `h the density of τ(x0) under Qh ,
this implies

Qh
{
τ(x0) ≤ ct < τ h

}
=

∫ ct

0
`h(u)Qh

{ct < τ h
|σ h
= u} du

≤ C4
h

t

∫ ct

0
`h(u) du

= C4
h

t
Qh
{τ(x0) ≤ ct} .

In terms of D−h
= {x ∈ D, ρ∂D(x) > h} and σ h

= inf{s > 0, Xh
s ∈ ∂D−h

}, we have
σ h
≤ τ(x0) a.s. Hence, by Lemma 2.3,

Qh
{τ(x0) ≤ ct} ≤ Qh

{
σ h
≤ ct

}
≤ C exp

{
−
ρ∂D−h (ϕ(h))

16ct

}
,

where we used that Xh
s is generated by L under Qh . This implies

Qh
{
τ(x0) ≤ ct < τ h

}
≤ C5

h

t
exp

{
−
ρ∂D−h (ϕ(h))

16ct

}
. (3.10)

Since 1
h

(
P D

t (ϕ(h))− P D
t (x0)

)
converges to |∇P D

t f (x0)|, we obtain from (3.7)–(3.10),
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|∇P D
t f (x0)| ≤ δP D

t

(
f log

(
f

P D
t f (x0)

))
(x0)

+
C ′

cδt
P D

t f (x0)+ C5 ‖P
D

t−ct f ‖∞
1
t

exp
{
−
ρ∂D(x0)

16ct

}
. (3.11)

Finally, as explained in steps (c) and (d) of the proof of Proposition 2.5, for any compact set
K ⊂ D, there exists a constant C(K , D) > 0 such that

‖P D
t−ct f ‖∞ ≤ eC(K ,D)/t P D

t f (x0), c ∈ [0, 1/2], x0 ∈ K , t ∈]0, 1].

Combining this with (3.11), we arrive at

|∇P D
t f (x0)| ≤ δP D

t

(
f log

(
f

P D
t f (x0)

))
(x0)+

C ′

cδt
P D

t f (x0)

+C5
1
t

exp
{
−
ρ∂D(x0)

16ct

}
exp

{
C(K , D)

t

}
P D

t f (x0). (3.12)

Finally, choosing c such that

0 < c <
1
2
∧

dist(K , ∂D)

16C(K , D)
,

we get for some constant C > 0,

|∇P D
t f (x0)| ≤ δP D

t

(
f log

(
f

P D
t f (x0)

))
(x0)+ C

(
1
δt
+ 1

)
P D

t f (x0),

x0 ∈ K , δ > 0, (3.13)

which implies the desired inequality.
To finish we consider the case t > 1. From the semigroup property, we have P D

t f =
P D

1 (P
D

t−1 f ). So letting g = P D
t−1 f and applying (3.13) to g at time 1, we obtain

|∇P D
t f (x0)| ≤ δP D

1

(
g log

(
g

P D
1 g(x0)

))
(x0)+ C

(
1
δ
+ 1

)
P D

1 g(x0).

Now using P D
1 g = P D

t f , we get

|∇P D
t f (x0)| ≤ δP D

1 (g log g)(x0)− P D
t f (x0) log P D

t f (x0)+ C

(
1
δ
+ 1

)
P D

t f (x0).

Letting ϕ(x) = x log x , we have for z ∈ D

g log g(z) = ϕ
(
E
[

f (X t−1(z))1{t−1<τ(z)}
])

≤ E
[
ϕ
(

f (X t−1(z))1{t−1<τ(z)}
)]

= E
[
ϕ( f )(X t−1(z))1{t−1<τ(z)}

]
= P D

t−1( f log f )(z),

where we successively used the convexity of ϕ and the fact that ϕ(0) = 0. This implies

|∇P D
t f (x0)| ≤ δP D

t

(
f log

(
f

P D
t f (x0)

))
(x0)+ C

(
1
δ
+ 1

)
P D

t f (x0),

which is the desired inequality for t > 1. �
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4. Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.1. We assume that t ∈]0, 1[ and refer to the end of the proof of
Proposition 3.1 for the case t > 1. Fixing δ > 0 and x0 ∈ M , we take R = 160/(δ ∧ 1). Let D
be a relatively compact open domain with C2 boundary containing B(x0, 2R) and contained in
B(x0, 2R + ε) for some small ε > 0. By the countable compactness of M , it suffices to prove
that there exists a constant C = C(D) such that (1.4) holds on B(x0, R) with C in place of
F(δ ∧ 1, x0). We now fix x ∈ B(x0, R), t ∈]0, 1] and f ∈ B+b . Without loss of generality, we
may and will assume that Pt f (x) = 1.

(a) Let Ps(x, dy) be the transition kernel of the L-diffusion process, and for x ∈ D, z ∈ M ,
let

νs(x, dz) =
∫
∂D

hx (s/2, y) Pt−s(y, dz) ν(dy),

where ν is the measure on ∂D induced by µ(dy) = eV (y)dy. By Lemma 2.2 we have

Pt f (x) = P D
t f (x)+

∫
]0,t]×D×M

pD
s/2(x, y) f (z) dsµ(dy)νs(y, dz).

Then

|∇Pt f (x)| ≤ |∇P D
t f (x)|

+

∫
]0,t]×D×M

|∇ log pD
s/2(·, y)(x)| pD

s/2(x, y) f (z) dsµ(dy)νs(y, dz)

=: I1 + I2. (4.1)

(b) By Proposition 3.1, we have

I1 ≤ δP D
t ( f log f )(x)+

δ

e
+ C

(
1
δt
+ 1

)
, x ∈ B(x0, R), t ∈]0, 1[, δ > 0 (4.2)

for some C = C(D) > 0.

(c) By Proposition 2.5 with ε = 1, we have

I2 ≤

∫
]0,t]×M×D

[
C log(e+ s−1)

√
s

+
2ρ(x, y)

s

]
pD

s/2(x, y) f (z) dsνs(y, dz)µ(dy) (4.3)

for some C = C(D) > 0 and all t ∈]0, 1]. Applying Lemma 2.4 to the measure µ̃ :=
pD

s/2(x, y) ds νs(y, dz)µ(dy) on E :=]0, t] × M × D so that

µ̃(E) = P(τ (x) ≤ t < ξ(x)) ≤ 1,

we obtain

I2 ≤ δ E
[
( f log f )(X t (x))1{τ(x)≤t<ξ(x)}

]
+
δ

e
+ δE

[
f (X t (x))1{τ(x)≤t<ξ(x)}

]
× log

∫
]0,t]×M×D

exp
{

C log(e+ s−1)

δ
√

s
+

2ρ(x, y)

sδ

}
ds pD

s/2(x, y)νs(y, dz) µ(dy)

≤ δE
[
( f log f )(X t (x))1{τ(x)≤t<ξ(x)}

]
+
δ

e
+ δE

[
f (X t (x))1{τ(x)≤t<ξ(x)}

]
× log

∫
]0,t]×M×D

exp
{

A

δ
+

9R

sδ

}
ds pD

s/2(x, y)νs(y, dz) µ(dy), (4.4)
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where

A := sup
r>0

{
C
√

r log(e+ r)− r
}
<∞.

We get

I2 ≤ δE
[
( f log f )(X t (x))1{τ(x)≤t<ξ(x)}

]
+
δ

e

+ δE
[

f (X t (x))1{τ(x)≤t<ξ(x)}
] (

log E
[
exp (9R/δτ(x))

]
+

A

δ

)
≤ δE

[
( f log f )(X t (x))1{τ(x)≤t<ξ(x)}

]
+
δ

e
+ δ log E

[
exp (9R/δτ(x))

]
+ A

≤ δE
[
( f log f )(X t (x))1{τ(x)≤t<ξ(x)}

]
+ δ log E

[
exp

(
9R

(δ ∧ 1)τ (x)

) δ∧1
δ

]
+ A +

δ

e

= δE
[
( f log f )(X t (x))1{τ(x)≤t<ξ(x)}

]
+ (δ ∧ 1) log E

[
exp

(
9R

(δ ∧ 1)τ (x)

)]
+ A +

δ

e
. (4.5)

By Lemma 2.3 and noting that ρ∂(x) ≥ R, we have

E
[

exp
(

9R

(δ ∧ 1)τ (x)

)]
≤ 1+ E

[
9R

(δ ∧ 1)τ (x)
exp

(
9R

(δ ∧ 1)τ (x)

)]
= 1+

∫
∞

0

9Rs

(δ ∧ 1)
exp

(
9Rs

(δ ∧ 1)

)
d
ds

(
−P{τ(x) ≤ s−1

}

)
ds

= 1+
9R

(δ ∧ 1)

∫
∞

0

(
9R

(δ ∧ 1)
s + 1

)
exp

(
9Rs

(δ ∧ 1)

)
P{τ(x) ≤ s−1

} ds

≤ 1+
9R

(δ ∧ 1)

∫
∞

0

(
9R

(δ ∧ 1)
s + 1

)
exp

(
9Rs

(δ ∧ 1)

)
exp

(
−R2s

16

)
ds

= 1+
9R

(δ ∧ 1)

∫
∞

0

(
9R

(δ ∧ 1)
s + 1

)
exp

(
−Rs

(δ ∧ 1)

)
ds

= 1+ 9
∫
∞

0
(9u + 1) exp (−u) du =: A′,

since R = 160/(δ ∧ 1). This along with (4.5) yields

I2 ≤ δ E
[
( f log f )(X t (x))1{τ(x)≤t<ξ(x)}

]
+ log A′ + A +

δ

e
. (4.6)

The proof is completed by combining (4.6) with (4.1), (4.2) and (4.4). �

Proof of Theorem 1.2. By Theorem 1.1,

|∇Pt f (x)| ≤ δ (Pt ( f log f )(x)− (Pt f )(x) log Pt f (x))

+

(
F(δ ∧ 1, x)

(
1

δ(t ∧ 1)
+ 1

)
+

2δ
e

)
Pt f (x), δ > 0, x ∈ M. (4.7)
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For α > 1 and x 6= y, let β(s) = 1 + s(α − 1) and let γ : [0, 1] → M be the minimal geodesic
from x to y. Then |γ̇ | = ρ(x, y). Applying (4.7) with δ = α−1

αρ(x,y) , we obtain

d
ds

log(Pt f β(s))α/β(s)(γs) =
α(α − 1)

β(s)2
Pt ( f β(s) log f β(s))− (Pt f β(s)) log Pt f β(s)

Pt f β(s)
(γs)

+
α

β(s)

〈∇Pt f β(s), γ̇s〉

Pt f β(s)
(γs)

≥
αρ(x, y)

β(s)Pt f β(s)(γs)

{
α − 1
αρ(x, y)

(
Pt ( f β(s) log f β(s))− (Pt f β(s)) log Pt f β(s)

)
(γs)

− |∇Pt f β(s)(γs)|

}
≥ −F

(
α − 1
αρ(x, y)

∧ 1, γs

)(
α2ρ2(x, y)

β(s)(α − 1)(t ∧ 1)
+
αρ(x, y)

β(s)

)
−

2(α − 1)
eβ(s)

≥ −C(α, x, y)

(
αρ2(x, y)

(α − 1)(t ∧ 1)
+ ρ(x, y)

)
−

2(α − 1)
e

where C(α, x, y) := sups∈[0,1]
1
α

F
(

α−1
αρ(x,y) ∧ 1, γs

)
. This implies the desired Harnack

inequality.
Next, for fixed α ∈]1, 2[, let

K (α, t, x) = sup
{

C(α, x, y) : y ∈ B(x,
√

2t)
}
, t > 0, x ∈ M.

Note K (α, t, x) is finite and continuous in (α, t, x) ∈]1, 2[×]0, 1[×M . Let p := 2/α. For fixed
t ∈]0, 1[, the Harnack inequality gives for y ∈ B(x,

√
2t),

(Pt f (x))2 ≤ (Pt f α(y))p exp
{

2(2− p)

e
+ 2K (α, t, x)

(
2α
α − 1

+
√

2t

)}
.

Then, choosing T > t such that q := p/2(p − 1) < T/t ,

µ
(

B(x,
√

2t)
)

exp
{
−

2(2− p)

e
− 2K (α, t, x)

(
2α
α − 1

+
√

2t

)
−

t

T − qt

}
(Pt f (x))2

≤

∫
B(x,
√

2t)
(Pt f α(y))p exp

{
−
ρ(x, y)2

2(T − qt)

}
µ(dy).

Similarly to the proof of [1, Corollary 3], we obtain that for any δ > 2, choosing α = 2δ
2+δ ∈]1, 2[

such that δ > 2
2−α =

p
p−1 > 2, there is a constant c(δ) > 0 such that the following estimate

holds:

Eδ(x, t) :=
∫

M
pt (x, y)2 exp

{
ρ(x, y)2

δt

}
µ(dy)

≤

exp
{

c(δ)K (α, t, x)(1+
√

2t)
}

µ(B(x,
√

2t))
, t > 0, x ∈ M.

By [5, Eq. (3.4)], this implies the desired heat kernel upper bound for Cδ(t, x) := c(δ)K (α, t, x)
(1+
√

2t). �
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Appendix

The aim of the Appendix is to explain that the arguments in Souplet–Zhang [11] and
Zhang [18] for gradient estimates of solutions to heat equations work as well in the case with
drift.

Theorem A.1. Let L = ∆+ Z for a C1 vector field Z. Fix x0 ∈ M and R, T, t0 > 0 such that
B(x0, R) ⊂ M. Assume that

Ric−∇Z ≥ −K (A.1)

on B(x0, R). There exists a constant c depending only on d, the dimension of the manifold, such
that for any positive solution u of

∂t u = Lu (A.2)

on Q R,T := B(x0, R)× [t0 − T, t0], the estimate

|∇ log u| ≤ c

(
1
R
+ T−1/2

+
√

K

)1+ log

sup
Q R,T

u

u


holds on Q R/2,T/2.

Proof. Without loss of generality, let N := supQT,R
u = 1; otherwise replace u by u/N . Let

f = log u and ω = |∇ f |2

(1− f )2
. By (A.2) we have

L f + |∇ f |2 − ∂t f = 0

so that

∂tω =
2〈∇ f,∇∂t f 〉

(1− f )2
+

2 |∇ f |2∂t f

(1− f )3

=
2〈∇ f,∇(L f + |∇ f |2)〉

(1− f )2
+

2 |∇ f |2(L f + |∇ f |2)

(1− f )3

=
2〈∇ f,∇(∆ f + |∇ f |2)〉

(1− f )2
+

2 |∇ f |2(∆ f + |∇ f |2)

(1− f )3

+
2〈∇∇ f Z ,∇ f 〉 + 2 Hess f (∇ f, Z)

(1− f )2
+

2 |∇ f |2〈Z ,∇ f 〉

(1− f )3
. (A.3)

Moreover,

Lω = ∆ω +
〈Z ,∇| f |2〉

(1− f )2
+

2|∇ f |2〈Z ,∇ f 〉

(1− f )3

= ∆ω +
2 Hess f (∇ f, Z)

(1− f )2
+

2 |∇ f |2〈Z ,∇ f 〉

(1− f )3
. (A.4)

Finally, by the proof of [11, (2.9)] with −k replaced by Ric(∇ f,∇ f )/|∇ f |2, we obtain

∆ω −
{

2 〈∇ f,∇(∆ f + |∇ f |2)〉

(1− f )2
+

2 |∇ f |2(∆ f + |∇ f |2)

(1− f )3

}
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≥
2 f

1− f
〈∇ f,∇ω〉 + 2(1− f )ω2

+
2ωRic(∇ f,∇ f )

|∇ f |2
. (A.5)

Combining (A.1) and (A.3)–(A.5), we arrive at

Lω − ∂tω ≥
2 f

1− f
〈∇ f,∇ω〉 + 2(1− f )ω2

− 2Kω.

This implies the desired estimate by the Li-Yau cut-off argument as in [11]; the only difference
is, using the notation in [11], in the calculation of −(∆ψ)ω after Eq. 2.13 in [11]. By (A.1) and
the generalized Laplacian comparison theorem (see [3, Theorem 4.2]), we have

Lr ≤
√

K d coth
(√

K/d r
)
≤

d

r
+
√

K d,

and then

−(Lψ)ω = −(∂2
r ψ + (∂rψ)Lr)ω ≤

(
|∂rψ |

2
+ |∂rψ |

d

r
+
√

K d |∂rψ |

)
ω.

The remainder of the proof is the same as in the proof of [11, Theorem 1.1], using Lψ in place
of ∆ψ .

References

[1] M. Arnaudon, A. Thalmaier, F.-Y. Wang, Harnack inequality and heat kernel estimates on manifolds with curvature
unbounded below, Bull. Sci. Math. 130 (2006) 223–233.

[2] D. Bakry, On Sobolev and logarithmic Sobolev inequalities for Markov semigroups, in: K.D. Elworthy, S. Kusuoka,
I. Shigekawa (Eds.), New Trends in Stochastic Analysis, World Sci. Publ., River Edge, NJ, 1997, pp. 43–75.

[3] D. Bakry, Z. Qian, Harnack inequalities on a manifold with positive or negative Ricci curvature, Rev. Math.
Iberoamericana 15 (1999) 143–179.

[4] E.B. Fabes, N. Garofalo, S. Salsa, A backward Harnack inequality and Fatou theorem for nonnegative solutions of
parabolic equations, Illinois J. Math. 30 (1986) 536–565.

[5] A. Grigor’yan, Gaussian upper bounds for the heat kernel on arbitrary manifolds, J. Differential Geom. 45 (1997)
33–52.

[6] W.S. Kendall, The radial part of Brownian motion on a manifold: A semimartingale property, Ann. Probab. 15
(1987) 1491–1500.

[7] X.-D. Li, Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds, J. Math. Pures
Appl. 84 (2005) 1295–1361.

[8] P. Li, S.-T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986) 153–201.
[9] J. Moser, A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math. 17 (1964) 101–134;

Correction: Comm. Pure Appl. Math. 20 (1967) 231–236.
[10] E.M. Ouhabaz, F.-Y. Wang, Sharp estimates for intrinsic ultracontractivity on C1,α-domains, Manu. Math. 122

(2007) 229–244.
[11] P. Souplet, Qi S. Zhang, Sharp gradient estimate and Yau’s Liouville theorem for the heat equation on noncompact

manifolds, Bull. London Math. Soc. 38 (2006) 1045–1053.
[12] D.W. Stroock, An Introduction to the Analysis of Paths on a Riemannian Manifold, in: Mathematical Surveys and

Monographs, vol. 74, American Mathematical Society, 1991.
[13] A. Thalmaier, F.-Y. Wang, Gradient estimates for harmonic functions on regular domains in Riemannian manifolds,

J. Funct. Anal. 155 (1998) 109–124.
[14] F.-Y. Wang, Logarithmic Sobolev inequalities on noncompact Riemannian manifolds, Probab. Theory Related

Fields 109 (1997) 417–424.
[15] F.-Y. Wang, Equivalence of dimension-free Harnack inequality and curvature condition, Integral Equ. Oper. Theory

48 (2004) 547–552.
[16] F.-Y. Wang, Estimates of Dirichlet heat kernels, Stoch. Proc. Appl. 74 (1998) 217–234.
[17] F.-Y. Wang, Estimates of the first Neumann eigenvalue and the log-Sobolev constant on non-convex manifolds,

Math. Nachr. 280 (2007) 1431–1439.
[18] Qi S. Zhang, Some gradient estimates for the heat equation on domains and for an equation by Perelman, Int. Math.

Res. Not. (2006), pp. 39 (Article ID 92314).


	Gradient estimates and Harnack inequalities on non-compact Riemannian manifolds
	The main result
	Some preparations
	Gradient estimate for Dirichlet heat semigroup using coupling of diffusion processes
	Proof of Theorems 1.1 and 1.2
	Appendix
	References


