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Abstract

A gradient-entropy inequality is established for elliptic diffusion semigroups on arbitrary complete
Riemannian manifolds. As applications, a global Harnack inequality with power and a heat kernel estimate
are derived.
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1. The main result

Let M be a non-compact complete connected Riemannian manifold, and P; be the Dirichlet
diffusion semigroup generated by L = A 4 V'V for some C? function V. We intend to establish
reasonable gradient estimates and Harnack type inequalities for P;. In case that Ric — Hessy is
bounded below, a dimension-free Harnack inequality was established in [14] which, according
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to [15], is indeed equivalent to the corresponding curvature condition. See e.g. [2] for equiva-
lent statements on heat kernel functional inequalities; see also [8,3,7] for a parabolic Harnack
inequality using the dimension—curvature condition by shifting time, which goes back to the
classical local parabolic Harnack inequality of Moser [9].

Recently, some sharp gradient estimates have been derived in [11,18] for the Dirichlet semi-
group on relatively compact domains. More precisely, for V = 0 and a relatively compact open
C? domain D, the Dirichlet heat semigroup PtD satisfies

VPP fl(x) < C(x, 1) PP f(x), xeD, t>0, (1.1)

for some locally bounded function C: D x]0, co[—]0, oo[ and all f € BT, the space of bounded
non-negative measurable functions on M. Obviously, this implies the Harnack inequality

PPf(x) <Cx,y,00PPf(y), t>0, x,yeD, feB, (1.2)

for some function C: M?x 10, 0o[—]0, oo[. The purpose of this paper is to establish inequalities
analogous to (1.1) and (1.2) globally on the whole manifold M.

On the other hand however, both (1.1) and (1.2) are, in general, wrong for P; in place of
PtD . A simple counter-example is already the standard heat semigroup on R?. Hence, we turn to
search for the following slightly weaker version of gradient estimate:

C(5,x)
IVP f(x)| <8[Pi(flog f) — Pi flog P f](x) + A1 P f(x),

xeM,t>0,8>0, fe R, (1.3)

for some positive function C:]0, co[xM —]0, co[. When Ric — Hessy is bounded below,
this kind of gradient estimate follows from [2, Proposition 2.6] but is new without curvature
conditions. In particular, it implies the Harnack inequality with power introduced in [14] (see
Theorem 1.2).

Theorem 1.1. There exists a continuous positive function F on 10, 1] x M such that

IVP f )| < 8 (P flog f— P flog P f) (x)

F(S A1 ! 1 28 P,
+< (/\,X)<m+)+?)  f(x),
§>0,xeM, t>0, feB. (1.4)

Theorem 1.2. There exists a positive function C € C(]1, oo[x M?) such that
2a—1) ap?(x,y)
(P FO* < (PFU()exp | ——— +aCla,x, y) [~ 4 p(x, ) ) |
e (=D A1
a>1,1t>0, x,yeM, fe%+,

where p is the Riemannian distance on M. Consequently, for any § > 2 there exists a positive
function Cs € C([0, co[xM) such that the transition density p;(x,y) of P; with respect to
w(dx) == e¥®dx, where dx is the volume measure, satisfies

exp {—p(x, )2/ (281) + Cs(t, x) + Cs(t, )}
Ji(BG V2D R(B(, V20

pi(x,y) < , x,yeM, te€l01[.
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Remark 1.1. According to the Varadhan asymptotic formula for short time behavior, one has
lim,_, 04t log p;(x,y) = —p(x, y)z, x # y. Hence, the above heat kernel upper bound is sharp
for short time, as ¢ is allowed to approximate 2.

The paper is organized as follows: In Section 2 we provide a formula expressing P; in terms
of P,D and the joint distribution of (z, X;), where X; is the L-diffusion process and  its hitting
time to dD. Some necessary lemmas and technical results are collected. Proposition 2.5 is a
refinement of a result in [18] to make the coefficient of p(x, y)/t sharp and explicit. In Section 3
we use parallel coupling of diffusions together with Girsanov transformation to obtain a gradient
estimate for Dirichlet heat semigroup. Finally, complete proofs of Theorems 1.1 and 1.2 are
presented in Section 4.

To prove the indicated theorems, besides stochastic arguments, we make use of a local gradient
estimate obtained in [11] for V = 0. For the convenience of the reader, we include a brief proof
for the case with drift in the Appendix.

2. Some preparations

Let X;(x) be an L-diffusion process with starting point x and explosion time &(x). For any
bounded open C 2 domain D C M such that x € D, let t(x) be the first hitting time of X (x) at
the boundary 0 D. We have

Pf(x) =E[f(X;(x) Li<eoyy] - PPf(x)=E [f(X: () Ty -

Let p,D (x, y) be the transition density of P,D with respect to u.
We first provide a formula for the density hy(f,z) of (t(x), X¢()(x)) with respect to
dr ® v(dz), where v is the measure on 3D induced by u(dy) := e dy.

Lemma 2.1. Let K (z, x) be the Poisson kernel in D with respect to v. Then

et = [ (=000 @) K i@y, @1
D

Consequently, the density s — €, (s) of t(x) satisfies the equation:
_ D
66 = [ () u). 22)
D

Proof. Every bounded continuous function f:3dD — R extends continuously to a function  on
D which is harmonic in D and represented by

h(x) = / K (z, x) f(z) v(dz).
aD
Recall that z — K (z, x) is the distribution density of X (x)(x). Hence
ELS (Xego ()] = h(x) = /é K@@ ),

On the other hand, the identity
h(x) = E[h(X;az(x) (x))]
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yields
t
hx) = / P (. () n(dy) + / b(d2) / (s, 2) £ (2)ds
D oD 0

t
= / PP (x, y) (/ K(Z,y)f(Z)v(dZ)) ,u(dy)+/ V(dZ)/ hy (s, 2) f(2)ds
D aD aD 0

=/ £ (/ pP(x,y>K(z,y>u(dy>+/
oD D 0

which implies that

t

hy (s, z)ds) v(dz),

1t
K(z,x) =/DPtD(x,y)K(z,y)/L(dy)+/0 hy (s, z)ds. (2.3)

Differentiating with respect to ¢ gives

hy(t,z) = —8zAPP(x,y)K(z,y)M(dy)- 24

Since BlptD (x, y) is bounded on [, ¢ 11 x D x D for any ¢ €]0, 1[, Eq. (2.1) follows by the
dominated convergence.
Finally, Eq. (2.2) is obtained by integrating (2.1) with respect to v(dz). U

Lemma 2.2. The following formula holds:

Pf() = PPFx) + / Prey f (s (5. 2) dsv(dz)

10,£1x3D

PP f @) + / Prs f @) PPyl (/2. 2)(x) dsv(dz).
10,¢1x0D

Proof. The first formula is standard due to the strong Markov property:

Pif(x) = E[f(X; ) pzy] = E[ XN Lr<eoony] + E[f (X)) Lz <t< 0y ]
= PP f@) +E[E[f (X)) Lz y<r<en] (T, Xeny (0)]]

PP f(x)+ / Pi_s f(2)hy (s, z) ds v(dz). (2.5)

10,£1x3D

Next, since
aspP (. y) = LpP (. y)(x) = LPD, pb, (. y) ()
= POy (LpDay (o y)(x) = PO, @upl ¢ ) lums ) ().
it follows from (2.1) that
h(s,2) = Pyh (5/2, 2)(x). (2.6)
This completes the proof. [

We remark that formula (2.6) can also be derived from the strong Markov property without
invoking Eq. (2.1). Indeed, for any # < s and any measurable set A C 9D, the strong Markov
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property implies that

P{r(x) > s, X;(x) € A} = E[(lju<ryy) P{r(x) > 5, Xe(n(x) € A7, )]
= /Dpf(x, WP{t(y) > s —u, Xe)(y) € A} udy),

and thus,

hy(s,2) = PPh (s —u,2)(x), s>u>0, xeD, z€dD.

Lemma 2.3. Let D be a relatively compact open domain and pyp be the Riemannian distance
to the boundary 0 D. Then there exists a constant C > 0 depending on D such that

P{r(x) <t} < Ce Pin®@/160  x c D 150

Proof. For x € D, let R := pyp(x) and p, the Riemannian distance function to x. Since D
is relatively compact, there exists a constant ¢ > 0 such that L,o% < ¢ holds on D outside the
cut-locus of x. Let y; := p,(X;(x)), t > 0. By Itd’s formula, according to Kendall [6], there
exists a one-dimensional Brownian motion b; such that

dy? <232y, db; +cdr, 1t <t(x).

Thus, for fixedtr > 0and § > O,

2

8§ , & R N

Zs =exp| -y ——cs—4—2 vidu |, s <1(x)
t t t“ Jo

is a supermartingale. Therefore,

P{r(x) <t} = ]P){ max Ysac(x) = R} =< P{ maX] Zs/\f(x) =€

SR%/t—8¢—482 R/t
s€[0,1] s€[0,t

IA

1
exp <c8 — ;(5R2 — 482R2)) )
The proof is completed by taking § :=1/8. 0

Lemma 2.4. On a measurable space (E, F, i) satisfying fi(E) < 0o, let f € L'(j1) be non-
negative with fu(f) > 0. Then for every measurable function  such that Wf € L'(ft), there
holds:

[wrai< [ sios—Lsan+ oo [ e an @7
E E w(f) E

Proof. This is a direct consequence of [12] Lemma 6.45. We give a proof for completeness.
Multiplying f by a positive constant, we can assume that (f) = 1. If f E eV dit = oo, then
(2.7) is clearly satisfied.

If [peVdii < oo, then since [,eVdii > f{f>0} eV dfi, we can assume that f > 0

everywhere. Now from the fact that e‘ﬁ% € L'(ffv), we can apply Jensen’s inequality to obtain

log </’;e‘/’dﬂ> =log(‘/Ee‘/’%fd,&> leog(e‘/’%> fdn
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(note the right-hand-side belongs to R U {—0o0}). To finish we remark that since ¥ f € L' (@),

/mg(ewl) fdﬂ:/wfdﬁ—/ flog fdii. O
E f E E

Finally, in order to obtain precise gradient estimate of the type (1.4), where the constant in
front of p(x, y)/t is explicit and sharp, we establish the following revision of [18, Theorem 2.1].

Proposition 2.5. Let D be a relatively compact open C* domain in M and K a compact subset
of D. For any & > 0, there exists a constant C (&) > 0 such that

C(e)log(l +171) N (A +e)px,y)
NG 2t '
t€l0,1[, x e K, y e D. (2.8)

|V log pP (-, y)(x)| <

In addition, if D is convex, the above estimate holds for ¢ = 0 and some constant C(0) > 0.

Proof. Since § := ming pyp > 0, it suffices to deal with the case where 0 < t < 1 A §. To this
end, we combine the argument in [18] with relevant results from [16,17]. Lett € (0, 1 A 8], 19 =
t/2 and y € D be fixed, and take

flx,s) = PsDHO(X, y), xe€D,s>0.
(a) Applying Theorem A.1 of the Appendix to the cube
0 = B(x, pap(x)) X [s — pap(x)?/2, 51 C D x [—1t9, o], s < 1o,

we obtain

€0
|[Vlog f(x,s)| < oon () <l + log Fx,s)

where A := sup,, f and ¢o > 0 is a constant depending on the dimension and curvature on D.
By [7, Theorem 5.2],

) , § =<, 2.9)

A<caf (x,s +paD(x)2), s €]0,1], x € D, (2.10)

holds for some constant ¢; > 0 depending on D and L. Moreover, by the boundary Harnack
inequality of [4] (which treats Z = 0 but generalizes easily to non-zero C'! drift Z),

f (354 pp?) S 2f(rs), s €01 xeD, @.11)
for some constant ¢, > 0 depending on D and L. Combining (2.9)—(2.11), there exists a constant
¢ > 0 depending on D and L such that

c

7

|Vlog f(x,s)| < x €D, s €]0, 1p] with pyp(x)* <. (2.12)
(b) Let
= [(x,s) :x e D, s el0,5], pypp(x)* > S}

and B = supy, f. Since d; f = Lf, for any constant b > 1, we have

bB IV £I?
L — 9 log— | = — .
( )(f °¢ f) f
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Next, again by d; f = Lf and the Bochner—Weizenbock formula,
V£|? V2
VIP | IVSP

f S

where k > 0 is such that Ric — VZ > —k on D. Then the function

(L —9)

s|Vf2 bB
=——— — flog—
(1 +2ks) f f
satisfies
(L —935)h >0 on Dx]0, ool. (2.13)

Obviously 4(-,0) <0, and (2.12) yields h(x,s) <0 fors = ,oaD(x)2 provided the constant b is
large enough. Then the maximum principle and inequality (2.13) imply 2 < 0 on {2. Thus,

[Vlog f(x,s)> < 2k +s 1) log bTB, (x,s) € 0. (2.14)

(o) If D is convex, by [16, Theorem 2.1] with § = A/t and t = 21y, we obtain (note the
generator therein is %L)
—d/2 _—p(x.y)?
f 1) = ph (x.y) = ph (3.x) = crp(y) 1y PPV B0y e K, yeD

for some constant ¢; > 0, where ¢ > 0 is the first Dirichlet eigenfunction of L on D. On the
other hand, the intrinsic ultracontractivity for P,” implies (see e.g. [10])

—(d+2)/2
f(z,s)=l)§)+m(z,y)Scch(y)to( R yeD, s<mn,

for some constant ¢; > 0 depending on D, K and L. Combining these estimates we obtain

B 2
<y lePTI By e K, s <1,
fx,s)
for some constant ¢3 > 0 depending on D, K and L. Hence by (2.14) for s = ty we get the
existence of a constant C > 0 such that

p(x,y)z)

|V10gp£0(~, W < (to—l + 2k) (C + logto‘l n o

forall y € D, x € K and 7y €]0, 1[ with 7y < ,oaD(x)z. This completes the proof by noting that
t = 21.
(d) Finally, if D is not convex, then there exists a constant o > 0 such that

(VxN,X)> —c|X|>, X eToD,

where N is the outward unit normal vector field of 9D, and 79D is the set of all vector fields
tangent to dD. Let Y € C°°(D) such that Y =1forpygp >¢, 1 <y < e29 for Pap < &,
and Nlogv{|sp > o. By Lemma 2.1 in [17], d D is convex under the metric g = 1//_2(-, -). Let
A, V and 5 be respectively the Laplacian, the gradient and the Riemannian distance induced by
g. By Lemma 2.2 in [17],

L=A4+VV=y2 [A+(d—2)ww]+vv.
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Since D is convex under g, as explained in the first paragraph in Section 2 of [17],

VA, ), Vo)lap <O,
so that

5(y) =supg(Vp(y, ), Vp) < oo, yeD.
D

Hence, repeating the proof of Theorem 2.1 in [16], but using 5 and V in place of p and V
respectively, and taking into account that {» — 1 uniformly as ¢ — 0, we obtain
—d/2 — ~ 2
Ph . y) = Cr(e)p(y)ty /e CaEP /80
> C (S)w(y)to—d/%—cz(s)cg<s>p<x,y>2/8to

for some constants C1(¢), C2(¢g), C3(g) > 1 with C»(¢), C3(¢) — 1 as ¢ — 0. Hence the proof
is completed. [

3. Gradient estimate for Dirichlet heat semigroup using coupling of diffusion processes

Proposition 3.1. Let D be a relatively compact C*> domain in M. For every compact subset K
of D, there exists a constant C = C(K, D) > 0 such that for all § > 0, t > 0, xo € K and for
all bounded positive functions f on M,

D D f 1 D
IVP” f(xo)| <8P, (flog (m>> (x0) +C <m + 1) P” f(x0). (3.1)

Proof. We assume that ¢ €]0, 1[, the other case will be treated at the very end of the proof.

We write VV = Z sothat L = A + Z. Since PtD only depends on the Riemannian metric
and the vector field Z on the domain D, by modifying the metric and Z outside of D we may
assume that Ric — VZ is bounded below (see e.g. [13]); that is,

Ric — VZ > —k (3.2)

for some constant x > 0.
Fix xo € K. Let f be a positive bounded function on M and X, a diffusion with generator L,
starting at xo. For fixed ¢ < 1, let

v = VPsz()CO)
VPP f(xo0)]
and denote by u — ¢(u) the geodesics in M satisfying ¢(0) = v. Then

du

PP flpw) = |VPP f(x0)|.
u=0
To formulate the coupling used in [1], we introduce some notations.
If Y is a semimartingale in M, we denote by dY its Itd differential and by d,, Y the martingale
part of dY: in local coordinates,
dy = [dy’ + Lpi (Y)d(y/, vk 2
- 27 Ik ’ dxi

xl
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where FJ‘: ¢ are the Christoffel symbols of the Levi—Civita connection; if dY! = dM' +dA" where
M is a local martingale and A’ a finite variation process, then

|
dpY =dM' —.
dx!

Alternatively, if Q(Y): Ty,M — Ty M is the parallel translation along Y, then

dY, = Q(¥), d (/ ();! odYs>
0 t

and
det = Q(Y)t dNt

where N; is the martingale part of the Stratonovich integral fot [0]0% )S_1 o dYj.
For x, y € M, and y not in the cut-locus of x, let

d=1 rp(x.y)
Iy =) /0 (1Vetea 42 + (RECr 30 I i + Vet Z. 6. 7))) ds (3.3)
i=1

where é(x, y) is the tangent vector of the unit speed minimal geodesic e(x, y) and (J,) _ are
Jacobi fields along e(x, y) which together with é(x, y) constitute an orthonormal ba51s of the
tangent space at x and y:

Jilp(x, ) = PeyJi(0), i=1,....d—-1

here Py y: TxM — T, M is the parallel translation along the geodesic e(x, y).
Let ¢ €]0, 1[. For 4 > 0 but smaller than the injectivity radius of D, and t > 0, let X h be the
semimartingale satisfying X/ = ¢(h) and

dX! = Py, yndn X, + Z(X!)ds + £l'ds, (3.4
where

h
gh = (E + Kh) n(x", Xy)

with n(X X,) the derivative at time O of the unit speed geodesic from Xh to Xy, and
Py xn:Tx,M — TxnM the parallel transport along the minimal geodesic from X, to X{. " By
conventlon we put n(x x) =0and Py x =Idforallx € M.

By the second variational formula and (3.2) (cf. [1]), we have

dp(Xs, X)) < I(Xs,Xs)——t—Kh dSS——tds, s < Th,
c c

where T, .= inf{s > 0 : X, = Xﬁ’}. Thus, (Xj, Xﬁ’) never reaches the cut-locus. In particular,
T < ct and

Xy =X" s>ect (3.5)

Moreover, we have p (X, X ﬁ’ ) < hand

2
lEh? < n? (:c + i) . (3.6)
ct
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We want to compensate the additional drift of X” by a change of probability. To this end, let

h SAct n
Ms = _/ <$r7PX’.,X¢ der>7
0

and
1
i h h
R =exp <MS — E[M ]S> .
Clearly R" is a martingale, and under Q" = R".IP, the process X" is a diffusion with generator L.
Letting 7(xo) (resp. ") be the hitting time of 3D by X (resp. by X”), we have
]{t<1.'h} = l{f<‘f(x0)} + l{r(x0)§t<rh}'
But, since Xf = X, for s > ct, we obtain
Lz )<t <oty = Hroy=eny Lp <ohy-
Consequently,
1 1
= (PP @) = PP 7)) = 3 B[ FDRI gty = (X O e |

1 1
< EEI:f(XZh)Rthl{t<r(x0)} - f(Xr(O))l{t<r<xo)1] + gE[f(Xf’)Rf'l{ruo)sa}1{t<rh}]v

and since X! = X, this yields

1 1
= (PP f @) = PP f(x0) < E [f(xt)l{m(xw}z(lef' - 1)}

1
e E [f(th)thl{r(xo)sa}l{t<rh}] . (3.7

The left hand side converges to the quantity to be evaluated as /& goes to 0. Hence, it is enough
to find appropriate lim sup’s for the two terms of the right hand side. We begin with the first term.
Letting

1

v = ‘M!’ - 5m"s

and noting that (n(Xf, X)), Px,.xﬁ d,X,) = \/zdb, up to the coupling time 7}, for some one-
dimensional Brownian motion b,, we have

1 1
R = exp <Mth - E[Mh]l> <l14+M- E[Mh], + (Y2 exp(y"

t
=14 M" —/0 1£112ds + (v exp(y]).

From the assumptions, exp(Yth) and Yth / h have all their moments bounded, uniformly in 4 > O.
Consequently, since f is bounded,

1 ! hi2 hy2
lim supE I:f(Xl)]{t<T(XO)}E (/() |$r | dr + (Yt ) CXP(Y[h)>i| = O,

h—0

which implies
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) 1
limsup E [f(Xt)l{t<T(xo)}E(Rth - 1)i|
h—0

) 1 [f
<limsupE |:f(Xt)1{t<r(xo)}z f <$rh Py, xh derﬂ .
h—0 0

Using Lemma 2.4 and estimate (3.6), we have for § > 0

1 N
E |:f(Xl)1{t<f(X0)}E/0 <§rhv PX,.,Xﬁder>i| = 5P,D (f log (%)) (x0)
t
D 1 ct h
+5P, f(xo)logE[l{m(xO)}exp (5 fo (ss,PXS,ngmxs))]
i 1 2
<sPP (f log <m>> (x0) + 8PP £ (x0) logE [exp <W fo ds)}

i ct {1
<orf (11 (m)) w0+ 382500 5 2+

C/
<sPP (f log (%)) (x0) + EP,D]C(XO),

where C’ = 1 + (ck)? (recall that 7 < 1). Since the last expression is independent of 4, this
proves that

ct

Eh

) 1
limsup E I:f(Xt)l{t<r(xo)}E(Rth - ])i|
h—0

C/
<spP (f log <m)> (x0) + EPIDf(xO)' (3.8)

We are now going to estimate lim sup of the second term in Eq. (3.7). By the strong Markov
property, we have

E I:f(Xth)Rthl{‘f(Xo)fCl}1{t<rh}:| = EQh I:Ptlzctf(xﬁlt)1{1(xg)§ct<rh}:|

= 1PR o Sl @ {7 o) < er < ") (3.9)
Since p(Xi’, X;) < h% for s € [0, ct], we have on {t(xg) < ct < th}:
J ct — 1(x0)
Pap (X)) < h=——.

For s € [0, t" — t(x0)], define

h
Yx/ = p(Xf(xO)_H, aD),

and for fixed small ¢ > 0 (but & > h), let S’ = inf{s > 0, Y] = ¢ or Y] = 0}. Since under
Qh the process X é’ is generated by L, the drift of p(X ?, dD)is Lp(-, d D) which is bounded in a
neighborhood of d D. Thus, for a sufficiently small ¢ > 0, there exists a Qh -Brownian motion 8
started at 0, and a constant N > O such that

t_
Y, :=hc—:(x())+\/§ﬂs+Ns >y, sel0,S].
C
Let
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S=inf{u >0, Y, =¢corY, =0}.
Taking into account that on {7 (xo) = u},
(Yo =e)U{S" >ct —u} C{Ys=¢}U{S > ct —u},
we have for u € [0, ct],
Q' fer < tre) =u) = @ Yy = elr(ro) = u) + Q" {S' = et — ult(x0) = u}
< Q" (Y5 = elv(xo) = u} + Q" {S = ¢t — ulr(x0) = u}

1
= Q" (¥ = elr(x0) = u} + ———Equ [S|7(x0) = u].

Now using the fact that e™V¥s is a martingale and sz — 2s a submartingale, we get
1 — e Nheg"
Q" {¥s = elt(x0) = u} = T _oNe < Cih

and

Egy [SI7(x0) = u] = gy [ V317 (x0) = u]

< &2 Q" (Y5 = elt(x) = u}
1 — e~ NheG h(ct — u)
¢ | —cNe — 2 ct

for some constants Cq, C, > 0. Thus,

1 h(ct —
Q" {ct <tz (xo) = u} < Cih+ () (ct —u)
ct—u ct

h h
< Cih+C3— < Cy—
ct !

for some constants C3, C4 > 0 (recall that ¢ < 1). Denoting by 2" the density of 7 (xp) under Q",
this implies

ct
Q" {‘L’()Co) <ct < Th} = / ") Q et < """ = u}du
0
h/Ct n
Cy— £" () du
t Jo

h
= 04;@’1 {t(x0) < ct}.

IA

In terms of D" = {x € D, pyp(x) > h} and ol = inf{s > 0, Xﬁ‘ € BD_h}, we have
ol < 7(xp) a.s. Hence, by Lemma 2.3,

Q" {r(xo) <1} = Q" [Gh < ct] < CeXp{_w}

16¢t

where we used that X f’ is generated by L under Q". This implies

_ Pyp-(p(h)) }
16¢t ’

Since + (PP (p(h)) — PP (x¢)) converges to |V PP f (x0)|, we obtain from (3.7)~(3.10),

Q" {t(xo) <ct < rh} < C5?exp{ (3.10)
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D D f
VPP f(xo)] < 8P, (flog <—P,D f(xo)))uo)

/

C 1
+ o PP f(x0) + Cs ||P£c,f||oo; exp {

3.11
16c¢t ( )

Finally, as explained in steps (c) and (d) of the proof of Proposition 2.5, for any compact set
K C D, there exists a constant C(K, D) > 0 such that

IPP, flloo <eCEDVIPD f(xg), ¢ e[0,1/2], xo € K, t €]0,1].

_ Pap(x0) }

Combining this with (3.11), we arrive at

C/
IVPP f(x0) < 8PP (f log (L)) (x0) + — PP f(xo)

PP f(xo) cd1
1 C(K,D
+C5;exp{—palD6(:;O)}exp{ (t )}P,Df(xo). (3.12)

Finally, choosing ¢ such that
1 o dist(K, 9D)
2" 16C(K,D)’

we get for some constant C > 0,

0<c<

D D f 1 D
IVP” f(xo)| <8P (flog (m)) (x0) +C <8_t + 1) P” f (x0),

xoe K, §>0, (3.13)

which implies the desired inequality.
To finish we consider the case + > 1. From the semigroup property, we have PtD f =
PID(PIIZIf). So letting g = P£1f and applying (3.13) to g at time 1, we obtain

g 1
IVPP f(x0)| < 8PP (g log (%)) (x0) + C (5 + 1) PP g(xp).

Now using Png = Pth, we get

1
IVEP f(x0)| < 8P (glog g)(xo) — P f (x0) log P” f (x0) + C (g T 1) PP f (xo).
Letting ¢(x) = x log x, we have for z € D
) (E [f(thl(Z))l{t—l<T(Z)}])
E o (f(Xi—1@) ly—1<c2y)]
E [0(f)(Xi-1@) 12 (2]
PP (flog f)(2),

where we successively used the convexity of ¢ and the fact that ¢ (0) = 0. This implies

glogg(z)

I IA

f 1
IVPP f(xo)| < 8PP (f log (m)) (xo) + C (5 - 1) PP f(x0),

which is the desired inequality forr > 1. O
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4. Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.1. We assume that ¢ €]0, 1[ and refer to the end of the proof of
Proposition 3.1 for the case r > 1. Fixing § > 0 and xo € M, we take R = 160/(§ A 1). Let D
be a relatively compact open domain with C? boundary containing B(xo, 2R) and contained in
B(x0,2R + ¢) for some small ¢ > 0. By the countable compactness of M, it suffices to prove
that there exists a constant C = C(D) such that (1.4) holds on B(xp, R) with C in place of
F(8 N1, x09). Wenow fix x € B(xg, R),t €]0,1] and f € %’; Without loss of generality, we
may and will assume that P; f(x) = 1.

(a) Let Pg(x, dy) be the transition kernel of the L-diffusion process, and for x € D,z € M,
let

vs(x, dz) = / hi(s/2,y) Pi—s(y, dz) v(dy),
aD
where v is the measure on d D induced by u(dy) = ") dy. By Lemma 2.2 we have

PfG) = PPF(x) + /

PHa (e, ¥) £(2) dspu(dy)vs (v, da).
10,t]x Dx M

Then
VP, f(x)| < IVPP f(x)l
4 / 1V 1og pDao v ()] pEx. ) £(2) dspa(dy)vy (3, dz)
10,t]x DxM
=L+ Db. 4.1

(b) By Proposition 3.1, we have

I < 8PP (flog f)(x) + g +C (;—t + 1) , xe€B(xo.R), tel0,1[, §>0 (4.2

for some C = C(D) > 0.
(c) By Proposition 2.5 with ¢ = 1, we have

/5
for some C = C(D) > 0 and all r €]0, 1]. Applying Lemma 2.4 to the measure i =
pSD/Z(x, y)ds vs(y, dz)p(dy) on E :=]0, t] x M x D so that

R(E) =P(r(x) =t <&(x)) =1,

Cl - 2p(x,
125/]0 . D[ peds ) 26 y)]pf}z(x,y)f(z)dm(y,dz)u(dy) 43)
XM x

we obtain

)
L < SE[(flog /)X (N (roy<i<sn] + P SE[f (X: ) Lz () <t <€)}

Clog(e+s71) Zp(x,y)} b
x lo / ex { + ds (x, y)vs (v, dz) n(dy)
& 10,t1xM x D P S./s s Pspa (X, Y)Vs Y y

1)
< SE[(f log f)(X: ) ro=r<ery] + R + SE [ £ (X ) e (o)t <£(x)} ]

A 9R b
x log / exp i~ + — 1 ds py)r(x, Yvs(y, dz) u(dy), 4.4
10,/1x M x D 5 s
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where

= sup {CVrlogle+r) —r} < 0.
We get
Iy = SE[(fTog )X 0D ecwr=r<econ] + -
+8E [f (X: )z (=i <0y ] <logE [exp OR/87(x))] + %)

)
< SE [(f log /)(Xi (N rry<i<e ] + =T 81ogE [exp OR/8t(x))] + A

SAL
9R B
< SE[(f log f)(X; () r(x)<t<£(x)} ] + S logE |:exp <—> ] +A+ N

B ADt(x)
= SE[(flog £)(X; () Lz (x)<t <€)} ]

L AIogE <9—R> a4l
BEIPL G A D) e

By Lemma 2.3 and noting that p3(x) > R, we have

2| (—9R )]“*E[ e ()|
P\leorAnm /)| = (8A1) © TP\ G A D)

:1+ * _9Rs ( > _P{r(x) < s~ }) ds
O
9R

=1+ (89f1) (( )s + l) exp <(89/If 1)) Plt(x) <s 1}ds
<1+ R OO( oR s+1)exp< ORs )exp<_R2s> ds
- Al Jy éAD Al 16
=1+ oR w( oR s—i—l)exp(_Rs)ds

Al Jy Al GAD

o0
=1 +9/ Qu + 1) exp (—u) du = A,
0

since R = 160/(5 A 1). This along with (4.5) yields

8
I < SE[(flog )X, ()l {reo=i<ecn] +log A"+ A+ -
The proof is completed by combining (4.6) with (4.1), (4.2) and (4.4). O
Proof of Theorem 1.2. By Theorem 1.1,

IVP f(x)| = 8 (Pi(flog f)(x) = (P f)(x)log Pt f(x))

1 268
+ (F(S/\l,x) (S(IAI) —i—l)—l—?) P f(x), §>0, xeM.

3667
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(4.6)

4.7
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Fora > 1 and x # y,let B(s) = 1 + s(e — 1) and let y: [0, 1] — M be the minimal geodesic
from x to y. Then |y| = p(x, y). Applying (4.7) with § = ag(—;,ly)’ we obtain
ala — 1) P (fPlog fF9) — (P fPD)log P, fP

B(s)? P fPE)

d
I log(P RN BO) () = (¥s)

L (VP PO, y5)
B(s) P[P

- ap(x,y) { oa—1

T B P PO () Lap(x, y)

— |VPtfﬂ<”(ys>|}

— 2.2 _
E—F(a—l/\l,ys>< op’(x, y) +ap(x,y)>_2(a )

(¥s)

(P79 10g £790) — (P fFO) log P fP)) ()

ap(x, y) B(s)— DAl B(s) ef(s)
2
ap”(x, y) 2a—-1
> _C ’ ) T i~/ a~ ’ - -
> —C(a, x y)((a_l)(Ml) +plx y))
where C(o,x,y) = supse[o,l]éF (a;‘&}y) A l,ys>. This implies the desired Harnack
inequality.

Next, for fixed a €]1, 2], let
K(a,t,x):sup{C(a,x,y):yeB(x,«/Z)}, t>0, xeM.

Note K («, t, x) is finite and continuous in (¢, ¢, x) €]1, 2[x]0, I[x M. Let p := 2/«. For fixed
¢ €10, 1[, the Harnack inequality gives for y € B(x, ~/2t),

(Prf(x))* < (P f*(y)” exp {@ + 2K (a, 1, x) <% + \/2_t>} .

Then, choosing T > t such thatg := p/2(p — 1) < T/t,

(B V20) exp { 2@ ke (2—“ + vzr) - 4} (P f(x))?
e oa—1 T —qt
p(x,y)? }
P e exp | -2t udy).
S/mx, (o) exp{ s @y

.. . . 28
Similarly to the pzroof of [1, Corollary 3], we obtain that for any § > 2, choosing o = 513 ell, 2[
p

such that § > 5= = =1 > 2, there is a constant ¢(§) > 0 such that the following estimate
holds:

2
Es(x,1) :=/Mp,<x,y>2exp{%}u<dy>

exp {c(S)K(oz, t,x)(1+ x/Z_t)}

w(B(x, v/21))

By [5, Eq. (3.4)], this implies the desired heat kernel upper bound for Cs(z, x) := c(§)K (e, t, x)
(1++2r). O

< , t>0,xeM.
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Appendix

The aim of the Appendix is to explain that the arguments in Souplet-Zhang [11] and
Zhang [18] for gradient estimates of solutions to heat equations work as well in the case with
drift.

Theorem A.1. Let L = A+ Z for a C! vector field Z. Fix xo € M and R, T, to > 0 such that
B(xg, R) C M. Assume that

Ric—VZ > —K (A1)

on B(xo, R). There exists a constant ¢ depending only on d, the dimension of the manifold, such
that for any positive solution u of

du = Lu (A2)

on Qr,1 = B(xo, R) x [to — T, to], the estimate

sup u
ORr.T
u

1
[Vlogu| < C(E +T1/2+\/E> 1+ log

holds on Qr2,1/2.

Proof. Without loss of generality, let N := sup,, , u = 1; otherwise replace u by u/N. Let

f=loguandw = (|1V_]}|)22. By (A.2) we have

Lf+|Vf*=8,f=0

so that
b = VLY 21V fI%0, f
' (1—f)? (1—f)3
_AVAVEL+IVP) | 2IVPES + IV
(1— f)2 1-753
_AVAVAS IV | 2IVPAS + V)
(1—f)? (1—f)»3
2
LAYy Z V) + 2Hzessf<Vf, Z) 2|Vf] <Z,3Vf> A3)
(1—=1 1-5
Moreover,
2 2
Lo = Awy ZVIFR)  2VFRZ V)
(1—f)? (1—1f)3
2
_ Aw+2Hes5f(Vf, Z) 2|VfIXZ,Vf) (Ad)

(1— /)2 (1—f)3
Finally, by the proof of [11, (2.9)] with —k replaced by Ric(V f, V £)/IV f|?, we obtain

A {2 (VAEVAF+IVIP) | 2IVFAASf + IVflz)}
w—
(1—f)? (1—f)
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2
. f
I—f
Combining (A.1) and (A.3)—-(A.5), we arrive at
2f

20Ric(V f, V)

(Vf, Vo) +2(1 = o’ + VI

(AS)

Lo =8> 5 (Vf, Vo) +2(1 — fw? —2Ko.

This implies the desired estimate by the Li-Yau cut-off argument as in [11]; the only difference
is, using the notation in [11], in the calculation of —(Av)w after Eq. 2.13 in [11]. By (A.1) and
the generalized Laplacian comparison theorem (see [3, Theorem 4.2]), we have

Lr < v/Kd coth (,/K/dr) N 7]
r

and then
—(Ly)w = —@pY + (¥ Lr)w < (Iaﬂﬁl2 + |3rl0|%l +VKd |3r¢|> w.

The remainder of the proof is the same as in the proof of [11, Theorem 1.1], using L1 in place
of Avyr.
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