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Itô’s calculus and the Mathematics of Finance
Brownian motion and curved spaces

Brownian motion and global geometry
Brownian motion and the diffusion of shapes

1 Historical milestones of Brownian motion
Robert Brown
Albert Einstein
Louis Bachelier
Andrei Kolmogorov
Norbert Wiener

2 The martingales of Joseph Doob
Stochastic flows and driftless motions
The heat equation
The Dirichlet problem
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Microscopical observations of Robert Brown

Robert Brown 1777-1858

Light particles suspended in water perform under the
microscope a rapid oscillatory and highly irregular motion.

“Extremely minute particles of solid matter, whether obtained from

organic or inorganic substances, when suspended in pure water,

exhibit motions for which I am unable to account ...” (Brown 1827)
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The erratic dance of pollen grains

Brown did not claim to have discovered the phenomenon.

It had been observed as early as in the 17th century by
Anthony van Leeuwenhoek under simple optical microscope
and is already reported by Jan Ingenhausz in 1785.

Stiglers law of eponymy: “No scientific discovery is named
after its original discoverer”

Brown critically reviewed the work of several predecessors.

Brown ruled out vitalism: it holds for live and dead pollens.

He narrowed down other plausible causes, like temperature
gradients, capillary actions, convection currents, etc.
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Summary of the observations

The motion is highly irregular, composed of translations and
rotations; the trajectory appears to have no tangent.

Two particles appear to move independently, even when they
approach one another to within a distance less than their
diameter.

The motion is more active the smaller the particles.

The composition and density of the particles have no effect.

The motion is more active the less viscous the fluid.

The motion is more active the higher the temperature.

The motion never ceases.
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The period before Einstein

Already from the 1860s on, many scientists worked on the
phenomenon.

By the end of the 19th century a molecular kinetic theory of
gases was developed by Clausius, Maxwell and Boltzmann.
People were battling over the issue whether atoms are real or
not.

The theory that the random motion of Brownian particles is
caused by collisions with the molecules of the liquid appeared
in the second half of the 19th century
(Giovanni Cantoni, Joseph Delsaulx, Ignace Carbonelle, ...)

http://math.uni.lu/thalmaier/Inaugural/browianmotion/browianmotion.html
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First experimental tests

The kinetic theory that Brownian motion of microscopic particles is caused by

bombardment by the molecules of the fluid, appeared to be open to a simple

test: the law of equipartition of energy in statistical mechanics implies that the

kinetic energy of translation of a particle and of a molecule should be equal.

The latter was roughly known (by a determination of Avogadro’s number by

other means), the mass of a particle could be determined, so all one had to

measure was the velocity of a particle in Brownian motion.

This was attempted by several experimenters, but the result failed to confirm

the kinetic theory as the two values of kinetic energy differed by a factor of

about 100,000.
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Itô’s calculus and the Mathematics of Finance
Brownian motion and curved spaces

Brownian motion and global geometry
Brownian motion and the diffusion of shapes

Robert Brown
Albert Einstein
Louis Bachelier
Andrei Kolmogorov
Norbert Wiener

The puzzle remained

If the scenario that each of the apparently linear
displacements of the grain is caused by a collision with a
water molecule, is true, then such displacements should
appear at time intervals of 10−12 seconds.

Our eyes can resolve events that are separated in time by
more than 1/30 seconds.

The success of Einstein’s theory of Brownian motion (1905)
was largely due to his circumventing this question.
The puzzle was resolved later by Smoluchowski, a
contemporary of Einstein.
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Einstein’s molecular-kinetic conception of heat

Albert Einstein 1777-1858

Einstein (1905), completely unaware of the existence of the
phenomenon, and not acquainted with earlier investigations of
Boltzmann and Gibbs as well, predicted it on theoretical grounds
and formulated a correct quantitative theory of it.
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Annalen der Physik und Chemie 1905, 549–560

Anton Thalmaier Brownian motion: from pollen grains to global geometry



Historical milestones of Brownian motion
The martingales of Joseph Doob
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Einstein’s main result on particles constantly kicked by lighter water molecules

Einstein’s main result can be summarized as follows:

The mean-square displacement 〈R2〉 suffered by a spherical
Brownian particle, of radius a, in time t is given by

〈R2〉 = D t where D =
kT

3π Nav aη
,

T is the temperature, η the viscosity of the fluid,
k the Boltzmann constant, Nav the Avogadro number.

For the probability density p(t, x) of the position x at time t
he derived the diffusion equation

∂

∂t
p = D ·∆p where ∆ = ∂2

1 + ∂2
2 + ∂2

3 .
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Itô’s calculus and the Mathematics of Finance
Brownian motion and curved spaces

Brownian motion and global geometry
Brownian motion and the diffusion of shapes

Robert Brown
Albert Einstein
Louis Bachelier
Andrei Kolmogorov
Norbert Wiener

Einstein’s main result on particles constantly kicked by lighter water molecules

Einstein’s main result can be summarized as follows:

The mean-square displacement 〈R2〉 suffered by a spherical
Brownian particle, of radius a, in time t is given by

〈R2〉 = D t where D =
kT

3π Nav aη
,

T is the temperature, η the viscosity of the fluid,
k the Boltzmann constant, Nav the Avogadro number.

For the probability density p(t, x) of the position x at time t
he derived the diffusion equation

∂

∂t
p = D ·∆p where ∆ = ∂2

1 + ∂2
2 + ∂2

3 .

Anton Thalmaier Brownian motion: from pollen grains to global geometry



Historical milestones of Brownian motion
The martingales of Joseph Doob
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Einstein’s 1905 paper provided a testing ground for the
validity of the molecular kinetic theory.

Einstein had a clear idea of the orders of magnitude that
would make the movements visible under a microscope.
For a spherical particle of radius 1 micron, the root-mean square

displacement should be of the order of a few microns when observed

over a period of one minute.

The experimental verification of Einstein’s theory silenced all
skeptics who did not believe in the existence of atoms, who
were quite numerous at that time (Ostwald, Mach, ...).

Anton Thalmaier Brownian motion: from pollen grains to global geometry



Historical milestones of Brownian motion
The martingales of Joseph Doob
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Marian von Smoluchowski and Jean Perrin

Smoluchowski had developed the theory much before Einstein
but decided to publish it only when he saw Einstein’s paper
which contained similar ideas (Smoluchowski 1906).

Perrin was awarded Nobel prize in 1926 for his experimental
testing of Einstein’s predictions (Perrin 1908).

He not only confirmed that the mean-square displacement of
the dispersed particles grow with time t, but also made a
good estimate of the Avogadro number
(Nav = 6.022 · 1023/mol) derived from macroscopic entities.

Einstein himself was surprised by the high level of accuracy
achieved by Perrin.
“I did not believe that it was possible to study Brownian
motion with such a precision”
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Einstein himself was surprised by the high level of accuracy
achieved by Perrin.
“I did not believe that it was possible to study Brownian
motion with such a precision”
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Langevin, Ornstein-Uhlenbeck

Paul Langevin (1908): Stochastic equation for Brownian
motion in an external force field.

Ornstein-Uhlenbeck’s theory of Brownian (1930)

Conceptual difficulty: The Hamiltonian dynamics is reversible
and deterministic. How does the irreversible and chaotic
nature fit in this picture?
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Brownian path in the plan
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Bachelier’s Thesis

Louis Bachelier 1870 - 1946

On March 29, 1900 Louis Bachelier defended at the Sorbonne his

thesis La théorie de la Spéculation.

Strongly supported by his supervisor Henri Poincaré, the thesis was

published in Annales Scientifiques de l’École normale Supérieure.
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Bachelier’s Thesis
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Poincaré’s Report
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Itô’s calculus and the Mathematics of Finance
Brownian motion and curved spaces

Brownian motion and global geometry
Brownian motion and the diffusion of shapes

Robert Brown
Albert Einstein
Louis Bachelier
Andrei Kolmogorov
Norbert Wiener

Bachelier’s spectacular work

Mathematical modeling of stock price movements

log Price = systematic component︸ ︷︷ ︸ +fluctuative component︸ ︷︷ ︸
drift Brownian part

Principle that “the expectation of the speculator is zero”
“Le marché ne croit, à un instant donné, ni à la hausse, ni à la

baisse du cours”

Mathematical treatment of Brownian motion, as well as first
ideas on Markov processes, diffusions, and even weak
convergence in functional spaces

Calculation of prices for American and path-dependant options
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baisse du cours”

Mathematical treatment of Brownian motion, as well as first
ideas on Markov processes, diffusions, and even weak
convergence in functional spaces

Calculation of prices for American and path-dependant options

Anton Thalmaier Brownian motion: from pollen grains to global geometry



Historical milestones of Brownian motion
The martingales of Joseph Doob
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The mathematical career of Bachelier

• Bachelier was very active in the period from 1900–1914.
• Nevertheless his work remained in obscurity for decades.
• Blackballed in Dijon 1926

Paul Lévy 1886-1971
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Dijon 1926

“Due to a sequence of incredible circumstances ... I have found

myself at the age of 56 in a situation worse than I had during the

last six years; this is after twenty-six years with the doctor degree,

five years of teaching as free professor at Sorbonne, and six years of

official replacement of a full professor ...

“The critique of M. Lévy is simply ridiculous: ...”

“M. Lévy pretends not to know my other five large papers published

in Annales de l’École normale and in Journal de Mathématiques

pures et appliquées as well as various notes published elsewhere. He

has written a work of 300 pages on probability without even opening

my book on the same subject, ...”
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Kolmogorov’s theory of diffusions

The axiomatic approach of Kolmogorov made probability
probability theory to a rigorous mathematical discipline
(Grundbegriffe der Wahrscheinlichkeitstheorie, Springer 1933).

Andrei Nikolaevich Kolmogorov 1903-1987

Über die analytischen Methoden in der Wahrscheinlichkeitstheorie.
Math. Annalen 1931
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The Wiener space

Norbert Wiener 1894-1964

Rigorous stochastic model of Brownian motion as scaling limit
of random walk (Wiener 1923).
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The probability of successful slaloms

Starting from the finite dimensional probabilities Wiener constructs
a measure on the space C (R+, Rn) of continuous paths in Rn.
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Properties of Brownian motion and the Wiener measure

This famous Wiener measure on the space of trajectories
turns out the be a natural substitute of the non-existing
Lebesgue measure.

It lives on the continuous paths, and doesn’t charge
differentiable paths.

Trajectories of Brownian motion are (with probability 1)
nowhere differentiable.

Fractal structure of Brownian motion
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Itô’s calculus and the Mathematics of Finance
Brownian motion and curved spaces

Brownian motion and global geometry
Brownian motion and the diffusion of shapes

Robert Brown
Albert Einstein
Louis Bachelier
Andrei Kolmogorov
Norbert Wiener

Properties of Brownian motion and the Wiener measure

This famous Wiener measure on the space of trajectories
turns out the be a natural substitute of the non-existing
Lebesgue measure.

It lives on the continuous paths, and doesn’t charge
differentiable paths.

Trajectories of Brownian motion are (with probability 1)
nowhere differentiable.

Fractal structure of Brownian motion

Anton Thalmaier Brownian motion: from pollen grains to global geometry



Historical milestones of Brownian motion
The martingales of Joseph Doob
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Self-Similarity of Brownian motion
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The modern theory of conditional expectations

Joseph Doob 1910-2004
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Back to Brownian motion:

f (Xt+∆t)− f (Xt) = (∂i f )(Xt) ∆X i +
1

2
(∂i∂j f )(Xt) (∆X i )(∆X j)︸ ︷︷ ︸

= δij ∆t

In the language of modern probability:

The process

Nt = f (Xt)− f (X0)−
∫ t

0
∆f (Xs) ds

is a martingale (driftless motion in the sense that conditional
expectation of increments gives zero).
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Immediate consequences

More generally:

Let L be a second order differential operator and let X be a
process such that

Nt = f (Xt)− f (X0)−
∫ t

0
Lf (Xs) ds

is a martingale (X is called L-diffusion).

Let u = u(t, x) be a solution of the heat equation{
∂
∂t u = Lu

u|t=0 = f
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The Heat equation

Then, the observation that

Nt = u(T − t,Xt)− u(T ,X0)−
∫ t

0
(∂s + L)u(T − s,Xs)︸ ︷︷ ︸ ds

= 0

is a martingale leads to the equality E[NT ] = E[N0] = 0.

Stochastic representation of the heat equation

u(T , x) = E[f (XT (x)]

where Xt(x) is an L-diffusion starting from the point x at time 0.
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The Dirichlet problem

Let u be a solution of the Dirichlet problem{
Lu = 0 on D

u|∂D = h .

Then, the martingale

Nt = u(Xt)− u(X0)−
∫ t

0
Lu(Xs)︸ ︷︷ ︸ ds

= 0

gives the equality E[Nτ ] = E[N0] = 0 where
τ = inf{t > 0 : Xt ∈ ∂D} is the first exit time of X from D.
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Itô’s calculus and the Mathematics of Finance
Brownian motion and curved spaces

Brownian motion and global geometry
Brownian motion and the diffusion of shapes

Stochastic flows and driftless motions
The heat equation
The Dirichlet problem

Stochastic representation of solutions of the Dirichlet problem

u(x) = E[h(Xτ (x)]

where Xt(x) is a L-diffusion starting from the point x at time 0,
and τ its first hitting time of the boundary.

Indeed, u(x) = E[u(Xτ (x)] = E[h(Xτ (x)] =
∫
∂D h dµx ,

where µx(U) = P{X (x) exits D through U}.
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Ito’s stochastic differential equations

Kiyoshi Itô born 1915

Itô has been awarded the Gauß prize at the ICM in Madrid 2006.
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Stochastic Differential Equation

dXt = b(t,Xt) dt + σ(t,Xt) dWt

where W is a Brownian motion.

Diffusions to a given operator L

Solutions to this equation give L-diffusions for

L =
n∑

i=1

bi ∂i +
1

2

n∑
i ,j=1

(σσ∗)i ,j ∂i∂j
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Applications in finance

The evolution of stock prices
The dynamics of the prices on a logarithmic scale, is classically
modeled by an SDE of the type

dSt

St
= b(t,St) dt + σ(t,St) dWt .

In finance, σ2 is called volatility and corresponds to the agitation
moléculaire in Statistical Mechanics, while b corresponds a
macroscopic velocity field.
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Applications in finance

The pricing of options
A simple example of an option is a European Call which gives the
owner the right (but not the obligation) to buy one share of the
stock at a certain future time T for the strike price K .

Value of the option at time T: VT = (ST − K )+ Value at time 0:
V0 = C0 ?
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Applications in finance

1 The pricing of options

Value of the option at time T: VT = (ST − K )+
Value at time 0: V0 = ?

2 The problem of hedging

The seller of the option wants to construct a portfolio of value
Ht at time t that exactly replicates the claim VT at time T .
Autofinancing strategy dHt = δt dSt such that HT = VT

3 Remarkable Fact

Under the simple hypothesis of absence of arbitrage
possibilities (“No free lunch without vanishing risk”), both
problems have a unique and numerically accessible solution.
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Conclusion

Vt = Ht = u(t,St)
where u(t, x) is the solution of the PDE{

∂tu + Lu = 0

u(t, x)|t=T = (x − K )+

L is the operator

Lu(t, x) =
1

2
σ2(t, x) x2 ∂2

x ,xu(t, x).

The perfect hedging stragegy is given by

δt =
∂

∂x
u(t, x)

∣∣∣
x=St

.
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Itô’s calculus and the Mathematics of Finance
Brownian motion and curved spaces

Brownian motion and global geometry
Brownian motion and the diffusion of shapes

Stochastic differential equations
The pricing of options

Conclusion

Vt = Ht = u(t,St)
where u(t, x) is the solution of the PDE{

∂tu + Lu = 0

u(t, x)|t=T = (x − K )+

L is the operator

Lu(t, x) =
1

2
σ2(t, x) x2 ∂2

x ,xu(t, x).

The perfect hedging stragegy is given by

δt =
∂

∂x
u(t, x)

∣∣∣
x=St

.

Anton Thalmaier Brownian motion: from pollen grains to global geometry



Historical milestones of Brownian motion
The martingales of Joseph Doob
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P.-L. Lions et al., “Applications of Malliavin calculus to Monte-Carlo

methods in finance”, Finance and Stochastics (1999 et 2001)
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of Hörmander’s hypoellipticity theorem

Bismut (1984) Probabilistic approach
to the Atiyah-Singer index theorem

AMS Code de Classification 60H07
Stochastic calculus of variations and the Malliavin calculus

P.-L. Lions et al., “Applications of Malliavin calculus to Monte-Carlo

methods in finance”, Finance and Stochastics (1999 et 2001)

Anton Thalmaier Brownian motion: from pollen grains to global geometry



Historical milestones of Brownian motion
The martingales of Joseph Doob
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Geodesic random walks

The mechanism underlying Brownian motion easily extends to
curved spaces M

Geodesic random walk approximation of Brownian motion
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Transience or recurrence

The probability of coming back to the point of departure.
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Transience or recurrence

M = Rn for n ≤ 2
With probability 1, Brownian motion comes back
infinitely often.

M = Rn for n ≥ 3
With probability 1, Brownian motion ultimately drifts off to
infinity.

Anton Thalmaier Brownian motion: from pollen grains to global geometry



Historical milestones of Brownian motion
The martingales of Joseph Doob
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Exit sets

Definition

An open set U ⊂ M is called non-trivial exit set for Brownian
motion if, with a nontrivial probability, Brownian motion enters the
set U ultimately and stays in it.

Liouville property
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Theorem

For a Riemannian manifold M are equivalent:

i) There exist non-constant bounded harmonic functions on M.

ii) BM has non-trivial exit sets, i.e., if X is a Brownian motion
on M then there exist open sets U such that

P{Xt ∈ U eventually} 6= 0 or 1.

Idea The function h(x) = P{Xt(x) ∈ U eventually} is harmonic,
and non-constant if and only if U a non-trivial exit set.
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Typical examples of exit sets are angular sectors.

On the Euclidean space Rn the angular part of Brownian
motion is metrically transitive on the sphere.
On the hyperbolic space Hn Brownian motion has an
asymptotic angle.
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Stochastic parallel transport

There is a notion of parallel transport along Brownian paths.
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Heat equation on differential forms

Let A.(M) :=
⊕
p

Ap(M) where Ap(M) = Γp(ΛpT ∗M),

∆ = −(d d∗ + d∗ d) = �−R the Hodge-de Rham Laplacian
on A.(M), and ∆ = �−R its Weitzenböck decomposition

For a ∈ A.(M) consider the heat flow on differential forms{
∂
∂t at = ∆at

at |t=0 = a

Then we have the following stochastic representation

at(x) = E[Qt //−1
t a(Xt(x))]

where Qt is a random process taking values in the
endomorphisms of Ex = ΛT ∗

x M, defined in terms of the
Weitzenböck curvature term R.
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Index theorems and random holonomy

Thus
Pt(x , x) = E[Qt //−1

t |Xt(x) = x ] pt(x , x)

for the corresponding heat kernel Pt(x , y) on the diagonal;
pt(x , y) is the scalar heat kernel on M.
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Local Gauß-Bonnet-Chern

Explicit evaluation leads to the theorem of Gauß-Bonnet-Chern:

lim
t↓0

str Pt(x , x) = E (x)

where E (x) vol(dx) is the Euler form.

Example n = 2 : χ(M) = 2− 2g Euler characteristic

g = 1 g = 2

χ(M) =
∫

E (x) vol(dx) where E = 1
4πK (K scalar curvature).
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Brownian motion on Diff(S1) and representations of the Virasoro algebra

The program (Paul Malliavin, ∼ 1999)

Construction of unitarizing probability measures µ for the
representation of the Virasoro algebra V :

V 3 u 7−→
(
ρ(u) : L2(M, µ)→ L2(M, µ)

)
It should be M = Diff(S1)/SU(1,1), and heuristically,

µ = c0 exp (−cK ) “dλ”

where λ is the “Lebesgue measure” onM.
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Approach: Construction of µ as invariant measure to
“Brownian motion on M+ drift”. This leads to the problem
of constructing Brownian motion on Diff(S1).

Corresponding n-point motion
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Jordan curves and diffusion of shapes

J = {Γ ⊂ C : Γ smooth Jordan curves}

Γ ∈ J ←→ ∃ϕ : S1 → C smooth, injective, and ϕ(S1) = Γ.
Γ splits the plane into two simply connected domains D+

Γ , D−
Γ .
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Riemann mapping Theorem. Let D = {z ∈ C : |z | < 1}.
∃F+ : D → D+

Γ biholomorphic; unique mod SU(1, 1)
∃F− : D → D−

Γ biholomorphic; unique mod SU(1, 1).

Then (by Caratheodory)

F+ : D̄ → D̄+
Γ , F− : D̄ → D̄−

Γ diffeomorphisms.

In particular, gΓ := (F+)−1 ◦ F−|S1 ∈ Diff(S1).

Theorem (conformal welding ; Beurling-Ahlfors-Letho)
The mapping

J 3 Γ 7→ gΓ ∈ Diff(S1)

is surjective and induces a canonical isomorphism:

J ∼= SU(1, 1)\Diff(S1)/SU(1, 1) .

This circle of ideas can be used to construct BM on the space J
of Jordan curves (H. Airault, P. Malliavin, A. Th., 2004).
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