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Abstract

In this paper existence of the Brownian measure on Jordan curves with respect to the Weil–Petersson
metric is established. The step from Brownian motion on the diffeomorphism group of the circle to Brow-
nian motion on Jordan curves in C requires probabilistic arguments well beyond the classical theory of
conformal welding, due to the lacking quasi-symmetry of canonical Brownian motion on Diff(S1). A new
key step in our construction is the systematic use of a Kählerian diffusion on the space of Jordan curves
for which the welding functional gives rise to conformal martingales, together with a Douady–Earle type
conformal extension of vector fields on the circle to the disk.
© 2010 Elsevier Inc. All rights reserved.
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I. Kählerian Geometry on the space of C∞ Jordan curves

A similar topic has been discussed in [5]. In August 2009 Antti Kupiainen pointed out to us
that the Hölderianity stated in Section 6 of [5] is in fact not proved there. In the present paper
we establish from scratch existence of the Brownian measure on Jordan curves for the Weil–
Petersson metric.

New key steps of our paper are: i) the use of a Kählerian diffusion on the space of Jordan
curves for which the welding functionals give rise to conformal martingales; ii) the construction
of a Douady–Earle type extension of vector fields from the circle to the disk. We thank Antti
Kupiainen cordially for his careful reading of [5], which has been at the origin of the present
work. We also like to mention the interesting paper [8] which constructs probability measures on
Jordan curves by a global approach; this method is quite different from the infinitesimal approach
based on a stochastic Loewner equation which is used here.

Our work is contiguous to several branches of Mathematics: SLE theory (see for instance
[25]); Mumford’s theory of vision [34]; representations of Virasoro algebra [21,2,3,22]; Stochas-
tic Differential Geometry on infinite dimensional homogeneous spaces [12,4,16]; stochastic flows
under low regularity assumptions [28,26,6,13,14,33]; stochastic PDE theory as developed further
in this paper has been started in [5], as resolution of the non-linear Beltrami PDE by a continuity
method along a stochastic flow.

Our paper is limited to a short and self-contained proof of the result indicated in the title.

1. Structure of homogeneous Kähler manifold on C∞ Jordan curves

A Jordan curve in the complex plane C is a closed subset Γ ⊂ C for which there exists a
continuous injective map φ : S1 → C of the circle S1 satisfying φ(S1) = Γ . Such a parametriza-
tion φ is not unique: given two parametrizations φ1, φ2 of the same Jordan curve, there exists a
homeomorphism h of S1 such that φ2 = φ1 ◦h. Two parametrizations define the same orientation
of Γ if h is an orientation preserving homeomorphism of the circle S1. The inconvenience of this
point of view is that indeterminacy in the parametrization depends on an element of an infinite
dimensional group, namely the group of homeomorphisms of the circle.
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The holomorphic parametrization is constructed in the following way: the complement of Γ

in C is the union of two connected open subsets Γ + and Γ − where Γ + is bounded and Γ − is
unbounded. The Riemann mapping theorem gives the existence of a conformal map

fΓ of the open unit disk D onto Γ +,

defined up to composition with an element of the form

z �→ az + b

b̄z + ā
, a, b ∈ C, |a|2 − |b|2 = 1. (1.1)

By a theorem of Caratheodory [10], see also [31], fΓ has a continuous injective extension to the
closure D̄ of D, also denoted fΓ , and fΓ |S1 gives a parametrization of Γ defined canonically
up to a transformation of the form (1.1). The advantage of the holomorphic parametrization
is that its indeterminacy corresponds to the finite dimensional Poincaré group H of Möbius
transformations z �→ (az + b)/(b̄z + ā).

Now consider Γ − and let D− = {z: |z| > 1} be the open exterior of the unit disk. There exists
a univalent function

hΓ : D− → Γ −, hΓ (∞) = ∞, (1.2)

being uniquely defined up to a Möbius transformation of D− preserving ∞, that is up to a
rotation. We eliminate this ambiguity by the extra normalization that

lim
z→∞

hΓ (z)

z
is a positive number. (1.3)

As above, by the theorem of Caratheodory, hΓ extends to the closures and hΓ |S1 also provides
a parametrization of Γ .

Let G be the group of orientation preserving homeomorphisms of the circle S1 = ∂D; further
let H be the group of Möbius transformation z �→ (az+ b)/(b̄z+ ā) of the unit disk D restricted
to the boundary ∂D. Then H is a subgroup of G; we consider the homogeneous space

M := H\G. (1.4)

Theorem 1.1. Let f̂Γ , ĥΓ be the restrictions of fΓ ,hΓ to ∂D. The correspondence

Γ �→ f̂ −1
Γ ◦ ĥΓ defines a map Θ : J �→ M (1.5)

where J denotes the set of Jordan curves.

Proof. The indeterminacy on fΓ through a Möbius transformation appearing on the right is
equivalent to the indeterminacy on f −1

Γ through a Möbius appearing on the left. �
Remark 1.2. Following Sharon and Mumford [34] we introduce the space of shapes S as the
orbit space of J under the action of the affine group
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z �→ αz + β, α,β ∈ C, α 	= 0. (1.6)

We shall use the following result proved in [34]:

Θ realizes an injection of S into M , (1.7)

which means that Θ(Γ ) = Θ(Γ ′) if and only Γ = αΓ ′ + β .

We shall say that a Jordan curve is C∞ if its holomorphic parametrization together with its
inverse are C∞; we denote by J ∞ the set of C∞ Jordan curves. We say that Γ is Hölderian if fΓ

is Hölderian together with its inverse; we denote by J h the set of Hölderian Jordan curves. In the
same way we denote by G∞,Gh the groups of C∞ diffeomorphisms of S1, respectively Hölde-
rian homeomorphisms of S1. Letting Θ∞,Θh be the restrictions of Θ to J ∞, respectively J h,
then

Θ∞ : J ∞ �→ G∞, Θh : J h �→ Gh. (1.8)

Problem 1.3. The C∞-welding problem is the following problem: given g ∈ G∞, find univalent
functions f,h defined on the closures of D, resp. D−, such that

f̂ −1 ◦ ĥ = g. (1.9)

It is a classical fact that the C∞-welding problem has a solution (see [1] and also the examples
given in [17, Sections 5 and 6]); therefore the map Θ∞ is surjective and

Θ∞ realizes a bijection of S ∞ onto M ∞ := H\G∞. (1.10)

Denote by g = diff(S1) the right invariant Lie algebra of G∞ constituted by smooth vector
fields on S1. The identification of smooth vector fields and smooth functions on S1 by the formula
u �→ u(θ) d

dθ
identifies g and C∞(S1). In terms of this identification the Lie bracket is transferred

to the following expressions:

[u,v](θ) = u(θ)v′(θ) − u′(θ)v(θ). (1.11)

In the trigonometric basis the bracket has an easy expression: for instance

2[coskθ, cospθ ] = (k − p) sin(k + p)θ + (k + p) sin(k − p)θ.

The Lie algebra h of H has the basis 1, cos θ, sin θ. (1.12)

The Weil–Petersson metric is the unique Hilbertian metric on g invariant under the adjoint
action of h. The system

coskθ√
k3 − k

,
sinkθ√
k3 − k

, k > 1, (1.13)

is orthonormal for the Weil–Petersson metric and induces on M ∞ the structure of an infinite
dimensional Riemannian manifold. The Hilbert transform is defined by
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J coskθ = sinkθ, J sin kθ = − coskθ for k � 1. (1.14)

As usual in harmonic analysis, we take the Hilbert transform of a constant function equal to zero.
The Hilbert transform possesses the Nijenhuis property with respect to the Lie bracket (1.11):
for u,v ∈ g,

[Ju,Jv] − [u,v] = J
([u,Jv] + [Ju, v]). (1.15)

As J 2 = −1, the Hilbert transform defines on g0 (= the quotient of g by the constant functions)
a completely integrable complex structure.

It has been proved (see [4]) that

M ∞ has the structure of a complex Kähler manifold. (1.16)

Set

	 := 1

2

∑
k>1

1√
k3 − k

(
∂2

coskθ + ∂2
sin kθ

); (1.17)

then 	 is an elliptic operator on M ∞. We regularize 	 by introducing

	r =
∑
k>1

rk

k3 − k

(
∂2

cos kθ + ∂2
sin kθ

)
, r ∈ ]0,1]. (1.18)

Theorem 1.4. The operators 	r have the following properties:

1. In the exponential chart, 	r do not involve first order derivative terms.
2. Any holomorphic functional Φ on J ∞ satisfies

	rΦ = 0. (1.19)

Proof. The differential dΦ defines a linear form on the tangent space; the second order differ-
ential defines a bilinear form on the tangent space, or equivalently a linear form on the tensor
product of the tangent space by itself. Using these notations we have:

∂coskθ

(〈coskθ, dΦ〉)= −k〈coskθ sin kθ, dΦ〉 + 〈
coskθ ⊗ coskθ, d2Φ

〉;
∂sin kθ

(〈sin kθ, dΦ〉)= k〈sin kθ coskθ, dΦ〉 + 〈
sinkθ ⊗ sin kθ, d2Φ

〉;
∂cos kθ

(〈coskθ, dΦ〉)+ ∂sin kθ

(〈sin kθ, dΦ〉)= 〈
coskθ ⊗ coskθ, d2Φ

〉+ 〈
sinkθ ⊗ sin kθ, d2Φ

〉
.

For example, the first of these equations is obtained as follows: with the identification (1.8), we
take gε(θ) = θ + ε cos(kθ), then

〈coskθ, dΦ〉 = d
∣∣∣∣ Φ

(
θ + ε cos(kθ)

)

dε ε=0
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and

∂coskθ

(〈coskθ, dΦ〉)= d

dε

∣∣∣∣
ε=0

〈
cos

(
k
(
θ + ε cos(kθ)

))
, dΦ

(
θ + ε cos(kθ)

)〉
.

In the same way,

∂sinkθ

(〈coskθ, dΦ〉)= −k
〈
sin2 kθ, dΦ

〉+ 〈
coskθ ⊗ sinkθ, d2Φ

〉
,

∂coskθ

(〈sin kθ, dΦ〉)= k
〈
cos2 kθ, dΦ

〉+ 〈
coskθ ⊗ sinkθ, d2Φ

〉
.

According to (1.14) the ∂̄ operator on J ∞ (see [29]) corresponds to

ϑ̄p := ∂cospθ + √−1∂J (cospθ) = ∂cospθ + √−1∂sinpθ ; (1.20)

�[ϑp, ϑ̄p] vanishes on J ∞, p > 1, (1.21)

where �z denotes the real part of a complex number z; therefore

4	r =
∑
p>1

rp

p3 − p
(ϑpϑ̄p + ϑ̄pϑp) = 2

∑
p>1

rp

p3 − p
�(ϑpϑ̄p). �

The Brownian motion “on” M will be discussed in Section 4; a main feature is that it takes its
values in the group Gh, thus getting us out of the C∞ category where (1.9) has been established.

2. Douady–Earle infinitesimal extension

Beurling and Ahlfors characterized the boundary values of quasi-conformal maps of the disk
as the quasi-symmetric homeomorphisms of the circle; they gave a construction from a given
quasi-symmetric boundary homeomorphism to the quasi-conformal extension. Their methodol-
ogy is based on Fourier analysis. In [5] we extended the Beurling–Ahlfors construction to general
infinitesimal transformations of the circle. In contrast to this, Douady and Earle constructed a
canonical and conformally natural extension covariant under the action of the Möbius group. In
this paper we shall use an infinitesimal version of the Douady–Earle extension which leads to a
more transparent formalism than Fourier approach.

Let ϕ be a quasi-symmetric homeomorphism of the circle; its Douady–Earle extension Φ is
characterized (see [11, p. 28]) by the identity

∫
∂D

ϕ(ζ ) − Φ(z)

1 − Φ(z)ϕ(ζ )

|dζ |
|z − ζ |2 = 0. (2.1)

In other words, if z ∈ D then Φ(z) is the unique point in D such that (2.1) holds.
For instance, taking ϕ0(ζ ) = ζ , then we get Φ0(z) = z, which means that

∫
ζ − z

1 − z̄ζ

|dζ |
|z − ζ |2 = 0.
∂D
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Indeed

νz(dζ ) := (1 − |z|2) × |dζ |
|z − ζ |2

is the Poisson kernel of the point z; therefore the holomorphic function

h(ζ̃ ) := ζ̃ − z

1 − z̄ζ̃

satisfies ∫
∂D

h(ζ̃ ) νz(dζ̃ ) = h(z) = 0.

Moreover if

ϕ1(ζ ) = ζ − a

1 − āζ
and u := Φ1(z) = z − a

1 − āz
,

then

ϕ1(ζ ) − u

1 − ūϕ1(ζ )
= 1 − az̄

1 − āz
× ζ − z

1 − z̄ζ
.

Thus the defining relation (2.1) is satisfied for homographic transformations.
We proceed now infinitesimally. Let ϕt be a family of diffeomorphisms of ∂D depending

smoothly on the parameter t such that ϕ0 = Identity; setting Φt the corresponding Douady–Earle
extensions, we have ∫

∂D

ϕt (ζ ) − Φt(z)

1 − Φt(z)ϕt (ζ )

|dζ |
|z − ζ |2 = 0. (2.2)

As in Vasil’ev [35, Section 5], we extend vector fields on the circle to vector fields inside the
disk. Using

ζ

(ζ − z)(1 − z̄ζ )
= 1

(1 − ζ̄ z)(1 − z̄ζ )
= 1

|ζ − z|2

and dζ = √−1 ζ |dζ |, we get

dζ

(ζ − z)(1 − z̄ζ )
= i

|dζ |
|ζ − z|2 .

Therefore (2.2) takes the form

∫
ϕt (ζ ) − Φt(z)

1 − Φt(z)ϕt (ζ )

dζ

(ζ − z)(1 − z̄ζ )
= 0. (2.3)
∂D
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Differentiating (2.3) relatively to t and setting

v(ζ ) = d

dt

∣∣∣∣
t=0

ϕt (ζ ), V (z) = d

dt

∣∣∣∣
t=0

Φt(z), (2.4)

gives

∫
S1

v − V

(1 − z̄ζ )2(ζ − z)
dζ +

∫
S1

z̄v + ζ V̄

(1 − z̄ζ )3
dζ = 0. (2.5)

Since

ζ �→ ζ V̄

(1 − z̄ζ )3

is holomorphic, the integral
∫
S1

ζ V̄

(1−z̄ζ )3 dζ is zero. With Cauchy’s integral formula we obtain

V (z) = (1 − |z|2)2

2iπ

∫
S1

v(ζ )

(1 − z̄ζ )2(ζ − z)
dζ + z̄(1 − |z|2)2

2iπ

∫
S1

v(ζ )

(1 − z̄ζ )3
dζ. (2.6)

The ∂̄ derivative of the vector field V (z) in (2.6) has been calculated in Reich and Chen
[32, formulas (2.1)–(2.3)]. With the following theorem ∂̄V is obtained in a different manner.

Theorem 2.1.

1. If v(ζ ) = ζp where p � 0, then

V (z) = zp. (2.7)

2. If v(ζ ) = ζ−p where p � 1 then

V (z) = z̄p

(
1 + p(1 − zz̄) + p(p + 1)

2
(1 − zz̄)2

)
. (2.8)

3. Moreover, if V (z) is given by (2.8), then

∂V

∂z̄
= z̄p−1 p(p + 1)(p + 2)

2
(1 − zz̄)2, (2.9)

and if V is given by (2.7) then

∂V

∂z̄
= 0. (2.10)

For V given by (2.8) we also have
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∂V

∂z
= −pz̄p+1[1 + (p + 1)(1 − zz̄)

]
. (2.11)

Proof. We first prove (2.7); in this case the second integral of (2.6) vanishes and the first integral
equals the residues at the point z.

To prove (2.8) apply elementary residues to (2.6) as follows:

V (z) × 2iπ

(1 − zz̄)2
= 1

(1 − zz̄)2

∫
S1

v(ζ )

ζ − z
dζ + z̄

(1 − zz̄)2

∫
S1

v(ζ )

1 − z̄ζ
dζ

+ z̄

1 − zz̄

∫
S1

v(ζ )

(1 − z̄ζ )2
dζ + z̄

∫
S1

v(ζ )

(1 − z̄ζ )3
dζ. (2.12)

For v(ζ ) = ζ−k , the first integral in (2.12) cancels since

∫
S1

dζ

ζ k(ζ − z)
= 0 if k � 1.

Thus we obtain

V (z)

(1 − zz̄)2
= z̄

(1 − zz̄)2
Resζ=0

(
1

(1 − z̄ζ )ζ k

)

+ z̄

1 − zz̄
Resζ=0

(
1

(1 − z̄ζ )2ζ k

)
+ z̄Resζ=0

(
1

(1 − z̄ζ )3ζ k

)
. (2.13)

Calculating the three residues gives

V (z)

(1 − zz̄)2
= z̄

(1 − zz̄)2
z̄k−1 + z̄

(1 − zz̄)
kz̄k−1 + z̄

k(k + 1)

2
z̄k−1. �

3. Loewner type equation of a conformal welding flow

Let t �→ Ct be a map from [0,1] into the space g, which is assumed to be continuous for the
C∞ topology; assume furthermore that

the Fourier coefficients of Ct on 1, cos θ , sin θ vanish. (3.1)

To these data consider the flow of C∞ diffeomorphisms of S1 defined by

d

dt
gt (θ) = Ct

(
gt (θ)

)
, g0 = Identity . (3.2)

Let z �→ C̃t (z) be the Douady–Earle extension of Ct to the closed disk D̄. Because of (3.1)
and (2.7)–(2.8), we have C̃t (0) = 0. Now consider the flow of C∞ diffeomorphisms g̃t of D̄

defined by the equation
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d

dt
g̃t (z) = C̃t

(
g̃t (z)

)
, g̃0 = Identity . (3.3)

As gt ∈ C∞(S1), the conformal welding (1.9) for gt exists; set

gt (θ) = (
f −1

t ◦ ht

)(
exp(iθ)

)
. (3.4)

Next define a function Ft on the whole complex plane by

Ft (z) :=
{

ht (z), |z| > 1,

(ft ◦ g̃t )(z), |z| � 1.
(3.5)

As the restriction of g̃t to ∂D equals gt , we observe that

Ft has a continuous extension to the whole complex plane. (3.6)

Consider the infinitesimal increment

δt (F ) :=
(

d

dt
Ft

)
◦ F−1

t . (3.7)

Given a univalent function ϕt let F
ϕ
t := ϕt ◦ Ft . Then we have

δt

(
Fϕ

)= ϕ′
t

(
ϕ−1

t

)× (
δt (F ) ◦ ϕ−1

t

)+ δt (ϕ). (3.8)

Moreover, since ϕt is holomorphic, ∂̄(δt (ϕ)) = 0 and from (3.8),

∂̄
(
δt

(
Fϕ

))= ∂̄
[
ϕ′

t

(
ϕ−1

t

)× (
δt (F ) ◦ ϕ−1

t

)]
.

In the special case of an affine transformation ϕt (z) = αtz + βt , we find

δt

(
Fϕ

)= ϕt ◦ δt (F ) ◦ ϕ−1
t + δt (ϕ) − βt . (3.9)

Theorem 3.1 (Loewner equation along a conformal welding flow). On D we have

d

dt
ft = δt (F ) ◦ ft − (∂ft ) × C̃t (3.10)

and

∂̄
{
δt (F ) ◦ ft − (∂ft ) × C̃t

}= d

dt
(∂̄ft ) = 0. (3.11)

Thus δt (F ) satisfies on ft (D) the following identity:

∂̄
[
δt (F )

]= At, At :=
(

∂ft

∂ft

× ∂̄C̃t

)
◦ f −1

t . (3.12)

We have
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At = ∂̄Wt (3.13)

where Wt is the image of the vector field C̃t through the map ft ,

Wt(u) = f ′
t

(
f −1

t (u)
)
C̃t

(
f −1

t (u)
)
, (3.14)

denoting f ′
t (u) = ∂ft (u). On the other hand,

∂̄
[
δt (F )

]
(z) = 0, z ∈ (adherence ft (D)

)c
. (3.15)

Proof. From

ft = Ft ◦ g̃−1
t

we get formula (3.10), and by taking into account that ∂̄ft = 0, we arrive at (3.11). To obtain
(3.12), recall the rule of change of variables for the holomorphic and antiholomorphic derivatives
which can be found in [1, p. 8]:

∂̄(u ◦ v) = (
(∂̄u) ◦ v

)
∂v + (

(∂u) ◦ v
)
(∂̄v). (3.16)

By means of (3.16), taking u = exp(ηδt (F )) and v = ft , the vector fields being considered as
infinitesimal transformations, we get

∂̄
(
δt (F ) ◦ ft

)= ∂̄δt (F ) × ∂ft . (3.17)

On the other hand, we have

∂̄
(
∂ft × C̃t

)= ∂ft × ∂̄C̃t . (3.18)

Eqs. (3.17) and (3.18), along with (3.11), imply the claimed formula (3.12).
To prove (3.14)–(3.15), we calculate again exploiting formula (3.16), the expression

∂̄
(
C̃t

(
f −1

t (u)
))= (∂̄C̃t )

(
f −1

t (u)
)× ∂f −1

t (u).

We find

∂̄Wt = f ′
t

(
f −1

t (u)
)× (∂̄C̃t )

(
f −1

t (u)
)× ∂f −1

t (u) (3.19)

which coincides with At since f ′
t (f

−1
t (u)) = 1/(f −1

t )′(u). �
Remark 3.2. Identity (3.10) permits to obtain Kirillov vector fields, see [21], as well as [30]
where identities like (3.10) are integrated via line integrals. Identities (3.14)–(3.15) can be de-
duced directly from (3.8); however they are delicate since the Taylor part in the expansion of Wt

is different from

f ′(f −1(u)
)× (Taylor part of C̃t )

(
f −1(u)

)
.

We are able to integrate (3.12) as follows.
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Theorem 3.3. The following identity is valid in the whole complex plane:

(
δt (Ft )

)
(z) − 1

2πi

∫
ft (D)

1

z − z′ At

(
z′)dz′ ∧ dz̄′ = αtz + βt , αt ∈ C, βt ∈ C. (3.20)

Proof. Consider

H1(z) := 1

2πi

∫
ft (D)

1

z − z′ At

(
z′)dz′ ∧ dz̄′, z ∈ C. (3.21)

Note that H1 is continuous in C. Using the fact that the Cauchy kernel is the elementary solution
of the ∂̄ operator we get

(∂̄H1)(z) =
{

At(z), z ∈ ft (D),

0, z /∈ ft (D).
(3.22)

Therefore setting H2 := H1 − δt (F ), we have

H2 is holomorphic on
(
ft (∂D)

)c and continuous on C;
thus by Morera’s theorem, H2 is holomorphic on C. As H2 is of order O(z) at infinity, by Liou-
ville’s theorem, it is an affine function; we conclude by using the fact that H1(∞) = 0. �
Remark 3.4. The indeterminacy appearing in formula (3.20) through the choice of αt and βt re-
lies on the fact that our construction is done for the space S of shapes, where objects are defined
up to left multiplication by an affine transformation: indeed such a multiplication induces at the
level of differentials, as shown in formula (3.9), the addition of an arbitrarily chosen infinitesimal
affine transformation.

Theorem 3.5 (Holomorphy of the welding functionals). Consider the functional Φ on M ∞ de-
fined by

Φ(g) = h, (3.23)

where h is determined by the welding relation (1.9). Assuming the normalization

Φ(g)(z) = z + o(1), z → ∞, (3.24)

then for any fixed zo ∈ C, |zo| > 1, the mapping

g �→ Φ(g)(z0) (3.25)

is a holomorphic functional for the Kähler structure of M ∞. Consequently with 	r being defined
as in (1.18), we have

	r(Φ) = 0. (3.26)
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Proof. We have to compute the differential of the functional (Φz0)(g) := Φ(g)(z0). Given C ∈ g

satisfying (3.1), fix g ∈ G∞ and consider the function

hε = Φ
(
exp(εC)g

)
.

Then h0 = Φ(g) = h and we have

〈C,dΦz0〉g = d

dε

∣∣∣∣
ε=0

hε(z0).

The derivative of the variation hε can be calculated by applying the results of Theorems 3.1
and 3.3. Using (3.20) and (3.24), we get according to (3.12)

d

dε

∣∣∣∣
ε=0

hε(z0) = 1

2πi

∫
f (D)

1

h(z0) − z′ AC

(
z′)dz′ ∧ dz̄′ (3.27)

where the univalent function f on D is given via the welding of g and

AC =
(

∂f

∂f
× ∂̄C̃

)
◦ f −1.

According to (1.20), holomorphy on M ∞ is equivalent to

{(
∂Ck

+ √−1∂C′
k

)
Φ(g)

}
(z0) = 0, Ck = coskθ, C′

k = sin kθ.

This vanishing is assured through (3.27) if

∂̄C̃k + √−1 × ∂̄C̃′
k = 0. (3.28)

The associated vector fields are

Ck(ζ ) = 1

2

(
ζ k+1 + 1

ζ k−1

)
and C′

k(ζ ) = 1

2i

(
ζ k+1 − 1

ζ k−1

)
.

Taking the extension of Ck(ζ ) + iC′
k(ζ ) = ζ k+1, we observe that (3.28) is true as a consequence

of Eq. (2.10). Finally the second part of Theorem 1.4 gives (3.26). �
II. Kählerian Brownian motion

4. Canonical Brownian on the diffeomorphism group of the disk

We start by recalling the construction of the canonical Brownian motion “on” G∞. The regu-
larized canonical Brownian motion on the group of diffeomorphisms of the circle is the stochastic
flow on the circle S1 associated to the Stratonovich SDE

dψr
x,t (θ) = dvr

x,t

(
ψr

x,t (θ)
)

(4.1)



3050 H. Airault et al. / Journal of Functional Analysis 259 (2010) 3037–3079
where vr
x,t (θ) is the regularized g-valued Brownian motion defined by

vr
x,t (θ) :=

∑
k>1

rk

√
k3 − k

(
x2k(t) coskθ + x2k+1(t) sin kθ

)
, θ ∈ S1. (4.2)

Here {x∗} is a sequence of independent scalar Brownian motions and r ∈ ]0,1[.
It results from Kunita’s theory of stochastic flows [23] that θ �→ ψr

x,t (θ) constitutes a C∞ dif-
feomorphism of S1. It can be proved that the limr→1 ψr

x,t = ψx,t exists uniformly in θ , defining a
random homeomorphism ψx,t which is the so-called canonical Brownian motion “on” Diff(S1);
this random homeomorphism is furthermore Hölder continuous [28,13,6]. The corresponding in-
finitesimal generators 	r and 	 of these processes are given by (1.18), resp. (1.17). The fact that
the construction (4.1)–(4.2) gives Brownian motion with respect to the Levi-Civita connection
on M ∞ has been proved in [4, p. 103].

Writing Ψ r
x,t (e

iθ ) = eiψr
x,t (θ), then dtΨ

r
x,t (e

iθ ) = iΨ r
x,t (e

iθ ) dtψ
r
x,t (θ). Thus in the variable

ζ = exp(iθ), we obtain from (4.2) the vector field

χr
x,t (ζ ) =

∑
k>1

rk

√
k3 − k

iζ

2

((
ζ k + 1

ζ k

)
x2k(t) − i

(
ζ k − 1

ζ k

)
x2k+1(t)

)
. (4.3)

When r = 1, we denote χx,t (ζ ) = χ1
x,t (ζ ) or equivalently

χx,t (ζ ) = i

2

∑
k>1

1√
k3 − k

(
ζ k+1(x2k(t) − ix2k+1(t)

)+ 1

ζ k−1

(
x2k(t) + ix2k+1(t)

))
. (4.4)

According to Theorem 2.1 (items 1 and 2), the extension of the vector field (4.4) inside the
unit disk is given by

Vx,t (z) = i

2

∑
k>1

1√
k3 − k

× Bk
x,t (z), z ∈ D, (4.5)

where

Bk
x,t (z) := zk+1(x2k(t) − ix2k+1(t)

)
+ z̄k−1

(
1 + (k − 1)(1 − zz̄) + k(k − 1)

2
(1 − zz̄)2

)(
x2k(t) + ix2k+1(t)

)
. (4.6)

Note that for fixed t , the function

z �→ Vx,t (z) (4.7)

is C∞ on the open disk and vanishing at 0. As a consequence of its smoothness, Vx,t (∗) induces
a flow of local diffeomorphism of D in the sense of Kunita [23], via the Stratonovich SDE

dtΨx,t (z) = (dtVx,t )
(
Ψx,t (z)

)
. (4.8)
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Extending the vector field (4.3) to the disk, we obtain the regularization V r
x,t of Vx,t defined

as

V r
x,t (z) = i

2

∑
k>1

rk

√
k3 − k

× Bk
x,t (z). (4.9)

The corresponding regularized Stratonovich SDE

dtΨ
r
x,t (z) = (

dtV
r
x,t

)(
Ψ r

x,t (z)
)

(4.10)

defines a local C∞ flow on the closure D̄ of the unit disk.
In terms of polar coordinates

z = eiθ e−y, resp. Ψx,t (z) = eiθt e−yt , (4.11)

the Stratonovich SDE (4.10) becomes the following Stratonovich SDE

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dθt =
∑
k>1

e−kyt rk

2
√

k3 − k

(
1 + Rke

2yt
)(

cos(kθt ) ◦ dx2k(t) + sin(kθt ) ◦ dx2k+1(t)
)
,

dyt =
∑
k>1

e−kyt rk

2
√

k3 − k

(
1 − Rke

2yt
)(

sin(kθt ) ◦ dx2k(t) − cos(kθt ) ◦ dx2k+1(t)
) (4.12)

where

e2yRk(y) = k(k + 1)

2
e2y − (k − 1)(k + 1) + k(k − 1)

2
e−2y. (4.13)

Remark 4.1. For y = 0, as it should be, we recover Eq. (4.1).

Theorem 4.2. The Itô contraction of the Stratonovich system (4.12) is given by

d(θt + iyt ) ∗ d(θt + iyt ) =
(

1

2
e−2yt − 1

4
e−4yt

)
dt.

Proof. The Itô contractions will be expressed essentially as a sum of geometric series or deriva-
tives of geometric series. We write the Ito contractions for (4.12) when r = 1,

dθt ∗ dθt =
∑
k>1

e−2kyt

4(k3 − k)

(
1 + Rke

2yt
)2

dt,

dθt ∗ dyt = 0,

dyt ∗ dyt =
∑ e−2kyt

4(k3 − k)

(
1 − Rke

2yt
)2

dt.
k>1
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Thus

d(θt + iyt ) ∗ d(θt + iyt ) =
∑
k>1

e−2kyt

k3 − k
Rke

2yt dt

and we have

∑
k>1

e−2ky

k3 − k
Rke

2y = 1

2
e−2y − 1

4
e−4y. �

Theorem 4.3. For a given z0 ∈ D, let Ψx,t (z0) be solution of Eq. (4.8). Consider the stopping
time

Tz0 = inf
{
t > 0: Ψx,t (z0) ∈ ∂D

}
. (4.14)

Then Tz0 = ∞.

Proof. First remark that t �→ yt is a Markov process: indeed there exists an independent family
of scalar Brownian motions ωk , independent of θ , such that

ωk �law cos(kθt )x2k+1(t) − sin(kθt )x2k(t). (4.15)

This allows to compare the Markov processes yt with the process having as infinitesimal gener-
ator the ODE

1

2
q(y)

d2

dy2
+ w(y)

d

dy
, (4.16)

where

q(y) =
∑
k>1

e−2ky

4(k3 − k)

(
1 − Rke

2y
)2

, w(y) = 1

2
e−2y − 1

4
e−4y. (4.17)

We have w(y) > 0, and by (4.13) the estimation of q(y) at y = 0 gives the result. The comparison
equation in Itô form reads as

dỹ = ỹ dbt

where bt is an abstract Brownian motion; therefore

ỹ(t) = ỹ(0) exp

(
b(t) − t

2

)

which never vanishes. �
Theorem 4.4. The process Ψ r

x,t takes values in the C∞ orientation preserving diffeomorphisms
of the open disk D.
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Proof. By Kunita’s theory of stochastic flows [23], Ψ r
x,t (z) is a C∞ diffeomorphism on the open

random set {z: Tz > t}; we conclude as in Theorem 4.3. �
Remark 4.5. The Ito contractions for a two points process governed by (4.12) are also expressed

as sums of geometric series. Denote by (θ
(j)
t , y

(j)
t ), j = 1,2, solutions of Eqs. (4.12) with given

initial conditions at t = 0. It is not difficult to see that

dθ
(1)
t ∗ dθ

(1)
t = L

y
(1)
t ,y

(2)
t

(
θ

(1)
t − θ

(2)
t

)
dt

where

Ly(1),y(2) (θ) = 1

2

(
1 − cos(θ) cosh

(
y(1) + y(2)

))
× log

(
1 − 2e−(y(1)+y(2)) cos(θ) + e−(y(1)+y(2))

)
+ terms bounded in (θ, y) (4.18)

with θ = θ(1) − θ(2) and y = (y(1), y(2)), y(1) � 0, y(2) � 0. We observe that the induced flow
is isotropic in θ , see [26]; moreover it is log-Lipschitzian as in the case of its restriction to the
circle, see [6,13,28].

5. Regularized welding process, its holomorphy

This whole section will be written for a fixed value of the regularization parameter r . We start
by recalling the classical solution of the smooth welding problem. Define the complex modulus
of quasi-conformality

μΨ r
x,t

(z) := ∂̄Ψ r
x,t

∂Ψ r
x,t

(z)

and consider a solution F r
x,t of the following Beltrami equation:

∂̄F r
x,t

∂F r
x,t

(z) =
{

μΨ r
x,t

(z), |z| � 1,

0, |z| > 1.
(5.1)

Normalizing the solution by the conditions

F r
x,t (z) = z + o(1), z → ∞, (5.2)

then F r
x,t is analytically expressible by the Ahlfors–Bojarski series (see [1, Chapt. 5];

[7, Chapt. 5]). This solution is unique and therefore gives rise to a functional on the underly-
ing probability space.

Define

f r
x,t (z) = F r

x,t ◦ (Ψ r
x,t

)−1
(z), z ∈ D; hr

x,t (z) = F r
x,t (z), z /∈ D. (5.3)
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Then

f r
x,t is holomorphic and univalent on D, and

hr
x,t is holomorphic and univalent on D̄c. (5.4)

Differential calculus along the time variable will permit to use the results of Section 3 estab-
lished in the case of C∞ welding depending smoothly on time.

Our tool for this purpose is the transfer principle; we proceed by smoothing the Brownian
motion. To this end, we fix a mollifier, that is a positive C∞ function a of compact support con-
tained in the interval [0,1] and integral equal to 1. To every ε > 0 we associate the smoothened
Brownian motion defined as

xε
k (t) =

1∫
0

xk(t + sε)a(s) ds. (5.5)

Note that xε
k (∗) are C∞ functions and limε→0 xε

k (∗) = xk(∗).

Replacing in Eqs. (4.5) and (4.6) the Brownian motions x∗ by its smooth regularization xε∗ ,
we get a C∞ vector field depending smoothly upon time:

V r
xε,t (z), z ∈ D̄, (5.6)

to which we associate the following non-autonomous ODE:

d

dt
Ψ r

xε,t (z0) = (
V r

xε,t

)(
Ψ r

xε,t (z0)
)
. (5.7)

Theorem 5.1. We have

lim
ε→0

Ψ r
xε,t (z) = Ψ r

x,t (z), ∀z ∈ C, uniformly on any compact. (5.8)

Proof. The transfer principle (see for instance [27, Chapt. VIII]) states that the solution of the
ODE driven by the regularized Brownian xε converges locally uniformly towards the correspond-
ing Stratonovich SDE driven by x. �
Theorem 5.2. Let F r

xε,t be defined by (5.1) and (5.2) with x replaced by xε . The following identity
is valid on the whole complex plane:

(
d

dt
F r

xε,t

)
◦ (F r

xε,t

)−1
(z) = 1

2πi

∫
f r

xε,t
(D)

1

z − z′ A
r
xε,t

(
z′)dz′ ∧ dz̄′ (5.9)

where

Ar
xε,t :=

(
∂f r

xε,t

∂f r
xε,t

× ∂̄V
r

xε,t

)
◦ (f r

xε,t

)−1
.
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Proof. Apply Loewner’s equation established in Theorem 3.1 along with the normaliza-
tion (5.2). �

Letting ε → 0 in (5.9), we obtain a stochastic differential for F r
x,t . Indeed, letting z =

(F r
x,t )

−1(ζ ), then

dtF
r
x,t (z) = 1

2πi

∫
f r

x,t (D)

1

ζ − ζ1

(
∂f r

x,t

∂f r
x,t

× (
dt ∂̄V

r

x,t

)) ◦ (f r
x,t

)−1
(ζ1) dζ1 ∧ dζ1. (5.10)

Theorem 5.3. Fix a finite subset {zj }j∈{1,2,...,d} of distinct points of Dc , and define

w
j
x,t := F r

x,t (zj ).

There exist d complex Brownian motions bj such that

w
j
x,t − w

j

x,0 =
t∫

0

(
√

A)
j
i dbi(t) (5.11)

where the stochastic integrals are of Itô type and where the Hermitian matrix A is given by

A
j
q := 1

4π2

∫
f r

x,t (D)2

1

(w
j
x,t − z′)(wq

x,t − z′′)
Cr

f

(
z′, z′′)dz′ ∧ dz̄′ ∧ dz′′ ∧ dz̄′′ (5.12)

where

Cr
f

(
z′, z′′) := Cr

((
f r

x,t

)−1(
z′), (f r

x,t

)−1(
z′′)) ∂f r

x,t

∂̄f r
x,t

((
f r

x,t

)−1(
z′)) ∂̄f r

x,t

∂f r
x,t

((
f r

x,t

)−1(
z′′))

with

Cr (u, v) dt := dt ∂̄V r
t (u) ∗ dt ∂̄V r

t (v). (5.13)

Proof. In finite dimension it is well known that the image of a Brownian motion on a Kähler
manifold through a holomorphic function is a conformal martingale in C, equal in law to a time-
changed complex Brownian motion; this fact extends to finite systems of holomorphic functions.

In our case we apply the transfer principle together with the key fact of holomorphy of the
conformal welding (Theorem 3.5). This implies the vanishing of Itô contractions induced by
the passage from Stratonovich SDE to Itô SDE; only the martingale parts remain and (5.11)
is established. Thus the computation of the martingale covariance matrix through Itô calculus
involves only first order derivatives computed from (5.9) which finally establishes (5.12). �
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6. Covariance for the ∂̄ of Douady–Earle extension

The next step is the computation of Cr
f in (5.12). We start from the definition of the regularized

vector fields V r
x,t (z) given in (4.9). According to (2.9)–(2.10) we have

(
∂̄zV

r
x,t

)
(z) = i(1 − z̄z)2

4

∑
k>1

rk
√

k3 − k
(
x2k(t) + ix2k+1(t)

)
z̄k−2 (6.1)

and

dt

(
∂̄V

r

x,t

)
(z) = i(1 − z̄z)2

4

∑
k>1

rk
√

k3 − k
(
dx2k(t) + i dx2k+1(t)

)
z̄k−2. (6.2)

The covariance associated to this random vector field is

Cr (z1, z2) dt = dt ∂̄V r
x,t (z1) ∗ dt ∂̄V r

x,t (z2) (6.3)

where ∗ denotes the Itô contraction.

Theorem 6.1. For any 0 < r � 1, we have

Cr (z1, z2) = 3r4(1 − |z1|2)2(1 − |z2|2)2

4(1 − r2z̄1z2)4
(6.4)

and

∣∣Cr (z1, z2)
∣∣� 12 exp

(−2dH(z1, z2)
)
, z1, z2 ∈ D, (6.5)

where dH is the Poincaré distance on the unit disk D.

Proof. From (6.2) we get

Cr (z1, z2) = 1

8

(
1 − |z1|2

)2(1 − |z2|2
)2∑

k>1

(
k3 − k

)
r2k(z̄1z2)

k−2. (6.6)

Using the fact that

∑
k>1

(
k3 − k

)
Xk−2 = 6

(1 − X)4
,

we obtain (6.4). Next for fixed z1, z2 ∈ D, we verify that the function

u(r) = r4

|1 − r2z1z2|4 , 0 � r � 1,

is increasing in r ; thus it is enough to prove estimate (6.5) for r = 1.
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Since (
1 − |z1|2

)(
1 − |z2|2

)= |1 − z̄1z2|2 − |z1 − z2|2,
we have

C(z1, z2) = 3

4

(
1 − |z1 − z2|2

|1 − z̄1z2|2
)2

.

Note that the function

φ(z1, z2) := |z1 − z2|2
|1 − z̄1z2|2

is invariant under homographic transformations

T (z) = z − a

1 − āz
,

i.e.

φ(T z1, T z2) = φ(z1, z2). (6.7)

Hence it is sufficient to obtain the wanted upper bound when z1 = 0; then

C(0, z) = 3

4

(
1 − |z|2)2

.

Denoting r = |z|, we have

exp
(−dH(0, z)

)= 1 − r

1 + r
,

and finally since 0 < r � 1,

1 − r2 � 2(1 − r) � 4 exp
(−dH(0, z)

);
thus

(
1 − r2)2 � 16 exp

(−2dH(0, z)
)
. �

7. A priori Hölderian estimates for the regularized welding process

Granted to the normalization (5.2) we have hr
x,t (z) = z +∑

k>0 ckz
−k . Setting

q(u) := 1

hr
x,t (u

−1)
= u

1 +∑
k>0 ckuk+1

,

then q is a univalent function on the unit disk D satisfying q(0) = 0, q ′(0) = 1. Applying the
Koebe 1/4-Theorem, we get 1D ⊂ q(D).
4
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Lemma 7.1. Denoting for a Jordan curve Γ ⊂ C,

|Γ |∞ := sup
{|z|: z ∈ Γ

}
we have

∣∣hr
x,t (∂D)

∣∣∞ � 4, ∀t � 0. (7.1)

Proof. If z ∈ ∂D, then 1/z ∈ ∂D. We have q(1/z) = 1/h(z). The two requirements D(0;1/4) ⊂
q(D) and 1/z ∈ ∂D imply that q(1/z) � 1/4; thus h(z) � 4. �

Letting ε → 0 in (5.9), we obtained the stochastic differential (5.10) for F r
x,t where as in (6.3),

the stochastic differential dt ∂̄V r
x,t is given by (6.2). Replacing dt ∂̄V r

x,t by expression (6.2), we
get with z = (F r

x,t )
−1(ζ ),

dtF
r
x,t (z) = 1

8π

∑
k>1

rk
√

k3 − k
(
dx2k(t) + √−1dx2k+1(t)

)× Ik(ζ ) (7.2)

where we denote

Ik(ζ ) =
∫

f r
x,t (D)

1

ζ − ζ1

(
∂f r

x,t

∂f r
x,t

× uk

)
◦ (f r

x,t

)−1
(ζ1) dζ1 ∧ dζ1 (7.3)

and uk(z) = (1 − zz̄)2z̄k−2.
Letting ζ0, ζ

′
0 ∈ F r

x,t (∂D), say ζ0 = F r
x,t (z0), ζ ′

0 = F r
x,t (z

′
0), our next objective is to evaluate

the Itô contraction (see for example [24])

dt

(
F r

x,t (z0) − F r
x,t

(
z′

0

)) ∗ dt

(
F r

x,t (z0) − F r
x,t

(
z′

0

) )
. (7.4)

By means of (7.3), we obtain

dt

(
F r

x,t (z0) − F r
x,t

(
z′

0

)) ∗ dt

(
F r

x,t (z0) − F r
x,t

(
z′

0

) )
= 2

64π2

∑
k>1

r2k
(
k3 − k

)∣∣Ik(ζ0) − Ik

(
ζ ′

0

)∣∣2 dt (7.5)

and

Ik(ζ0) − Ik

(
ζ ′

0

)= (
ζ ′

0 − ζ0
)

×
∫

f r
x,t (D)

1

(ζ0 − ζ1)(ζ
′
0 − ζ1)

(
∂f r

x,t

∂f r
x,t

× uk

)
◦ (f r

x,t

)−1
(ζ1) dζ1 ∧ dζ1.

(7.6)
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For the covariance of Brownian motion on the diffeomorphisms of the circle, log-Lipschitzian
estimates have been established in [28,6,13]. Here, we consider F r

x,t = f r
x,t ◦ Ψ r

x,t restricted to
the circle.

Carrying out the change of variable ζ1 = f r
x,t (z1) in (7.6), we get

∣∣Ik(ζ0) − Ik

(
ζ ′

0

)∣∣2 = ∣∣(ζ ′
0 − ζ0

)∣∣2 × Lk

with

Lk =
∫
D2

1

(ζ0 − f r
x,t (z1))(ζ

′
0 − f r

x,t (z1)) (ζ0 − f r
x,t (z2))(ζ

′
0 − f r

x,t (z2))

×
(

∂f r
x,t

∂f r
x,t

)
(z1)uk(z1)

∣∣∂f r
x,t (z1)

∣∣2

×
(

∂f r
x,t

∂f r
x,t

)
(z2)uk(z2)

∣∣∂f r
x,t (z2)

∣∣2 dz1 ∧ dz1 ∧ dz2 ∧ dz2. (7.7)

From (6.6) and (6.5) we have∣∣∣∣∑
k>1

r2k
(
k3 − k

)
uk(z1)uk(z2)

∣∣∣∣� 8 × 12 exp
(−2dH(z1, z2)

)
.

Substituting in (7.5) we obtain

dt

(
F r

x,t (z0) − F r
x,t

(
z′

0

)) ∗ dt

(
F r

x,t (z0) − F r
x,t

(
z′

0

) )= ∣∣ζ0 − ζ ′
0

∣∣2 × J dt (7.8)

where

J � 3

π2

∫
D2

exp(−2dH(z1, z2))

|(ζ0 − f r
x,t (z1))(ζ

′
0 − f r

x,t (z1))(ζ0 − f r
x,t (z2))(ζ

′
0 − f r

x,t (z2))|

× ∣∣∂f r
x,t (z1)

∣∣2∣∣∂f r
x,t (z2)

∣∣2 dz1 ∧ dz1 ∧ dz2 ∧ dz2. (7.9)

Transforming back to the ζ -variable, ζ = f r
x,t (z), this gives

J � 3

π2

∫
(f r

x,t (D))2

exp(−2dH((f r
x,t )

−1(ζ1), (f
r
x,t )

−1(ζ2)))

|(ζ0 − ζ1)(ζ
′
0 − ζ1)(ζ0 − ζ2)(ζ

′
0 − ζ2)| dζ1 ∧ dζ1 ∧ dζ2 ∧ dζ2 (7.10)

where as above dH denotes the Poincaré distance on D. Moreover, because of (5.3), the domain
of integration for the integral (7.10) is

F r
x,t (D) = f r

x,t (D). (7.11)

The following theorem is obtained by establishing an upper bound for J .
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Theorem 7.2. Denote

dt

(
F r

x,t (z0) − F r
x,t

(
z′

0

)) ∗ dt

(
F r

x,t (z0) − F r
x,t

(
z′

0

) )
=: E

Ft
[∣∣δt

(
F r

x,t

)
(ζ0) − δt

(
F r

x,t

)(
ζ ′

0

)∣∣2]dt, ζ0 = F r
x,t (z0), ζ ′

0 = F r
x,t

(
z′

0

)
.

Then there exists a numerical constant c, independent of r , such that for all ζ0, ζ
′
0 ∈ F r

x,t (∂D),

E
Ft
[∣∣δt

(
F r

x,t

)
(ζ0) − δt

(
F r

x,t

)(
ζ ′

0

)∣∣2]� c
∣∣ζ0 − ζ ′

0

∣∣2 log
16

|ζ0 − ζ ′
0|

. (7.12)

Proof. We already proved that

E
Ft
[∣∣δt

(
F r
)
(ζ0) − δt

(
F r
)(

ζ ′
0

)∣∣2]� c
∣∣ζ0 − ζ ′

0

∣∣2 × J

for some constant c where J satisfies estimate (7.10). Recall the definition of the approximate
hyperbolic metric for an open subset Ω ⊂ D (see [31, p. 92], [15] and [9]):

dΩ(η1, η2) = inf
γ

∫
γ

|dζ |
dist(ζ, ∂Ω)

(7.13)

where γ is any rectifiable curve joining η1 to η2. Then by [31, formula (17), p. 9 and formula (6),
p. 92] we have for the Poincaré distance dH on D:

dH
(
f −1(η1), f

−1(η2)
)
� 1

4
dΓ +(η1, η2) (7.14)

where f is a univalent function mapping the disk upon Γ +. As we used (6.5) to derive (7.10),
we now have

exp
(−2dH

((
f r

x,t

)−1
(ζ1),

(
f r

x,t

)−1
(ζ2)

))
� exp

(
−1

2
dΓ +(ζ1, ζ2)

)
. (7.15)

The proof of Theorem 7.2 will be completed after some preparatory lemmas. �
Denote by Ω the complement in the complex plane of the two points ζ0, ζ

′
0 ∈ F r

x,t (∂D); then
Γ + ⊂ Ω therefore

dΓ +(ζ1, ζ2) � dΩ(ζ1, ζ2). (7.16)

Set δ = δ(ζ0, ζ
′
0) := |ζ0 − ζ ′

0|, then up to a Euclidean motion of the complex plane, the distance
dΩ is characterized by δ.

Lemma 7.3. We have

J � Kδ

(
Fx,t (D)

)
� Kδ(4D), (7.17)

where
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Kδ(B) := 3

π2

∫
B2

exp(−dΩ(ζ1, ζ2)/2)

|(ζ0 − ζ1)(ζ
′
0 − ζ1)(ζ0 − ζ2)(ζ

′
0 − ζ2)| dζ1 ∧ dζ̄1 ∧ dζ2 ∧ dζ̄2. (7.18)

For all λ > 0,

Kδ(B) = Kλδ

(
Hλ(B)

)
(7.19)

where Hλ denotes the homothety of ratio λ and center (ζ0 + ζ ′
0)/2; in particular

J � K1

(
8D

δ

)
. (7.20)

Proof. The first inequality in (7.17) is a direct consequence of (7.13)–(7.16) and (7.10)–(7.11);
the second inequality a consequence of Lemma 7.1.

On the other hand,

Hλ(ζ ) = λζ + (1 − λ)
ζ0 + ζ ′

0

2
; (7.21)

thus

Hλ(ζ0) = 1 + λ

2
ζ0 + 1 − λ

2
ζ ′

0, Hλ

(
ζ ′

0

)= 1 + λ

2
ζ ′

0 + 1 − λ

2
ζ0

and

Hλ

(
ζ ′

0

)− Hλ(ζ0) = λ
(
ζ ′

0 − ζ0
)
, (7.22)

i.e.,

Hλ(u1) − Hλ(u2) = λ(u1 − u2) ∀u1, u2.

With the change of variables ζ1 = Hλ(u1), we have∫
Hλ(B)

φ(ζ1)

|(Hλ(ζ0) − ζ1)(Hλ(ζ
′
0) − ζ1)| dζ1 ∧ dζ1 =

∫
B

φ(Hλ(u1))

|(ζ0 − u1)(ζ
′
0 − u1)| du1 ∧ du1.

In the same way, we carry out the change of variables in integrals of the type∫
Hλ(B)2

φ(ζ1, ζ2)

|(Hλ(ζ0) − ζ1)(Hλ(ζ
′
0) − ζ1)(Hλ(ζ0) − ζ2)(Hλ(ζ

′
0) − ζ2)| dζ1 ∧ dζ1 ∧ dζ2 ∧ dζ2.

Taking φ(ζ1, ζ2) = exp(− 1
2dHλ(B)(ζ1, ζ2)) and using

dΩ(ζ1, ζ2) = dHλ(Ω)

(
Hλ(ζ1),Hλ(ζ2)

)
, (7.23)

we see that integral in (7.18) is invariant under Hλ and we have (7.19).
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Finally to establish (7.20) we observe that

K1
(
H1/δ(4D)

)
� K1

(
8D

δ

)
. � (7.24)

Lemma 7.4.

lim
λ→∞dΩ(λζ1, λζ2) �

∣∣∣∣log
|ζ1|
|ζ2|

∣∣∣∣. (7.25)

Proof. Set

ρ(ζ ) := |ζ − ζ0|, ρ′(ζ ) := ∣∣ζ − ζ ′
0

∣∣,
r1 := ρ(ζ1), r ′

1 := ρ′(ζ1), r2 := ρ(ζ2), r ′
2 := ρ′(ζ2).

Write C(η,a) for the circle of center η and radius a. Since ζ1 ∈ C(ζ0, r1) and ζ2 ∈ C(ζ ′
0, r

′
2), we

have

dΩ(ζ1, ζ2) � dΩ

(
C(ζ0, r1),C

(
ζ ′

0, r
′
2

))
. (7.26)

The distance dΩ(C(ζ0, r1),C(ζ ′
0, r

′
2)) vanishes if the two circles intersect which means that

∣∣r1 − r ′
2

∣∣� δ � r1 + r ′
2. (7.27)

Assume that r1 � r ′
2 and that (7.27) fails (that is the two circles do not intersect). Then either

r ′
2 > δ + r1 or r1 + r ′

2 < δ.
In the first case, we have

dΩ

(
C(ζ0, r1),C

(
ζ ′

0, r
′
2

))= log
r ′

2 − δ

r1
� dΩ(ζ1, ζ2),

and in the second case,

dΩ

(
C(ζ0, r1), D̄

(
ζ ′

0, r
′
2

))= log
δ − r ′

2

r1
= log

|r ′
2 − δ|
r1

� dΩ(ζ1, ζ2).

Thus

log
|r ′

2 − δ|
r1

� dΩ(ζ1, ζ2), r1 � r ′
2,

log
|r ′

1 − δ|
r2

� dΩ(ζ1, ζ2), r1 � r ′
2. (7.28)

The lemma is proved by fixing δ, rewriting (7.28) for λζ1, λζ2, and letting λ → ∞ in (7.28). �
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End of Proof of Theorem 7.2. We have

K1(2λD) − K1(λD) =
∫

{0<|ζ1|<2λ}

∫
{0<|ζ2|<2λ}

. . .−
∫

{0<|ζ1|<λ}

∫
{0<|ζ2|<λ}

. . .

= 2
∫

{λ<|ζ2|<2λ}

∫
{0<|ζ1|<|ζ2|}

. . . . (7.29)

The second equality in (7.29) is easily obtained by passing to polar coordinates, |ζj | = ρj and
integrating over the squares

{0 < ρj < 2λ, j = 1,2} and {0 < ρj < λ, j = 1,2}.

Expressing the volume element in polar coordinates

|ζj | = ρj , ζj = ρj exp(iψj ),

1

4π2

∫
{λ<|ζ2|<2λ}

∫
{0<|ζ1|<|ζ2|}

. . . �
2λ∫

λ

dρ2

ρ2

(
c + 3

ρ2∫
0

dρ1

ρ1

(
ρ−1

2 ρ1
)1/2

)
, (7.30)

we obtain

lim sup
λ→∞

(
K1(2λD) − K1(λD)

)
� (c + 6) log 2 < ∞. (7.31)

On the other hand, let φ(λ) be a real-valued, continuous and increasing function of the vari-
able λ; assume that

lim
λ→∞

(
φ(2λ) − φ(λ)

)
< +∞.

Then φ(λ) � C logλ for λ near ∞. This can be seen as follows: we verify that 0 < A =
limn→∞(φ(2n+1) − φ(2n)) < +∞ implies asymptotically

φ
(
2n
)= [

φ
(
2n
)− φ

(
2n−1)]+ [

φ
(
2n−1)− φ

(
2n−2)]+ · · · � n × A =: C log

(
2n
);

then we extend the proof by considering ψ(2λ) = φ(λ).
The combination of formula (7.31) along with (7.20) proves (7.12). It remains to justify (7.30);

to this end we need an upper bound for the integrand

exp(−dΩ(ζ1, ζ2)/2)

|(ζ0 − ζ1)(ζ
′
0 − ζ1)(ζ0 − ζ2)(ζ

′
0 − ζ2)| . (7.32)

Since ζ0, ζ ′
0 ∈ F r

x,t (∂D), by (7.1), we note that |ζ0| � 4 and |ζ ′
0| � 4. For λ > 8 and ρ2 = |ζ2| > λ,

we have
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|ζ0 − ζ2| > ρ2

2
and

∣∣ζ ′
0 − ζ2

∣∣> ρ2

2
. (7.33)

If ρ1 < ρ2, then log(ρ1/ρ2) < 0. By (7.25),

dΩ(λζ1, λζ2) � log(ρ2/ρ1). (7.34)

Then, for any λ > 8,

exp

(
−1

2
dΩ(λζ1, λζ2)

)
�
(

ρ1

ρ2

)1/2

. (7.35)

Since in polar coordinates, the volume element is ρj dρj dψj , j = 1,2, we see that we have to
estimate

2λ∫
λ

dρ2

ρ2

ρ2∫
0

1

ρ2
1

(
ρ1

ρ2

)1/2

ρ1 dρ1. (7.36)

This gives (7.30). �
8. Moduli of continuity of regularized welding

8.1. Local moduli of continuity of regularized welding

As F r
x,t is C∞, its restriction to ∂D is Hölderian. The purpose of this subsection and the

following theorem is to obtain uniform estimates in r and t .

Theorem 8.1. Let

η(t) ≡ ηx(t) := ∣∣F r
x,t (ζ ) − F r

x,t

(
ζ ′)∣∣, ζ, ζ ′ ∈ ∂D,

and

γ + = sup
s∈[0,t]

logη(s)

logη(0)
, γ − = inf

s∈[0,t]
logη(s)

logη(0)
.

Let δ be a constant such that 0 < δ < 1. Then

√
γ + � δ + 1 if and only if inf

s∈[0,t]
|F r

x,s(ζ ) − F r
x,s(ζ

′)|
|ζ − ζ ′|(1+δ)2 � 1

and

√
γ − � 1 − δ if and only if sup

s∈[0,t]
|F r

x,s(ζ ) − F r
x,s(ζ

′)|
|ζ − ζ ′|(1−δ)2 � 1.

There exists a constant σ(t) depending on t , but independent of r , such that
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Prob
{√

γ − � 1 − δ
}

� 2
√

σ(t)c
√

2πδ
√

log 1
η(0)

exp

(
− δ2

2σ(t)c2
× ∣∣logη(0)

∣∣), (8.1)

Prob
{√

γ + > δ + 1
}

� 2
√

σ(t)c
√

2πδ
√

log 1
η(0)

exp

(
− δ2

2σ(t)c2
× ∣∣logη(0)

∣∣). (8.2)

The function σ(t) is independent of r, ζ, ζ ′ and δ and tends to zero as t → 0.

Proof. The first two assertions are straightforward. We confine ourselves to prove (8.1) and (8.2).
Let

γs = logη(s)

logη(0)
= log

(
1/η(s)

)
log

(
1/η(0)

) . (8.3)

By definition, γ0 = 1 and F r
x,0(ζ ) − F r

x,0(ζ
′) = ζ − ζ ′. If we assume that η(0) = |ζ − ζ ′| < 1,

then log(1/η(0)) > 0.
All Itô differentials below are well defined up to the stopping time

T = inf
{
s ∈ [0,∞[: γs < 0

}
.

The subsequent computations allow to evaluate the probability of the event {T < t} which is of
small order. We may limit ourselves to the case where η(0) < 1; these facts legitimate the change
of variables in (8.3).

We have √
log

1

η(0)
× (1 − √

γs ) =
√

log
1

η(0)
−
√

log
1

η(s)
, (8.4)

from where we deduce that√
log

1

η(0)
× (

1 −√
γ − )= sup

s∈[0,t]

(√
log

1

η(0)
−
√

log
1

η(s)

)
.

Furthermore we notice that the condition

1 −√
γ − > δ

is equivalent to

sup
s∈[0,t]

(√
log

1

η(0)
−
√

log
1

η(s)

)
> δ

√
log

1

η(0)

which amounts to say

inf
s∈[0,t]

(√
log

1

η(s)
−
√

log
1

η(0)

)
< −δ

√
log

1

η(0)
. (8.5)
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In the same way, from (8.4) we obtain

√
log

1

η(0)
× (√

γ + − 1
)= sup

s∈[0,t]

(√
log

1

η(s)
−
√

log
1

η(0)

)

and we conclude that

√
γ + − 1 > δ

is equivalent to

sup
s∈[0,t]

(√
log

1

η(s)
−
√

log
1

η(0)

)
> δ

√
log

1

η(0)
. (8.6)

The probabilities of the events (8.5) and (8.6) will be evaluated in Lemma F below after several
intermediate results. �

The following lemma serves as a key lemma.

Lemma A. Let

v(t) ≡ vx,ζ,ζ ′(t) = Fx,t (ζ ) − Fx,t

(
ζ ′), ζ, ζ ′ ∈ ∂D.

Then

dv(t) = A
(
t, v(t)

)
dz(t) + B

(
t, v(t)

)
dt (8.7)

where z(t) is a Brownian motion in the complex plane, and

∣∣A(t)
∣∣� c

∣∣v(t)
∣∣(√∣∣log

∣∣v(t)
∣∣∣∣+ 1

)
,∣∣B(t)

∣∣� c
∣∣v(t)

∣∣(1 + ∣∣log
∣∣v(t)

∣∣∣∣). (8.8)

Proof. If v(t) satisfies (8.7), then the Itô contraction takes the form

dv(t) ∗ dv(t) = 2A
(
t, v(t)

)
A
(
t, v(t)

)
dt.

By (7.12), we deduce the first inequality in (8.8).
The remaining claims result from Itô calculus applied to (7.2). For inequality (8.8), let b(t) be

a real Brownian motion, and compare Eq. (7.2) to the Stratonovich SDE

dw(t) = c1w(t)

(√
log

1

w(t)
+ 1

)
◦ db(t), w(0) = ∣∣v(0)

∣∣< 1.
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Let Ã(w) = c1w(
√

log |w| + 1). In this case, the drift obtained by passing to the Itô SDE is

B̃ dt = 1

2

∂Ã

∂w
Ãdt,

and the estimate |B̃| � c2|w|(log |w| + 1) results. �
The next lemma is obtained from Lemma A by Itô’s formula.

Lemma B. Set λ(t) := |F r
x,t (ζ ) − F r

x,t (ζ
′)|2 = η(t)2. Then λ(t) is solution of the Itô equation

dλ(t) = A1(t) db(t) + B1(t) dt (8.9)

where b(t) is a one-dimensional real Brownian motion and where A1(t), B1(t) satisfy

0 < A1(t) � 2cη(t)2
(

1 +
√

log
1

η(t)

)
and

∣∣B1(t)
∣∣� (

2c + 4c2)η(t)2
(

1 + log
1

η(t)

)
. (8.10)

Moreover, for η(t) = √
λ(t), we obtain

dη(t) = α(t) db(t) + β(t) dt (8.11)

with

0 < α(t) < 2cη(t)

√
log

1

η(t)
,

∣∣β(t)
∣∣< 4

(
c + 2c2)η(t) log

1

η(t)
. (8.12)

The estimates (8.12) are valid for small values of η(t); more precisely up to the first hitting time
of η(t) at 1/e.

Proof. By Eq. (8.7), we have

dv(t) = A(t)
(
dx(t) + i dy(t)

)+ B(t) dt

where x(t) and y(t) are two independent real Brownian motions. By Itô calculus,

dλ = v dv̄ + v̄ dv + dv ∗ dv̄

= (vĀ + v̄A)dx + i(v̄A − vĀ) dy + (vB̄ + v̄B + 2AĀ)dt

= C1 dx + C2 dy + (vB̄ + v̄B + 2AĀ)dt
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with C1,C2 real-valued. Since C1 dx + C2 dy =
√

C2
1 + C2

2 db for some real Brownian motion
b, we obtain

dλ = A1 db + B1 dt

with A1 > 0. Moreover,

0 < A1 � 2c
∣∣vx,ζ,ζ ′(t)

∣∣2(√∣∣log
∣∣vx,ζ,ζ ′(t)

∣∣∣∣+ 1
)
,

|B1| �
(
2c + 4c2)∣∣vx,ζ,ζ ′(t)

∣∣2(∣∣log
∣∣vx,ζ,ζ ′(t)

∣∣∣∣+ 1
)
.

This proves (8.10).
Now let η = √

λ. Then again by Itô calculus

dη = 1

2
√

λ
dλ − 1

8λ
√

λ
dλ ∗ dλ = A1

2
√

λ
db +

(
B1

2
√

λ
− A2

1

8λ
√

λ

)
dt

and (8.12) is a consequence of (8.10). �
Lemma C. Introduce the function

φ(x) := 1

c

√
log

1

x
, x > 0,

and consider the process η(t) = |v(t)| as in (8.11) and (8.12). Then

u(t) = φ
(
η(t)

)
is solution of the following Itô equation:

du(t) = α1(t) db1(t) + β1(t) dt, 0 < α1 � 1, |β1| � c1u, c1 := 4
(
c + c2), (8.13)

where b1(t) is a Brownian motion.

Proof. As

φ′(x) = − 1

2c

(
log

1

x

)−1/2 1

x
;

φ′′(x) = − 1

4c

(
log

1

x

)−3/2 1

x2
+ 1

2c

(
log

1

x

)−1/2 1

x2
,

we see that φ′′(x) > 0 for x < e−1/2. Thus

0 < φ′′(x) <
1
(

log
1
)−1/2 1

2
. (8.14)
2c x x
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By Itô calculus,

du(t) = φ′(η(t)
)
dη(t) + 1

2
φ′′(η(t)

)
α2(t) dt

= φ′(η(t)
)
α(t) db(t) +

[
φ′(η(t)

)
β(t) + 1

2
φ′′(η(t)

)
α2(t)

]
dt

= α1(t) db1(t) + β1(t) dt

where b1(t) = −b(t) is a Brownian motion and

α1(t) = −φ′(η(t)
)
α(t), β1(t) = φ′(η(t)

)
β(t) + 1

2
φ′′(η(t)

)
α2(t).

The function α1(t) = −φ′(η(t))α(t) satisfies 0 < α1(t) < 1. The upper bound for β1 is deduced
from (8.12). �
Lemma D. Let u(s) be the process given by (8.13). Consider the two comparison processes

du± = db1 ± c1u
± dt, u±(0) = u(0), (8.15)

or equivalently

u+(t) − u+(0) =
t∫

0

exp
(
c1(t − s)

)
db1(s),

u−(t) − u−(0) =
t∫

0

exp
(−c1(t − s)

)
db1(s). (8.16)

Then

inf
s∈[0,t]

(
u−(s) − u−(0)

)
� inf

s∈[0,t]
(
u(s) − u(0)

)
< sup

s∈[0,t]
(
u(s) − u(0)

)
� sup

s∈[0,t]
(
u+(s) − u+(0)

)
.

Proof. We use Ikeda–Watanabe’s comparison theorem [18]. �
Lemma E. Let m be a positive integer. For the two processes u+(t) and u−(t), we have

Prob
{

inf
(
u−(s) − u−(0)

)
< −m

}
� 2

√
τ−(t)√ exp

(
− m2

−

)
(8.17)
s∈[0,t] m 2π 2τ (t)
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with

τ−(t) = exp(2c1t) − 1

2c1 exp(2c1t)
,

and

Prob
{

sup
s∈[0,t]

(
u+(s) − u+(0)

)
> m

}
� 2

√
τ+(t)

m
√

2π
exp

(
− m2

2τ+(t)

)
(8.18)

with

τ+(t) = exp(2c1t) − 1

2c1
.

Proof. We may write

t∫
0

exp
(−c1(t − s)

)
db1(s) = exp(−c1t)Bτ(t)

where Bt is a Brownian motion and the rescaling τ(t) is given by

τ(t) =
t∫

0

exp(2c1s) ds = e2c1t − 1

2c1
.

Let

τ−1(s) = log(2c1s + 1)

2c1

be the inverse to τ . Since

inf
s∈[0,t] e

−c1sBτ(s) = inf
s∈[0,τ (t)] e

−c1τ
−1(s)Bs = inf

s∈[0,τ (t)]
Bs√

2c1s + 1
,

we obtain with the reflection principle of Brownian motion:

Prob
{

inf
s∈[0,t]

(
u−(s) − u−(0)

)
< −m

}
= Prob

{
inf

s∈[0,τ (t)]
Bs

2c1s + 1
< −m

}

� Prob
{

inf
s∈[0,τ (t)]Bs < −m

√
2c1τ(t) + 1

}
= Prob

{|Bτ(t)| � m∗
} [

where m∗ := m
√

2c1τ(t) + 1
]

= 2

+∞∫
exp

(
− x2

2τ(t)

)
dx√

2πτ(t)

m∗
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� 2
√

τ(t)

m∗
√

2π
exp

(
− m2∗

2τ(t)

)
.

This proves (8.17) with

τ−(t) =
∫ t

0 exp(2c1s) ds

2c1
∫ t

0 exp(2c1s) ds + 1
= 1

2c1

exp(2c1t) − 1

exp(2c1t)
.

For inequality (8.18) we proceed in the same way; in this case we find

τ+(t) =
∫ t

0 exp(−2c1s) ds

1 − 2c1
∫ t

0 exp(−2c1s) ds
= 1

2c1

1 − exp(−2c1t)

exp(−2c1t)
= exp(2c1t) − 1

2c1
. �

Lemma F. The two following estimates hold:

Prob

{
inf

s∈[0,t]

(√
log

1

η(s)
−
√

log
1

η(0)

)
< −δ

√
log

1

η(0)

}

� 2
√

τ−(t)c
√

2πδ
√

log 1
η(0)

exp

(
−δ2 log 1

η(0)

2τ−(t)c2

)
(8.19)

and

Prob

{
sup

s∈[0,t]

(√
log

1

η(s)
−
√

log
1

η(0)

)
> δ

√
log

1

η(0)

}

� 2
√

τ+(t)c
√

2πδ
√

log 1
η(0)

exp

(
−δ2 log 1

η(0)

2τ+(t)c2

)
. (8.20)

Proof. The inequality

inf
s∈[0,t]

(√
log

1

η(s)
−
√

log
1

η(0)

)
< −δ

√
log

1

η(0)

is equivalent to

inf
s∈[0,t]

(
u(s) − u(0)

)
< −δ

c

√
log

1

η(0)

which implies that

inf
s∈[0,t]

(
u−(s) − u−(0)

)
< −δ

c

√
log

1

η(0)
.

We apply (8.17) of Lemma E to obtain (8.19).
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Eq. (8.20) is proved in a similar way,

sup
s∈[0,t]

(√
log

1

η(s)
−
√

log
1

η(0)

)
> δ

√
log

1

η(0)

is equivalent to

sup
s∈[0,t]

(
u(s) − u(0)

)
>

δ

c

√
log

1

η(0)
.

This implies

sup
s∈[0,t]

(
u+(s) − u+(0)

)
>

δ

c

√
log

1

η(0)

and we may use (8.18) of Lemma E to conclude. �
End of Proof of Theorem 8.1. Taking into account that τ−(t) < τ+(t) and that the function

ϕ(τ) = 2
√

τc
√

2πδ
√

log 1
η(0)

exp

(
−δ2 log 1

η(0)

2τc2

)

is increasing in τ , we obtain (8.1)–(8.2) with σ(t) = τ+(t). �
8.2. Moduli of continuity of regularized welding

In the previous section, we derived local estimates of modulus of continuity; these are es-
timates of |F r

x,t (ζ0) − F r
x,t (ζ1)| for ζ0, ζ1 fixed. Moduli of continuity are obtained from local

estimates through estimates for

ωr
x,t (ε) = sup

|ζ0−ζ1|<ε

∣∣F r
x,t (ζ0) − F r

x,t (ζ1)
∣∣. (8.21)

We shall implement in this section the classical Kolmogorov methodology of deriving esti-
mates of moduli of continuity of a stochastic process in terms of estimates of its local moduli.
Given a continuous function u(θ) defined for θ ∈ [0,2π], we consider small intervals where the
function has a small variation and we prove Hölderianity on these intervals by means of the tri-
angular inequality, then considering bigger intervals we obtain an estimate in probability of the
Hölderian norm.

Introduce the dyadic numbers:

A =
⋃

An
n�1
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where

An = {
θ : θ = π × p × 2−n, p = 1, . . . ,2n+1}, n ∈ N.

The reduced Hölder exponent is defined as

γ ++
q := inf

n�q
inf

θ∈An

log |u(θ) − u(θ + 2−nπ)|
log(2−nπ)

. (8.22)

Obviously,

γ ++
q � γ ++

q+1,

and for any θ ∈ An, n � q ,

∣∣u(θ) − u
(
θ ′)∣∣� ∣∣θ − θ ′∣∣γ ++

q with θ ′ = θ + π

2n
. (8.23)

Lemma 8.2. For all θ and θ ′ such that 2−qπ < |θ − θ ′| � 2−q+1π , we have

∣∣u(θ) − u
(
θ ′)∣∣� 2

2−γ ++
q

1 − 2−γ ++
q

∣∣θ − θ ′∣∣γ ++
q . (8.24)

Proof. Given 0 < θ < θ ′ � 2π , let q ∈ N be such that 2−qπ < θ ′ − θ < 2−q+1π and k ∈ N such
that (k − 1)π2−q � θ < kπ2−q . The integers q and k then fulfill

θ < 2−qkπ � θ ′, 2−qπ < θ ′ − θ < 2−q+1π.

Consider the dyadic development

θ

π
= 2−qk −

∑
�>q

2−lε�,
θ ′

π
= 2−qk +

∑
�>q

2−lε′
�, ε∗, ε′∗ = 0,1,

and write

u
(
2−qkπ

)− u(θ) = u
(
2−qkπ

)− u
(
2−qkπ − εq+12−(q+1)kπ

)
+ u

(
2−qkπ − εq+12−(q+1)kπ

)
− u

(
2−qkπ − εq+12−(q+1)kπ − εq+22−(q+2)kπ

)+ · · · .

Since γ ++
� � γ ++

q for � � q , we get by (8.23)

∣∣u(θ) − u
(
2−qkπ

)∣∣� πγ ++
q

∑
�>q

2−�γ ++
q � 2−qγ ++

q × 2−γ ++
q

1 − 2−γ ++
q

× πγ ++
q .

We proceed similarly for θ ′. Since 2−qπ < θ ′ − θ , we obtain estimate (8.24). �
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On the other hand,

|u(θ) − u(θ ′)|
|θ − θ ′|α � 1 ∀θ, θ ′ ∈ An, n � q, (8.25)

implies that

|u(θ) − u(θ ′)|
|θ − θ ′|α � 1 for all θ ′ = θ + π

2n
, θ ∈ An, n � q. (8.26)

Taking inequalities (8.23) and (8.24) into account, we see that (8.26) implies

sup
2−qπ<|θ−θ ′|�2−q+1π

|u(θ) − u(θ ′)|
|θ − θ ′|α � 2 × 2−α

1 − 2−α
. (8.27)

Let c � 21−α/(1 − 2−α) be a constant, then by (8.25)–(8.27), the condition

sup
2−qπ<|θ−θ ′|�2−q+1π

|u(θ) − u(θ ′)|
|θ − θ ′|α � c (8.28)

assures existence of θ, θ ′ ∈ An such that

|u(θ) − u(θ ′)|
|θ − θ ′|α � 1. (8.29)

Let

Bn =
{
u: ∃θ, θ ′ ∈ An such that

|u(θ) − u(θ ′)|
|θ − θ ′|α � 1

}
,

then

Bn ⊂ Bn+1 and Prob

( ⋃
n�q

Bn

)
� sup

n�q

Prob(Bn), (8.30)

for any probability measure on the set of considered functions u.
Consider the following Hölderian norms:

‖u‖H α = sup
θ,θ ′

|u(θ) − u(θ ′)|
|θ − θ ′|α ,

respectively

∥∥F r
x,t

∥∥
H α = sup

ζ,ζ ′∈∂D

|F r
x,t (ζ ) − F r

x,t (ζ
′)|

|ζ − ζ ′|α . (8.31)

With Theorem 8.1, we obtain uniform estimates in s, r for 0 < s � t and 0 < r < 1.
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Theorem 8.3. We have for any 0 < s � t and 0 < r < 1,

Prob
{∥∥F r

x,s

∥∥
H (1−δ)2 > 8 × 2q0(1−δ)2}� 2

√
σ(t)c√
2πδ

×
∑
q>q0

1√
q log 2

× exp

(
− δ2

2σ(t)c2
× q log 2

)
(8.32)

which is a converging series.

Proof. By (7.1) it holds that |F r
x,t (∂D)|∞ � 4 for t � 0 and 0 < r < 1. Thus

sup
|ζ−ζ ′|�2−q0

|F r
x,t (ζ ) − F r

x,t (ζ
′)|

|ζ − ζ ′|α � 8 × 2q0α, (8.33)

hence for |ζ − ζ ′| � 2−q0 we have Hölderianity.
Next we consider ζ, ζ ′ such that |ζ − ζ ′| < 2−q0 . We have

{∣∣ζ − ζ ′∣∣< 2−q0
}=

⋃
q�q0

{
2−(q+1) �

∣∣ζ − ζ ′∣∣< 2−q
}
. (8.34)

For a positive constant K , we may estimate by means of (8.34) as follows:

Prob
{∥∥F r

x,t

∥∥
H α > K

}
� Prob

{
sup

|ζ−ζ ′|�2−q0

|F r
x,t (ζ ) − F r

x,t (ζ
′)|

|ζ − ζ ′|α > K

}

+
∑
q�q0

Prob

{
sup

2−(q+1)�|ζ−ζ ′|<2−q

|F r
x,t (ζ ) − F r

x,t (ζ
′)|

|ζ − ζ ′|α > K

}
.

Because of (8.33), the first term on the right-hand side is zero for K = 8 × 2q0α . On the other
hand, let

A = sup
2−(q+1)�|ζ−ζ ′|<2−q

|F r
x,t (ζ ) − F r

x,t (ζ
′)|

|ζ − ζ ′|α

and consider the event {A > 8 × 2q0α}.
Taking α = (1 − δ)2, then by (8.1) and (8.28)–(8.30), we get an upper bound for Prob{A >

8 × 2q0α}. In estimate (8.1) we have η(0) = |ζ − ζ ′|. For 2−(q+1) � |ζ − ζ ′| < 2−q , observe that
η(0) ∼ 2−q and − logη(0) ∼ q log 2. We conclude by using estimate (8.1) since σ(t) does not
depend upon ζ and ζ ′. �
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8.3. Moduli of continuity of the inverse of regularized welding

Theorem 8.4. There exist a positive constant α and a function ϕ(M) independent of r , such that
ϕ(M) → 0 as M → ∞, and such that

Prob
{∥∥(F̂ r

x,t

)−1∥∥
H α > M

}
< ϕ(M) (8.35)

where F̂ r
x,t denotes the restriction of F r

x,t to ∂D.

Proof. We use Theorem 8.1 and Lemma 8.2. �
9. Welding Brownian measures to Hölderian Jordan curves

9.1. Welding of random homeomorphisms

Theorem 9.1. Fix δ such that 0 < δ < 1. Then

A :=
{
x: lim sup

r→1

∥∥F r
x,t

∥∥
H (1−δ)2 = ∞

}
satisfies Prob(A) = 0. (9.1)

Proof. Assume that

Prob(A) = ε > 0. (9.2)

Fix q0 such that the right-hand side of (8.32) is smaller than ε/3. Define

Bm :=
{
x: inf

r�1−m−1

∥∥F r
x,t

∥∥
H (1−δ)2 > 8 × 2q0(1−δ)2

}
;

then Bm is an increasing sequence of measurable sets and we have

A ⊂
⋃
m

Bm; therefore lim
m

Prob(Bm) � ε. (9.3)

Fix m0 such that

Prob(Bm0) > 2ε/3. (9.4)

As

Bm0 ⊂ {
x:
∥∥F 1−m−1

0
x,t

∥∥
H δ−1 � 8 × 2q0δ

−1}
,

we deduce by means of (8.32) that

Prob(Bm0) � ε/3.

By (9.4) however this would imply that 2/3 � 1/3. �
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Theorem 9.2 (Stochastic welding theorem). Almost surely there exist univalent functions
hx,t , fx,t such that for some α ∈ ]0, (1 − δ)2],

‖hx,t‖H α < ∞, ‖fx,t‖H α < ∞, (9.5)

and

fx,t (ζ ) = (
hx,t ◦ ψ−1

x,t

)
(ζ ), ζ ∈ ∂D. (9.6)

Proof. According to (9.1), for almost all x, we find a sequence depending upon x, say rk(x),
such that rk(x) → 1, together with

sup
k

∥∥F rk(x)
x,t

∥∥
H α < ∞. (9.7)

We extract a subsequence rkq (x) such that F
rk(x)
x,t converges for |z| > 8. Since the limit satisfies

� z nearby z = ∞, the limit will not be constant but a univalent function hx,t belonging to the
space H α . We have

f
rkq
x,t (ζ ) = h

rkq
x,t ◦ (ψrkq

x,t

)−1
(ζ ).

We conclude using [6] which assures that (ψ
rkq
x,t )−1 converges towards ψ−1

x,t in some Hölderian
norm. �
9.2. Hölderianity of h−1

x,t

Estimate (8.35) has to be used.

9.3. Uniqueness of the welding

We take the point of view of [20, p. 304]. The circle S1 is the boundary of the two closed
hemispheres of the Riemann sphere. Let S1+ be the North hemisphere and S1− the South hemi-
sphere.

Given h ∈ Homeo(S1), we define on S1+ ⊕ S1− an equivalence relation where the equivalence
classes are composed of single points with the exception of the boundaries ∂S1± which are iden-
tified using h. The set of equivalence classes has the structure of a topological manifold 	h.
A continuous function Φ on 	h is given by the data of a couple of continuous function Φ±
defined on the closed hemispheres such that Φ+(s) = Φ−(h(s)) on the equator. This family of
functions forms an algebra Ah; another equivalent definition is to define 	h as the Gelfand spec-
trum of Ah.

The welding problem is equivalent to the following question.

Question. Does there exist a conformal structure on 	h which restricted to each of the open
hemispheres coincides with the given conformal structure on the hemisphere? For such a confor-
mal structure C , we denote 	C the corresponding Riemann surface.
h
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By Poincaré’s uniformization theorem, it is known that up to a homeomorphism, there is a
unique conformal structure on the sphere; this means that there is a homeomorphism Θ carrying
	h onto 	Identity. The image of the equator Θ(∂S1+) is a Jordan curve Γ C

h . A Hölderian Jordan
curve is by definition a curve which is parametrizable by a univalent function ϕ such that ϕ is
Hölderian together with its inverse.

Theorem 9.3. Assume that there exists a welding conformal structure C0 such that Γ
C0

h is a
Hölderian Jordan curve. Then every welding structure C coincides with C0.

Proof. Let Θ0,Θ be the corresponding homeomorphisms of 	h; then v := Θ ◦ Θ−1
0 defines a

new conformal structure on the complement of Γ
C0

h . By [19, Cor. 2 and Cor. 4, pp. 267–268],
there is a unique conformal structure which coincides with the trivial one on the complement
of Γ

C0
h ; therefore C = C0. �
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