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Abstract

In this paper, we study L”-boundedness (1 < p < 2) of the covariant Riesz transform
on differential forms for a class of non-compact weighted Riemannian manifolds without
assuming conditions on derivatives of curvature. We present in particular a local version of
L?-boundedness of Riesz transforms under two natural conditions, namely the curvature-
dimension condition, and a lower bound on the Weitzenbock curvature endomorphism. As
an application, the Calderén—Zygmund inequality for 1 < p < 2 on weighted manifolds is
derived under the curvature-dimension condition as hypothesis.
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1 Introduction

Let (M, g) be acomplete geodesically connected m-dimensional Riemannian manifold, V the
Levi-Civita covariant derivative, and A the Laplace-Beltrami operator understood as a self-
adjoint positive operator on L?(M). The Riesz transform VA~!/2 £ introduced by Strichartz
[28] on Euclidean space, has been investigated in many subsequent papers, see e.g., [2—4, 8]
and the references therein, and has been further extended to Riemannian manifolds, e.g. [1,
11-13, 23, 30]. Since the Riesz transform is bounded in L2 (M), by the interpolation theorem,
the weak (1, 1) property already implies L? (M )-boundedness for p € (1, 2].

When it comes to Riemannian vector bundles, boundedness in L? of the Riesz transforms
d(k)(A(k) + 0)_1/2 and S(k_l)(A(k) + 0)_1/2 has been well considered, see [4, 25], where
A® is the usual Hodge Laplacian acting on k-forms, d® the exterior differential on k-forms
and 8% the L2-adjoint of d®. Let V be the Levi-Civita covariant derivative. In this paper, we
aim to study covariant Riesz transforms V(A® 4 5)~1/2 on Riemannian vector bundles for
p € (1, 2] which poses comparably more difficulties to deal with. This question has already
been addressed by the second and third named author in [30], where the authors adopted the
method of Coulhon and Duong [11] relying on the doubling volume property, Li-Yau type
heat kernel upper bounds and derivative estimates of the heat kernel. Note that the approach
in [30] is of stochastic nature and derivative estimates for the heat kernel are deduced from
derivative formulae for semigroups on vector bundles, by means of the methodology of Driver
and the second named author [15]. In [15] estimates of certain functionals of Brownian motion
with respect to the Wiener measure are required; nevertheless pointwise estimate for the heat
kernel e 1A% (x, y) and the derivative estimate of heat kernel Ve™’ A® (x, y) can be obtained
from such general derivative formulas, where A® is the unique self-adjoint realization of
the Hodge-de Rham Laplacian acting on k-forms under explicit curvature condition, see
[5]. By following a similar approach, Baumgarth, Devyver and Giineysu [5] studied the
covariant Riesz transform on j-forms, removing the doubling volume property and using
uniformly boundedness conditions of the curvature and the derivative of the curvature on
differential forms. These results are further used to establish Calderén-Zygmund inequalities
for 1 < p <2, where for ¢ € C°(M), the set of smooth functions of compact support, if
there exist positive constants C| and C, such that

['[Hess(@)| I, = Cillellp + C2llAellp

then the Calderén-Zygmund inequalities holds. Note that the argument in [5] for estab-
lishing Calderén-Zygmund inequalities is from Giineysu and Pigola’s paper [20], where
the Calderén-Zygmund inequalities are equivalent to the L? boundedness of the operator
Hess(A + o)~! for some constant o > 0 and this operator further can be rewritten as

VAY +0) 2 od(A 4 0)7 V2

Thus to investigate whether these L”-Calderén-Zygmund inequalities hold are reduced to
the study of conditions for boundedness of the classical Riesz transform d(A, + o)~2 on
functions and boundedness of the covariant Riesz transform V(A,(Ll) +0)~Y2 on one-forms

in LP-sense. Therefore, in [5] combining this argument with the result in [30] yields that the
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LP-Calderén-Zygmund inequalities hold for 1 < p <2 if
[Rlloo <00 and [[VR]e < 00,

where R is the curvature tensor.

On the other hand, very recently, Cao, Cheng and Thalmaier [7] established the LP”-
Calderén-Zygmund inequality for 1 < p < 2 by only using the natural assumption of a
lower Ricci curvature bound. Since the conditions for the L? boundedness of the classical
Riesz transform d(A, + a)_l/ 2forl < p < 2 are quite weak, it arises us to wondering
whether the condition for the L” boundedness of the covariant Riesz transform on one-forms
in [5] is too strong. This work is devoted to investigating this problem on the L” boundedness
of covariant Riesz transform for 1 < p < 2 again.

As explained in [30], it is difficult to follow the corresponding argument in [11] directly
concerning derivatives of heat kernel on vector bundle, since the heat kernel e_m(k) (x,y)
is a linear operator on a vector bundle £ — M from Ey to E,. In this paper, we aim to
overcome this difficulty by using a different approach, that is the Weitzenbock formula and
the Gaussian type estimates for some Schrodinger heat kernels on manifolds.

Before moving on, let us first introduce some basic notations. Consider a weighted Lapla-
cian A4+ Vh withh € C[% (M). In this paper, we study the covariant Riesz transform relative
to the weighted volume measure p(dx) = @ yol(dx) where vol is the Riemannian volume
measure on M. We write A, := A + Vh where A, is understood as a self-adjoint positive
operator on Lz(u). Let p(x, y) be the geodesic distance of x and y and B(x, r) the open
ball centered at x of radius r. Given a smooth vector bundle E — M carrying a canonically
given metric and a canonically given covariant derivative, we denote its fiberwise metric by
(-, *)g, the fiberwise norm by | - | = ,/(-, -), and the smooth sections by I'cee (M, E). We
denote its covariant derivative by

V:Tex(M, E) > Tex (M, T"M Q E).

The Banach space I'r.» (M, E) consists of equivalent classes of Borel sections ¢ of E — M
such that

Illp = 1¥iee == 11¥ 1Ly < o0

where || |[¥| ||L» denotes the norm of the function || with respect to L” (w). Then I';2(E)
canonically becomes a Hilbert space with the scalar product

W1 ¥2) o= 1. Ya) 2 = / (1. Y2, di.
Consider the spaces
Q" =T (M, AFT*M) and QF =T (M, A*T*M) (0 <k <m)

of smooth differential k-forms, respectively compactly supported smooth k-forms, and denote
the space of smooth k-forms in L? by

Q% , == Tewnprg (M, AFT*M).

In terms of the exterior differential d® : Q¥ — Q*t1 on QF and SS{H) the Lz(u)—adjoint
of d¥,ie.,

(8% Va, b) == (65 Va, b)y) = u((@, d¥b),) == (a,d®b)
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fora € Q¥ and b € QF, the weighted Hodge Laplacians acting on 0-, respectively k-forms,
are given by
AY =5DdO : c® M) - ™M),
(k) ._ g(k+1) 4(k) (k=1 s(k) . ok k
Ay i=6,70d" +d 8, 1 —> Q% (1.1)
Obviously, the canonical commutation rules hold:

(k=) Atk=1) _ AG)gk=D)
d*=DAK=D = Algk=D,

To simplify the notation, we write A, = A,(?) andd = d©.

To this end, we first give some assumptions where we start with notions related to the
curvature. Letting V;; be the L2(u)-adjoint of V and U, = VZV the weighted Bochner
Laplacian, it is easy to check that

O, = —tr V2 — Vyy, (1.2)
where
Ve =) Vi e e)
i

with n being a differential k-form and (e;) a local orthonormal frame. Note that by definition
V2 is atensor of order (0, k+2) and tr V27 is independent of the choice of local orthonormal
frame (e;). The Weitzenbock formula gives the relationship between [, and the Hodge

Laplacian A,(,:) : for any differential k-forms n € QX, we have
APy =0+ 2% () — Hess )™ (), (1.3)

where in explicit terms the Weitzenbick curvature endomorphism %% — (Hess h)® is given
by
m m
(2% — (Hess ) ) = = D7 07 A (e sRej e @) = D eile; ) (67 A ei 59) )
ij=1 i,j=1
for any orthonormal frame (e; ) | <; <, With corresponding dual frame 69 1<j<m (see Theorem
2.2 below). When k = 1, #") — (Hess h))) = Ric — Hess h.

Let Ax(x) be the lowest eigenvalue of (2% — (Hess h)®)(x) for x € M. We use the
notation

Vie(x) =2 (x) = (1A ()| — Ak (x))/2.

—t(Ay

Let P,V" be the semigroup e Vo) which has a smooth integral kernel denoted by

Pl ).

Definition 1.1 We say that A, — Vi + o for some constant o is strongly positive if the
following condition holds: there exists A < 1 such that for all f € C°(M),

[ we-onrpanzaf wrPau.
M M
We remark that the strong positivity condition has its origin in the Hardy inequality, see the

introduction of [14].
The following theorem is our first main result.
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Theorem 1.2 Let 01, 07 and o be positive constants such that the following three conditions
hold:

(i) (local) volume doubling property: for a > 1,
w(B(x,ar)) < Cu(B(x,r)) o™ exp(or(@ — Dr), x €M, (LD)

holds for all r > 0 and some constant C > 0O;
(ii) local off-diagonal upper bound of the heat kernel p,V ke

Ce!
w(B(x, 1))’

forallt > 0 and some constant C > 0;
iii) the operator — Vi + o3 is strongly positive.
(iii) th Au—V, . / ..

Pl x) < M, (UE)

Then there exists a positive constant o depending on o1, 0o and o3 such that the covariant
Riesz transform V(A;Lk) +0)~ Y2 is bounded in L? for p € (1,2). In particular, o1 = 05 =
03 = 0 implies 0 = 0.

The upper bound estimate of Schrodinger heat kernel with an increasing exponential factor
have been well studied in [27, 29]. Often, inequality (UE) appears without the increasing
exponential factor (i.e. oo = 0), which requires stronger conditions on the curvature and the
potential V. In the following, we use the result from [32] to consider the global covariant
Riesz transform, i.e. o = 0.

Let P, = e~ 21/ be the semigroup generated by —A « and p;(x, y) the corresponding heat
kernel with respect to the measure . Our second main result is the following Theorem 1.3. It
has been proved in [32] that the doubling volume property (D) and the on-diagonal estimate
(U) in this theorem, together with condition (1.4), imply that

Vi
pif(x,x) <

C
W(B(x, /1)
Thus the following result is a consequence of Theorem 1.2 for o1 = 0o = 03 = 0.
Theorem 1.3 Suppose the following conditions hold:
(i) volume doubling property: fora > 1,
w(B(x,ar)) < Cu(B(x,r))e"™ D)

holds for some constant C > Q and all x € M,r > 0;
(ii) on-diagonal upper bound of the heat kernel: there exists constants C, 5 > 0 such that

C
W(B(x, V1)) U
pi(x,x) < B YD) )
forallt > 0and x € M, and
o 1 s
= e Y () ndy) ds < 5 1.4
o JCSSAF/)I/() /M M(B(x,ﬁ))e k(y) p(dy)ds < (1.4)

iii) the operator A, — Vj is strongly positive on Q’é

Then the Riesz transform V(A,(f))_l/2 on Q]zp is bounded in L? for p € (1,2].
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Let us compare to known results. In [30] for the usual Riemannian manifold, i.e. 7 = 0,
under the assumption that VR +VZ2® = 0, #® > 0 and the doubling volume property, it is
shown that V(A®)~1/2 has the weak type (1, 1) property. In the above theorem, if A u— Vi
is strongly positive on Q’Lf, the lower bound of Z® can be relaxed and no condition on the
derivative of curvature is needed. From this point of view, our results also improve the recent
work of Baumgarth, Devyver and Giineysu [5] on the covariant Riesz transform on k-forms
for p € (1, 2].

It has been observed that the curvature-dimension condition implies the local volume
doubling condition (see [16]). For the localization argument towards the boundedness of
Riesz transform, we need the local doubling volume property with respect to w, which is
related to the following curvature-dimension condition. Assume that

1 1
Ta(f, f) = —EA,LWN + (VAL Vg = —KolVfI* + ;(Auf)z, (CD)

where Kg € R and n > m provide a curvature lower bound and a dimension upper bound

of A, respectively. In the case Vi = 0 this condition is equivalent to Ric > — K and then
the curvature-dimension condition holds for n = m. When VA # 0 however, typically n is
larger than m. Indeed, the curvature-dimension condition can be written as

Ric" ™ (X, X) > —Ko|X|>, XeTM

where for a > 0, the a-Ricci curvature of the weighted Laplacian A, is defined as
1
Ricj, := Ric— Hess h — —Vh ® Vh.
o

This condition implies that

Ric, (X, X) := Ric(X, X) — (Hess h)(X, X) > —Ko|X|*. (Ric)

Assuming the curvature-dimension curvature condition (CD) then in particular the local
doubling assumption with respect to © holds, see [16, 26] for details, i.e., there exists a
constant L > 0 such that

w(B(y,ar)) < Cu(B(y,r))a™ exp(L(a¢ — )r), yeM, r>0, a > 1. (1.5)

Assumption 1.4 For k € N and k > 2, there exists K € R such that

—K = min {((%’(k) — (Hess h)(k))v, v) veAPTM, v =1, x € M}.

4

Obviously, Assumption 1.4 implies that Z*) — (Hess h)® is bounded below by —K so
that —Vi + KT > 0, hence the operator A, — V; + K™ is strongly positive. Assume that
(CD) holds for some constant K. On the one hand (CD) implies the local volume doubling
property. On the other hand, it implies the lower Ricci curvature bound (Ric), which is
further used to derive the Gaussian type estimate of p;(x, y) (see [31, Theorem 2.4.4]). We
then conclude that for any « € (0, 1/4) there exist constants C(«), C2(v) > 0 such that

Cile) o (_ap(x, )?
1(B(x, /1)) !

for t > 0. As a consequence, we have the following corollary from Theorem 1.2 directly.

Vi

Iy <K piay) < + (KT + Cz(a))t> (1.6)
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Corollary 1.5 Assume (CD) holds for some Ko > 0. Then there exists a constant o > O such
that the Riesz transform V(AS) +0)~Y2 is bounded in L? () for 1 < p < 2. If in addition
Assumption 1.4 holds for some k > 2, then there exists o > O such that the Riesz transform
V(Aﬂ() +0) 12 0n Q]ip is bounded in LP () for 1 < p <2.

As explained at the beginning, the result of Theorem 1.5 implies the Calder6n—Zygmund
inequality for 1 < p < 2. We say that an L? (u)-Calder6n-Zygmund inequality holds on M
if there exist two constants C;, C2 > 0 such that

| Hess@) ||, < Ciligll, + CallApgllp (CZ,(p)

for every function ¢ € C2°(M). We denote this inequality by CZ,, (p). Giineysu and Pigola
[20] observed that under Calderén-Zygmund inequalities, if M is geodesically complete and
admits a sequence of Laplacian cut-off functions (this is the case e.g. if M has non-negative
Ricci curvature; for more general curvature conditions see [18] and [6]), then HO2 (M) =
H?%P(M) holds for all 1 < p < oo. We refer the reader to [21] for further applications of
Calder6n-Zygmund inequalities.

In general, CZ,, (p) inequalities may hold or fail on M, depending on the underlying Rie-
mannian geometry, which leads to the question which geometric assumptions on M guarantee
CZ,, (p) and how the CZ, (p) -constants Cy, C> depend on the geometric entities. In [20]
two methods appear for attacking Calderén-Zygmund inequalities: the first one depends on
appropriate elliptic estimates under conditions on harmonic bounds of the injectivity radius,
while the second one uses boundedness results for the covariant Riesz transform in L? for
1 < p < 2 from [30]. Whereas conditions on harmonic bounds of the injectivity radius are
usually difficult to verify, the second approach relies on probabilistic covariant derivative
formulae for heat semigroups and has the advantage to avoid assumptions on the injectivity
radius. Along the main idea of this second method in [20], Theorem 1.3 permits to establish
CZ, (p) for 1 < p <2 on weighted manifolds along the same approach but only using the
curvature-dimension condition.

Theorem 1.6 Let (M, g) be a complete Riemannian manifold satisfying (CD). Let1 < p <2
be fixed. Then there exists a constanto > 0 such that the operator Hess(A ,+0) ~lisbounded
in LP (), and in particular CZ,,(p) holds.

Comparing Theorem 1.6 with existing results on CZ,,(p), it should be pointed out that
the result is valid without any injectivity radius assumptions and boundedness of || R||», and
IVR|l as in [20]. Our result extends [7] to the weighted manifold by only requiring the
curvature-dimension condition.

The paper is organized as follows. In Section 2 we present L2 and L' weighted derivative
estimates for the heat kernel on differential forms (see Theorems 2.6 and 2.7). These estimates
are applied in Sect.3 to study the L”-boundedness (I < p < 2) of Riesz transforms for
differential forms on Riemannian manifolds with a metric connection (see Theorem 1.2).
Moreover, Theorem 1.5 gives a local version of covariant Riesz transform on Riemannian
forms. As application, Theorem 1.5 is used to obtain the Calderén-Zygmund inequalities for
pe(,2].
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2 Heat kernel estimates
2.1 Preliminaries

Let us first recall the interior product.

Definition 2.1 The interior product X Ja € QX! corresponds to the contraction of a € QF
with a vector field X € I'(T M) and is defined as

Xia(Xq,...,Xk—1)i=a (X, X1,..., Xk—1), VXi,..., X1 € (TM).
The interior product is an anti-derivation, i.e.,
Xi(@Ab)=(Xsa) Ab+ (—D*a A (X 1b) VaeQF beQl.

The Weitzenbock formula relates the weighted Hodge-de Rham Laplacian to the weighted
Bochner Laplacian on (M, g).

Theorem 2.2 (Weitzenbéck formula) For all differential k-forms n € QX, we have
A®y =0y — Vun + 2% () — (Hess )™ (),

where Z%) = QF — QF is given by

%(k)(n) - _ Z 0/ A (ei JR(€j7 ei)(ﬁ))

i,j=1
and (Hess h)® : @k — QF by
m .
(Hess )@ (n) = )~ eile; ()07 A (eiam),
i,j=1

for any orthonormal frame (e;)|<;<,, and corresponding dual frame ClU )i<j<m such that
Ve; =0, VO/ = 0and 6/ (e;) = 5.

Proof 1t is well known that

m m
d® =30/ AV, and §P() == ee; 1V, " ().
j=1 j=1

Let A® be the usual Hodge Laplacian acting on k-form. Since orthonormal frames (¢;)1<i <m
and dual frames (9/)1<j<m satisfy Ve; = 0 and V6’ = 0, we obtain for n € QF, using the
summation convention,

A,(f)n = —e_hej Ve, (eh(Qi AVen)) — o' A Ve, (e_hej Ve, (ehr]))
= —ej(hej 20" AVen) —ej Ve, (0" A Vo)
— 0" A Ve (ej()ej an) — 07 AV, (ej 1Ve;n)
= —ej(h)ej (0" AVen) — ei(ej ()0 A (ej 3Ven) — e (MO A Ve, (ej an) + A%y
= —¢;j(NVe;n+ej (O A (ej 1Vem) — eilej(h)6' A ej sm) —e;(h)(O" A (e 3Ven))
+0n =29 a1
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= —¢j()Ve;n — ei(ej ()0 A (ej um) +On — 20 ()
= —Vynn — (Hess YO () + On — 2® ().

where the last equation follows from the fact that
AWy =0n -2 ap.
o

By the usual abuse of notation, the corresponding self-adjoint realizations will again be
denoted by the same symbol, i.e. A, and Aﬂ() respectively. By local parabolic regularity, for
all square-integrable k-forms a € Qiz, the time-dependent k-form

*)
(0,00) x M 3 (t,x) > e 2u'la e AKT!M

has a smooth representative which extends smoothly to [0, 00) x M if a is smooth. In addition,
. . (k)
there exists a unique smooth heat kernel of e~ %« "!

understood as a map

with respect to the measure w, which is

(k)
(0.00) x M x M > (t,x,y) > e “" " (x,y) € Hom(A T M, AT} M)

such that

e Waw = [ e, yat) uiay)

Let
—K = min{((%—Hessh)(k)v, v)g: v E AkaM, lvl=1, x € M} .

Recall the notation Ay (x) defined as the smallest eigenvalue of (% — Hess nN® ), x e M
and let

Vie(x) = A (x) = (A ()] — Ag(x)) /2.
Then by [22],

| exp (—tAfP) (x,y)| =< plECx.y).

We conclude that to estimate ’ exp (—tA,(f)) (x,y)

, it suffices to estimate the Schrodinger
heat kernel ptv k(x, y). There is a lot of previous work dealing with Schrddinger heat kernels

on manifolds, see for instance [14, 19, 29, 32, 33].

Theorem 2.3 Let M be a complete non-compact Riemannian manifold satisfying (LD) and
(UE). Then for any o € (0, 1/4), there exists 6 > 0 depending only on the constants in (LD)
and (UE) and a constant C > 0 such that

ot
———————exp
(B (y, V1)
Ifoy =0and o =0, then ¢ = 0.

|eXP(—fA§f))(X, y)| < (—ap(x, y)z/t) , Vx,yeM,t>0.
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Proof Let P,Vk be the semigroup generated by the operator —A,, + Vi and p,V K(x, y) the
corresponding heat kernel. We recall that

exp(— A (x, 0| < pF(r.y). x.yeM, 1>0.

From the assumptions (LD) and (UE), one can derive that ptV * satisfies the Gaussian estimate:
Gt
1(B(y, V1))

forx,y € M and ¢ > 0, by the same argument as in [17]; see [14, Theorem 3.1] for a similar
argument. m}

P, y) < exp (—ap(x, y)?/t)

Lemma 2.4 [fthe local volume doubling property (LD) holds, then for any y > 0, there exist
positive constants C\, and ¢ := 012 /2y such that

2X<’ c Fo
f e T () < €y u(B(y, V) e T @.1)
px,y)=1

fors,t >0andx,y e M.

Proof By (1.5), it is easy to see that for all y > 0, 5,7 > 0 and y € M, there exist two
positive constants C,, (depending on y and the constants in (1.5)) and ¢ = 012 /2y such that

P2y P2y

[ e ey st [ e S uan
JIERYENG M

<e Y By, (i + DY

i=0

o0
< Ce VP UBy.NE) Y 0 + D" Hle 7 iV
i=0

o0
< Ce P uBy./5) Y (i + 1" Hler ey 2ot/ @)
i=0

(e ¢]
< Ce_”t/se"lzs/(z’”)u(B(y,\/E))Z(i + 1)m+le—yi2/2
i=0
< Cyu(B(y./s))e Ve, (2.2)

where the third inequality comes from condition (1.5). O
By means of this estimate, we obtain immediately the following consequence.

Theorem 2.5 Let M be a complete non-compact Riemannian manifold satisfying (LD) and
(UE). Then for any @ € (0, 1/4) and y € (0, @), there exists some constant C > 0 such that

2 yplay e2Cot
exp (1A (e, Y| e T pdy) £ —
/M ‘ " 1(B(y, V1)
forally € M andt > 0, where Cy := 7 + %E and the constants &, ¢ defined in Theorems
2.3 and Lemma 2.4 respectively.

@ Springer



Covariant Riesz transform on differential forms for 1 < p < 2 Page110f23 245

Proof Letting r tend to oo in inequality (2.1), we obtain

2(x.y) -
/ e L) < CVM(B(y,JE)) e, 10
M

By Theorem 2.3 and Lemma 2.4, we conclude that there exists & > 0 depending only on the
constants o7 and o, and a constant C > 0 such that

)2 B
[ Jew raien| 5 i)
251 —Qa— X,y

<c e 2/6(2 zyr>p(")u(dx)

w(B(y, V1))

(26400

<C——F——.

1(B(y, V1)

We then complete the proof. O

2.2 L2-weighted derivative estimates of heat kernel

In this subsection, we start the discussion under the assumption that (LD) and (UE) hold and
that the operator A, — Vi +03 on QF is strongly positive. Then we have the following result
about the L>-weighted derivative estimate of the heat kernel.

Theorem 2.6 Let M be a complete non-compact Riemannian manifold satisfying the assump-
tions as in Theorem 1.2. Fix a € (0, 1/4) as in Theorem 2.3. Then for any 0 < y < «, there
exists a constant C > 0 such that

2 2x.y C(1 t 2Cot
/ ‘Vexp (—tAff)) (x, y)‘ ezy%’ ¢ )),u(dx) < %
M (B (y, V1)

forally € M, t > 0, where the constant Cy is defined as in Theorem 2.5.

Proof For R > 0,let ¥ be a C? function on R such that Y(r)=1forr € [0,R], Y (r) =0

forr > 2Rand [|¥/lloc < 1, [[¥llcc < ©
argument of Calabi, which is also used in [9], allows us to assume without loss of generality

) . . . .
thate ™7 Y (p(-, y)) for y € M is smooth. According to the integration by parts formula,
we have

/ ‘V exp (—tAl(f ) (x, y)‘
M
-/ (wp(x it 224y, y») (Vo e (a0 (..
exp (1 AP (. y>)g e )

+ /M Y(p(x,y)) (V;V exp (—tAfP) (x,y),exp <—tA,(f)> (x, y))g e

22 (x,y)
t

u(dx) =T+ 11.

Then there exists @ > ' > ¥ > 0 such that
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- /M 4y"(’“t’ 2 (Ve exp (~189) v, . exp (140 (x. »), e
+ /M Vo) (Vopexp (—180) o, exp (~1a0) () ™7 i)

= /M4yp(%’y)(%xp(—mﬁ‘>) @0, (a0 @ exp (1)) (x.) e L o, ) )
+ 5/ ‘ V exp (—tAﬂ”) (x,y), (dp ® exp <—tAff)>) (x, y))g e

= [ e (<o) o] Jexo (1ol ) e B (e, 3)) ()
+%/ [Vewp (—ial) <xvy)\~\e><p(—m§f)) (| T W 302 ud)
([ ror(rs) el )"

x ( [ lexo (<ra) e ew Vo, y) /t(dX)>l/2

i 2 2yptay 172
+%(/M‘Vexp(—tAl(Lk)>(x’y)‘ et )‘/f(P(X,y))u(dx)>

X </M }exp (—tAg”) (x, y)‘2 ezwi(m u(dx))l/2

2% (x.y)
t

2% (x.y)
t

¥ (o(x, )2 pu(dx)

2y0? (

IA

xm

2
—tAff)) (x, y)‘ e

¥ (p(x, y)) u(dx)

2 o P2y
A Ay fM‘exP<“Aff)>(x’y)\ @2y (p(x, ) ()

2 (x.y)

2 2
C po(x)
Ta-aR /M‘CXP(_IA/(L]()>(X’”‘ T udn)

where (dp)(x,y) := (dp(-,y))(x) and A < 1 is the constant from the strong positivity
property of A, — Vi + o3. Since 2y’ — y < «, we can use the estimate in Theorem 2.5 to
get

/M 4y p(xt, Y) (V exp (—tAﬂ‘)) (x, y), (dp ® exp (—tAﬂ”)) (x, y))g e

-4 2yp? ( y) 1 1
< - /M ‘Vexp <—tA,(f)> (x, y)‘ Y (p(x,y)) m(dx) + ( + F)

CeZC()t

w(B(y, /1)

for some generic constant C. As
AP =0 - Vyy + 2 — (Hess )©,

and (2% — (Hess h)®)(x) > —Vi(x), we then have

2y0%.y)
11_/ (v Vexp Afj”) (x, y), exp (—tAl(f)) (x,y)> e (o (x, ) p(dx)
M g
/ (Ag‘) exp A(k)) (x, ), exp (_tALk)> (x. y))g ezyp
M

/M (( %™ — (Hess h)(k)) exp (—tAff)) (x, ),
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2 X,V
exp (—1a) (r.3) &7y (pee. ) n)

5/ (Ag‘) exp (—tAff)) (x,y), exp (—tAff)) (x, y)) ezw
M

2yp( )

X 2
+ [ 0w = fexp (=) o[ e o, 30 )

o [ Jexo (<8 o[ T 0w )

M

5/ (Ag‘) exp (—tA/(f)) (x,y), exp (—tAff)) (x, y)) ezw
M

1A /M|d|exp(—mff>)<x,y>|\ 2 (o, y) ()

2yp( )

o [ fexo (<af) | 52 w0 ) i,

Using Kato’s inequality we further obtain

I < /M (AP exp (—ra®) (x, ). exp (=A%) x, y)) e

+A /M]wxp(—m,(f’) [ (o, ) i)

2% (.y)

T (p(x, ) p(dx)

0% (.y)

+ o3 /M ‘exp (—tAff)) (x, y)‘ze o u(dx).

By Cauchy’s integral formula, we get for w € (M) and a;, az € 9122’

(k)
<Ag‘)e_m" ap, wa2>

(k) (k)
(e_ZAﬂ aip, wa2> <e A aip, waz>
/ ——dz
zi|z—t|=t/2

< (Zn)*lm sup

- (z—1)? 2ilz—t]=t1/2 (z —1)?
t NG _

=5 sw e W a v | el v |, 627
2 lz—t1=t)2 2
2

=~ [lalvw ], a1 v,

which implies for w(-) =e ypt 1//(,0( ),
() 270%(-.y) C 2(.y) 2C.»
e P e e !

Letting a1 (x) = exp (—1Af/2) (v, ) and ax(x) = e A (x, y), we then obtain by The-

orem 2.5,

’_ [ (a0 exo (<ra) Gonexp (~a) (o) ¥ ppt ) uian

C 2 2020y 172
>~ _iAE 7
< (/M lexp (—ral 2) @, e M(dx)>
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2 2200 172
x (/ lexp (—ra®) (x| e ™7 ”u(dx))
M

1/2< C,e2C0t )1/2
w(B(y, /1)

R
Tt \u(B(y, V1/2))

Ce3/2Cot
<
T tu(B(y, V1)

We conclude that

2 2,y
/ .V exp (—tAg‘)) (x, y). e2yp e w(dx)
B(y.R)

2 2 (x,y
< [ Ve (<ea) o[ e* 5 g ot ) )
M

- C (1 + o31)eCo! Ce2Cot
tu(B(y, /1)  R2u(B(y, v/1)
We then complete the proof by letting R tend to co. O

Combining Theorem 2.6 with Lemma 2.4, we obtain

Theorem 2.7 Let M be a complete non-compact Riemannian manifold satisfying the same
assumptions as in Theorem 1.2. Fix a € (0, 1/4) as in Theorem 2.3 and let 0 < y < a.
There exists a constant C > 0 such that

/p(x,wzr‘/z

forally € M and s, t > 0, where Cy is the same as in Theorem 2.5.

V exp (_SALk)) (x, y)’ u(dx) < C(1 + J/o3s e2Cos—y1/2s (—1/2

Proof Let 0 < y < «. By Cauchy’s inequality we obtain

/;;(X,,V)Ztl/z

) 12 172
< (/ ‘V exp {_SAL{C)} (x, y)‘ eZVpZ(x,y)/sM(dx)> (/ 672)/p2(x,y)/su(dx))
M px,y)=11/?

) 1+ o3s _ oo
Cos [ 1 TO35 v1/2s oCs/2
< Ce TG (B (y, v/s))e e

eZCox M 1+ o35 e—yt/ZS’
f

¥V exp |—mff>] (x, y)‘ 1u(dx)

=C
s

where the second inequality follows from Theorem 2.6 and Lemma 2.4. This finishes the
proof. O

3 Proof of Theorem 1.2

Let us now present the main steps of the proof of Theorem 1.2 and Theorem 1.3, following
closely the approach of [11, Theorems 1.1 and 1.2]. Some of the arguments have been used
already in [7] and can be taken from there. For the convenience of the reader and for the sake
of completeness we give details here.
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The object of our interest is for suitable o > 0 the following operator on X

7® v (A(k) + )_1/2 1 /oo \v4 ( A ) e ” d 3.1)
= o = — exp (— s s. .
’ g N T AN
We ignore the normalization constant 1//7 in the sequel which is irrelevant for our purpose.
We start with the boundedness of T(,(k) in L2
Lemma3.1 For k € N*, suppose A, — Vi + o is strongly positive on CZ°(M) for some
—1/2
constant o > 0. Then the operator V (Aff) + O') on Q’g is bounded in L?-sense.
Proof We use the Bochner formula for a € Q’C‘ According to the Weitzenbock formula (1.3)
and the strong positivity of A, — Vi + o, we have
IVal3 = Cpa. a)
=(AVa, a) — (#" — (Hessh)®)a, a)

< (aPaa) + [ (V= ol u@o + o fal?
M

2
< (A%a, a) +A/ |dlal|” (x) se(dx) + o llal|®
M

< A 2all3 + Al Val; + o llal3,

where the last inequality comes from the Kato inequality (see e.g. [22]). This implies
1
2 k 1/2 112
IVall3 < 7= AR + o) 2all3.

We complete the proof by letting a = (Aﬁf) +0) 2bforb e Q/g O

As the local version of the Riesz transform is bounded in L2, by the interpolation theorem,
the weak (1, 1) property for Tg(k) already implies L”-boundedness for all p € (1, 2]. Hence

we aim to study the weak (1, 1) property of Tg(k) for o > 0 suitable: there exists ¢ > 0 such
that

Sup Ap (‘Ta(k)a’ > A) <cu(al), aeQf. (3.2)
A>0

To this end, we use a version of the localization technique of [1, Section 4] on the finite
overlap property of M, which has also been used in [7].

Lemma 3.2 [1] Assume that condition (LD) holds. There exists a countable subset C =
{xj}jea C M such that

(i) M =UjenB(xj. 1);
(ii) {B(xj, 1/2)};en are disjoint;

(iii) there exists Ny € N such that for any x € M, at most Ny balls B(x;, 4) contain x;

(iv) foranyco > 1, there exists C > Osuchthatforany j € A, x € B(x;, co) andr € (0, 00),

w(B(x,2r) N B(xj,cp)) < Cu(B(x,r) N B(xj, o))
and
1(B(x,r)) = Cp (B(x,r) N B(xj, o))

forany x € B(xj, co) andr € (0, 2co].
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The following lemma provides the localization argument in order to prove (3.2).

Lemma 3.3 Keeping the assumptions as in Theorem 1.2, let C = {x;}jen be a countable
subset of M having the finite overlap property as in Lemma 3.2. Let o > 2Cq where Cy is
as in Theorem 2.5. Suppose that there exists a constant ¢ > 0 such that

Cc
(1 Ly 1TaGo] > 4) < Sllal I (3:3)

forany j € A, L € (0,00) anda € Q’; supported in B(xj, 1). Then property (3.2) holds for
any a € QK.

Proof For j € A, set B; := B(x;, 1) and let {¢;} jea be a C*°-partition of the unity such
that 0 < ¢; < 1 and each g; is supported in B;. Then, for a € Q’f and x € M, write

TRa(x) =Y 125, T (ap)(x) + Y (1 = 125) TP (ag)) (x),
JjeA JjeA

which yields that for any A > 0,

pw(x: IT®a(x)| > 1))

A A
<u ({x: Y g T (ag) ()] > 2}) + 1 ({x: Y (= 1ap)IT P (ag)) ()] > 2})

JEA JjeA
=1 +1p.

For I, by Lemma 3.2 (iii) and condition (3.3), we have

A 1

. k

I < Zu({x D Lap | T (ap)(0)] > MD S 5l (3.4)
JjeA

as desired, where the notation @ < b means a < Cb for some constant C.

To bound I, again by Lemma 3.2 (iii), since ¢; is supported in B}, it is easy to see that

D 1 = 128) ()9 (M) < NoLip(.y)=1y-
jeA

Hence, according to the definition of Tg(k) in (3.1) and Theorem 2.7, we get

JEA
< l/ /Oo e
“oadu o Vi
1 [o¢] ef{f[
S5 Vi —A(k) s d ) d d
T /M./O Vi (//,(M)Zl' exp (—A, D) (x, )| u(dx) ) dt fa(y)| n(dy)

1 o0
< X/ Ia(y)lu(dy)/ e (1 + Jo3t) 20 eV 2~ gy,
M 0

| exp (AP (x. y)\ D1 = 125) () ()] la(y)] ndy) dr) f1(dx)
JeEA

where y € (0, @) and Cj is as in Theorem 2.7. Thus, since o > 2C(, we obtain

@ Springer



Covariant Riesz transform on differential forms for 1 < p < 2 Page170f23 245

1 [ 1+ /o3t 1
LS~ / e@C-on—y LEVTD gy < Ly,
0 t A
where as usual ||a|l; = || |a| ||1. This combined with the estimate of /1 in (3.4) finishes the
proof of Lemma 3.3. o

We now turn to the proof of property (3.3), where we remove the subscript j and write B
for each B(x;, 1) for simplicity. Let co > 1. By Lemma 3.2(iv), we have that (coB, , p) is
a metric measure subspace satisfying the volume doubling property that there exists Cp > 1
such that

m(Bx,2r)NcoB) < Cp pu(B(x,r) NcoB) (D)

forall x € coB and r > 0.

We also use the following Calderén—Zygmund decomposition from [10], where X" will
replace coB.

Lemma3.4 ([10]) Let (X, v, p) be a metric measure space satisfying (LD). Let f € L'(X)
and A € (0, 00). Assume || f||;1 < Av(X). Then f has a decomposition of the form

f=g+h=g+> M
such that

(a) g(x) < CAforalmostall x € A{;
(b) there exists a sequence of balls Bi = B(x;, r;) so that the support of each h; is contained
in Bi N

/|hi(x)|v(dx)§CAv(§i) and /hi(x)v(dx)zo;
X X

(c) IZv(é» = /X ) v(dn);

(d) there exists kg € N* such that each point of M is contained in at most ko balls f?,-.

Lemma 3.5 Let M be a complete non-compact Riemannian manifold satisfying (LD) and
(UE). Let A € (0,00) and f = |a| € LY(B) be as in Lemma 3.4. Let furthermore {h;} be
the sequence of bad functions of f as in Lemma 3.4 and (eXp ( - Aff)t - ot))t>0 the heat
semigroup associated to —(A,(f) + o) witho > &, where G is as in Lemma 2.4. Then there
exists a constant C > 0 independent of f such that

2
H Zexp ( — A — Uti)]:li H =< Cxllall
- 2
L

where izi = |h;| |‘a’—| and t; = ri2 with r; denoting the radii of the balls B; as in Lemma 3.4.(b).

Proof Recall that supp; C B(x;, +/%;). Using the upper bound of the heat kernel in Lemma
2.3 and Lemma 3.4 (b), we have forx € M,
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—o'ti— /J(}H)
—A® ot Vi c :
Jexp (= s —an)iueo| < ¢ [ S m)m(y)m(dy)
C —Ut,' Ol XX)

_ hi d
fu(B(x,\/E))e /I M| r(dy)

2
—o'tj—a 2550 (ﬁ"‘)

co e “
= /M/L(B(x,ﬁ» 5 ) n(dy)

for suitable o such that 6’ = 0 — & > 0. It is therefore sufficient to verify that
—o'ti— 2(""1)

HZ/M (B i) ZSHlZﬂEf .

since as consequence from this and Lemma 3.4 we obtain

2
D1 H <A (B < allall.
i 2 i

) (3.5)

-2
” Zexp (—Al(f)t,- —ot)h; ”2 < 22
1

In order to prove (3.5), we write by duality

20,
_(”, p(,,\)

HZ/M w(B(-, 1)

~ e / Z/ B, iy B A ) 1)
u 2 l

"ep. (X pP(xy)

—o't;—q LY (x\)

lu()| n(dx) | 1z (v) n(dy). (3.6)
||u\|2 1/ Z //1/1 n(B(x, \/E)) Bi
By the local doubling property (LD), we have for any x € M and y € B;,

n(BO VD) =€ (14 252 ) e s, Vi)

l

From this, we obtain that there exist 0 < & < o’ < « such that

—o t,—otp (“)
/M (B A
e 2t _o PPy

< ; 4
~ w(BGND) Ju |u ()| p(dx)

1 / >
L oo+ | ¢
'U'(B(ys\/ﬁ)) < px,y)</ti kgo 2k /1 <p(x,y) <2k+1 /1

1 > 192k
= W(BO V) (fm,m'”(x)“’“( AP DL SR x>)

k=0
Z HBGL 2T ) o
(B ()

p2(x.y)

fi

’
—o

A

Jua (x)] M(dX))

) (Au)(y)
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o0
< (1 +C ZZ(kH)me”‘ (2k+ll)ﬁe6‘22k) (Au)(y)
k=0

< (1 +cy 2“*”"16““22") (AW S (AW ),
k=0

where

1
M = _— d
O =S B Ly O

denotes the Hardy-Littlewood maximal function of u. This together with (3.6) and the L>-
boundedness of .# gives

2 .
_o o)

€ 0
L. d
HZZ/M W(B(-,/1)) Bi(y)ﬂ( y)

which shows that (3.5) holds true and finishes the proof of Lemma 3.5. ]

s

2

< sup /M(///M)(y)z]lgi(Y)M(dY) S HZ 1z

2 llulla=1

With the help of the Lemmata 3.3 through 3.5, we are now in position to give a proof of
Theorem 1.2. Note that Theorem 1.3 can be established along the same lines, with the slight
difference that in this case o can be taken to be 0.

Proof of Theorem 1.2 Recall that Ta(k) = V(A/(f) + o)~ 1/2. We choose o large enough such
that o > 2Co where Cy is defined as in Theorem 2.5. By Lemma 3.3, it suffices to prove

M({x € 2B: |T(,(k)a(x)| - )L}) < llalli

~ )\' ’

A € (0, 00) 3.7

foralla € chc (AFT*M). By means of Lemma 3.4 with X = B, we deduce that f has a
decomposition

la| =g +h=g+3h
which implies
n({x € 2B 1T®a(x)| > 1))
oy A Y A
<ul|lyx€2B:|T, g(x)|>§ +ulyx €2B T, h(x)|>5
=1 + I, (3.3)

where

- a ~ a
g=g¢g— and h=h—.
lal la|

Using the facts that T;k) is bounded on Lz(,u) and that |[g(x)| < CX, we obtain as desired
LSTR85 SAT2HENHE S A7 el S A7 el (3.9)

We now turn to the estimate of I. Recall that exp (—Ag{)t —ot), t > 0 is the heat
semigroup generated by —(Aff) + o). We write

T80k = T exp (- A0 — o1 + T (1 - exp (- aY5 — 019,
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where t; = ri2 with r; the radius of B;. By Lemma 3.5, we have

This combined with the L2-boundedness of Tg(k) yields

- A 1
m (ix €2B: [TV (Zexp (=21 —on)hi) )| > 2]) < Slali - (3.10)

1
as desired. Consider now the term T;k) > (I —exp (—Aff)ti — ati))ﬁi. We write

M({XEZB: >;}) G.11)

EZM(ZEi)+u<{x€2B\U,~2E’i: (x) > ;})

(3.12)

2
S Allall
2

Z exp (—Agc)ti — Ul‘,')/:li
i

T® (2(1 —exp(—APL — an—))%—) )

4

7" (Z([ —exp (AP — oti))ﬁi)

1

From Lemma 3.4 we conclude that

> n@Bi) S

lalls
o

To estimate the second term, denote the integral kernel of the operator Tg(k)(l —
exp (—A,(f)ti —ot;)) by kg’k(x, y). Note that

(Aff) +0)7 172 (I —exp (—Aff)ti —ot;))
. /00 (exp (—A,(f)s —05) _exp (—A,(f)(t,- +5)—o(t + s))) ds
0

Vs Vs

_ /oo L _ M eXp(—A(k)s —os)ds
0o \Ws s .
and
T —exp (=APH — o1))
=V@AP +0) 12U —exp (=APH — o1))
*© 1 Lis>1) —os k
= — — U= ) e exp (—s AR ds.
fo (ﬁ ST p(=sA;”)
Therefore,
k(T,k _ *© —os 1 ]l{siti} v A(k} d 3.13
ti (x,)’)— 0 € ﬁ_ﬁ xexp(_s M)(X,Y) s. ( )

Since h; is supported in B;, we have

/ ) \Té") (0 = exp(=aPs — o)) (x)\ ju(dx)
2B\(2B;)

sf ) ( ) |k;j”‘(x,y)||h,~<y)|u(dy)) f1(dx)
2B\(2B;)

Bi
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< / / KK G )] () | 1 ()] ). (3.14)
B; p(x,y)zt,-l/2

Now by means of (3.13) and Theorem 2.7, we get

/ el Ik (e, ) ()
X, y)=t;

- | P
< V. exp (—A® g (x, dx) e o8| — — b=t} |4
</ (/( e T AL -
< C/ e V1i/2s o2Cos a+ 03 )‘ Lis=n) e % ds
—Jo Js o1
<C/wewﬂul_ HW§}‘du
- Jo u  Juw—1)

1 efy/Qu o0 1 1
=C du—i—C/ <7—7>du<oo
/0 u 1 Juu—1) u

where for the third line above we used the fact that

e’ PC0=) (1 + Jo35), s € (0, 00),

is bounded. The estimate above together with (3.14) and Lemma 3.4 implies that

® ©, lall
T! <Z(1 exp (=A 1 ot;))h )(X) })S S

i

nw ([x € 2B\ U,-21§,~:

(3.15)
Altogether, combining (3.8) through (3.10), (3.12) and (3.15), we conclude that (3.7) holds
which completes the proof of Theorem 1.3. O

4 Proof of Theorem 1.6

By the Bishop-Gromov comparison theorem and the well-known formula for the volume of
balls in the hyperbolic space, the local volume doubling property (LD) holds if the curvature-
dimension condition (CD) is satisfied.

Proof of Theorem 1.6 Let us sketch the main idea of the second method in [20]. Inequality
CZ,,(p) is reduced to the existence of positive constants C and ¢ such that

| I1Hess(Ay +0)~Mul ||, < Clull,,
which is equivalent to

H IVAD +6)72 0 d(A, +0)ul Hp < Clull,.

The problem is thus reduced to the study of conditions for boundedness of the classical Riesz
transform d(A, + o)~ Y2 on functions and boundedness of the covariant Riesz transform
V(Aﬂ) + 6)~ Y2 on one-forms.

As far as the covariant Riesz transform V(AEL]) + o)~ /< on one-forms is concerned, this
transform is bounded in L? (i) for 1 < p < 2 by Theorem 1.3. If the local volume doubling

1/2
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property and short time Gaussian estimate for the heat kernel hold, then boundedness of the
classical Riesz transform d(A, + 0)~1/2 holds for 1 < p < 2 as well. Note that (CD)
for Ko € R implies (Ric) for K¢, and the curvature condition (Ric) assures the short time
Gaussian estimate for the heat kernel (see [31, Theorem 2.4.4]). ]

Acknowledgements The authors are indebted to Batu Giineysu, Stefano Pigola and Giona Veronelli for very
helpful comments on the topics of this paper.
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