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Abstract
In this paper, we study L p-boundedness (1 < p ≤ 2) of the covariant Riesz transform
on differential forms for a class of non-compact weighted Riemannian manifolds without
assuming conditions on derivatives of curvature. We present in particular a local version of
L p-boundedness of Riesz transforms under two natural conditions, namely the curvature-
dimension condition, and a lower bound on the Weitzenböck curvature endomorphism. As
an application, the Calderón–Zygmund inequality for 1 < p ≤ 2 on weighted manifolds is
derived under the curvature-dimension condition as hypothesis.
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1 Introduction

Let (M, g)be a complete geodesically connectedm-dimensionalRiemannianmanifold,∇ the
Levi-Civita covariant derivative, and � the Laplace-Beltrami operator understood as a self-
adjoint positive operator on L2(M). The Riesz transform∇�−1/2 f , introduced by Strichartz
[28] on Euclidean space, has been investigated in many subsequent papers, see e.g., [2–4, 8]
and the references therein, and has been further extended to Riemannian manifolds, e.g. [1,
11–13, 23, 30]. Since the Riesz transform is bounded in L2(M), by the interpolation theorem,
the weak (1, 1) property already implies L p(M)-boundedness for p ∈ (1, 2].

When it comes to Riemannian vector bundles, boundedness in L p of the Riesz transforms
d(k)(�(k) + σ)−1/2 and δ(k−1)(�(k) + σ)−1/2 has been well considered, see [4, 25], where
�(k) is the usual Hodge Laplacian acting on k-forms, d(k) the exterior differential on k-forms
and δ(k) the L2-adjoint of d(k). Let∇ be the Levi-Civita covariant derivative. In this paper, we
aim to study covariant Riesz transforms ∇(�(k) + σ)−1/2 on Riemannian vector bundles for
p ∈ (1, 2] which poses comparably more difficulties to deal with. This question has already
been addressed by the second and third named author in [30], where the authors adopted the
method of Coulhon and Duong [11] relying on the doubling volume property, Li-Yau type
heat kernel upper bounds and derivative estimates of the heat kernel. Note that the approach
in [30] is of stochastic nature and derivative estimates for the heat kernel are deduced from
derivative formulae for semigroups on vector bundles, bymeans of themethodology ofDriver
and the second named author [15]. In [15] estimates of certain functionals ofBrownianmotion
with respect to theWiener measure are required; nevertheless pointwise estimate for the heat
kernel e−t�(k)

(x, y) and the derivative estimate of heat kernel∇e−t�(k)
(x, y) can be obtained

from such general derivative formulas, where �(k) is the unique self-adjoint realization of
the Hodge-de Rham Laplacian acting on k-forms under explicit curvature condition, see
[5]. By following a similar approach, Baumgarth, Devyver and Güneysu [5] studied the
covariant Riesz transform on j-forms, removing the doubling volume property and using
uniformly boundedness conditions of the curvature and the derivative of the curvature on
differential forms. These results are further used to establish Calderón-Zygmund inequalities
for 1 < p ≤ 2, where for ϕ ∈ C∞

c (M), the set of smooth functions of compact support, if
there exist positive constants C1 and C2 such that

‖ |Hess(ϕ)| ‖p ≤ C1‖ϕ‖p + C2‖�ϕ‖p

then the Calderón-Zygmund inequalities holds. Note that the argument in [5] for estab-
lishing Calderón-Zygmund inequalities is from Güneysu and Pigola’s paper [20], where
the Calderón-Zygmund inequalities are equivalent to the L p boundedness of the operator
Hess(� + σ)−1 for some constant σ > 0 and this operator further can be rewritten as

∇(�(1) + σ)−1/2 ◦ d(� + σ)−1/2.

Thus to investigate whether these L p-Calderón-Zygmund inequalities hold are reduced to
the study of conditions for boundedness of the classical Riesz transform d(�μ + σ)−1/2 on

functions and boundedness of the covariant Riesz transform ∇(�
(1)
μ + σ)−1/2 on one-forms

in L p-sense. Therefore, in [5] combining this argument with the result in [30] yields that the
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L p-Calderón-Zygmund inequalities hold for 1 < p ≤ 2 if

‖R‖∞ < ∞ and ‖∇ R‖∞ < ∞,

where R is the curvature tensor.
On the other hand, very recently, Cao, Cheng and Thalmaier [7] established the L p-

Calderón-Zygmund inequality for 1 < p < 2 by only using the natural assumption of a
lower Ricci curvature bound. Since the conditions for the L p boundedness of the classical
Riesz transform d(�μ + σ)−1/2 for 1 < p ≤ 2 are quite weak, it arises us to wondering
whether the condition for the L p boundedness of the covariant Riesz transform on one-forms
in [5] is too strong. This work is devoted to investigating this problem on the L p boundedness
of covariant Riesz transform for 1 < p ≤ 2 again.

As explained in [30], it is difficult to follow the corresponding argument in [11] directly
concerning derivatives of heat kernel on vector bundle, since the heat kernel e−t�(k)

(x, y)

is a linear operator on a vector bundle E → M from Ey to Ex . In this paper, we aim to
overcome this difficulty by using a different approach, that is the Weitzenböck formula and
the Gaussian type estimates for some Schrödinger heat kernels on manifolds.

Before moving on, let us first introduce some basic notations. Consider a weighted Lapla-
cian � + ∇h with h ∈ C2

b (M). In this paper, we study the covariant Riesz transform relative
to the weighted volumemeasureμ(dx) = eh(x) vol(dx)where vol is the Riemannian volume
measure on M . We write �μ := � + ∇h where �μ is understood as a self-adjoint positive
operator on L2(μ). Let ρ(x, y) be the geodesic distance of x and y and B(x, r) the open
ball centered at x of radius r . Given a smooth vector bundle E → M carrying a canonically
given metric and a canonically given covariant derivative, we denote its fiberwise metric by
( ·, ·)g , the fiberwise norm by | · | = √

( ·, ·)g and the smooth sections by �C∞(M, E). We
denote its covariant derivative by

∇ : �C∞(M, E) → �C∞
(
M, T ∗M ⊗ E

)
.

The Banach space �L p (M, E) consists of equivalent classes of Borel sections ψ of E → M
such that

‖ψ‖p ≡ ‖ψ‖L p := ‖ |ψ | ‖L p < ∞
where ‖ |ψ | ‖L p denotes the norm of the function |ψ | with respect to L p(μ). Then �L2(E)

canonically becomes a Hilbert space with the scalar product

〈ψ1, ψ2〉 := 〈ψ1, ψ2〉L2 =
∫

(ψ1, ψ2)g dμ.

Consider the spaces

	k = �C∞
(
M, 
k T ∗M

)
and 	k

c = �C∞
c

(
M, 
k T ∗M

)
(0 ≤ k ≤ m)

of smooth differential k-forms, respectively compactly supported smooth k-forms, and denote
the space of smooth k-forms in L p by

	k
L p := �C∞∩L p(μ)

(
M,
k T ∗M

)
.

In terms of the exterior differential d(k) : 	k → 	k+1 on 	k and δ
(k+1)
μ the L2(μ)-adjoint

of d(k), i.e.,
〈
δ(k+1)
μ a, b

〉 := μ
(
(δ(k+1)

μ a, b)g
) = μ

(
(a, d(k)b)g

) := 〈a, d(k)b〉
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for a ∈ 	k+1 and b ∈ 	k , the weighted Hodge Laplacians acting on 0-, respectively k-forms,
are given by

�(0)
μ := δ(1)

μ d(0) : C∞(M) → C∞(M),

�(k)
μ := δ(k+1)

μ d(k) + d(k−1)δ(k)
μ : 	k → 	k . (1.1)

Obviously, the canonical commutation rules hold:

d(k−1)�(k−1)
μ = �(k)

μ d(k−1).

To simplify the notation, we write �μ = �
(0)
μ and d = d(0).

To this end, we first give some assumptions where we start with notions related to the
curvature. Letting ∇∗

μ be the L2(μ)-adjoint of ∇ and �μ = ∇∗
μ∇ the weighted Bochner

Laplacian, it is easy to check that

�μ = − tr∇2 − ∇∇h, (1.2)

where

tr∇2η(•) :=
∑

i

∇2η (•, ei , ei )

with η being a differential k-form and (ei ) a local orthonormal frame. Note that by definition
∇2η is a tensor of order (0, k+2) and tr∇2η is independent of the choice of local orthonormal
frame (ei ). The Weitzenböck formula gives the relationship between �μ and the Hodge

Laplacian �
(·)
μ : for any differential k-forms η ∈ 	k , we have

�(k)
μ η = �μη + R(k)(η) − (Hess h)(k)(η), (1.3)

where in explicit terms theWeitzenböck curvature endomorphism R(k) −(Hess h)(k) is given
by

(
R(k) − (Hess h)(k)

)
(•) = −

m∑

i, j=1

θ j ∧ (ei �R(e j , ei )(•)
)−

m∑

i, j=1

ei
(
e j (h)

)(
θ j ∧ (ei � •)

)

for anyorthonormal frame (ei )1≤i≤m with correspondingdual frame (θ j )1≤ j≤m (seeTheorem
2.2 below). When k = 1, R(1) − (Hess h)(1) = Ric−Hess h.

Let λk(x) be the lowest eigenvalue of (R(k) − (Hess h)(k))(x) for x ∈ M . We use the
notation

Vk(x) := λ−
k (x) = (|λk(x)| − λk(x))/2.

Let PVk
t be the semigroup e−t(�μ−Vk ) which has a smooth integral kernel denoted by

pVk
t (x, y).

Definition 1.1 We say that �μ − Vk + σ for some constant σ is strongly positive if the
following condition holds: there exists A < 1 such that for all f ∈ C∞

c (M),
∫

M
(Vk − σ)| f |2dμ ≤ A

∫

M
|∇ f |2 dμ.

We remark that the strong positivity condition has its origin in the Hardy inequality, see the
introduction of [14].

The following theorem is our first main result.
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Theorem 1.2 Let σ1, σ2 and σ2 be positive constants such that the following three conditions
hold:

(i) (local) volume doubling property: for α > 1,

μ(B(x, αr)) ≤ Cμ(B(x, r)) αm exp(σ1(α − 1)r), x ∈ M, (LD)

holds for all r > 0 and some constant C > 0;
(ii) local off-diagonal upper bound of the heat kernel pVk

t :

pVk
t (x, x) ≤ Ceσ2t

μ(B(x,
√

t))
, x ∈ M, (UE)

for all t > 0 and some constant C > 0;
(iii) the operator �μ − Vk + σ3 is strongly positive.

Then there exists a positive constant σ depending on σ1, σ2 and σ3 such that the covariant
Riesz transform ∇(�

(k)
μ + σ)−1/2 is bounded in L p for p ∈ (1, 2]. In particular, σ1 = σ2 =

σ3 = 0 implies σ = 0.

The upper bound estimate of Schrödinger heat kernel with an increasing exponential factor
have been well studied in [27, 29]. Often, inequality (UE) appears without the increasing
exponential factor (i.e. σ2 = 0), which requires stronger conditions on the curvature and the
potential Vk . In the following, we use the result from [32] to consider the global covariant
Riesz transform, i.e. σ = 0.

Let Pt = e−�μt be the semigroup generated by−�μ and pt (x, y) the corresponding heat
kernel with respect to the measureμ. Our second main result is the following Theorem 1.3. It
has been proved in [32] that the doubling volume property (D) and the on-diagonal estimate
(U) in this theorem, together with condition (1.4), imply that

pVk
t (x, x) ≤ C

μ(B(x,
√

t))
.

Thus the following result is a consequence of Theorem 1.2 for σ1 = σ2 = σ3 = 0.

Theorem 1.3 Suppose the following conditions hold:

(i) volume doubling property: for α > 1,

μ(B(x, αr)) ≤ Cμ(B(x, r))αm (D)

holds for some constant C > 0 and all x ∈ M, r > 0;
(ii) on-diagonal upper bound of the heat kernel: there exists constants C, δ > 0 such that

pt (x, x) ≤ C

μ(B(x,
√

t))
(U)

for all t > 0 and x ∈ M, and

K (Vk) ≡ sup
x∈M

∫ ∞

0

∫

M

1

μ(B(x,
√

s))
e−ρ2(x,y)/s Vk(y) μ(dy) ds < δ; (1.4)

iii) the operator �μ − Vk is strongly positive on 	k
c .

Then the Riesz transform ∇(�
(k)
μ )−1/2 on 	k

L p is bounded in L p for p ∈ (1, 2].
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Let us compare to known results. In [30] for the usual Riemannian manifold, i.e. h = 0,
under the assumption that∇R+∇R(k) = 0,R(k) ≥ 0 and the doubling volume property, it is
shown that ∇(�(k))−1/2 has the weak type (1, 1) property. In the above theorem, if �μ − Vk

is strongly positive on 	k
c , the lower bound of R(k) can be relaxed and no condition on the

derivative of curvature is needed. From this point of view, our results also improve the recent
work of Baumgarth, Devyver and Güneysu [5] on the covariant Riesz transform on k-forms
for p ∈ (1, 2].

It has been observed that the curvature-dimension condition implies the local volume
doubling condition (see [16]). For the localization argument towards the boundedness of
Riesz transform, we need the local doubling volume property with respect to μ, which is
related to the following curvature-dimension condition. Assume that

�2( f , f ) := −1

2
�μ|∇ f |2 + (∇�μ f ,∇ f )g ≥ −K0|∇ f |2 + 1

n
(�μ f )2, (CD)

where K0 ∈ R and n ≥ m provide a curvature lower bound and a dimension upper bound
of �μ, respectively. In the case ∇h = 0 this condition is equivalent to Ric ≥ −K0 and then
the curvature-dimension condition holds for n = m. When ∇h �= 0 however, typically n is
larger than m. Indeed, the curvature-dimension condition can be written as

Ric(n−m)
h (X , X) ≥ −K0|X |2, X ∈ T M

where for α > 0, the α-Ricci curvature of the weighted Laplacian �μ is defined as

Ricα
h := Ric− Hess h − 1

α
∇h ⊗ ∇h.

This condition implies that

Rich(X , X) := Ric(X , X) − (Hess h)(X , X) ≥ −K0|X |2. (Ric)

Assuming the curvature-dimension curvature condition (CD) then in particular the local
doubling assumption with respect to μ holds, see [16, 26] for details, i.e., there exists a
constant L > 0 such that

μ(B(y, αr)) ≤ Cμ(B(y, r))αm exp(L(α − 1)r), y ∈ M, r > 0, α > 1. (1.5)

Assumption 1.4 For k ∈ N and k ≥ 2, there exists K ∈ R such that

−K = min

{((
R(k) − (Hess h)(k)

)
v, v

)

g
: v ∈ 
(k)Tx M, |v| = 1, x ∈ M

}
.

Obviously, Assumption 1.4 implies that R(k) − (Hess h)(k) is bounded below by −K so
that −Vk + K + ≥ 0, hence the operator �μ − Vk + K + is strongly positive. Assume that
(CD) holds for some constant K0. On the one hand (CD) implies the local volume doubling
property. On the other hand, it implies the lower Ricci curvature bound (Ric), which is
further used to derive the Gaussian type estimate of pt (x, y) (see [31, Theorem 2.4.4]). We
then conclude that for any α ∈ (0, 1/4) there exist constants C1(α), C2(α) > 0 such that

|pVk
t (x, y)| ≤ eK +t pt (x, y) ≤ C1(α)

μ(B(x,
√

t))
exp

(
−αρ(x, y)2

t
+ (K + + C2(α))t

)
(1.6)

for t > 0. As a consequence, we have the following corollary from Theorem 1.2 directly.
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Corollary 1.5 Assume (CD) holds for some K0 ≥ 0. Then there exists a constant σ > 0 such
that the Riesz transform ∇(�

(1)
μ + σ)−1/2 is bounded in L p(μ) for 1 < p ≤ 2. If in addition

Assumption 1.4 holds for some k ≥ 2, then there exists σ > 0 such that the Riesz transform
∇(�

(k)
μ + σ)−1/2 on 	k

L p is bounded in L p(μ) for 1 < p ≤ 2.

As explained at the beginning, the result of Theorem 1.5 implies the Calderón–Zygmund
inequality for 1 < p < 2. We say that an L p(μ)-Calderón-Zygmund inequality holds on M
if there exist two constants C1, C2 > 0 such that

∥∥Hess(ϕ)
∥∥

p ≤ C1‖ϕ‖p + C2‖�μϕ‖p (CZμ(p))

for every function ϕ ∈ C∞
c (M). We denote this inequality by CZμ(p). Güneysu and Pigola

[20] observed that under Calderón-Zygmund inequalities, if M is geodesically complete and
admits a sequence of Laplacian cut-off functions (this is the case e.g. if M has non-negative
Ricci curvature; for more general curvature conditions see [18] and [6]), then H2,p

0 (M) =
H2,p(M) holds for all 1 < p < ∞. We refer the reader to [21] for further applications of
Calderón-Zygmund inequalities.

In general, CZμ(p) inequalities may hold or fail on M , depending on the underlying Rie-
mannian geometry, which leads to the questionwhich geometric assumptions on M guarantee
CZμ(p) and how the CZμ(p) -constants C1, C2 depend on the geometric entities. In [20]
two methods appear for attacking Calderón-Zygmund inequalities: the first one depends on
appropriate elliptic estimates under conditions on harmonic bounds of the injectivity radius,
while the second one uses boundedness results for the covariant Riesz transform in L p for
1 < p ≤ 2 from [30]. Whereas conditions on harmonic bounds of the injectivity radius are
usually difficult to verify, the second approach relies on probabilistic covariant derivative
formulae for heat semigroups and has the advantage to avoid assumptions on the injectivity
radius. Along the main idea of this second method in [20], Theorem 1.3 permits to establish
CZμ(p) for 1 < p ≤ 2 on weighted manifolds along the same approach but only using the
curvature-dimension condition.

Theorem 1.6 Let (M, g) be a complete Riemannian manifold satisfying (CD). Let 1 < p < 2
be fixed. Then there exists a constant σ > 0 such that the operatorHess(�μ+σ)−1 is bounded
in L p(μ), and in particular CZμ(p) holds.

Comparing Theorem 1.6 with existing results on CZμ(p), it should be pointed out that
the result is valid without any injectivity radius assumptions and boundedness of ‖R‖∞ and
‖∇ R‖∞ as in [20]. Our result extends [7] to the weighted manifold by only requiring the
curvature-dimension condition.

The paper is organized as follows. In Section 2 we present L2 and L1 weighted derivative
estimates for the heat kernel on differential forms (see Theorems 2.6 and 2.7). These estimates
are applied in Sect. 3 to study the L p-boundedness (1 < p ≤ 2) of Riesz transforms for
differential forms on Riemannian manifolds with a metric connection (see Theorem 1.2).
Moreover, Theorem 1.5 gives a local version of covariant Riesz transform on Riemannian
forms. As application, Theorem 1.5 is used to obtain the Calderón-Zygmund inequalities for
p ∈ (1, 2].

123
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2 Heat kernel estimates

2.1 Preliminaries

Let us first recall the interior product.

Definition 2.1 The interior product X � a ∈ 	k−1 corresponds to the contraction of a ∈ 	k

with a vector field X ∈ �(T M) and is defined as

X � a (X1, . . . , Xk−1) := a (X , X1, . . . , Xk−1) , ∀X1, . . . , Xk−1 ∈ �(T M).

The interior product is an anti-derivation, i.e.,

X � (a ∧ b) = (X� a) ∧ b + (−1)ka ∧ (X � b) ∀a ∈ 	k, b ∈ 	1.

TheWeitzenböck formula relates the weighted Hodge-de RhamLaplacian to the weighted
Bochner Laplacian on (M, g).

Theorem 2.2 (Weitzenböck formula) For all differential k-forms η ∈ 	k , we have

�(k)
μ η = �η − ∇∇hη + R(k)(η) − (Hess h)(k)(η),

where R(k) : 	k → 	k is given by

R(k)(η) = −
m∑

i, j=1

θ j ∧ (ei �R
(
e j , ei

)
(η)
)

and (Hess h)(k) : 	k → 	k by

(Hess h)(k)(η) =
m∑

i, j=1

ei (e j (h))θ j ∧ (ei � η) ,

for any orthonormal frame (ei )1≤i≤m and corresponding dual frame (θ j )1≤ j≤m such that

∇ei = 0, ∇θ j = 0 and θ j (ei ) = δ
j
i .

Proof It is well known that

d(k) =
m∑

j=1

θ j ∧ ∇e j and δ(k)
μ (·) = −

m∑

j=1

e−he j � ∇e j (e
h(·)).

Let�(k) be the usual Hodge Laplacian acting on k-form. Since orthonormal frames (ei )1≤i≤m

and dual frames
(
θ j
)
1≤ j≤m satisfy ∇ei = 0 and ∇θ j = 0, we obtain for η ∈ 	k , using the

summation convention,

�(k)
μ η = −e−he j �∇e j (e

h(θ i ∧ ∇ei η)) − θ i ∧ ∇ei (e
−he j �∇e j (e

hη))

= −e j (h)e j �(θ i ∧ ∇ei η) − e j �∇e j (θ
i ∧ ∇ei η)

− θ i ∧ ∇ei (e j (h)e j � η) − θ j ∧ ∇e j (e j �∇e j η)

= −e j (h)e j �(θ i ∧ ∇ei η) − ei (e j (h))θ i ∧ (e j �∇e j η) − e j (h)θ i ∧ ∇ei (e j � η) + �(k)η

= −e j (h)∇e j η + e j (h)(θ i ∧ (e j �∇ei η)) − ei (e j (h))θ i ∧ (e j � η) − e j (h)(θ i ∧ (e j �∇ei η))

+ �η − R(k)(η)
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= −e j (h)∇e j η − ei (e j (h))θ i ∧ (e j � η) + �η − R(k)(η)

= −∇∇hη − (Hess h)(k)(η) + �η − R(k)(η),

where the last equation follows from the fact that

�(k)η = �η − R(k)(η).

��
By the usual abuse of notation, the corresponding self-adjoint realizations will again be

denoted by the same symbol, i.e. �μ and �
(k)
μ respectively. By local parabolic regularity, for

all square-integrable k-forms a ∈ 	k
L2 , the time-dependent k-form

(0,∞) × M � (t, x) �→ e−�
(k)
μ t a ∈ 
k T ∗

x M

has a smooth representativewhich extends smoothly to [0,∞)×M if a is smooth. In addition,

there exists a unique smooth heat kernel of e−�
(k)
μ t with respect to the measure μ, which is

understood as a map

(0,∞) × M × M � (t, x, y) �→ e−�
(k)
μ t (x, y) ∈ Hom(
k T ∗

y M,
k T ∗
x M)

such that

e−t�(k)
μ a(x) =

∫

M
e−t�(k)

μ (x, y)a(y) μ(dy).

Let

−K := min
{(

(R − Hess h)(k)v, v
)

g : v ∈ 
k Tx M, |v| = 1, x ∈ M
}

.

Recall the notation λk(x) defined as the smallest eigenvalue of (R − Hess h)(k)(x), x ∈ M
and let

Vk(x) = λ−
k (x) = (|λk(x)| − λk(x))/2.

Then by [22],

∣∣ exp
(
−t�(k)

μ

)
(x, y)

∣∣ ≤ pVk
t (x, y).

We conclude that to estimate
∣∣ exp

(
−t�(k)

μ

)
(x, y)

∣∣, it suffices to estimate the Schrödinger

heat kernel pVk
t (x, y). There is a lot of previous work dealing with Schrödinger heat kernels

on manifolds, see for instance [14, 19, 29, 32, 33].

Theorem 2.3 Let M be a complete non-compact Riemannian manifold satisfying (LD) and
(UE). Then for any α ∈ (0, 1/4), there exists σ̃ > 0 depending only on the constants in (LD)
and (UE) and a constant C > 0 such that

∣∣ exp (−t�(k)
μ )(x, y)

∣∣ ≤ Ceσ̃ t

μ(B(y,
√

t))
exp

(−αρ(x, y)2/t
)
, ∀x, y ∈ M, t > 0.

If σ1 = 0 and σ2 = 0, then σ̃ = 0.
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Proof Let PVk
t be the semigroup generated by the operator −�μ + Vk and pVk

t (x, y) the
corresponding heat kernel. We recall that

∣∣∣exp (−t�(k)
μ )(x, y)

∣∣∣ ≤ pVk
t (x, y), x, y ∈ M, t > 0.

From the assumptions (LD) and (UE), one can derive that pVk
t satisfies theGaussian estimate:

pVk
t (x, y) ≤ Ceσ̃ t

μ(B(y,
√

t))
exp

(−αρ(x, y)2/t
)

for x, y ∈ M and t > 0, by the same argument as in [17]; see [14, Theorem 3.1] for a similar
argument. ��
Lemma 2.4 If the local volume doubling property (LD) holds, then for any γ > 0, there exist
positive constants Cγ and c̃ := σ 2

1 /2γ such that
∫

ρ(x,y)≥√
t
e−2γ ρ2(x,y)

s μ(dx) ≤ Cγ μ
(
B(y,

√
s)
)
e−γ t/sec̃s (2.1)

for s, t > 0 and x, y ∈ M.

Proof By (1.5), it is easy to see that for all γ > 0, s, t > 0 and y ∈ M , there exist two
positive constants Cγ (depending on γ and the constants in (1.5)) and c̃ = σ 2

1 /2γ such that
∫

ρ(x,y)≥√
t
e−2γ ρ2(x,y)

s μ(dx) ≤ e−γ t/s
∫

M
e−γ

ρ2(x,y)
s μ(dx)

≤ e−γ t/s
∞∑

i=0

μ(B(y, (i + 1)
√

s))e−γ i2

≤ Ce−γ t/sμ(B(y,
√

s))
∞∑

i=0

(i + 1)m+1e−γ i2eσ1i
√

s

≤ Ce−γ t/sμ(B(y,
√

s))
∞∑

i=0

(i + 1)m+1e−γ i2eγ i2/2+σ 2
1 s/(2γ )

≤ Ce−γ t/seσ 2
1 s/(2γ )μ(B(y,

√
s))

∞∑

i=0

(i + 1)m+1e−γ i2/2

≤ Cγ μ(B(y,
√

s)) e−γ t/sec̃s, (2.2)

where the third inequality comes from condition (1.5). ��
By means of this estimate, we obtain immediately the following consequence.

Theorem 2.5 Let M be a complete non-compact Riemannian manifold satisfying (LD) and
(UE). Then for any α ∈ (0, 1/4) and γ ∈ (0, α), there exists some constant C > 0 such that

∫

M

∣∣∣exp (−t�(k)
μ )(x, y)

∣∣∣
2
e
2γρ2(x,y)

t μ(dx) ≤ Ce2C0t

μ
(
B(y,

√
t)
) ,

for all y ∈ M and t > 0, where C0 := σ̃ + 1
2 c̃ and the constants σ̃ , c̃ defined in Theorems

2.3 and Lemma 2.4 respectively.
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Proof Letting t tend to ∞ in inequality (2.1), we obtain
∫

M
e−2γ ρ2(x,y)

t μ(dx) ≤ Cγ μ
(

B
(
y,

√
t
))

ec̃t , t > 0.

By Theorem 2.3 and Lemma 2.4, we conclude that there exists σ̃ > 0 depending only on the
constants σ1 and σ2 and a constant C > 0 such that

∫

M

∣∣∣exp (−t�(k)
μ )(x, y)

∣∣∣
2
e
2γρ2(x,y)

t μ(dx)

≤ C
e2σ̃ t

μ
(
B(y,

√
t)
)2

∫

M
e

−(2α−2γ )ρ2(x,y)
t μ(dx)

≤ C
e(2σ̃+c̃)t

μ(B
(
y,

√
t)
) .

We then complete the proof. ��

2.2 L2-weighted derivative estimates of heat kernel

In this subsection, we start the discussion under the assumption that (LD) and (UE) hold and
that the operator �μ − Vk +σ3 on 	k is strongly positive. Then we have the following result
about the L2-weighted derivative estimate of the heat kernel.

Theorem 2.6 Let M be a complete non-compact Riemannian manifold satisfying the assump-
tions as in Theorem 1.2. Fix α ∈ (0, 1/4) as in Theorem 2.3. Then for any 0 < γ < α, there
exists a constant C > 0 such that

∫

M

∣∣∣∇ exp
(
−t�(k)

μ

)
(x, y)

∣∣∣
2
e2γ

ρ2(x,y)
t μ(dx) ≤ C(1 + σ3t)e2C0t

tμ(B(y,
√

t))

for all y ∈ M, t > 0, where the constant C0 is defined as in Theorem 2.5.

Proof For R > 0, letψ be a C2 function onR+ such that ψ(r) = 1 for r ∈ [0, R], ψ(r) = 0

for r > 2R and ‖ψ‖∞ ≤ 1, ‖ψ ′‖∞ ≤ cψ1/2

R for some positive constant c > 0 (see [24]). An
argument of Calabi, which is also used in [9], allows us to assume without loss of generality

that e
2γρ2(·,y)

t ψ(ρ(·, y)) for y ∈ M is smooth. According to the integration by parts formula,
we have

∫

M

∣∣∣∇ exp
(
−t�(k)

μ

)
(x, y)

∣∣∣
2
e
2γρ2(x,y)

t ψ(ρ(x, y))μ(dx)

=
∫

M

(
ψ(ρ(x, y))4γ

ρ(x, y)

t
+ ψ ′(ρ(x, y))

)(
∇∇ρ exp

(
−t�(k)

μ

)
(x, y),

exp
(
−t �(k)

μ

)
(x, y)

)

g
e
2γρ2(x,y)

t μ(dx)

+
∫

M
ψ(ρ(x, y))

(
∇∗

μ∇ exp
(
−t�(k)

μ

)
(x, y), exp

(
−t�(k)

μ

)
(x, y)

)

g
e
2γρ2(x,y)

t μ(dx) =: I + II.

Then there exists α > γ ′ > γ > 0 such that
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I =
∫

M
4γ

ρ(x, y)

t

(
∇∇ρ exp

(
−t�(k)

μ

)
(x, y), exp

(
−t�(k)

μ

)
(x, y)

)

g
e
2γρ2(x,y)

t ψ(ρ(x, y)) μ(dx)

+
∫

M
ψ ′(ρ(x, y))

(
∇∇ρ exp

(
−t�(k)

μ

)
(x, y), exp

(
−t�(k)

μ

)
(x, y)

)

g
e
2γρ2(x,y)

t μ(dx)

=
∫

M
4γ

ρ(x, y)

t

(
∇ exp

(
−t�(k)

μ

)
(x, y),

(
dρ ⊗ exp

(
−t�(k)

μ

))
(x, y)

)

g
e
2γρ2(x,y)

t ψ(ρ(x, y)) μ(dx)

+ c

R

∫

M

∣∣∣∣
(
∇ exp

(
−t�(k)

μ

)
(x, y),

(
dρ ⊗ exp

(
−t�(k)

μ

))
(x, y)

)

g

∣∣∣∣ e
2γρ2(x,y)

t ψ(ρ(x, y))1/2 μ(dx)

≤ C√
t

∫

M

∣∣∣∇ exp
(
−t�(k)

μ

)
(x, y)

∣∣∣ ·
∣∣∣exp

(
−t�(k)

μ

)
(x, y)

∣∣∣ e
2γ ′ρ2(x,y)

t ψ(ρ(x, y)) μ(dx)

+ c

R

∫

M

∣∣∣∇ exp
(
−t�(k)

μ

)
(x, y)

∣∣∣ ·
∣∣∣exp

(
−t�(k)

μ

)
(x, y)

∣∣∣ e
2γρ2(x,y)

t ψ(ρ(x, y))1/2 μ(dx)

≤ C√
t

(∫

M

∣∣∣∇ exp
(
−t�(k)

μ

)
(x, y)

∣∣∣
2
e
2γρ2(x,y)

t ψ(ρ(x, y)) μ(dx)

)1/2

×
(∫

M

∣∣∣exp
(
−t�(k)

μ

)
(x, y)

∣∣∣
2
e
(4γ ′−2γ)ρ2(x,y)

t ψ(ρ(x, y)) μ(dx)

)1/2

+ c

R

(∫

M

∣∣∣∇ exp
(
−t�(k)

μ

)
(x, y)

∣∣∣
2
e
2γρ2(x,y)

t ψ(ρ(x, y)) μ(dx)

)1/2

×
(∫

M

∣∣∣exp
(
−t�(k)

μ

)
(x, y)

∣∣∣
2
e
2γρ2(x,y)

t μ(dx)

)1/2

≤ 1 − A

2

∫

M

∣∣∣∇ exp
(
−t�(k)

μ

)
(x, y)

∣∣∣
2
e
2γρ2(x,y)

t ψ(ρ(x, y)) μ(dx)

+ C2

(1 − A)t

∫

M

∣∣∣exp
(
−t�(k)

μ

)
(x, y)

∣∣∣
2
e(4γ

′−2γ ) ρ2(x,y)
t ψ(ρ(x, y)) μ(dx)

+ c2

(1 − A)R2

∫

M

∣∣∣exp
(
−t�(k)

μ

)
(x, y)

∣∣∣
2
e2γ

ρ2(x,y)
t μ(dx)

where (dρ)(x, y) := (dρ(·, y))(x) and A < 1 is the constant from the strong positivity
property of �μ − Vk + σ3. Since 2γ ′ − γ < α, we can use the estimate in Theorem 2.5 to
get

∫

M
4γ

ρ(x, y)

t

(
∇ exp

(
−t�(k)

μ

)
(x, y),

(
dρ ⊗ exp

(
−t�(k)

μ

))
(x, y)

)

g
e
2γρ2(x,y)

t ψ(ρ(x, y)) μ(dx)

≤ 1 − A

2

∫

M

∣∣∣∇ exp
(
−t�(k)

μ

)
(x, y)

∣∣∣
2
e
2γρ2(x,y)

t ψ(ρ(x, y)) μ(dx) +
(
1

t
+ 1

R2

)
Ce2C0t

μ(B(y,
√

t))

for some generic constant C . As

�(k)
μ = � − ∇∇h + R(k) − (Hess h)(k),

and (R(k) − (Hess h)(k))(x) ≥ −Vk(x), we then have

II =
∫

M

(
∇∗

μ∇ exp
(
−t�(k)

μ

)
(x, y), exp

(
−t�(k)

μ

)
(x, y)

)

g
e
2γρ2(x,y)

t ψ(ρ(x, y)) μ(dx)

=
∫

M

(
�(k)

μ exp
(
−t�(k)

μ

)
(x, y), exp

(
−t�(k)

μ

)
(x, y)

)

g
e
2γρ2(x,y)

t ψ(ρ(x, y)) μ(dx)

−
∫

M

((
R(k) − (Hess h)(k)

)
exp

(
−t�(k)

μ

)
(x, y),
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exp
(
−t�(k)

μ

)
(x, y)

)

g
e2γ

ρ2(x,y)
t ψ(ρ(x, y)) μ(dx)

≤
∫

M

(
�(k)

μ exp
(
−t�(k)

μ

)
(x, y), exp

(
−t�(k)

μ

)
(x, y)

)

g
e
2γρ2(x,y)

t ψ(ρ(x, y)) μ(dx)

+
∫

M
(Vk(x) − σ3)

∣∣∣exp
(
−t�(k)

μ

)
(x, y)

∣∣∣
2
e
2γρ2(x,y)

t ψ(ρ(x, y)) μ(dx)

+ σ3

∫

M

∣∣∣exp
(
−t�(k)

μ

)
(x, y)

∣∣∣
2
e
2γρ2(x,y)

t ψ(ρ(x, y)) μ(dx)

≤
∫

M

(
�(k)

μ exp
(
−t�(k)

μ

)
(x, y), exp

(
−t�(k)

μ

)
(x, y)

)

g
e
2γρ2(x,y)

t ψ(ρ(x, y)) μ(dx)

+ A
∫

M

∣∣∣d| exp
(
−t�(k)

μ

)
(x, y)|

∣∣∣
2
e
2γρ2(x,y)

t ψ(ρ(x, y)) μ(dx)

+ σ3

∫

M

∣∣∣exp
(
−t�(k)

μ

)
(x, y)

∣∣∣
2
e
2γρ2(x,y)

t ψ(ρ(x, y)) μ(dx).

Using Kato’s inequality we further obtain

II ≤
∫

M

(
�(k)

μ exp
(
−t�(k)

μ

)
(x, y), exp

(
−t�(k)

μ

)
(x, y)

)

g
e
2γρ2(x,y)

t ψ(ρ(x, y)) μ(dx)

+ A
∫

M

∣∣∣∇ exp
(
−t�(k)

μ

)
(x, y)

∣∣∣
2
e
2γρ2(x,y)

t ψ(ρ(x, y)) μ(dx)

+ σ3

∫

M

∣∣∣exp
(
−t�(k)

μ

)
(x, y)

∣∣∣
2
e
2γρ2(x,y)

t μ(dx).

By Cauchy’s integral formula, we get for w ∈ B(M) and a1, a2 ∈ 	k
L2 ,

〈
�(k)

μ e−t�(k)
μ a1, wa2

〉

=
∣∣∣∣

∫

z: |z−t |=t/2

〈
e−z�(k)

μ a1, wa2
〉

(z − t)2
dz

∣∣∣∣ ≤ (2π)−1π t sup
z :|z−t |=t/2

∣∣∣∣

〈
e−z�(k)

μ a1, wa2
〉

(z − t)2

∣∣∣∣

≤ t

2
sup

z: |z−t |=t/2

∥∥∥ |e−z�(k)
μ a1|

√
w

∥∥∥
2

∥∥ |a2|
√

w
∥∥
2 (t/2)−2

≤ 2

t

∥∥ |a1|
√

w
∥∥
2

∥∥ |a2|
√

w
∥∥
2 ,

which implies for w( ·) = e
2γρ2( · ,y)

t ψ(ρ(·, y)),

∣∣∣
〈
�(k)

μ e−t�(k)
μ /2a1, a2e

2γρ2( · ,y)
t

〉∣∣∣ ≤ C

t

∥∥∥a1e
γρ2( · ,y)

t

∥∥∥
2

∥∥∥a2e
γρ2( · ,y)

t

∥∥∥
2
.

Letting a1(x) = exp
(
−t�(k)

μ /2
)

(x, y) and a2(x) = e−t�(k)
μ (x, y), we then obtain by The-

orem 2.5,
∣∣∣∣−
∫

M

(
�(k)

μ exp
(
−t�(k)

μ

)
(x, y), exp

(
−t�(k)

μ

)
(x, y)

)

g
e
2γρ2(x,y)

t ψ(ρ(x, y)) μ(dx)

∣∣∣∣

≤ C

t

(∫

M

∣∣∣exp
(
−t�(k)

μ /2
)

(x, y)

∣∣∣
2
e
2γρ2(x,y)

t μ(dx)

)1/2
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×
(∫

M

∣∣∣exp
(
−t�(k)

μ

)
(x, y)

∣∣∣
2
e
2γρ2(x,y)

t μ(dx)

)1/2

≤ C

t

(
C1eC0t

μ(B(y,
√

t/2))

)1/2 (
C2e2C0t

μ(B(y,
√

t))

)1/2

≤ Ce3/2C0t

tμ(B(y,
√

t))
.

We conclude that
∫

B(y,R)

∣∣∣∇ exp
(
−t�(k)

μ

)
(x, y)

∣∣∣
2
e
2γρ2(x,y)

t μ(dx)

≤
∫

M

∣∣∣∇ exp
(
−t�(k)

μ

)
(x, y)

∣∣∣
2
e
2γρ2(x,y)

t ψ(ρ(x, y)) μ(dx)

≤ C(1 + σ3t)e2C0t

tμ(B(y,
√

t))
+ Ce2C0t

R2μ(B(y,
√

t))
.

We then complete the proof by letting R tend to ∞. ��
Combining Theorem 2.6 with Lemma 2.4, we obtain

Theorem 2.7 Let M be a complete non-compact Riemannian manifold satisfying the same
assumptions as in Theorem 1.2. Fix α ∈ (0, 1/4) as in Theorem 2.3 and let 0 < γ < α.
There exists a constant C > 0 such that

∫

ρ(x,y)≥t1/2

∣∣∣∇ exp
(
−s�(k)

μ

)
(x, y)

∣∣∣μ(dx) ≤ C(1 + √
σ3s) e2C0s−γ t/2ss−1/2

for all y ∈ M and s, t > 0, where C0 is the same as in Theorem 2.5.

Proof Let 0 < γ < α. By Cauchy’s inequality we obtain
∫

ρ(x,y)≥t1/2

∣∣∣∇ exp
{
−s�(k)

μ

}
(x, y)

∣∣∣μ(dx)

≤
(∫

M

∣∣∣∇ exp
{
−s�(k)

μ

}
(x, y)

∣∣∣
2
e2γρ2(x,y)/sμ(dx)

)1/2 (∫

ρ(x,y)≥t1/2
e−2γρ2(x,y)/sμ(dx)

)1/2

≤ CeC0s

√
1 + σ3s

sμ(B(y,
√

s))

√
μ(B(y,

√
s)) e−γ t/2s ec̃s/2

= Ce2C0s

√
1 + σ3s√

s
e−γ t/2s,

where the second inequality follows from Theorem 2.6 and Lemma 2.4. This finishes the
proof. ��

3 Proof of Theorem 1.2

Let us now present the main steps of the proof of Theorem 1.2 and Theorem 1.3, following
closely the approach of [11, Theorems 1.1 and 1.2]. Some of the arguments have been used
already in [7] and can be taken from there. For the convenience of the reader and for the sake
of completeness we give details here.
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The object of our interest is for suitable σ ≥ 0 the following operator on 	k :

T (k)
σ := ∇

(
�(k)

μ + σ
)−1/2 = 1√

π

∫ ∞

0
∇ exp

(
−�(k)

μ s
) e−σ s

√
s

ds. (3.1)

We ignore the normalization constant 1/
√

π in the sequel which is irrelevant for our purpose.
We start with the boundedness of T (k)

σ in L2.

Lemma 3.1 For k ∈ N
+, suppose �μ − Vk + σ is strongly positive on C∞

c (M) for some

constant σ > 0. Then the operator ∇
(
�

(k)
μ + σ

)−1/2
on 	k

c is bounded in L2-sense.

Proof We use the Bochner formula for a ∈ 	k
c . According to the Weitzenböck formula (1.3)

and the strong positivity of �μ − Vk + σ , we have

‖∇a‖22 = 〈�μa, a〉
= 〈�(k)

μ a, a〉 − 〈(R(k) − (Hess h)(k))a, a〉
≤ 〈�(k)

μ a, a〉 +
∫

M
(Vk − σ)|a|2(x) μ(dx) + σ‖a‖2

≤ 〈�(k)
μ a, a〉 + A

∫

M

∣∣d|a|∣∣2(x) μ(dx) + σ‖a‖2

≤ ‖(�(k)
μ )1/2a‖22 + A‖∇a‖22 + σ‖a‖22,

where the last inequality comes from the Kato inequality (see e.g. [22]). This implies

‖∇a‖22 ≤ 1

1 − A
‖(�(k)

μ + σ)1/2a‖22.

We complete the proof by letting a = (�
(k)
μ + σ)−1/2b for b ∈ 	k

c . ��
As the local version of the Riesz transform is bounded in L2, by the interpolation theorem,
the weak (1, 1) property for T (k)

σ already implies L p-boundedness for all p ∈ (1, 2]. Hence
we aim to study the weak (1, 1) property of T (k)

σ for σ ≥ 0 suitable: there exists c > 0 such
that

sup
λ>0

λμ
(∣∣∣T (k)

σ a
∣∣∣ > λ

)
≤ c μ(|a|), a ∈ 	k

c . (3.2)

To this end, we use a version of the localization technique of [1, Section 4] on the finite
overlap property of M , which has also been used in [7].

Lemma 3.2 [1] Assume that condition (LD) holds. There exists a countable subset C =
{x j } j∈
 ⊂ M such that

(i) M = ∪ j∈
 B(x j , 1);
(ii) {B(x j , 1/2)} j∈
 are disjoint;

(iii) there exists N0 ∈ N such that for any x ∈ M, at most N0 balls B(x j , 4) contain x;
(iv) for any c0 ≥ 1, there exists C > 0 such that for any j ∈ 
, x ∈ B(x j , c0) and r ∈ (0,∞),

μ
(
B(x, 2r) ∩ B(x j , c0)

) ≤ Cμ
(
B(x, r) ∩ B(x j , c0)

)

and

μ(B(x, r)) ≤ Cμ
(
B(x, r) ∩ B(x j , c0)

)

for any x ∈ B(x j , c0) and r ∈ (0, 2c0].
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The following lemma provides the localization argument in order to prove (3.2).

Lemma 3.3 Keeping the assumptions as in Theorem 1.2, let C = {x j } j∈
 be a countable
subset of M having the finite overlap property as in Lemma 3.2. Let σ > 2C0 where C0 is
as in Theorem 2.5. Suppose that there exists a constant c > 0 such that

μ
(
{x : 1B(x j ,2) |T (k)

σ a(x)| > λ}
)

≤ c

λ
‖ |a| ‖1 (3.3)

for any j ∈ 
, λ ∈ (0,∞) and a ∈ 	k
c supported in B(x j , 1). Then property (3.2) holds for

any a ∈ 	k
c .

Proof For j ∈ 
, set B j := B(x j , 1) and let {ϕ j } j∈
 be a C∞-partition of the unity such
that 0 ≤ ϕ j ≤ 1 and each ϕ j is supported in B j . Then, for a ∈ 	k

c and x ∈ M , write

T (k)
σ a(x) =

∑

j∈


12B j T (k)
σ (aϕ j )(x) +

∑

j∈


(1 − 12B j )T
(k)
σ (aϕ j )(x),

which yields that for any λ > 0,

μ({x : |T (k)
σ a(x)| > λ})

≤ μ

⎛

⎝
{

x :
∑

j∈


12B j |T (k)
σ (aϕ j )(x)| >

λ

2

}⎞

⎠+ μ

⎛

⎝
{

x :
∑

j∈


(1 − 12B j )|T (k)
σ (aϕ j )(x)| >

λ

2

}⎞

⎠

=: I1 + I2.

For I1, by Lemma 3.2 (iii) and condition (3.3), we have

I1 ≤
∑

j∈


μ

({
x : 12B j |T (k)

σ (aϕ j )(x)| >
λ

2N0

})
� 1

λ
‖ |a| ‖1 (3.4)

as desired, where the notation a � b means a ≤ Cb for some constant C .

To bound I2, again by Lemma 3.2 (iii), since ϕ j is supported in B j , it is easy to see that
∑

j∈


|(1 − 12B j )(x)ϕ j (y)| ≤ N01{ρ(x,y)≥1}.

Hence, according to the definition of T (k)
σ in (3.1) and Theorem 2.7, we get

I2 ≤ 2

λ

∑

j∈


∥∥∥
∣∣ (1 − 12B j

)
T (k)

σ

(
aϕ j

) ∣∣
∥∥∥
1

� 1

λ

∫

M

⎛

⎝
∫ ∞

0

e−σ t

√
t

∫

M

∣∣∣∇x exp (−�(k)
μ t)(x, y)

∣∣∣
∑

j∈


∣∣(1 − 12B j )(x)ϕ j (y)
∣∣ |a(y)| μ(dy) dt

⎞

⎠μ(dx)

� 1

λ

∫

M

∫ ∞

0

e−σ t

√
t

(∫

ρ(x,y)≥1
|∇x exp (−�(k)

μ t)(x, y)| μ(dx)

)
dt |a(y)| μ(dy)

≤ 1

λ

∫

M
|a(y)| μ(dy)

∫ ∞

0
e−σ t (1 + √

σ3t) e2C0 t e−γ /2t t−1 dt,

where γ ∈ (0, α) and C0 is as in Theorem 2.7. Thus, since σ > 2C0, we obtain
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I2 � 1

λ

∫ ∞

0
e(2C0−σ)t−γ /2t (1 + √

σ3t)

t
dt ‖a‖1 � 1

λ
‖a‖1

where as usual ‖a‖1 = ‖ |a| ‖1. This combined with the estimate of I1 in (3.4) finishes the
proof of Lemma 3.3. ��

We now turn to the proof of property (3.3), where we remove the subscript j and write B
for each B(x j , 1) for simplicity. Let c0 ≥ 1. By Lemma 3.2(iv), we have that (c0B, μ, ρ) is
a metric measure subspace satisfying the volume doubling property that there exists CD ≥ 1
such that

μ (B(x, 2r) ∩ c0B) ≤ CD μ (B(x, r) ∩ c0B) (D)

for all x ∈ c0B and r > 0.

We also use the following Calderón–Zygmund decomposition from [10], where X will
replace c0B.

Lemma 3.4 ([10]) Let (X , ν, ρ) be a metric measure space satisfying (LD). Let f ∈ L1(X )

and λ ∈ (0,∞). Assume ‖ f ‖L1 < λν(X ). Then f has a decomposition of the form

f = g + h = g +∑
i hi

such that

(a) g(x) ≤ Cλ for almost all x ∈ M;
(b) there exists a sequence of balls B̃i = B(xi , ri ) so that the support of each hi is contained

in B̃i :
∫

X
|hi (x)| ν(dx) ≤ Cλν(B̃i ) and

∫

X
hi (x) ν(dx) = 0;

(c)
∑

i

ν(B̃i ) ≤ C

λ

∫

X
| f (x)| ν(dx);

(d) there exists k0 ∈ N
∗ such that each point of M is contained in at most k0 balls B̃i .

Lemma 3.5 Let M be a complete non-compact Riemannian manifold satisfying (LD) and
(UE). Let λ ∈ (0,∞) and f = |a| ∈ L1(B) be as in Lemma 3.4. Let furthermore {hi } be
the sequence of bad functions of f as in Lemma 3.4 and

(
exp

(− �
(k)
μ t − σ t

))
t≥0 the heat

semigroup associated to −(�
(k)
μ + σ) with σ > σ̃ , where σ̃ is as in Lemma 2.4. Then there

exists a constant C > 0 independent of f such that

∥∥∥∥
∑

i

exp
(

− ti�
(k)
μ − σ ti

)
h̃i

∥∥∥∥
2

2
≤ Cλ ‖a‖1

where h̃i = |hi | a
|a| and ti = r2i with ri denoting the radii of the balls Bi as in Lemma 3.4 (b).

Proof Recall that supp hi ⊂ B(xi ,
√

ti ). Using the upper bound of the heat kernel in Lemma
2.3 and Lemma 3.4 (b), we have for x ∈ M ,
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∣∣∣ exp
(

− �(k)
μ ti − σ ti

)
h̃i (x)

∣∣∣ ≤ C
∫

M

e
−σ ′ti −α

ρ2(x,y)
ti

μ(B(x,
√

ti ))
|h̃i (y)| μ(dy)

≤ C

μ(B(x,
√

ti ))
e
−σ ′ti −α

ρ2(x,xi )
ti

∫

B̃i

|hi (y)| μ(dy)

≤ C1λ

∫

M

e
−σ ′ti −α

ρ2(x,y)
ti

μ(B(x,
√

ti ))
1B̃i

(y) μ(dy),

for suitable σ such that σ ′ = σ − σ̃ > 0. It is therefore sufficient to verify that

∥∥∥∥
∑

i

∫

M

e
−σ ′ti −α′′ ρ2( · ,y)

ti

μ(B( ·,√ti ))
1B̃i

(y) μ(dy)

∥∥∥∥
2

�
∥∥∥∥
∑

i

1B̃i

∥∥∥∥
2
, (3.5)

since as consequence from this and Lemma 3.4 we obtain

∥∥∥
∑

i

exp (−�(k)
μ ti − σ ti )h̃i

∥∥∥
2

2
� λ2

∥∥∥∥
∑

i

1B̃i

∥∥∥∥
2

2
� λ2

∑

i

μ(B̃i ) � λ ‖a‖1.

In order to prove (3.5), we write by duality

∥∥∥∥
∑

i

∫

M

e
−σ ′ti −α′′ ρ2( · ,y)

ti

μ(B( ·,√ti ))
1B̃i

(y) μ(dy)

∥∥∥∥
2

= sup
‖u‖2=1

∣∣∣∣∣∣∣

∫

M

⎛

⎜
⎝
∑

i

∫

M

e
−σ ′ti −α′′ ρ2(x,y)

ti

μ(B(x,
√

ti ))
1B̃i

(y) μ(dy)

⎞

⎟
⎠ u(x) μ(dx)

∣∣∣∣∣∣∣

≤ sup
‖u‖2=1

∫

M

∑

i

⎛

⎜
⎝
∫

M

e
−σ ′ti −α′′ ρ2(x,y)

ti

μ(B(x,
√

ti ))
|u(x)| μ(dx)

⎞

⎟
⎠1B̃i

(y) μ(dy). (3.6)

By the local doubling property (LD), we have for any x ∈ M and y ∈ B̃i ,

μ(B(y,
√

ti )) ≤ C

(
1 + ρ(x, y)√

ti

)m

eσ1ρ(x,y)/
√

ti μ(B(x,
√

ti )).

From this, we obtain that there exist 0 < α̃ < α′ < α such that

∫

M

e
−σ ′ti −α

ρ2(x,y)
ti

μ(B(x,
√

ti ))
|u(x)| μ(dx)

� e− 1
2 σ ′ti

μ(B(y,
√

ti ))

∫

M
e
−α′ ρ2(x,y)

ti |u(x)| μ(dx)

� 1

μ(B(y,
√

ti ))

(∫

ρ(x,y)<
√

ti
|u(x)| μ(dx) +

∞∑

k=0

∫

2k√ti ≤ρ(x,y)<2k+1√ti
e
−α′ ρ2(x,y)

ti |u(x)| μ(dx)

)

≤ 1

μ(B(y,
√

ti ))

(∫

B(y,
√

ti )
|u(x)| μ(dx) +

∞∑

k=0

e−α′22k
∫

B(y,2k+1√ti )
|u(x)| μ(dx)

)

=
(

1 +
∞∑

k=0

μ(B(y, 2k+1√ti ))

μ(B(y,
√

ti ))
e−α′22k

)

(M u)(y)
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≤
(

1 + C
∞∑

k=0

2(k+1)meσ1(2k+1−1)
√

ti e−α̃22k

)

(M u)(y)

≤
(

1 + C
∞∑

k=0

2(k+1)mec2k−α̃22k

)

(M u)(y) � (M u)(y),

where

(M u)(y) := sup
r>0

1

μ(B(y, r))

∫

B(y,r)

|u(x)| μ(dx)

denotes the Hardy-Littlewood maximal function of u. This together with (3.6) and the L2-
boundedness of M gives

∥∥∥∥
∑

i

∫

M

e
−α′′ ρ2( · ,y)

ti

μ(B( ·,√ti ))
1B̃i

(y) μ(dy)

∥∥∥∥
2

� sup
‖u‖2=1

∫

M
(M u)(y)

∑

i

1B̃i
(y) μ(dy) �

∥∥∥∥
∑

i

1B̃i

∥∥∥∥
2
,

which shows that (3.5) holds true and finishes the proof of Lemma 3.5. ��
With the help of the Lemmata 3.3 through 3.5, we are now in position to give a proof of

Theorem 1.2. Note that Theorem 1.3 can be established along the same lines, with the slight
difference that in this case σ can be taken to be 0.

Proof of Theorem 1.2 Recall that T (k)
σ = ∇(�

(k)
μ + σ)−1/2. We choose σ large enough such

that σ > 2C0 where C0 is defined as in Theorem 2.5. By Lemma 3.3, it suffices to prove

μ
({x ∈ 2B : |T (k)

σ a(x)| > λ}) � ‖a‖1
λ

, λ ∈ (0,∞) (3.7)

for all a ∈ �C∞
0

(
k T ∗M). By means of Lemma 3.4 with X = B, we deduce that f has a
decomposition

|a| = g + h = g +∑
i hi

which implies

μ
({x ∈ 2B : |T (k)

σ a(x)| > λ})

≤ μ

({
x ∈ 2B : |T (k)

σ g̃(x)| >
λ

2

})
+ μ

({
x ∈ 2B : |T (k)

σ h̃(x)| >
λ

2

})

=: I1 + I2, (3.8)

where

g̃ = g
a

|a| and h̃ = h
a

|a| .

Using the facts that T (k)
σ is bounded on L2(μ) and that |g(x)| ≤ Cλ, we obtain as desired

I1 � λ−2‖T (k)
σ g̃‖22 � λ−2‖ |g̃| ‖22 � λ−1‖g‖1 � λ−1‖a‖1. (3.9)

We now turn to the estimate of I2. Recall that exp (−�
(k)
μ t − σ t), t ≥ 0 is the heat

semigroup generated by −(�
(k)
μ + σ). We write

T (k)
σ h̃i = T (k)

σ exp (−�(k)
μ ti − σ ti )h̃i + T (k)

σ

(
I − exp (−�(k)

μ ti − σ ti )
)

h̃i ,
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where ti = r2i with ri the radius of B̃i . By Lemma 3.5, we have
∥∥∥∥
∑

i

exp (−�(k)
μ ti − σ ti )h̃i

∥∥∥∥

2

2
� λ ‖a‖1.

This combined with the L2-boundedness of T (k)
σ yields

μ

({

x ∈ 2B :
∣∣∣∣∣
T (k)

σ

(
∑

i

exp (−�(k)
μ ti − σ ti )h̃i

)

(x)

∣∣∣∣∣
>

λ

2

})

� 1

λ
‖a‖1 (3.10)

as desired. Consider now the term T (k)
σ

∑
i (I − exp (−�

(k)
μ ti − σ ti ))h̃i . We write

μ

({

x ∈ 2B :
∣∣∣∣∣
T (k)

σ

(
∑

i

(I − exp (−�(k)
μ ti − σ ti ))h̃i

)

(x)

∣∣∣∣∣
>

λ

2

})

(3.11)

≤
∑

i

μ(2B̃i ) + μ

({

x ∈ 2B \ ∪i2B̃i :
∣∣∣∣∣
T (k)

σ

(
∑

i

(I − exp (−�(k)
μ ti − σ ti ))h̃i

)∣∣∣∣∣
(x) >

λ

2

})

.

From Lemma 3.4 we conclude that
∑

i

μ(2B̃i ) � ‖a‖1
λ

. (3.12)

To estimate the second term, denote the integral kernel of the operator T (k)
σ (I −

exp (−�
(k)
μ ti − σ ti )) by kσ,k

ti (x, y). Note that

(�(k)
μ + σ)−1/2(I − exp (−�(k)

μ ti − σ ti )
)

=
∫ ∞

0

(
exp (−�

(k)
μ s − σ s)√

s
− exp (−�

(k)
μ (ti + s) − σ(ti + s))√

s

)

ds

=
∫ ∞

0

(
1√
s

− 1{s≥ti }√
s − ti

)
exp (−�(k)

μ s − σ s) ds

and

T (k)
σ (I − exp (−�(k)

μ ti − σ ti ))

= ∇(�(k)
μ + σ)−1/2(I − exp (−�(k)

μ ti − σ ti ))

=
∫ ∞

0

(
1√
s

− 1{s≥ti }√
s − ti

)
e−σ s∇ exp (−s�(k)

μ ) ds.

Therefore,

kσ,k
ti (x, y) =

∫ ∞

0
e−σ s

(
1√
s

− 1{s≥ti }√
s − ti

)
∇x exp

(− s�(k)
μ

)
(x, y) ds. (3.13)

Since h̃i is supported in B̃i , we have
∫

2B\(2B̃i )

∣∣∣T (k)
σ

(
(I − exp (−�(k)

μ ti − σ ti ))h̃i

)
(x)

∣∣∣ μ(dx)

≤
∫

2B\(2B̃i )

(∫

B̃i

|kσ,k
ti (x, y)| |hi (y)| μ(dy)

)
μ(dx)
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≤
∫

B̃i

(∫

ρ(x,y)≥t1/2i

|kσ,k
ti (x, y)| μ(dx)

)

|hi (y)| μ(dy). (3.14)

Now by means of (3.13) and Theorem 2.7, we get
∫

ρ(x,y)≥t1/2i

|kσ,k
ti (x, y)| μ(dx)

≤
∫ ∞

0

(∫

ρ(x,y)≥t1/2i

|∇x exp (−�(k)
μ s)(x, y)| μ(dx)

)

e−σ s
∣∣∣
1√
s

− 1{s≥ti }√
s − ti

∣∣∣ ds

≤ C
∫ ∞

0
e−γ ti /2s e2C0s (1 + √

σ3s)√
s

∣∣∣
1√
s

− 1{s≥ti }√
s − ti

∣∣∣ e−σ s ds

≤ C
∫ ∞

0
e−γ /2u

∣∣∣∣
1

u
− 1{u≥1}√

u(u − 1)

∣∣∣∣ du

= C
∫ 1

0

e−γ /2u

u
du + C

∫ ∞

1

(
1√

u(u − 1)
− 1

u

)
du < ∞

where for the third line above we used the fact that

es(2C0−σ)(1 + √
σ3s), s ∈ (0,∞),

is bounded. The estimate above together with (3.14) and Lemma 3.4 implies that

μ

({

x ∈ 2B \ ∪i2B̃i :
∣∣∣∣∣
T (k)

σ

(
∑

i

(
I − exp (−�(k)

μ ti − σ ti )
)
h̃i

)

(x)

∣∣∣∣∣
>

λ

2

})

� ‖a‖1
λ

.

(3.15)

Altogether, combining (3.8) through (3.10), (3.12) and (3.15), we conclude that (3.7) holds
which completes the proof of Theorem 1.3. ��

4 Proof of Theorem 1.6

By the Bishop-Gromov comparison theorem and the well-known formula for the volume of
balls in the hyperbolic space, the local volume doubling property (LD) holds if the curvature-
dimension condition (CD) is satisfied.

Proof of Theorem 1.6 Let us sketch the main idea of the second method in [20]. Inequality
CZμ(p) is reduced to the existence of positive constants C and σ such that

∥∥ |Hess(�μ + σ)−1u| ∥∥p ≤ C‖u‖p,

which is equivalent to
∥∥∥ |∇(�(1)

μ + σ)−1/2 ◦ d(�μ + σ)−1/2u|
∥∥∥

p
≤ C‖u‖p.

The problem is thus reduced to the study of conditions for boundedness of the classical Riesz
transform d(�μ + σ)−1/2 on functions and boundedness of the covariant Riesz transform

∇(�
(1)
μ + σ)−1/2 on one-forms.

As far as the covariant Riesz transform ∇(�
(1)
μ + σ)−1/2 on one-forms is concerned, this

transform is bounded in L p(μ) for 1 < p ≤ 2 by Theorem 1.3. If the local volume doubling
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property and short time Gaussian estimate for the heat kernel hold, then boundedness of the
classical Riesz transform d(�μ + σ)−1/2 holds for 1 < p ≤ 2 as well. Note that (CD)
for K0 ∈ R implies (Ric) for K0, and the curvature condition (Ric) assures the short time
Gaussian estimate for the heat kernel (see [31, Theorem 2.4.4]). ��
Acknowledgements The authors are indebted to Batu Güneysu, Stefano Pigola and Giona Veronelli for very
helpful comments on the topics of this paper.
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