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Abstract We revisit the problem of obtaining uniform gradient estimates for Dirichlet
and Neumann heat semigroups on Riemannian manifolds with boundary. As appli-
cations, we obtain isoperimetric inequalities, using Ledoux’s argument, and uniform
quantitative gradient estimates, firstly for Cl% functions with boundary conditions and
then for the unit spectral projection operators of Dirichlet and Neumann Laplacians.
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1 Introduction

Suppose M is a complete and connected Riemannian manifold of dimension d. Denote
by p the Riemannian distance function, by V the Levi-Civita connection, by A the
Laplace—Beltrami operator and for a smooth vector field Z consider the elliptic oper-
ator L := A+ Z.
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If M is without a boundary, then it is easy to show that if the Bakry—Emery Ricci
tensor Ric? := Ric — VZ is bounded below then the semigroup of the %L-diffusion
satisfies a uniform gradient estimate on the type displayed below in Theorem 2.1. See
also [2,7]. If M has a boundary, estimates of this type can be extended to the Neumann
semigroup (the semigroup of the reflecting %L-diffusion process), as in [19], or to the
Dirichlet semigroup (the semigroup of the diffusion killed on the boundary), as in
[15]. In the latter, Wang used coupling methods to obtain the estimate. Isoperimetric
inequalities were derived as a consequence. The purpose of the present paper is to
revisit these problems, considering uniform gradient estimates for both the Neumann
and Dirichlet semigroups on manifolds with boundary, and to present applications.

Our gradient estimates for the Dirichlet and Neumann semigroups are given
below by Theorems 2.3 and 2.5, respectively. For the Neumann case, Wang [17,19]
established a derivative estimate, as mentioned above, using a Bismut formula and con-
formal change of metric. Theorem 2.5 is a consequence of a strengthening of Wang’s
result, which we presented in our recent article [5]. To prove Theorem 2.3, we build
upon the recent work of Arnaudon et al. [1], in which explicit uniform two-sided gra-
dient estimates for Dirichlet eigenfunctions were proved using a probabilistic method,
also based on Bismut’s formula.

Uniform gradient estimates for the semigroup can, of course, be applied to give
estimates for the eigenfunctions, as explained at the end of Sect. 2.1. This leads to
an application of our main results, namely the derivation of uniform estimates for the
gradient of unit spectral projection operators. The study of these objects, which are
constructed from eigenfunctions, has a long history [10-12,20,21]. In [20,21], Xu’s
method used local gradient estimates twice; for points far from the boundary and for
points close the boundary. This approach can be simplified; see Sect. 3.4 for our main
results in this direction.

In some sense, this paper is a continuation of [6]. In that paper, we proved quan-
titative local C'-estimates for C? functions on manifolds without a boundary, with
extensions given to differential forms. That developed the recent work of Giineysu and
Pigola [8], whose argument was based on Taylor expansion. Our approach, on the other
hand, uses stochastic analysis. In this article we consider global curvature bounds, on
manifolds with a boundary, for which it is possible to obtain uniform versions of the
estimates we proved in [6]. Our main results in this direction are Theorems 3.1, 3.4
and 3.5. Our results on the spectral projectors are based on these theorems.

Another remarkable application of uniform gradient estimates, as mentioned above,
is that they can be used to obtain isoperimetric inequalities. For the case Z = 0,
Buser [4] obtained a lower bound on Cheeger’s isoperimetric constant using Poincaré
inequalities; his proof was further simplified by Ledoux [9] using a uniform gradi-
ent estimate. Wang [14] then applied Ledoux’s argument to obtain lower bounds for
various isoperimetric constants using Poincaré—Sobolev inequalities. Using our new
uniform gradient estimates, for the Neumann and Dirichlet semigroups, we conse-
quently obtain isoperimetric inequalities with better constants, given in Sect. 2.4.

The paper is organized as follows. In Sect. 2, we present the uniform gradient
estimates for the heat semigroup on a manifold without a boundary and the Dirichlet
and Neumann heat semigroups on manifolds with a boundary, followed in Sect. 2.4 by
the isoperimetric inequalities. In Sect. 3, we present the uniform C!-estimates in an
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analogous order, followed in Sect. 3.4 by our uniform upper bounds for the gradient
of the unit spectral projection operators.

2 Gradient estimates for diffusion semigroups

In this section we first consider manifolds without boundary. We then consider Dirich-
let and Neumann boundaries, respectively. Denoting by Ric the Ricci curvature tensor,
note that by RicZ > K, we shall mean

Ric? (X, X) := (Ric — (V.Z, - )(X, X) > Kz|X|*, X eTM,

supposing always that Kz is a constant. We denote by %, (M) the set of all bounded
measurable functions on M.

2.1 No boundary

In this subsection and the next, we denote by X an %L-diffusion on M, defined on some
maximal random time interval, and denote by //; the associated stochastic parallel
transport and by B; the martingale part of the antidevelopment. In particular, if Xy = x
for some x € M then B, is a Brownian motion on the tangent space 7y M starting at
the origin. Denote by 2, the End (7 M)-valued solution to the ordinary differential

equation

d 1_.
%QS = _ERIC/Z/:Q‘Y (21)

along the paths of X; with 2y = idr, » and
Ric%, = //7'Ric”//;.

The composition 2/ /;1 is called the damped parallel transport from Tx, M to T, M.
The following estimate, for the associated semigroup P, is well known:

Theorem 2.1 Suppose Ric? > K for some constant K 7. Then for all u € %,(M)

we have
5 K, 172
ldPiull o < - (eKZ, _1> lltll oo

forallt > 0.
Proof Suppose h is a bounded adapted process with paths in the Cameron—Martin

space L'2([0, 1]; R) such that #(0) = 1 and h(r) = 0. Then, according to Bismut’s
formula [3,13], we have

t
(dPiu)y = —E* [M(Xt)/ (th’(r),dBr)] .
0
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: e TRX [N 2 2 17z
Letting o7 :=E fo A ()71 2 ||=ds it follows that

Ex[ } .2 /00 < 52 >d 2
S €X —_—— S = — O¢.
" 2no; Jo P 20} L

Taking

t
/ (Q‘sh/(s)a dBy)
0

we thus have

> p B 1/2 3 Ky 172
|dP,u|(x)§\/;</0 K (s)2e KzSds) lully = ;(eKzr_1> oo

as required. O

Remark 2.2 In general, if one obtains ||d Piul|,, < o(t)|u]l o then in fact
ldPrullog < ()| Pr—sutllno < a(s)llull o

for all s € (0, ¢]. In Theorem 2.1, note that the coefficient is decreasing in ¢ so the
upper bound can not be improved by this observation. This observation will, however,
prove quite useful later in the article.

Theorem 2.1 implies a uniform gradient estimate for eigenfunctions. If u is an
eigenfunction of —L with eigenvalue A > 0, in other words Lu = —A\u, it follows
that Pru = e /2y and so, by Theorem 2.1, we have

_ 1/2 2/QKZ)
lduloo _ [2 e ( Kz )\ _ N R Z
lullo — Vo =0\ _ Kzt n z A K, '

For eigenfunctions with Dirichlet boundary conditions, we direct the reader towards
the recent article [1]; see also the next subsection.

2.2 Dirichlet boundary

Next, we consider manifolds with boundary d M, first considering the case in which
the diffusion is killed on the boundary. For this we define the stopping time T = inf{¢ :
X; € 0M} and define the Dirichlet heat semigroup, acting on bounded measurable
functions u, by

PPu(x) = E* [1y<qu(X)].

We denote by Hj s the mean curvature of the boundary (Hyy > 0implies the boundary
is mean-convex).
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Theorem 2.3 Assume Z is bounded and suppose there exist constants K z, Ko and 0
such that Ric? > Kz, Ric > Ky and Hypy > 0. Define

oy = % (max {9, V(d— I)KO_} + ||Z||oo> (2.2)

and set

C(s) :=\/§+ﬁa0min{2,1+ao /%}

Then foru € $By(M) and t > 0 we have

lapPu) < W(K%/z) (C(s> + ﬁ) il

forall0 <s <t.

Proof Suppose that & is a bounded adapted process with paths belonging to the
Cameron-Martin space LLZ([O, t]; [0, 1]). Since u, := Ptlzsu is a solution to the
backwards diffusion equation on [0, 7] x M, it follows, by Itd6’s formula and the
Weitzenbdck formula, that

dus(//s 25h(s)) — us(X;) / D), dBy)
0

is alocal martingale, where 2 is defined by (2.1). If in addition 2(0) = 1 and 4 (¢) = 0,
then evaluating at times 0 and s = ¢ A 7, taking expectations and using the initial and
boundary conditions we obtain

(aPPu) = B [1ond P2 u(// 2eh() |

INT
— EF [1{,<f}u<xt> /0 <£rh<r>,d3r>]

Consequently

B . 1/2
}dPtDu‘ () < llullo, K22 B [/ 72 ds] VPl <1}
0

4 eKzt/2 [1{T<,}h(r) ‘dP,D_Tu

(X0 |

and it remains to estimate the expectation on the right-hand side (the one involving
the stopping time). For this, we follow the approach of [1], fixing y € dM and letting
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y® :=exp,(¢N) where N is the inward pointing unit normal vector field on d M. Since
Y(s,x):=P{t > s}and u; = P,lzsu vanish on d M when s € [0, ¢) it follows that

Ius(ys)l’ Ay (s, )|(x) = lim 1Y (s, ys)l.
& el0 &

ldus|(x) = |Nus(x)| = 16%1 !

Now letting X7 be a %L—diffusion process starting at y®, with first hitting time t° to
the boundary d M, we have

1
|dus|(y) = ls%lg |E [Lj—s<reyu (X5_,)]| < lullog ldW (2 — s, ).
Thus

B ' 12
’dP,Du‘ () < llullo, K22 B [/ 72 ds} VP <1}
0

+ X212 ull o B [Lie<npheldir (t — 7, )(X)I] -

It has been proved in [1] that

2
|dw<s,-)|(y>s,/—+min{zao,ao+ag i}
TS 2

for each y € 9 M, so consequently

B . 1/2
‘dPtDu‘ () < lull, eKz'/? (]Ex [/0 hfds} VPt < 1)

2 . t—1
+ E* |:1{,<t}hr ( ,—n(t D + min {Zao,ao —i—a(% 7 }>:|> .

Choosing hy = '_7‘ yields the estimate

‘dPtDu) (x)

exp(K_t/Z) 2 . t
§||u||m+€g%g§] J1—ge+e ;-i—ﬁmm Zao,ao—i-oe(% 7

ngl/2 1
= 7 (C(f) + FQ)) 1]l 5o

from which the result follows, by Remark 2.2. O
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Remark 2.4 If u is a Dirichlet eigenfunction of —L with eigenvalue A, then Theorem
2.3 implies

ldullos _ ;0 xP (G + K7)1/2)
lullog ~ 120 Vi

for all 7 > 0 and therefore, takingt = (A + K, )=, we have

d 1 1

ldull o <,er+ Ky |C — |+ — |-
lltll oo A+K; ) 4AC((A+K)T)

2.3 Neumann boundary

(C(l) + 4C(t)>

The Neumann heat semigroup, acting on bounded measurable functions, is defined
by

PNu(x) = E [u(X)1,

where now X; denotes a %L-diffusion reflected on d M. Denoting by N the inward
pointing unit normal vector, in particular NPNu = 0 for t > 0, so PN u solves the
diffusion equation with Neumann boundary conditions [19, Section 3.1].
We define the second fundamental form II of the boundary d M by
II(X,Y)=—(VxN,Y), X, YeT, oM, yecdM
where T,0M denotes the tangent space of M at y. In order to study non-convex
boundaries with Neumann boundary conditions, we will perform a conformal change

of metric such that the boundary is convex under the new metric. In particular, if we
denote by g the original metric, we will use the fact that if

P = [¢ e CX(M) infp=1,11> —Nlogqs}
and ¢ € 2 then the boundary M is convex under the metric ¢ ~2g.
Theorem 2.5 If there exist ¢ € 2 and a constant Ky such that
RicZ +2L1ogp — 2|V iog¢p|> > Ky (2.3)

then for u € B,(M) we have

2 Ky \'?
(x) S\/;<e’<¢f—1) 1Pl oo 1]l 5

}dPtNu

forallt > 0.
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Proof Since there exist ¢ € 2 and K4 € R such that (2.3) holds, it follows that

1 1
Ky — Lloge +|Viogg|* = SKo + E¢2L¢—2 and II > —N log¢.

| =

Ric% >

| =

Therefore, denoting by / the local time of X on the boundary, by our main results in
[5] and [19, Theorem 3.2.1], it follows that there exists an adapted End (7, M)-valued

process {2 }sef0,7] such that

~ 1 1 s - s ~
191l < exp (—5K¢s—5 / ¢*Le~*(X,)dr + / Nlogqs(xr)dz,)
0 0

with

}

t
< ull o E¥ H /0 1 (5).5.dB,

t
E~ [u(f(,)/ h’(s)QNsst:|
0

‘dP,Nu‘ (x) =
forany & € C! ([0, ¢]) with ~(0) = 0 and h(t) = 1. Now, using the fact that

172

t . 12 t - -
E* [ /0 |h’(s>|2||£25||2ds} < gl E® [/0 ¢2(Xy) W (9] ||25||2ds}

it follows, as in the proof of Theorem 2.1, that

3 P 5 } y 172
<x>s||¢||oo||u||oo\/; ([0 ') E* [¢—2(xs)||£s||2]ds> :

To estimate the expectation, we see by the It6 formula that

‘dP,Nu
dp~(X,) = (Vo 2(X,), u; dB;) + Lo~ *(X,) dt + N~ *(X,) dl,
~ ~ 1 - -
= (V¢ 2(X,), u; dB;) —2¢ (X)) (—5¢2L¢-2<X0 dr + N log¢(xf)dzz)

which implies
t t
¢‘2(5<t>exp(— f > (X)L (Xs) ds +2 / Nlog«zb(X;)dls)
0 0

is a local martingale, from which it follows that

t t
E [¢>‘2(fmexp (— f P*(X)Lop ™2 (Xs)ds +2 / Nlogaso?s)dls)}sqs—z(x).
0 0
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Putting all this together, and using the fact that inf ¢ = 1, we have

N 3 ' sk 172
PN | @) < ||¢||oo||u||oo\/;(/0 WPe ‘“ds) .

Choosing 4 as in Theorem 2.1, with K in place of Kz, completes the proof. O

Using information about the boundary, an explicit function ¢ can be constructed.
For instance, following Wang’s construction (see [18, p.1436] or [19, Theorem 3.2.9]),
we have the following corollary:

Corollary 2.6 Assume RicZ > K, for some constant K 7z and that there exist non-
negative constants o and 0 such that —o < Il < 6 and a positive constant ro such

that on 9,,M = {x € M: py(x) < ro} the function py is smooth, the norm of Z is
bounded and Sect < k for some k > 0. Then for u € By(M) we have

HdPN H <. — —1 d —1 Kz —206;(Z) — —— —2 2 [|ue]|
u \/ exp odry + o log s | lu
! oo Vs 2 ! 2 z 0 ri o

forall0 < s <t where

1 [k
ry :=rg A | —= arcsin —_— and 6,,(Z) = sup |Z|(x).
(ﬁ ( k+92>) " x€d, M

In particular
[2exp (odry + 1) d - )2
N exp (odrq o 2
Hdp, R e max{(KZ—GSrO(Z)—rl—Zcr ) ,1} il
forallt > 0.

Proof Under the assumptions, we can construct a ¢ € Z by:

r

pa(x)
log ¢ (x) = g/o (z(s)—Z(rl))‘*dds/ (e@) — eer))* ' du,

SAFr]

where

0
0(t) := cos vkt — — sinvkt, t >0,
N

so that r; = rog A £-1(0), and

a:=(1—er))' /” (Z(s) — K(r1))d_1ds.
0
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Then, as checked in [5] and [17, Theorem 1.1], we have

. 7 B 2 _ _ 2c7d . 2
Ric” +2Llog¢ —2|Vlogp|” > Kz —206,,(Z) — — — 20
ri

and [|¢]lo, < e?/2 By Theorem 2.5 and Remark 2.2, it follows that

K s
N 2e¢
aptu] =\ = e 1l 5 € 0,11

Taking
_\ -1
20d 5
s=(1Vv|Kz—-208;)(Z) — — — 20 At
r
and using
1 \"12 1
(, A ) < M’ (2.4)
cVv1 NN
which holds for any non-negative constant ¢, we complete the proof. O

2.4 Application: isoperimetric inequalities

Now suppose L is of the form L = A + VV for some V € C2(M) and set u(dx) =
eV ™ dx. Consider the following two isoperimetric constants:

D._ . ny(dA) N . wa(3A\ M)
k” = inf , KD = inf ——
(>0 w(A) 1£(A)e(0, 1] u(A)
where A runs over all smooth and connected bounded domains contained in M and
Uy (@A) is the area of A induced by . Consider also

AP = inf {i(V F1): £ € CED. Flaw =0, (s =1},

A =it {1V P f e G, n(fD =1, u() =0}

The quantities AID and )\{V are known as the first Dirichlet and Neumann eigenvalues,
respectively. Note that since we do not assume M compact, these quantities may not
be true L>-eigenvalues for the operator L. In general kf’ > 0 (resp. Aiv > () does
not imply «k” > 0 (resp. k¥ > 0), but these implications do hold under uniform
gradient estimates for the corresponding diffusion semigroups. In particular, there is
the following result, taken from [15, Theorem 1.2] and [16, Theorem 2.5.3] (note that
the semigroups considered in [15,16] have generator L, as opposed to %L):
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Theorem 2.7 (Wang [15]) Let PZD and PtN denote the Dirichlet and Neumann semi-
groups of %L on M, respectively.

M It

larRy| = /oo

C
NIWR!

holds for some ¢ > 0 and allt > 0, f € By (M), then

1
P lze (,/A?AA{’).
C

) If w(M) =1 and

Jarii ] =

C
NIWR!

holds for some ¢ > 0 and allt > 0, f € Byp(M), then

1 —2e7!
Ksz—e( )\.iv/\)\.iv>
c

Setting Ric” := Ric — Hess V, Theorem 2.7, in conjunction with Theorems 2.3
and 2.5, immediately implies the following two theorems:

Theorem 2.8 Suppose RicV > Ky, Ric > Ko and Hyy > 0 for some constants

Ky, Ky and 6. Then
—e7?) (,/,\{’ m\?)
{,/KE, 1} (1 4+ 7/8) + 2a04/7

—_

7T e

where « is defined as in (2.2).

Theorem 2.9 Suppose RicV + 2Llog¢ — 2|V logp|> > Ky for some ¢ € I and
constant Ky. Then

N VT (el —2e72) (\/)»—1/\)»1)'
©2max | K1 gl

Proof By Theorem 2.5 and Remark 2.2 we have that

12 K;
aPYul ) = 2 () 1ol e = S Il Dl
t =V 7 \e2Kes _| o0 oo—\/— 00 00

K
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forall s € (0, ¢]. Choosing s =t A (1 Vv KE)_I yields the result, by Theorem 2.7 and
inequality (2.4). O

3 Gradient estimates for C l% functions
In this section we apply the gradient estimates of the previous section to obtain
uniform estimates for the derivatives of Cl%-functions (that is, bounded twice con-

tinuously differentiable functions with bounded derivatives). We have three different
cases, depending on the boundary behaviour of the function.

3.1 No boundary

The estimates of this subsection are uniform versions of the localized estimates that
we recently proved in [6].

Theorem 3.1 Suppose Ric? > K for some constant K 7. Then for all u € le(M)
we have

2 Kz 2 ! —Kzt —Kzt/2
(s Hu\loo-f—ﬁlog( Kzl 1 4e )HLulloo ,
S — Az
[2 /1
|dul(x) < p (% ]l oo +x/;||LM||oo> ,

2 Kz \'? 1 (T
) et (Veker=1) ILull )
- V4

for the cases Kz <0, Kz = 0and Kz > 0, respectively, for all t > 0.

Proof As before, denote by P; the semigroup for the diffusion X,, with generator %L.
By differentiating the Kolmogorov equation, we get

t
ldu|(x) < |dPru|(x) + %f |d PsLu|(x) ds. 3.1
0

By Theorem 2.1 we have

D) K 1/2
dPul(x) < | = (2= ) llull-
x \eKzt —1 o

Combining this with the first term on the right-hand side of (3.1), and similarly for
the second term, we find

2 Kz \'? 1 [/ Kz \'"?
|dul(x) S@((m) ||M||oo+§/0 (m) ds [Lulls |- (3.2)
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The right-hand side of this inequality is, by calculation, equal to the expressions given
in the theorem, for each of the three cases. O

Minimizing over ¢, we obtain the following corollary:

Corollary 3.2 Suppose Ric? > Ky for some constant K7 with || Lul|| o > 0. Then
forallu € Cg(M) we have

2 sinh—l(ﬁ)>2
Sl lLullo (VI+ B+ —22)
jTIIMII | Lull < B N

~lullooliLulico,

2
du|?(x) < ’ tan~! (,/% )
— el o Il Lue]] 1+8+ ———7——2% ,
e Ll | Ve
f

L )
7 1Ll

for the cases Kz < 0, Kz =0, ||Lu|l|lully) > Kz > 0and Kz > ||Lu| o |lull3),
respectively, where B 1= —K z||u| o | Lu| 2.

Note that the right-hand side of the above inequality is continuous in K. In par-
ticular

1 [=F
. sinh ™' (VB . an~! (\/ )
}31%<,/1+/3+T>_2_}31Tm0 [+p+ ——

and similarly for the two cases concerning Kz > 0. For the case Lu = 0 (which for
Z = 0 is to say that u is harmonic), Theorem 3.1 recovers the well-known fact that if
Ric? > 0 then such « must be constant. But more generally, Theorem 3.1 implies that
if RicZ > K with Kz < 0, with u a bounded C? function satisfying Lu = 0, then

[22K,
ldullo < - [l -

For a simpler estimate than the one given by Theorem 3.1, there is the following, in
which we introduce a parameter § to emphasise time independence (see also Sect. 3.4
below):

Corollary 3.3 Suppose Ric? > K for some constant K 7. Then for u € Cg (M) we

have
2 K, 1
ldulloo =\ = exp | 55 ) (Sl +67 "I Lullc)

forall § > 0.
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Proof This follows from Theorem 3.1 by (3.2) and the fact that
Kz \"? Kt
()" <o (521).
by setting f = 8§72, O

3.2 Dirichlet boundary

Theorem 3.4 Suppose RicZ > K, Ric > Ko, and Hyp > 0 for some constants
Ky, Ko and 0. Then for u € Cl%(M) with ulyy = 0 we have

K> 2 1 /m 29
Zz —1
Idulla < exp (W) (,/; +/3+ T) (Slhulog + 67" 120l )

forall § > 0, where

1 _ _
oy = > <max {9 A/ d=DK, } + ||Z||OO> .
Proof By Itd’s formula we have
1 1
Ef{u(Xiar (x))] = u(x) + 5/0 E [1{s<7)(Lu)(X;(x))] ds. (3.3)
Equation (3.3) can be rearranged as
1 t
u(x) = PPu(x) - E/ PP(Lu)(x)ds
0

and so, by differentiating and applying Theorem 2.3, we obtain

dul(x) < K77 (@+ %\/g—i—Z«/?ao) (s e+ VAL )

which yields the estimate by setting r = § 2. O

3.3 Neumann boundary

Theorem 3.5 If there exist ¢ € 9 and a constant Ky such that

RicZ 4 2L1og ¢ — 2|Vlog¢|* > K,
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then foru € Cbz(M) such that Nu|ypy = 0, we have

> (K,
ldulls, < \Eexp (232> 1910 (811l oc + 87" Litloc)

forall § > 0.

Proof Recalling that PtN is the Neumann semigroup with respect to the operator %L,
by differentiating the Kolmogorov equation we have

1 13
dul() < |apYu| (1) + 5/0

p Lu‘ (x)ds.

By Theorem 2.5, which is a consequence of our recent result proved in [5], we know

that
12 5 Ko t/2
||¢||C>o T lulloo = 7 1o llull oo

and thus we obtain the result directly as before, in Corollary 3.3. O

‘dPN

Note that given such a Ky, estimates of the type given by Theorem 3.1 are also
available. It suffices to say that the estimates of Theorem 3.1 and Corollary 3.2 carry
over to the Neumann setting, so long as one replaces the constant Kz by Ky and
remembers to include also the factor ||¢]| . For explicit ¢, as explained in the proof
of Corollary 2.6, there is the following corollary of Theorem 3.5:

Corollary 3.6 Under the assumptions of Corollary 2.6, foru € Ci (M)withNulay =
0, we have

2 1 20d B
||du||oo < ;exp EO’dr] + — 282 Kz — 20’8,«0(2) T — 20
x (Sllullog + 87" I Ll )

for all § > 0, where r and 8,,(Z) are defined as in Corollary 2.6.

3.4 Application: spectral projection operators

In this subsection, we first suppose that M is a compact Riemannian manifold without
boundary, of dimension d as before. Let 0 < A; < Ap < --- denote the eigenvalues
of A and let {e;} be the associated real orthonormal basis of L%(M) consisting of
eigenfunctions. For f € L2(M), set

ej(f)(x) :=e;(x) /M f(ej(y)dy
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and define the unit band spectral projection operators x; by

oS = Z ej(f).

Aj €[ A+1)

The study of L”-estimates for the such spectral projections has a long history. For
example, under the present assumptions, Sogge [10-12] proved that there exists a
constant C > 0 such that

o fll, < CRP Yl 2=1, p=2, (34

where

) omax[A L _d A1 ]
o = X —_— - .
P > 2 LT,

In particular, for p = co and A > 1, we have

136, flloo < CAY=D2 £,

Moreover, from this and the Cauchy-Schwartz inequality, for each point x € M, we
find

2

A fPE = D> i) /Mej<y)f(y>dy

Lj€hA+1)
44n—1 2
< COA4 D" N f13
< CA"PIfI3, A= L (3.5)

This leads us to the following theorem:

Theorem 3.7 Suppose M is a compact manifold without boundary. Then there exists
a constant C > 0 such that

ldxafllo < CLOD2| £, A > 1.

Proof By Corollary 3.3, we know that if RicZ > K, for some constant K7 then for
A > 1, we have

2 k- -
145 flloo < \/;e"z (Moo + 27145 o) -

Combining this with (3.4) and (3.5) completes the proof. O
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Now suppose that M is a compact Riemannian manifold with boundary. Let 0 <
AID < AZD < .- denote the corresponding Dirichlet eigenvalues with respect to A. Let
{ejD } be the associated orthonormal basis of eigenfunctions in L*(M).For f € LX(M),
define

L0 =P [ Frele)dy
M
and define the unit band spectral projection operator

Wr= Y .

)»jE[)»,)rH)

Let0 < kf’ < k’zv < .- denote the corresponding Neumann eigenvalues with respect
to A, and define the objects {ejy}, ej.v(f) and X){Vf analogously.

Theorem 3.8 Suppose M is a compact manifold with boundary. Then there exist
constants C (D) and C(N) such that

[ax? 1| = comeDRypiy, Jaxnr| = cann g,

for A > 1.
Proof By [11,20], we know that

R I S VY P PAu T Xl A PR A )
By the same argument as in (3.5), we know that
D 2 n+3 2 N 2 n+3 2
AP s o =B |ad | @ s eI az 6

Using Theorem 3.4, with Ky, Ko and 6 constants chosen such that RicZ > Ky,
Ric > Ky, and Hyy > 6, for A > 1, we have

o] = 2ok (V24 354 20) (o] oo faxts],)

where «q is defined by (2.2). Similarly, letting o, Kz, ro, r1, 6,,(Z) and 6 be the
constants as in Corollary 3.6, for A > 1, we have

HdX;{VfHOOS\/zeXp <—Udr1+;<Kz—206ro(Z) ?—2 >_>
x (1] o+ 2 anr] ).

Combining this with (3.6) and (3.7), we complete the proof. O
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