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Abstract We revisit the problem of obtaining uniform gradient estimates for Dirichlet
and Neumann heat semigroups on Riemannian manifolds with boundary. As appli-
cations, we obtain isoperimetric inequalities, using Ledoux’s argument, and uniform
quantitative gradient estimates, firstly for C2

b functions with boundary conditions and
then for the unit spectral projection operators of Dirichlet and Neumann Laplacians.
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1 Introduction

SupposeM is a complete and connected Riemannianmanifold of dimension d. Denote
by ρ the Riemannian distance function, by ∇ the Levi-Civita connection, by Δ the
Laplace–Beltrami operator and for a smooth vector field Z consider the elliptic oper-
ator L := Δ + Z .
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If M is without a boundary, then it is easy to show that if the Bakry–Émery Ricci
tensor RicZ := Ric − ∇Z is bounded below then the semigroup of the 1

2 L-diffusion
satisfies a uniform gradient estimate on the type displayed below in Theorem 2.1. See
also [2,7]. If M has a boundary, estimates of this type can be extended to the Neumann
semigroup (the semigroup of the reflecting 1

2 L-diffusion process), as in [19], or to the
Dirichlet semigroup (the semigroup of the diffusion killed on the boundary), as in
[15]. In the latter, Wang used coupling methods to obtain the estimate. Isoperimetric
inequalities were derived as a consequence. The purpose of the present paper is to
revisit these problems, considering uniform gradient estimates for both the Neumann
and Dirichlet semigroups on manifolds with boundary, and to present applications.

Our gradient estimates for the Dirichlet and Neumann semigroups are given
below by Theorems 2.3 and 2.5, respectively. For the Neumann case, Wang [17,19]
established a derivative estimate, asmentioned above, using aBismut formula and con-
formal change of metric. Theorem 2.5 is a consequence of a strengthening of Wang’s
result, which we presented in our recent article [5]. To prove Theorem 2.3, we build
upon the recent work of Arnaudon et al. [1], in which explicit uniform two-sided gra-
dient estimates for Dirichlet eigenfunctions were proved using a probabilistic method,
also based on Bismut’s formula.

Uniform gradient estimates for the semigroup can, of course, be applied to give
estimates for the eigenfunctions, as explained at the end of Sect. 2.1. This leads to
an application of our main results, namely the derivation of uniform estimates for the
gradient of unit spectral projection operators. The study of these objects, which are
constructed from eigenfunctions, has a long history [10–12,20,21]. In [20,21], Xu’s
method used local gradient estimates twice; for points far from the boundary and for
points close the boundary. This approach can be simplified; see Sect. 3.4 for our main
results in this direction.

In some sense, this paper is a continuation of [6]. In that paper, we proved quan-
titative local C1-estimates for C2 functions on manifolds without a boundary, with
extensions given to differential forms. That developed the recent work of Güneysu and
Pigola [8], whose argumentwas based onTaylor expansion. Our approach, on the other
hand, uses stochastic analysis. In this article we consider global curvature bounds, on
manifolds with a boundary, for which it is possible to obtain uniform versions of the
estimates we proved in [6]. Our main results in this direction are Theorems 3.1, 3.4
and 3.5. Our results on the spectral projectors are based on these theorems.

Another remarkable application of uniform gradient estimates, asmentioned above,
is that they can be used to obtain isoperimetric inequalities. For the case Z = 0,
Buser [4] obtained a lower bound on Cheeger’s isoperimetric constant using Poincaré
inequalities; his proof was further simplified by Ledoux [9] using a uniform gradi-
ent estimate. Wang [14] then applied Ledoux’s argument to obtain lower bounds for
various isoperimetric constants using Poincaré–Sobolev inequalities. Using our new
uniform gradient estimates, for the Neumann and Dirichlet semigroups, we conse-
quently obtain isoperimetric inequalities with better constants, given in Sect. 2.4.

The paper is organized as follows. In Sect. 2, we present the uniform gradient
estimates for the heat semigroup on a manifold without a boundary and the Dirichlet
and Neumann heat semigroups on manifolds with a boundary, followed in Sect. 2.4 by
the isoperimetric inequalities. In Sect. 3, we present the uniform C1-estimates in an
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analogous order, followed in Sect. 3.4 by our uniform upper bounds for the gradient
of the unit spectral projection operators.

2 Gradient estimates for diffusion semigroups

In this section we first consider manifolds without boundary. We then consider Dirich-
let and Neumann boundaries, respectively. Denoting by Ric the Ricci curvature tensor,
note that by RicZ ≥ KZ we shall mean

RicZ (X, X) := (Ric − 〈∇. Z , ·〉)(X, X) ≥ KZ |X |2, X ∈ T M,

supposing always that KZ is a constant. We denote by Bb(M) the set of all bounded
measurable functions on M .

2.1 No boundary

In this subsection and the next, we denote by X an 1
2 L-diffusion onM , defined on some

maximal random time interval, and denote by //t the associated stochastic parallel
transport and by Bt themartingale part of the antidevelopment. In particular, if X0 = x
for some x ∈ M then Bt is a Brownian motion on the tangent space TxM starting at
the origin. Denote by Qs the End(TxM)-valued solution to the ordinary differential
equation

d

ds
Qs = −1

2
RicZ//sQs (2.1)

along the paths of Xt withQ0 = idTx M and

RicZ//s := //−1
s RicZ//s .

The compositionQs//
−1
s is called the damped parallel transport from TXs M to TxM .

The following estimate, for the associated semigroup Pt , is well known:

Theorem 2.1 Suppose RicZ ≥ KZ for some constant KZ . Then for all u ∈ Bb(M)

we have

‖dPtu‖∞ ≤
√

2

π

(
KZ

eKZ t −1

)1/2

‖u‖∞

for all t > 0.

Proof Suppose h is a bounded adapted process with paths in the Cameron–Martin
space L1,2([0, t];R) such that h(0) = 1 and h(t) = 0. Then, according to Bismut’s
formula [3,13], we have

(dPtu)x = −E
x
[
u(Xt )

∫ t

0
〈Qr h

′(r), dBr 〉
]

.
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Letting σt := E
x
[∫ t

0 |h′(s)|2‖Qs‖2ds
]1/2

it follows that

E
x
[∣∣∣∣
∫ t

0
〈Qsh

′(s), dBs〉
∣∣∣∣
]

≤ 2√
2πσt

∫ ∞

0
s exp

(
− s2

2σ 2
t

)
ds =

√
2

π
σt .

Taking

h(s) = eKZ t − eKZ s

eKZ t −1

we thus have

|dPtu|(x) ≤
√

2

π

(∫ t

0
h′(s)2 e−KZ s ds

)1/2

‖u‖∞ =
√

2

π

(
KZ

eKZ t −1

)1/2

‖u‖∞

as required. �

Remark 2.2 In general, if one obtains ‖dPtu‖∞ ≤ α(t)‖u‖∞ then in fact

‖dPtu‖∞ ≤ α(s)‖Pt−su‖∞ ≤ α(s)‖u‖∞

for all s ∈ (0, t]. In Theorem 2.1, note that the coefficient is decreasing in t so the
upper bound can not be improved by this observation. This observation will, however,
prove quite useful later in the article.

Theorem 2.1 implies a uniform gradient estimate for eigenfunctions. If u is an
eigenfunction of −L with eigenvalue λ > 0, in other words Lu = −λu, it follows
that Ptu = e−λt/2 u and so, by Theorem 2.1, we have

‖du‖∞
‖u‖∞

≤
√

2

π
inf
t>0

(
K−

Z eλt

1 − e−K−
Z t

)1/2

=
√

2

π

(
λ + K−

Z

)1/2 ( λ

λ + K−
Z

)λ/(2K−
Z )

.

For eigenfunctions with Dirichlet boundary conditions, we direct the reader towards
the recent article [1]; see also the next subsection.

2.2 Dirichlet boundary

Next, we consider manifolds with boundary ∂M , first considering the case in which
the diffusion is killed on the boundary. For this we define the stopping time τ = inf{t :
Xt ∈ ∂M} and define the Dirichlet heat semigroup, acting on bounded measurable
functions u, by

PD
t u(x) = E

x [1{t<τ }u(Xt )
]
.

Wedenote by H∂M themean curvature of the boundary (H∂M ≥ 0 implies the boundary
is mean-convex).
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Theorem 2.3 Assume Z is bounded and suppose there exist constants KZ , K0 and θ

such that RicZ ≥ KZ , Ric ≥ K0 and H∂M ≥ θ . Define

α0 := 1

2

(
max

{
θ−,

√
(d − 1)K−

0

}
+ ‖Z‖∞

)
(2.2)

and set

C(s) :=
√

2

π
+ √

s α0 min

{
2, 1 + α0

√
s

2π

}
.

Then for u ∈ Bb(M) and t > 0 we have

∥∥∥dPD
t u
∥∥∥∞ ≤ exp

(
K−

Z s/2
)

√
s

(
C(s) + 1

4C(s)

)
‖u‖∞

for all 0 < s ≤ t .

Proof Suppose that h is a bounded adapted process with paths belonging to the
Cameron-Martin space L1,2([0, t]; [0, 1]). Since us := PD

t−su is a solution to the
backwards diffusion equation on [0, t] × M , it follows, by Itô’s formula and the
Weitzenböck formula, that

dus(//sQsh(s)) − us(Xs)

∫ s

0
〈Qr ḣ(r), dBr 〉

is a local martingale, whereQ is defined by (2.1). If in addition h(0) = 1 and h(t) = 0,
then evaluating at times 0 and s = t ∧ τ , taking expectations and using the initial and
boundary conditions we obtain

(
dPD

t u
)
x

= E
x
[
1{t>τ }dPD

t−τu(//τQτh(τ ))
]

− E
x
[
1{t<τ }u(Xt )

∫ t∧τ

0
〈Qr ḣ(r), dBr 〉

]
.

Consequently

∣∣∣dPD
t u
∣∣∣ (x) ≤ ‖u‖∞ eK

−
Z t/2 Ex

[∫ t

0
ḣ 2
s ds

]1/2√
P{t < τ }

+ eK
−
Z t/2 Ex

[
1{τ<t} h(τ )

∣∣∣dPD
t−τu

∣∣∣ (Xτ )
]

and it remains to estimate the expectation on the right-hand side (the one involving
the stopping time). For this, we follow the approach of [1], fixing y ∈ ∂M and letting
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yε := expy(εN )where N is the inward pointing unit normal vector field on ∂M . Since
ψ(s, x) := P{τ > s} and us = PD

t−su vanish on ∂M when s ∈ [0, t) it follows that

|dus |(x) = |Nus(x)| = lim
ε↓0

|us(yε)|
ε

, |dψ(s, ·)|(x) = lim
ε↓0

|ψ(s, yε)|
ε

.

Now letting Xε
t be a 1

2 L-diffusion process starting at yε, with first hitting time τ ε to
the boundary ∂M , we have

|dus |(y) = lim
ε↓0

1

ε

∣∣E [1{t−s<τε}u
(
Xε
t−s

)]∣∣ ≤ ‖u‖∞ |dψ(t − s, y)|.

Thus

∣∣∣dPD
t u
∣∣∣ (x) ≤ ‖u‖∞ eK

−
Z t/2 Ex

[∫ t

0
ḣ 2
s ds

]1/2√
P{t < τ }

+ eK
−
Z t/2 ‖u‖∞ E

x [1{τ<t}hτ |dψ(t − τ, ·)(Xτ )|
]
.

It has been proved in [1] that

|dψ(s, ·)|(y) ≤
√

2

πs
+ min

{
2α0, α0 + α2

0

√
s

2π

}

for each y ∈ ∂M , so consequently

∣∣∣dPD
t u
∣∣∣ (x) ≤ ‖u‖∞ eK

−
Z t/2

(
E
x
[∫ t

0
ḣ 2
s ds

]1/2√
P{t < τ }

+ E
x

[
1{τ<t}hτ

(√
2

π(t − τ)
+ min

{
2α0, α0 + α2

0

√
t − τ

2π

})])
.

Choosing hs = t−s
t yields the estimate

∣∣∣dPD
t u
∣∣∣ (x)

≤ ‖u‖∞
exp

(
K−

Z t/2
)

√
t

max
ε∈[0,1]

{√
1 − ε + ε

(√
2

π
+ √

t min

{
2α0, α0 + α2

0

√
t

2π

})}

= eK
−
Z t/2√
t

(
C(t) + 1

4C(t)

)
‖u‖∞

from which the result follows, by Remark 2.2. �
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Remark 2.4 If u is a Dirichlet eigenfunction of −L with eigenvalue λ, then Theorem
2.3 implies

‖du‖∞
‖u‖∞

≤ inf
t≥0

exp
(
(λ + K−

Z )t/2
)

√
t

(
C(t) + 1

4C(t)

)

for all t > 0 and therefore, taking t = (λ + K−
Z )−1, we have

‖du‖∞
‖u‖∞

≤
√
e(λ + K−

Z )

(
C

(
1

λ + K−
Z

)
+ 1

4C
(
(λ + K−

Z )−1
)
)

.

2.3 Neumann boundary

The Neumann heat semigroup, acting on bounded measurable functions, is defined
by

PN
t u(x) = E

x [u(X̃t )],

where now X̃t denotes a 1
2 L-diffusion reflected on ∂M . Denoting by N the inward

pointing unit normal vector, in particular N PN
t u = 0 for t > 0, so PN

t u solves the
diffusion equation with Neumann boundary conditions [19, Section 3.1].

We define the second fundamental form II of the boundary ∂M by

II(X,Y ) = −〈∇X N ,Y 〉 , X,Y ∈ Ty∂M, y ∈ ∂M

where Ty∂M denotes the tangent space of ∂M at y. In order to study non-convex
boundaries with Neumann boundary conditions, we will perform a conformal change
of metric such that the boundary is convex under the new metric. In particular, if we
denote by g the original metric, we will use the fact that if

D :=
{
φ ∈ C2

b (M) : inf φ = 1, II ≥ −N logφ
}

and φ ∈ D then the boundary ∂M is convex under the metric φ−2g.

Theorem 2.5 If there exist φ ∈ D and a constant Kφ such that

RicZ + 2L logφ − 2|∇ logφ|2 ≥ Kφ (2.3)

then for u ∈ Bb(M) we have

∣∣∣dPN
t u
∣∣∣ (x) ≤

√
2

π

(
Kφ

eKφ t −1

)1/2

‖φ‖∞ ‖u‖∞

for all t > 0.
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Proof Since there exist φ ∈ D and Kφ ∈ R such that (2.3) holds, it follows that

1

2
RicZ ≥ 1

2
Kφ − L logφ + |∇ logφ|2 = 1

2
Kφ + 1

2
φ2Lφ−2 and II ≥ −N logφ.

Therefore, denoting by l the local time of X̃ on the boundary, by our main results in
[5] and [19, Theorem 3.2.1], it follows that there exists an adapted End(TxM)-valued
process {Q̃s}s∈[0,t] such that

‖Q̃s‖ ≤ exp

(
−1

2
Kφs − 1

2

∫ s

0
φ2Lφ−2(X̃r ) dr +

∫ s

0
N logφ(X̃r ) dlr

)

with

∣∣∣dPN
t u
∣∣∣ (x) =

∣∣∣∣Ex
[
u(X̃t )

∫ t

0
h′(s)Q̃sdBs

] ∣∣∣∣ ≤ ‖u‖∞ E
x
[∣∣∣∣
∫ t

0
h′(s)Q̃sdBs

∣∣∣∣
]

for any h ∈ C1([0, t]) with h(0) = 0 and h(t) = 1. Now, using the fact that

E
x
[∫ t

0

∣∣h′(s)
∣∣2 ‖Q̃s‖2ds

]1/2
≤ ‖φ‖∞E

x
[∫ t

0
φ−2(X̃s)

∣∣h′(s)
∣∣2 ‖Q̃s‖2ds

]1/2

it follows, as in the proof of Theorem 2.1, that

∣∣∣dPN
t u
∣∣∣ (x) ≤ ‖φ‖∞‖u‖∞

√
2

π

(∫ t

0

∣∣h′(s)
∣∣2 Ex

[
φ−2(X̃s)‖Q̃s‖2

]
ds

)1/2

.

To estimate the expectation, we see by the Itô formula that

dφ−2(X̃t ) = 〈∇φ−2(X̃t ), ut dBt 〉 + Lφ−2(X̃t ) dt + Nφ−2(X̃t ) dlt

= 〈∇φ−2(X̃t ), ut dBt 〉 − 2φ−2(X̃t )

(
−1

2
φ2Lφ−2(X̃t ) dt + N logφ(X̃t ) dlt

)

which implies

φ−2(X̃t ) exp

(
−
∫ t

0
φ2(X̃s)Lφ−2(X̃s) ds + 2

∫ t

0
N logφ(X̃s) dls

)

is a local martingale, from which it follows that

E
x
[
φ−2(X̃t ) exp

(
−
∫ t

0
φ2(X̃s)Lφ−2(X̃s) ds + 2

∫ t

0
N logφ(X̃s) dls

)]
≤ φ−2(x).
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Putting all this together, and using the fact that inf φ = 1, we have

∣∣∣dPN
t u
∣∣∣ (x) ≤ ‖φ‖∞‖u‖∞

√
2

π

(∫ t

0

∣∣h′(s)
∣∣2 e−Kφs ds

)1/2

.

Choosing h as in Theorem 2.1, with Kφ in place of KZ , completes the proof. �

Using information about the boundary, an explicit function φ can be constructed.

For instance, followingWang’s construction (see [18, p.1436] or [19, Theorem 3.2.9]),
we have the following corollary:

Corollary 2.6 Assume RicZ ≥ KZ for some constant KZ and that there exist non-
negative constants σ and θ such that −σ ≤ II ≤ θ and a positive constant r0 such
that on ∂r0M := {x ∈ M : ρ∂(x) ≤ r0} the function ρ∂ is smooth, the norm of Z is
bounded and Sect ≤ k for some k ≥ 0. Then for u ∈ Bb(M) we have

∥∥∥dPN
t u
∥∥∥∞ ≤

√
2

πs
exp

(
1

2
σdr1 + 1

2

(
KZ − 2σδr0(Z) − 2σd

r1
− 2σ 2

)−
s

)
‖u‖∞

for all 0 < s ≤ t where

r1 := r0 ∧
(

1√
k
arcsin

(√
k

k + θ2

))
and δr0(Z) := sup

x∈∂r0M
|Z |(x).

In particular

∥∥∥dPN
t u
∥∥∥∞ ≤

√
2 exp (σdr1 + 1)

π(t ∧ 1)
max

{(
KZ − σδr0 (Z) − σd

r1
− 2σ 2

)−
, 1

}1/2
‖u‖∞

for all t > 0.

Proof Under the assumptions, we can construct a φ ∈ D by:

logφ(x) = σ

α

∫ ρ∂ (x)

0

(
�(s) − �(r1)

)1−dds
∫ r1

s∧r1

(
�(u) − �(r1)

)d−1du,

where

�(t) := cos
√
kt − θ√

k
sin

√
kt, t ≥ 0,

so that r1 = r0 ∧ �−1(0), and

α := (1 − �(r1))
1−d

∫ r1

0

(
�(s) − �(r1)

)d−1ds.
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Then, as checked in [5] and [17, Theorem 1.1], we have

RicZ + 2L logφ − 2|∇ logφ|2 ≥ KZ − 2σδr0(Z) − 2σd

r1
− 2σ 2

and ‖φ‖∞ ≤ eσdr1/2. By Theorem 2.5 and Remark 2.2, it follows that

∥∥∥dPN
t u
∥∥∥∞ ≤

√
2 eK

−
φ s

πs
‖u‖∞ ‖φ‖∞, s ∈ (0, t].

Taking

s =
(
1 ∨

(
KZ − 2σδr0(Z) − 2σd

r1
− 2σ 2

)−)−1

∧ t

and using (
t ∧ 1

c ∨ 1

)−1/2

≤ max{√c, 1}√
t ∧ 1

, (2.4)

which holds for any non-negative constant c, we complete the proof. �


2.4 Application: isoperimetric inequalities

Now suppose L is of the form L = Δ + ∇V for some V ∈ C2(M) and set μ(dx) :=
eV (x) dx . Consider the following two isoperimetric constants:

κD := inf
μ(A)>0

μ∂(∂A)

μ(A)
, κN := inf

μ(A)∈(0, 12 ]
μ∂(∂A \ ∂M)

μ(A)
,

where A runs over all smooth and connected bounded domains contained in M and
μ∂(∂A) is the area of ∂A induced by μ. Consider also

λD
1 := inf

{
μ(|∇ f |2) : f ∈ C∞

0 (M), f |∂M = 0, μ( f 2) = 1
}

,

λN
1 := inf

{
μ(|∇ f |2) : f ∈ C∞

0 (M), μ( f 2) = 1, μ( f ) = 0
}

.

The quantities λD
1 and λN

1 are known as the first Dirichlet and Neumann eigenvalues,
respectively. Note that since we do not assume M compact, these quantities may not
be true L2-eigenvalues for the operator L . In general λD

1 > 0 (resp. λN
1 > 0) does

not imply κD > 0 (resp. κN > 0), but these implications do hold under uniform
gradient estimates for the corresponding diffusion semigroups. In particular, there is
the following result, taken from [15, Theorem 1.2] and [16, Theorem 2.5.3] (note that
the semigroups considered in [15,16] have generator L , as opposed to 1

2 L):
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Theorem 2.7 (Wang [15]) Let PD
t and PN

t denote the Dirichlet and Neumann semi-
groups of 1

2 L on M, respectively.

(1) If

∥∥∥dPD
2t f
∥∥∥∞ ≤ c√

t ∧ 1
‖ f ‖∞

holds for some c > 0 and all t > 0, f ∈ Bb(M), then

κD ≥ 1 − e−1

c

(√
λD
1 ∧ λD

1

)
.

(2) If μ(M) = 1 and

∥∥∥dPN
2t f
∥∥∥∞ ≤ c√

t ∧ 1
‖ f ‖∞

holds for some c > 0 and all t > 0, f ∈ Bb(M), then

κN ≥ 1 − 2 e−1

2c

(√
λN
1 ∧ λN

1

)
.

Setting RicV := Ric − Hess V , Theorem 2.7, in conjunction with Theorems 2.3
and 2.5, immediately implies the following two theorems:

Theorem 2.8 Suppose RicV ≥ KV , Ric ≥ K0 and H∂M ≥ θ for some constants
KV , K0 and θ . Then

κD ≥
√

π
(
e−1 − e−2

) (√
λD
1 ∧ λD

1

)

max

{√
K−

Z , 1

}
(1 + π/8) + 2α0

√
π

where α0 is defined as in (2.2).

Theorem 2.9 Suppose RicV + 2L logφ − 2|∇ logφ|2 ≥ Kφ for some φ ∈ D and
constant Kφ . Then

κN ≥
√

π
(
e−1 −2 e−2

) (√
λ1 ∧ λ1

)
2max

{√
K−

φ , 1
}

‖φ‖∞
.

Proof By Theorem 2.5 and Remark 2.2 we have that

∣∣∣dPN
2t u
∣∣∣ (x) ≤

√
2

π

(
Kφ

e2Kφs −1

)1/2

‖φ‖∞ ‖u‖∞ ≤ eK
−
Z s√
πs

‖φ‖∞ ‖u‖∞
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for all s ∈ (0, t]. Choosing s = t ∧ (1∨ K−
Z )−1 yields the result, by Theorem 2.7 and

inequality (2.4). �


3 Gradient estimates for C2
b functions

In this section we apply the gradient estimates of the previous section to obtain
uniform estimates for the derivatives of C2

b -functions (that is, bounded twice con-
tinuously differentiable functions with bounded derivatives). We have three different
cases, depending on the boundary behaviour of the function.

3.1 No boundary

The estimates of this subsection are uniform versions of the localized estimates that
we recently proved in [6].

Theorem 3.1 Suppose RicZ ≥ KZ for some constant KZ . Then for all u ∈ C2
b (M)

we have

|du|(x) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
2

π

((
KZ

eKZ t −1

)1/2

‖u‖∞ + 1√−KZ
log
(√

e−KZ t −1 + e−KZ t/2
)

‖Lu‖∞

)
,

√
2

π

(
1√
t

‖u‖∞ + √
t ‖Lu‖∞

)
,

√
2

π

((
KZ

eKZ t −1

)1/2

‖u‖∞ + 1√
KZ

tan−1
(√

eKZ t −1
)

‖Lu‖∞

)
,

for the cases KZ < 0, KZ = 0 and KZ > 0, respectively, for all t > 0.

Proof As before, denote by Pt the semigroup for the diffusion Xt , with generator 1
2 L .

By differentiating the Kolmogorov equation, we get

|du|(x) ≤ |dPtu|(x) + 1

2

∫ t

0
|dPs Lu|(x) ds. (3.1)

By Theorem 2.1 we have

|dPtu|(x) ≤
√

2

π

(
KZ

eKZ t −1

)1/2

‖u‖∞.

Combining this with the first term on the right-hand side of (3.1), and similarly for
the second term, we find

|du|(x) ≤
√

2

π

((
KZ

eKZ t −1

)1/2

‖u‖∞ + 1

2

∫ t

0

(
KZ

eKZ s −1

)1/2

ds ‖Lu‖∞

)
. (3.2)
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The right-hand side of this inequality is, by calculation, equal to the expressions given
in the theorem, for each of the three cases. �


Minimizing over t , we obtain the following corollary:

Corollary 3.2 Suppose RicZ ≥ KZ for some constant KZ with ‖Lu‖∞ > 0. Then
for all u ∈ C2

b (M) we have

|du|2(x) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2

π
‖u‖∞‖Lu‖∞

(√
1 + β + sinh−1(

√
β)√

β

)2

,

8

π
‖u‖∞‖Lu‖∞,

2

π
‖u‖∞‖Lu‖∞

⎛
⎜⎝√1 + β +

tan−1
(√ −β

1+β

)
√−β

⎞
⎟⎠

2

,

√
π

2KZ
‖Lu‖∞,

for the cases KZ < 0, KZ = 0, ‖Lu‖∞‖u‖−1∞ > KZ > 0 and KZ ≥ ‖Lu‖∞‖u‖−1∞ ,
respectively, where β := −KZ‖u‖∞‖Lu‖−1∞ .

Note that the right-hand side of the above inequality is continuous in KZ . In par-
ticular

lim
β↓0

(√
1 + β + sinh−1(

√
β)√

β

)
= 2 = lim

β↑0

⎛
⎜⎝√1 + β +

tan−1
(√ −β

1+β

)
√−β

⎞
⎟⎠

and similarly for the two cases concerning KZ > 0. For the case Lu = 0 (which for
Z = 0 is to say that u is harmonic), Theorem 3.1 recovers the well-known fact that if
RicZ ≥ 0 then such u must be constant. But more generally, Theorem 3.1 implies that
if RicZ ≥ KZ with KZ ≤ 0, with u a bounded C2 function satisfying Lu = 0, then

‖du‖∞ ≤
√−2KZ

π
‖u‖∞.

For a simpler estimate than the one given by Theorem 3.1, there is the following, in
which we introduce a parameter δ to emphasise time independence (see also Sect. 3.4
below):

Corollary 3.3 Suppose RicZ ≥ KZ for some constant KZ . Then for u ∈ C2
b (M) we

have

‖du‖∞ ≤
√

2

π
exp

(
K−

Z

2δ2

)(
δ‖u‖∞ + δ−1‖Lu‖∞

)

for all δ > 0.
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Proof This follows from Theorem 3.1 by (3.2) and the fact that

(
KZ

eKZ t −1

)1/2

≤ exp

(
K−

Z t

2

)
,

by setting t = δ−2. �


3.2 Dirichlet boundary

Theorem 3.4 Suppose RicZ ≥ KZ , Ric ≥ K0, and H∂M ≥ θ for some constants
KV , K0 and θ . Then for u ∈ C2

b (M) with u|∂M = 0 we have

‖du‖∞ ≤ exp

(
K−

Z

2δ2

)(√
2

π
+ 1

4

√
π

2
+ 2α0

δ

)(
δ‖u‖∞ + δ−1‖Lu‖∞

)

for all δ > 0, where

α0 = 1

2

(
max

{
θ−,

√
(d − 1)K−

0

}
+ ‖Z‖∞

)
.

Proof By Itô’s formula we have

E [u(Xt∧τ (x))] = u(x) + 1

2

∫ t

0
E
[
1{s<τ }(Lu)(Xs(x))

]
ds. (3.3)

Equation (3.3) can be rearranged as

u(x) = PD
t u(x) − 1

2

∫ t

0
PD
s (Lu)(x) ds

and so, by differentiating and applying Theorem 2.3, we obtain

|du|(x) ≤ eK
−
Z t/2

(√
2

π
+ 1

4

√
π

2
+ 2

√
tα0

)(
1√
t
‖u‖∞ + √

t ‖Lu‖∞
)

which yields the estimate by setting t = δ−2. �


3.3 Neumann boundary

Theorem 3.5 If there exist φ ∈ D and a constant Kφ such that

RicZ + 2L logφ − 2|∇ logφ|2 ≥ Kφ
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then for u ∈ C2
b (M) such that Nu|∂M = 0, we have

‖du‖∞ ≤
√

2

π
exp

(
K−

φ

2δ2

)
‖φ‖∞

(
δ‖u‖∞ + δ−1‖Lu‖∞

)

for all δ > 0.

Proof Recalling that PN
t is the Neumann semigroup with respect to the operator 1

2 L ,
by differentiating the Kolmogorov equation we have

|du|(x) ≤
∣∣∣dPN

t u
∣∣∣ (x) + 1

2

∫ t

0

∣∣∣dPN
s Lu

∣∣∣ (x) ds.
By Theorem 2.5, which is a consequence of our recent result proved in [5], we know
that

∣∣∣dPN
t u
∣∣∣ (x) ≤

√
2

π
‖φ‖∞

(
Kφ

eKφ t −1

)1/2

‖u‖∞ ≤
√

2

π

eK
−
φ t/2

√
t

‖φ‖∞‖u‖∞

and thus we obtain the result directly as before, in Corollary 3.3. �

Note that given such a Kφ , estimates of the type given by Theorem 3.1 are also

available. It suffices to say that the estimates of Theorem 3.1 and Corollary 3.2 carry
over to the Neumann setting, so long as one replaces the constant KZ by Kφ and
remembers to include also the factor ‖φ‖∞. For explicit φ, as explained in the proof
of Corollary 2.6, there is the following corollary of Theorem 3.5:

Corollary 3.6 Under the assumptions ofCorollary2.6, for u ∈ C2
b (M)with Nu|∂M =

0, we have

‖du‖∞ ≤
√

2

π
exp

(
1

2
σdr1 + 1

2δ2

(
KZ − 2σδr0(Z) − 2σd

r1
− 2σ 2

)−)

×
(
δ‖u‖∞ + δ−1‖Lu‖∞

)

for all δ > 0, where r1 and δr0(Z) are defined as in Corollary 2.6.

3.4 Application: spectral projection operators

In this subsection, we first suppose that M is a compact Riemannian manifold without
boundary, of dimension d as before. Let 0 < λ1 ≤ λ2 ≤ · · · denote the eigenvalues
of Δ and let {e j } be the associated real orthonormal basis of L2(M) consisting of
eigenfunctions. For f ∈ L2(M), set

e j ( f )(x) := e j (x)
∫
M

f (y)e j (y) dy
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and define the unit band spectral projection operators χλ by

χλ f :=
∑

λ j∈[λ,λ+1)

e j ( f ).

The study of L p-estimates for the such spectral projections has a long history. For
example, under the present assumptions, Sogge [10–12] proved that there exists a
constant C > 0 such that

‖χλ f ‖p ≤ Cλσ(p)‖ f ‖2, λ ≥ 1, p ≥ 2, (3.4)

where

σ(p) = max

{
d − 1

2
− d

p
,
d − 1

2

(
1

2
− 1

p

)}
.

In particular, for p = ∞ and λ ≥ 1, we have

‖χλ f ‖∞ ≤ Cλ(d−1)/2 ‖ f ‖2.

Moreover, from this and the Cauchy-Schwartz inequality, for each point x ∈ M , we
find

|Δχλ f |2(x) =
⎛
⎝ ∑

λ j∈[λ,λ+1)

(λ2j e j (x))
∫
M
e j (y) f (y) dy

⎞
⎠

2

≤ C(λ + 1)4λn−1‖χλ f ‖22
≤ Cλn+3‖ f ‖22, λ ≥ 1. (3.5)

This leads us to the following theorem:

Theorem 3.7 Suppose M is a compact manifold without boundary. Then there exists
a constant C > 0 such that

‖dχλ f ‖∞ ≤ Cλ(n+1)/2‖ f ‖2, λ ≥ 1.

Proof By Corollary 3.3, we know that if RicZ ≥ KZ for some constant KZ then for
λ > 1, we have

‖dχλ f ‖∞ ≤
√

2

π
eK

−
Z

(
λ‖χλ f ‖∞ + λ−1‖Δχλ f ‖∞

)
.

Combining this with (3.4) and (3.5) completes the proof. �
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Now suppose that M is a compact Riemannian manifold with boundary. Let 0 <

λD
1 ≤ λD

2 ≤ · · · denote the corresponding Dirichlet eigenvalues with respect toΔ. Let
{eDj } be the associated orthonormal basis of eigenfunctions in L2(M). For f ∈ L2(M),
define

eDj ( f )(x) = eDj (x)
∫
M

f (y)eDj (y) dy

and define the unit band spectral projection operator

χD
λ f =

∑
λ j∈[λ,λ+1)

eDj ( f ).

Let 0 < λN
1 ≤ λN

2 ≤ · · · denote the corresponding Neumann eigenvalues with respect
to Δ, and define the objects {eNj }, eNj ( f ) and χN

λ f analogously.

Theorem 3.8 Suppose M is a compact manifold with boundary. Then there exist
constants C(D) and C(N ) such that

∥∥∥dχD
λ f
∥∥∥∞ ≤ C(D)λ(n+1)/2‖ f ‖2,

∥∥∥dχN
λ f
∥∥∥∞ ≤ C(N )λ(n+1)/2‖ f ‖2

for λ ≥ 1.

Proof By [11,20], we know that

∥∥∥χD
λ f
∥∥∥∞ ≤ Cλ(n−1)/2‖ f ‖2,

∥∥∥χN
λ f
∥∥∥∞ ≤ Cλ(n−1)/2‖ f ‖2, λ ≥ 1. (3.6)

By the same argument as in (3.5), we know that

∣∣∣ΔχD
λ f
∣∣∣2 (x) ≤ Cλn+3‖ f ‖22,

∣∣∣ΔχN
λ f
∣∣∣2 (x) ≤ Cλn+3‖ f ‖22, λ ≥ 1. (3.7)

Using Theorem 3.4, with KV , K0 and θ constants chosen such that RicZ ≥ KZ ,
Ric ≥ K0, and H∂M ≥ θ , for λ ≥ 1, we have

∥∥∥dχD
λ f
∥∥∥∞ ≤

√
2

π
eK

−
Z /2

(√
2

π
+ 1

4

√
π

2
+ 2α0

λ

)(
λ

∥∥∥χD
λ f
∥∥∥∞ + λ−1

∥∥∥ΔχD
λ f
∥∥∥∞

)

where α0 is defined by (2.2). Similarly, letting σ, KZ , r0, r1, δr0(Z) and θ be the
constants as in Corollary 3.6, for λ ≥ 1, we have

∥∥∥dχN
λ f
∥∥∥∞ ≤

√
2

π
exp

(
1

2
σdr1 + 1

2

(
KZ − 2σδr0(Z) − 2σd

r1
− 2σ 2

)−)

×
(
λ

∥∥∥χN
λ f
∥∥∥∞ + λ−1

∥∥∥ΔχN
λ f
∥∥∥∞

)
.

Combining this with (3.6) and (3.7), we complete the proof. �
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