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ABSTRACT. Let M be a complete connected Riemannian manifold with
boundary M, and let P; be the Neumann semigroup generated by %L
where L = A+Z for a C'-vector field Z on M. We establish Bismut type
formulae for LP; f and Hessp, f and present estimates of these quantities
under suitable curvature conditions. When P; is symmetric in L?(u) for
some probability measure p, a new type of log-Sobolev inequality is
established which links the relative entropy H, the Stein discrepancy S,
and relative Fisher information I, generalizing the corresponding result
of [9] in the case without boundary.

1. INTRODUCTION

Consider a d-dimensional complete Riemannian manifold M, possibly
with non-empty boundary M, and let X; be the reflecting diffusion process
on M generated by %L where L = A 4+ Z; here A is the Laplace-Beltrami
operator and Z a smooth vector field on M. According to [12, 13, 27], the
reflecting diffusion process X[ starting at = can be constructed as solution

to the following SDE on M with reflection:
1 1
(1.1) dXy¥ =//10 dBt—l—iZ(Xf)dt—i—iN(Xf)dlf, X§ = «,

where B, is a standard Brownian motion on the tangent space T, M =
RY, //y: ToM — TxzM the stochastic parallel transport along Xy, N the
inward normal unit vector field on 0M, and [¥ the local time of X} on OM.
Throughout this paper, we assume that SDE (1.1) is non-explosive. Then
the Neumann semigroup P; generated by %L is given by

Pif(z) =E[f(X{)], t=20, z€ M, feBy(M)

where By,(M) denotes the set of bounded measurable functions on M.
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To study the regularity of diffusion semigroups using tools from stochastic
analysis, Bismut [4] introduced his famous probabilistic formula for the gra-
dient of heat semigroups on Riemannian manifolds without boundary. This
type of formulae has been studied in [10, 11, 21] using martingale arguments,
and been extended to second order derivatives in [1, 11, 15, 16, 18, 19, 21, 24].

In the case the boundary of M is non-empty, Bismut type formulae have
been derived in [27, 8] for the gradient of the Neumann semigroup P;, see
also [17, 12, 29] for gradient estimates. In this paper, we aim at estab-
lishing Bismut type formulae for second order derivatives of the Neumann
semigroup, along with some geometric applications.

Let Ricy := Ric — VZ where Ric is the Ricci curvature tensor, and let 11
be the second fundamental form of the boundary:

I(X,Y)=—(VxN,Y), X,YeT,0M, =€ dM.

A derivative formula for P, f is given in [12, 27] by constructing an appro-
priate multiplicative functional. Throughout the paper, we assume that the
reflecting diffusion process generated by L is non-explosive, and that there
exist functions K € C'(M) and o € C(0M) such that

(1.2) Ricz :=Ric—VZ > K, 1I>o,

ie. Ricy(X,X) > K(2)|X|)? for z € M, X € T,M, and II(X,X) >
o(x)|X|? for x € OM, X € T,,0M. Under the assumption that

(A) the functions K and ¢ in (1.2) are constant, E[e’ ] < oo for any
t>0,

a Bismut type formula for VP, f has been established in [27] for f € By(M)
such that VP f is bounded on [0, t] x M. More precisely, there exists a family
of random homomorphisms Q¢: T, M — Txy M with the property that

Q¢ < e K271 and (N(XT), Qe(0)lxreony =0, v € T,

such that for f € CI}(M ) satisfying the boundedness condition of VP f on
[0,¢] x M, one has

(1.3) VP f(v) =E[Vf(X{), Qi(v)], veTM,

and
(1.4) VPtf@):E[f(Xf) [ W as)|. venar

for any choice of a non-negative h € C}([0,¢]) such that h(0) =0, h(t) = 1.
When Ricz and II are bounded from below, the second part of condition (A)
holds if the following condition (B) holds, see [27, Section 3.2]. Moreover, it
also implies that |V P f| is bounded on [0,¢] x M for f € By(M ), see Remark
2.5 in the next section for explanation.
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(B) The boundary 0M is convex or there exists a non-negative constant
6 such that II < 6§ and a positive constant ro such that on 0,,D :=
{z € D : pap(z) < 1o} the distance function pgp to the boundary 0D
is smooth, the sectional curvature of M being bounded above and |Z|
bounded.

Therefore, the first part of condition (A) and the condition (B) imply the
Bismut type formula (1.4) for any f € By(M).

The aim of this paper is to extend (1.3) and (1.4) to second order deriva-
tives and to establish Bismut type formulae for LP; f and Hessp, f := VAP, f,
along with some applications. When compared to the case without bound-
ary as in [1], the present study faces an essential new difficulty. Indeed,
by formal calculations, the Bismut formula for second derivatives of P;f
includes a stochastic integral of Q; 1 the inverse of the above mentioned
multiplicative functional QQ;. However, in the present setting ); is singular
near the boundary so that existence of the desired stochastic integral pos-
es a problem. To avoid the discussion concerning well-definedness of Q; L

we introduce a sequence of martingales Mt(hm in the following section and
using the limit of these martingales in LP sense, we derive a Bismut type
formula for LP;f in terms of the multiplicative functional @Q:, which pro-
vides as consequence an upper estimate depending on the lower bounds of
Ricyz and II, more precisely, condition (A) and || Z]|c < c0. Let € M and
T > 0. For f € By(M) such that |VP f| is bounded on [0,T] x M,

V3 Z]lee , 3+ V10) (E#[eotr]) /2 K T/2
3T 7 |

If the boundary is convex, i.e. ¢ > 0, we have the following corollary,

2v3||Z oo . V2elTT/2
3VT T

for f € By(M), here |VPf| is bounded on [0,¢] x M since the local time
can be estimated when the boundary is convex. Compared with the formula
for L(Prf) in [24], our Bismut type formula for LP;f contains only one test
function h (see Theorem 2.2 below), as consequence, the estimate of | L(Pr f)]
are new even in the case without boundary where the existing estimate in
[24] depends on the uniform norm of Ricy. It is worthy to mention that
under condition (B) with Sect < k for some k € R, the term E[e° ] can be
further estimated and the upper bound of |LPrf| can be written explicitly:

[L(Prf)l(x) < 2] flle (

|L(Prf)l(z) < (Prf?)/?(x) (

do 1] | do” 2(07)24— K_T
V3 Z|lee  (3+V10)e 2 Tt 2
L(Prf)|(z) <2 + ,
IL(Prf)l(z) < 2| flle Vii T

for some 11 = 79 A £=1(0) where £ is given in (5.5) below.
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In Section 3, we establish a Bismut type formula for Hessp,; and use it
for Hessian estimates of P;f. Establishing formulas for the Hessian natu-
rally requires more knowledge on the curvature of the manifold. Note that
in [1, 24, 16, 19], the authors used information related to curvature and its
derivative to establish a Hessian formula and deduced estimates in terms
of these curvature conditions. When it comes to manifolds with bound-
ary, it seems unavoidable to exploit geometric information concerning the
boundary as well. Before going into the details, let us remark that the
multiplicative functional @; in the derivative formula (1.3) satisfies

(N(Xe), Qe(v))1ix,eomy =0

which is reasonable since

(VPr_ f(Xe), N(Xe))1ix,eomy = 0.

It follows that to express VP;f on the boundary, information on the second
fundamental form

IT(Ps(v)) = =(V py () N)!
is sufficient. However, when it comes to the second order derivative of P, f
on the boundary, no condition like

Hessp,_,f(N(Xt), )1 {x,comy =0

is satisfied, which naturally demands for full information on VN. This
indicates that one needs to control the negative part of the lower bound of II.
For this reason, in Section 3, two new functional @; and W, are introduced
in (3.3) and (3.12) respectively, which our Bismut formula for Hessp, ; will be
based on and which then allow to derive upper bounds under the following
condition: assume that the functions K and o in (1.2) are constant, and
there exist three non-negative constants «, 8 and -, such that for x € M,

[Rlus(x) <, |d"R+VRicy — R(Z)|(x) < B, [V(VN)' + R(N)|(z) <7,
where for vi,ve € T, M,
[Rlus(2) = sup { |R¥ (1, v2)lns () : v1, 02 € TuM, [or] < 1, Jvo] <1}

If VP f| and |Hesspy| are bounded on [§,T] x M for f € By(M) and any
§ > 0, and E?[e(? 9] < oo for any t > 0 and some ¢ > 0, then

1/2
(PTfQ)l/Q

|Hesspy f|(x) < <a + §ﬁ+ ;) K TR [eo )Py f2) /2
— _ 1
+ 7 K TR [e“ lT} /

2 T . 2
E* e2? ' dlg
2T </0 )

for f € By(M). On the other hand, if condition (B) also holds, one can con-
struct a function ¢ satisfying the condition (C) (see Remark 5.3 in Appen-
dix), which is shown up in Subsection 3.2. This further implies that |V P.f]
and |Hessp ¢| are bounded on [6,T] x M for any § > 0 and f € By(M),
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and E*[e(? 9] < 0o for any t > 0 and some ¢ > 0 as well. Note that
E®[elc”+9)l] < oo can be further estimated (see Remark 5.2 in Appendix)
and the upper bound of |Hessp, | can be specified explicitly.

We also present a Hessian formula for P; with gradient terms under con-
dition (C) in Subsection 3.2, see Theorem 3.7 and Corollary 3.8. As an
application, in Section 4, we apply this Hessian estimates of P;f to prove
inequalities connecting the relative entropy H, the Stein discrepancy S and
the relative Fisher information I, which extend the corresponding results
derived in our recent work [9] for OM = () to the case with boundary; see
Ledoux, Nourdin and Peccati [14] for the earlier study in the Euclidean case
M =R<.

2. BISMUT FORMULA AND ESTIMATE FOR LP;f

To state the main result, we first recall the construction of the multiplica-
tive functional @); appearing in the Bismut formula, see [24] for the case
without boundary.

For t > 0, let //o—¢ : Tx,M — Tx, M denote stochastic parallel transport
along the paths of the reflecting diffusion process X. The covariant differ-
ential D in ¢ > 0 is defined as D := //¢p_+d //1—0 where d is the usual 1t6
stochastic differential in £ > 0. For a process v; € T'x, M we then have

Dvy = f/o—ed [/tsove, t2>0.

For n e Nand t > 0, let Qtn) : Tx,M — T'x, M solve the covariant differen-
tial equation: for ¢ > 0,
(2.1)

n ]' n n n n .
DO™ = — {RICZ( My dt + 1(Q\™) dl + nPy( E))dzt}, (M _ 4,

where id is the identity map on T'x,M and Py the projection operator onto
the normal direction N of OM such that when X; € 9D,

Py(Q) = (Qv, N(X,)) N(X;), v € Tx,M.

Furthermore for Py : T, M — T,0M being the projection operator for x €
OM, let

Q™ Yv1, v2) = TH(PyQY" v, Pyva), w1, 09 € Txe,M, X; € M.
By the curvature conditions (1.2), we then have

(2.2) sup|@£”>\Se—%f5K sy fy o (X)dle -y > g,

(2.3) /|PN NPdiy < = /|Q")\ {K™(X,)ds+o0 (Xs)dls} =0
as n — o0o. Define

(2.4) (O = [0l Q) [0} Y T, M — T, M
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where {Q%n) //t—0} "1 is the inverse of the operator
Q™ /)10 Tx,M — Tx, M.
To show that {an)}_l exists, let
T := inf {t >0: po(Xy) > k:}, k>1,

where p, is the Riemannian distance to a reference point 0 € M. Fix T > 0.
By [27, Lemma 3.1.2], we have

(2.5) E[eNTA%] < 00, A > 0.

Since Ricy and II are locally bounded, (2.1) and (2.5) imply that an)/ t—0
is invertible with

E{ sup ‘{an)}_l{p] :E[ sup ’{an)//tﬁo}_l‘p] < oo, p,k>1
]

t€[0,T A7) te0,T ATk

To derive a Bismut formula for LP, f, we need to estimate the martingales

(2.6) M™M= /t<hSQg") / h QY1 /), 4B, , //SdBS>, n>1,
0 0

for a reference adapted real process h. When M is compact, [12, Theorem

3.4] implies that as n — oo the process an) converges in L?(IP) to an adapted
right-continuous process ); with left-limits such that PyQ: = 0if X; € M.
This construction has been extended in [27, Proof of Theorem 3.2.1] to non-
compact manifolds. However, although {QEH)}_1 exists for every n > 1, Q;
is not invertible on the boundary since Py(@); = 0. Hence a priori, existence

of the stochastic integral
t s
/ <hsczs / h Q' //rd By, //sst>
0 0
is not obvious.

Lemma 2.1. Let K € C(M) and o € C(OM) such that (1.2) holds. Then
for any adapted real process (ht)te[o,T] with

T X .
(2.7) C(h):=E [ / K2 eJo K~ (Xp)dr[g o (Xr)dly ds] < o0,
0

the martingales Mt(h’n) in (2.6) satisfy

(2.8) supE

Sup ‘ Mt(hrn)
n>1

te[0,T)

< 3(3+ V10) (C(h)E/OThgds)l/z < .

In addition, if there is a constant o > 1 such that

(2.9) E </0T hﬁds)a} < o0,
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2a
then there exists a real random variable M} with E[|M%|1Ta] < 00, and a
subsequence n.,, — o0 as m — 0o, such that

. (hynm)1 h O‘Zfa
n}gnooE[nMT | =E[nM}], neLar1(P).

In case (2.9) holds for a =1 as well, one has

E[|MA]] §3(3+\/To) (C(h)E[/OThgdst.

Proof. (a) We first prove (2.8). By Fatou’s lemma, it suffices to show

. :=E! sup /0t<th§"> /0 1 QY //,dB,, //sst>‘

te[0,T A7)

(2.10) ; o
33(3+m) cn) (IE/ hﬁds> k>l
0

For fixed n > 1 let

&= QY /0 hAQMY /By, s> 0.

By Lenglart’s inequality (see [3, Proposition 5.69]) and Schwarz’s inequality,
it follows that

TATE 1/2
Ty < 31@[( / !és!2hfd8> }
0

A o3 Jo K~ (Xp)dr—3 [§ o~ (Xr)dir

< 3E sup

SG[O,T/\T]C}

T/\Tk N N 1/2
o </ hg efob K= (Xp)dr+ [5 o~ (X;)dlr d8> ]
0
<3 {E

Furthermore, by It6’s formula we have

d\gs‘Q = 2(&, hs//sdBs) — {Ricz(fs,fs)ds + II(fs,ﬁs)dls}
—n| P& [Pdls + d[€, €]
< 2(&57 hs//sst> - K(Xs)lfs‘st - U<Xs)|€s

(2.11)

1/2
sup ’55‘2 .~ fog K*(Xr)dr—f(f o~ (Xr)dlr] C(h)} .

s€[0,TATk]

2dl, + h2ds, 0<s <y,

which implies

d{|€s|2 .- Jo K= (Xr)dr—[5 o= (Xr)dl }

(2.12) <e~ Jo K= (Xp)dr—[5 o~ (X,)dlr {2<557 hs//sdBg) + h?ds},
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for 0 < s < 7. By the condition £ = 0 and Lenglart’s inequality, we have

E sup ’§S‘2 e~ Jo K= (Xp)dr— 5 o= (Xr) dlr
s€[0,TAg)

T T AT . 1/2
<E / hgd5+6(/ |£3|2h§e_2f0 K= (Xp)dr—2 [§ o~ (X,)dlr d8>

0 0

T S S

<B| [izdaseo( s oo K i)

0 s€[0,TA1g]

T ATy 1/2
X (/ h? ds)
0

slm[ sup rss\%—fsmxr)dr—ﬁvfmwﬁ
20 s€[0,TATg)

T
+ (186 + 1)1@“ hgds},
0

for any § > 0. Taking the optimal choice § = %(3 + \/ﬁ), we obtain

5 g s _ 2 T
sup  |¢2 e Jo KT (X dr=[i o (Xr)dlr] < <3+\/ﬁ) E[/ h2 ds].
0

s€[0,TATk]
Combining this with (2.11), estimate (2.10) follows by letting k tend to oo.

(b) Assume that (2.9) holds for some a > 1. By estimate (2.12) and the
Burkholder-Davis-Gundy inequality, we can find constants c1,co > 0 such
that

E [ sup (|§8]2 o Jo K= (Xp)dr—[5 o= (X;)dl, )O‘]

E

s€[0,TATg]

TATE . . /2 T o
<k ( / |€s[2h2 e 2o KT (Xrydr=2 Jg o (Xr)dly ds> + < / n ds) ]
0 0

04/2 T/\Tk
([ )
0

a/2

<k sup  |€[2e Jo KT (X dr=[5 o7 (Xr) i
SG[O,T/\Tk]

+01E[(/0Th§ds)a]

< EE sup <|€s|2€7 f()b K_(Xr)defos o (Xy)dly )oz
2 SE[O,T/\Tk]

T (0%
+ o </ hids) .
0
Together with (2.9) this implies

sup (I et Ko Y| <o
s€[0,7

G.=E
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On the other hand, by Burkholder-Davis-Gundy’s inequality, there exists a
constant c3 > 0 such that

B [|agf! 7]
= CgE [</T |£s|2 e fOS K™ (Xr) dr—fos o~ (Xr)dly
0

x B2 o K™ (Xr) dret [ o™ () ds) 1+a]

o

T Tra
<3 Gl%a <E/ h? elo K= (Xr)dr+[g o™ (Xr) iy ds) ’ <oo, n>1.
0

Thus {M}h’n)}nzl is bounded in LIZTQQ(IP), and hence has a subsequence

2a
converging weakly to a random variable M:? in Lo-1(P). O

Theorem 2.2. Let K € C(M) and o € C(OM) such that (1.2) holds. For
T >0 and f € By(M), let [VEf| be bounded on [0,T] x M and let hy be an

adapted real process such that fOT hsds = —1 and

(2.13) E {/OT h2 (efos K= (XE)dr+[5 o~ (XF)dly HZ(X;C)‘z) ds] < oo,
Then for any f € By(M),

219 L(Pe)e) = 28 500 (0t} + [ " (o z(x), an.))|.

where hy := 1+ fg hsds. Consequently,

IL(Prf)(@)| < 6Hf||oo{EK /0 TlﬁshSZ(ng)PdS) ”2]

(2.15) + (3 + \@) (C(h) E/OT h? ds) 1/2}.

Proof. (1) We first assume f € CRP(L), the class of functions f € C°°(M)
such that N f|oar = 0 and || Lf||co < co. In this case, we have the Kolmogorov
equations (see [27, Theorem 3.1.3)),
(2.16)  OPr_if = —LPr_f = —Pr_,Lf, NP,floa =0, t€[0,T].
In the sequel, we write for simplicity

Xy = th, Ny = N(Xt), = Z(Xt), M; = LPT_tf(Xt), te [O,T]

m

Furthermore, we write A; = B; for two processes A; and B; if the difference
Ay — By is a local martingale. By Itd’s formula and (2.16), we obtain

th = <V(LPT_tf)(Xt), //t dBt> + Ot(LPT_tf)(Xt) dt
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+ S L(LPr f)(X0) b + o N(LPyf)(X0)

(V(LPr o f)(X0) /i 4B + G N(Pp L) (%) dl
(V(LPr-f)(X0), fedBy), 1€ 0.T].

Then
d(M;h?) = h? dM; + 2hy(hy)' My dt = h? AM; + 2hyhy M, dt,
which together with ho =1 implies
t ~
(2.17) (LPr_ f) (X)) h? — LPrf(z) = / LPr_ f(Xs)hshgds.
0
With A = —d*d and L = A + Z, we have

(2.18) —(LPr—f)(Xy) = {d"(dPp—1f) — (dPr—f)(Z)} (Xy).
Combined with (2.17) this further yields

(LPr—of)(Xy)hi — LPpf(x)

t ~
m / LPr o f(Xo)hshy ds
0
t B t _
(219) = -2 / & (AP, )hishs ds + 2 / (dPp_)(Z)hshs ds.
0 0

Let an)*: Tx,M — T,M be the adjoint operator to Qﬁn). By Ito’s
formula and the Weitzenbock formula, we obtain

d{@Pr-))(XDQL™ | = (Vjam, APr-f(X0) (@)

{HessPT (N, Ny QU } (X,) dis.

Combining this with

d*(dPp_f)hihy dt = {(V//tdBthT QM hehi(Q) 1//tdBt)}( 1),

and using It6’s formula, we derive

/ td*(dPT_s f)hshgds
° _ t
= —(dPr—¢f) <Q1(§n)ht/0 hs(QU) ™/ st)
t s
B0 o
+/0 HessPTisf(NS,Ns)<Ns, hsQy /O QMY dB> dl
t s
(2200  + /0 (dPr_,f) (thgm /O he (QE)1 ), dBT> ds
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To deal with the last term of the above equation and the second term on
the right-hand side of (2.19), we observe that by It6’s formula

dPr_s f(Xs) = (VPr—s f(Xs), //sdBs) = (dPr—sf)(//s dBs),
so that

t t
/0 (dPT*Sf)(Zs)Bshs ngPth(Xt)/O <hsh5ZS, //SdBS>7
t s
(n) (n)y—1 s
[ @Pran (@, [ hitQty ), as, )

= Prof(Xy) /Ot <thgn) /OS hAQYY /7 dB, //SdBS>'

Combining these equations with (2.20) and (2.18), we obtain
/0 (LPr_oP)(X)hoh,ds - dPr_of (Qt")ﬁt /0 t hs(Qg"U‘l//sst) (X¢)
+ /0 t Hessp,__ (N, NS)<NS, QWh, /0 T (QE) //TdBT> dl,
L P (X)) /0 a(haZ, /s BL)

#Proaf06) [ (QE) [ hQE) B, o) o

The last equation and Eq. (2.17) yield
(2.21)

_ t
(LPr_+f)(Xe)hi — LPpf(x) — 2dPr_ f <Q§n)ht/0 hs(an))_l//sst)
t S
()7 (n)y—1
49 /0 HessPT_Sf(NS,NS)<Ns, QWh, /0 he (Q™) //TdBT>dlS

t
+ 2PT—tf(Xt) /0 iLs<th& //sst>

w2 (40 [ Q0 [ @) B hegfidB) 2o

To get rid of the local martingales in the above calculations, we consider
the diffusion process up to exit times from bounded balls. Since Hessp  is
locally bounded, for any k£ > 1 we find a constant ¢ > 0 such that

T ATy, ~ s
E [ / HessPT_sf(Ns,Ns)<Ns, QM h, / hT(Q§">)—1//TdBT>dzs]
0 0

TATy 1/2 TATy 2 1/2
< <IE/O |(Q§”>)*Ns\2dzs> <E/O dls> .

(2.22)

/ R Q)7 4B,
0
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Next we observe from (2.2), (2.3) and (2.5) that

T ATy T ATy 9
lim E [ / \(an))*N\les] = lim E / | PvQI Q)N di
0 0

n—o0 n—o0

TAT 5
< lim E[ sup  [Q4"? / [Py Q™| ds} =0,
te| 0

n—00 0,TATy]

and by Burkholder-Davis-Gundy’s inequality,

TATy 2
/ dls
0

<E[ZTATk sup / hr(an))_l//rdBr
s€[0,TAT] 1/0

E

/ h Q) /B,
0

2
| <.
Using these estimates and taking the upper bound of (2.22), we arrive at

(2.23)
TNATE _ s

lim E [/ HessPT_Sf(Ns,Ns) <N57 an)hs/ hT(Qﬁn))—l//rdBr>dlS] =0.
0 0

n—o0

On the other hand, since the process in (2.21) is a martingale up to time
T A 1, its expectation at time T A 73 vanishes, so that

LPLA)@) BB LPr- 117, (Xrn)
T/\’Tk
—2dPr_gpr f(Q hpns he(QM)~1 Sst]
2P Qe [ 1@ 1108
T ATy s
— (n) (n)y—1
227t [ [ ha(@i) B a8

1 9E [ f(Xr) /0 Tw@shszs, //sst>]

S

T ATy _
+2E [ / HessPTisf(Ns,N5)<NS, hrs QL) / he(QM)1 ), dB,> dls].
0 0

By hr = 0, Lemma 2.1, (2.23), (2.13) and the boundedness of |dPf| on
[0,T] x M, we may first choose a subsequence n,, — oo and then take the
limit as k — oo to derive (2.14) for f € CP(L).

(2) To extend the formula to f € By(M), we let hy = 0 for ¢ > T and
define finite signed measures p. on M as

T
je(A) == 2F [1A(X§,€+5) (M{,‘z +/ <hshSZ(X§), //SdBS>>} . e>0,
0
for measurable subsets A C M. By step (1) and (2.16), we have

PT+af(9C)€_ Prf(z) _ i/o LPyrf(x)dr
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£
=1/ dr/ fdﬂrz/ £ du),
€ Jo M M

for f € CRP(L), € > 0, where ple) = éfoe - dr is a finite signed measure
on M. Since functions in CRY(L) determine finite measures, according to
Lemma 2.1 and condition (2.16), . is a finite measure, and this implies (we
have in particular M:;E_H = M} since hy =0 for t > T,

Pri.f(x) — Prf(zx) / ¥ dﬂ(s)
M

9

_ 1/05 9F [f(XT+r) (MI’E 4 /OT <Esths, //sst>>] dr, [ € By(M), e > 0.

3

Since the law of X7 is absolutely continuous and P.f — f a.e. as r | 0,
we get by the strong Markov property /7 f(Xr.,) = P.f(X7) — f(X71)
a.s. as r | 0. By the dominated convergence theorem we may let € | 0 to
arrive at

(2.24)

I o [roen) (s [ (i, an))] s emon

On the other hand, for any f € By(M) and ¢ > 0, Py f(x) is Ct int > 0
and C? in o with NP,y f|oasr = 0. Hence, by Ité’s formula applied to the
process (¢Prf)(X;) for some cut-off function ¢ at x, the proof of (3.1.5) in
[27] gives

d
(2.25) LP,f(x) = gPtf(x), t>0, feBy(M).
Combining (2.24) and (2.25), we prove (2.14) for all f € By(M). O

Remark 2.3. When reduced to the case without boundary, our estimate
still improves the result in [24]. Moreover, compared to the estimate in [24],
Theorem 2.2 only uses the lower bound of Ricy instead of boundedness of
Ricy.

Under curvature condition (A), with the particular choice hs := —1/T
for s € [0,T], we obtain

Corollary 2.4. Assume that condition (A) holds, ||Z||cc < oo and |VPf]
is bounded on [0,T] x M for f € By(M). Let x € M and T > 0. Then

V3| Z|| 0 N (3 4+ /10) (Eﬂ”[ea’lT])lm eKT/2>

3T T
for f € By(M). If 0 > 0, then for f € By(M),

2ﬁwm+ﬂJW?

[L(Prf)I(2) < 2[|fllo (

(2.26) Wﬁwmg%ﬂwm<3ﬁ, T
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Proof. The first assertion is a direct consequence of inequality (2.15). It
hence suffices to show inequality (2.26). Note that

(2.27) ﬂ i

B [t | < (Prs?) (@) [B]prf

Y

where M (") is defined as in (2.6). Let hy = —1/T. Then,

(hny2]1/2 _ 1
[EIMTW\ } <7

T SATk
[ el [ @y,
0 0
By It6’s formula, we see that
_ s 2
d <e—K sl / (@) //+dB; )
0

(2.28) <2e K (QWM /S{Qi")}_l//rdBm //sdBs) + ds.
0

For 0 < s < 7, this implies that

9 1/2
ds] .

SATE

i [ @y s [ <5

Letting k£ tend to oo yields

B [Jo, [ @ ] < s,

E |:e—K_S/\Tk

Combining this with (2.28) and (2.27), we see that {M}h’n)}nzl is bounded
in L?(PP), and thus obtain a subsequence converging weakly to a random
variable M1 in L?(P) and satisfying

KT

272 °

By this and the Bismut formula (2.14), the second assertion (2.26) holds. O

E[|p7P] <

Remark 2.5. Let
D:={pcC}M):inf¢p=1, Nlog¢ > c}.

(A’) The functions K,o in (3.1) are constant, and there exists ¢ € D
such that

K4 = sup { — Llog¢—|—2\Vlog¢]2} < 00.
zeM

By [27, Section 3.2], such ¢ can be constructed if OM has strictly positive
injectivity radius, the sectional curvature of M being bounded above and Z
bounded. In particular, if the manifold is compact, these conditions are met
automatically. By [6, Theorem 2.2], if

Ricz + Llog¢ — 2|Vlog¢|* > K — K,
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we then obtain

(2.29) IVPflloo < 1 lloollV flloo e K5, ¢ > 0,

which implies that |V P f| is bounded on [0,7] x M for f € CL(M).

Corollary 2.6. Assume that condition (A') holds. Let x € M and T > 0.
Then

V31 Zllee . (34 v/10)||¢]|oc 2 KoK T
L@ﬁwmgﬂm@< JLIE - |
for f € By(M).

Remark 2.7. In the Appendix, we recall the method from [27] to construct
¢ under condition (B). From this condition, ||¢||s and K4 can be estimated
as presented in Remark 5.3.

3. BiIsMUT TYPE HESSIAN FORMULA FOR NEUMANN SEMIGROUP

To state the main result of this section, we first introduce some curvature
conditions. For z € M and vy € T, M, let RiCﬂZ(Ul) € T, M be given by

<RiCﬁZ(’01),’U2> := Ricz(v1,v2) = Ric(vi,v2) — (Vy, Z,v2), v € T, M.

Let R denote the Riemann curvature tensor. Then d*R(v;) is the linear
operator on T, M determined by

(d*R(v1,v2),v3) = (Vg Rich) (v1), v2) — ((Vo,Ric?)(vs),v1), w3 € TpM,

where we write d*R(vy,v2) = d*R(v1)ve. Moreover, let R(vy) : T,M ®
T.M — T, M be given by

(R(v1)(ve,v3),v4) := (R(v1,v2)v3,04), v2,v3,04 € T, M.

Finally, let | - | be the operator norm on tensors, and || - || be the uniform
norm of | - | over M.

Assume that there exist two functions K € C(M) and ¢ € C(OM) such
that

(3.1) Ricy :=Ric—VZ > K, 1I>o,

where the second condition means —(Vx N, X) > —o(x)~|X|? for x € OM
and X € T, M. Moreover, assume that there exist three non-negative func-
tions «, 8 and =, such that

|Rlus(z) < a(z), |[d*R+ VRic), — R(Z)|(z) < B(z),
IV(VN)? + R(N)|(z) < y(),
where for £ € M and vi,v9 € T, M,

(3.2)

[Rlus(2) = sup { |R¥(v1, v2)lns () : v1, 02 € TuM, [or] < 1, Joo] < 1}
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_ To establish a Hessian formula for P f, we first introduce an operator
Qi Ty M — Tx, M defined by

(3.3) DQ; = —%RieﬁZ(Qt) dt + %(VN)ﬁ(Qt) dl;, Qo = id.

Then let the operator-valued process Wf‘: TeM @ TpM — Tx, )M be de-
fined as solutions to the following covariant It6 equation

DWW} (v,v) = R(//dB1, Q1(hv))Qu(v)
N %(d* R — R(Z) + VRic2)! (Qu(hw), Qp(v)) dt

— (V2N — RON)(@ullew), Qulw)) diy

- %RicﬁZ(Wf(v, o)) dt + %(vzv)ﬁ(wf@, o)) dls

with initial condition W (v, v) = 0.

In this section, we first introduce the local version of the Bismut type
Hessian formula for P, and then introduce some proper global curvature
conditions to establish the global version of it.

3.1. Local Bismut type Hessian formula for Neumann semigroup.
The following is our main result in this subsection.

Theorem 3.1. Let D be an open relatively compact subset of M, T > 0
and x € D. Suppose that (3.1) and (3.2) hold. Let h(-) be an adapted and
bounded real process such that fot hsds = —1 fort > T A 1p, and such that

TATD _ s s
E / (2 + R2(02(X,) + B2(X,)) ) elo KT (X dreli (i die g
0

(3.4)

T/\TD ~ s s
+/ R242(X,) elo K drfi o (Xl g | < o
0

where hy = 1+ fghsds. Then for f € By(M) and v € T,M,
Hessp, t(v,v)(x)

— [f( Xrnry) /0 T<W§(v,hsv),//sd35>]

2
+E°*

F(Xznr) (( / " @ulha). 1))

T ~
—/ Qs(hsv)|2d3>] .
0

Moreover,

Hessp, f| < 3| £ nC(h)/?
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1 T/\TD R s _
X < = |:E (/ /82(Xs) efO K= (Xp)dr+ [ o~ (Xr) dir h? d8>:|
0

1/2
2

1
2

TAT,
+ (3 +10) [E </ ? a2(X,) elo K~ Xn)drt [g o™ (Xr)dlr ;2 ds)]
0

1 TATD s o s ~ % 2 1
3 [E (/ 7P (X) el KT drfi o™ () dir 72 dls)} 3002 0
0

(3.5)
where C'(h) is defined as in (2.7).

Remarks 3.2. 1) The original idea of the proof for the Hessian formula
comes from Elworthy-Li [11] and Thalmaier [1]. Our form of the formula
is consistent with [5] with the choice of one random test function h only.
The main difficulty here is to deal with the impact of the boundary and
to weaken the conditions on the curvature and the process h. Theorem 3.1
also improves the results in [1, 5] and gives a new estimate even when the
boundary is empty.

2) Let D be an open relatively compact subset of M. Assume that h
is an adapted and non-positive process with hy = 0 for s > T A 7p and
fOT hsds = —1, which imply hs = 0 for s > T A 7p. Then the functions K,
o, a, B and 7 are all bounded on D and |h,| < 1. Moreover, condition (3.4)
can be simplified to

T
E [/ hg elo o (Xn)dlr g < 0.
0

The corresponding result is then the local version of the Hessian formula for
the heat semigroup.
3) As —(VNN,N) =0, we know that —VN > ¢ implies o < 0.
4) Assume II > 0. Then for X € T,M and x € OM, X = X; + X such
that Xy € T,0M and X3 = (X, N)N,
—(VxN,X)=—(Vx,N, X1) — (X, N)>(VyN, N)
- <X7 N><VX1N7 N) - <X7N><VNN7X1>
= _<VX1N7 X1> - <X7 N><VNN7 X1>
> J|X1|2 > —J_‘X‘Q.
5) One might naturally try to work with @, instead of Q: to define
M, (v,v), in order to avoid the term VNN. But we have already seen that Q)

is the limit of an), see the proof of [27, Theorem 3.2.1], which satisfy the
covariant It6 equation (2.1). We have

d(VdPr- Q" (), Q" () (X))
= (Vpean VaPrf) (@17 (), Q" (v)



18 L.-J. CHENG, A. THALMAIER, AND F.-Y. WANG

~ (VdPrf) (Rich (@ (1)), Q" (v) ) at
— (VdPr-of) (@ (0), Q™ (v))
+0(VAPr_ )(QF" (v), Q)" (v)) dt
VN (VAP )(Q (), @ w) i

SV V) (VAP f)(QF" (), Q" (v)) dt

— Q" (1)), N(X0))VAPr_ f(N(X,), Q" (v) dly
—n(Q{™ (v)), N(X¢)) VAPr_, f(Q\™ (v), N(X,)) dls

+ S (@Pr ) (VTN + RON)(QE (o), @1 (0)))
+ S (dPr_ (@R~ R(Z) + VRich) (@ (0), " (v)) dr

(86)  —VdPr f(R¥(Q" (v), Q" (v)))
The main difficulty is to clarify the limit of

n(Q(" (v)), N(X0)) VdPr_ f Q" (v), N),
as n tends to co. To this end, we even need information concerning VN
on the full vector bundle of the boundary if we use @Q); in the definition
of Mi(v,v) in the above proof, and then it is still non-trivial to check the
martingale property. In this respect, working with the functional Q; instead
of (); not only simplifies the calculation, it also doesn’t require additional
conditions.

15

To prove Theorem 3.1, we need the following two lemmata.

Lemma 3.3. Keeping the assumptions as in Theorem 3.1, we have

sup | [l w.0), B

t€[0,T]

T
< 3C(h)1/2{(3 + \/ﬁ) <E/ ( )ef() (Xp)dr+ [ o (X)) dl h2 dS)
0

1/2
< / /82 efo X)d?"-i—fo X)drh2d8>

1 1/2
+5 <E/ ¥A(X,) efo KT (X drtfg o (Xoydly h2dl> }
0

Proof. By the Lenglart inequality and the Minkowski inequality, we have

[sup [ i, )

te(0,T

1/2
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T/\Tk - 1/2
< 3E U h§|Wsh(v,v)2ds}
0

TNATy 9 1/2 3 TNATE 9 1/2
< 3E ( / 2tV ds> +<E ( / h2el?)| ds)
0 2 0
3 T ATy 9 1/2
(37)  +3E (/ h2[e®)] ds> :
0

where

€ = G, /0 " Q7 R(//dBy, O (1))@, (v);

~
O
3
—~
<
~—
~—
(oW
=

2 = Q, /0 Q, ' (d"R — R(Z) + VRicz)!(Qp(h(r)v
9 = Q, /0 Q: (VAN — R(N))*(Q(h(r)v), Qr(v)) di.

Then we have

T ATk 1/2
e[ e
0
1/2
<E Sup ’ggl)‘Qe— Jo K= (Xp)dr—[5 o~ (X;) dlr
s€[0,TATg]
TATE 1/2
(3.8) x E [/ h2 elo KT (Xr)drtfg o™ (Xr) dir ds} ;
0
and
d‘e*%fosK‘(XT Jdr—g Jg o= (Xr)dlr ¢(1 ‘2
< 2¢7 AT OB OO (R(j By, Qu(he)Qulv),60)
+em Jo KX dr=Jgom (X} di | gt (Qs(hsv), Qs (v ‘HS
< 26 I KO 5o (e (R aB,, Q) Qs(0), V)
(39)  +a(X,)2el K XHE 00 d2gs <,

which implies

E| sup [¢D2eJo K (Xn)dr—[gom(Xr)dir
SE[O,T/\Tk]

T ATy _ 1/2
([ " ieopacrizas) ]
0

T AT
+E [ / C (X,)2 el KX dr o™ (Xo)dis 2 ds}
0

<6E

19
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1/2
( sup  |eD e o K= a-<Xr>dzr>

s€[0,TATg)

T ATy 1/2
X ( / a(X,)2 elo KT (X drtfyom (Xe)dir 2 ds> ]
0

TNATk
+E [/ k a(Xs)z oJo K= (Xp) dr+ [§ o~ (Xr) dly Bg ds]
0

<6E

<R

= 26 sup  [¢(D[2 e Jo KX dr=s —Xndz,«]

se [O,T/\Tk]

TATy s _ ~
+ (1 + 185)E U a(X,)2 elo K~ (Xr)drJg o™ (Xr) diy ;2 ds] , 6>0.
0

Substituting the optimal choice § = é(?) + \/10), we get

E| sup [€V]e” Jo K= (Xr)dr— [ _(Xr)dlr]

SE[O,T/\Tk]

r pTATE s ~
< (3 + \/E)QE / a(XS)Q efd K= (Xp)dr+ [ o~ (Xr) dir hg d8:| )
LJO

Combining this with (3.8) and letting k tend to oo yields

T 11/2
([ vl
0 J

1/2
sup €D e J5 K™ (Xe)dr— 5 o™ (X0 dlr
s€[0,T

T 1/2
XE |:/ h?efosKi(Xr)dT-f—fosa'i(Xr)dlr d8:|
0

<E

T 1/2
< (3 + \/E)E [/ Oz(){s)2 efos K= (Xp)dr4[§ o~ (Xy) dlr Bg d8:| C(h)1/2
0
Moreover, for any € > 0,
\ 1/2
d(‘e 2f0K (Xs tfffo 7Xs dis (2)’ +€)

d‘e*%f K= (Xo) di=3 [y o™ (Xo)dls (2 >‘2

. 1/2
2<%32kK(&) sho .&dué2‘+5)

~1/2

— o= Jo K™ (Xo)dt—[§ o (Xs) dls <) e~z o KT (Xa)di=g [yom (Xo)dls ¢(2) ‘2 n 6)



SECOND ORDER BISMUT FORMULAE FOR NEUMANN SEMIGROUPS 21

— (Ricz + K_(Xt)g)( 2, ét@)) dt + (VN — o7 (Xi)g) <£t(2)’ 552)) dis

+ <(d*R — R(Z) + VRicz) (Qi(hv), Qs(v)), & )> dt]
¢ . 2 —1/2
< e Jo KT (Xo)di—fi o (Xo) dis () LK (X ds—3 [T o™ (Xs) dls 2)‘ +€>

x <(d*R— R(Z) + VRicz)*(Qe(hev), Q¢(v)), & )>dt
< B(Xy)ed Jo K- (X dt+3 fyo~ (X dls gt ¢ < 7.

Taking the integral on both sides, and letting € tend to 0 and %k tend to oo,
we then conclude that

‘gt(z)‘ < o3 Jo K™ (Xs)ds+3 [g o™ (Xs)dls

/ﬁ )ed o K- (5 artd 7o~ (X din f, g

With a similar argument, we have

¢

’5(3)’ < et LYK (Xo)dt+3 [y o~ Xs)dls/ v(Xs) oJo K~ (Xp)dr+ [ o~ (Xr) dir h di,.
0

These estimates together imply

Les[%pT ) / ); //sdBs)

T 1/2
< 3C(h)1/2{(3 +v/10) <IE/ a(X,)? oJo K= (Xp) drt [ o~ (X,) i, 2 ds>
0

1 T . 1/2
+3 (E/ B(X,)%els K- (Xn)drt [ o™ (Xr)dr j2 d8>
0

1 T . 1/2
+ 5 (E/ ,V(XS)Q ef; K~ (Xy) dT—l—fOS o~ (X,)dl, hg dl3> } 0
0

Lemma 3.4. Let D be an open relatively compact domain in M and x € D.
Fiz'T' > 0 and suppose that h is a bounded, non-negative and adapted process
with paths in the Cameron-Martin space LY2([0, T];R). Then for f € By(M)
and v € T, M,

(VAPr_, £)(Qu(hyv), Qu(hyv)) + (dPr_ o f) (W (v, hev))

—2dPr_y J(Qu(v) /0 (Qu(hav)., //«dBy)

— Prof(X) /0 (Wh(o, hav), //+dBy)
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(3.10) + Pr_¢f(X¢) ((/t@s(h v), //sdBs ) / Qs (hsv)[? d8>

is a local martingale, and in particular a true martingale on [0, T A Tp).
Proof. We first prove that for f € By(M) and v € T, M,
(3.11) M;(v,v) = VAPr_ f(Q:(v), Q¢ (v)) + (dPr_i f) (Wi (v, v))

is a local martingale where

Wi(v,0) =@y /0 O R(/)sdBy, O(0))Os(v)
=500 [ QU R~ R(Z)+ VRI)(@.(0),Qu(0) ds
0

(312 - 30 [ QTN — RO)(Qu(0). Qe

Let us recall some commutation rules which will be helpful in the subsequent
calculations:

dL = (tr V2 + V,)df — df (Ric* — (VZ));
VA(Af) = tr V2(Vdf) — (Vdf)(Ric* © id 4 id ® Ric* — 2R)

— df(d*R + VRic);
(3.13)  VA(Z(f)) = Vz(Vdf) + (Vdf)(VZ)} oid +id © (VZ))
+df(V(V2) + R(Z));
VA(Nf) = Vn(VAf) + (VAf)((VN) @id +id © (VN)F)
+df(V(VN)*+ R(N))

where Vdf(VN ®id(v,v)) = Vdf(V,N,v). Then by Itd’s formula we have
AMi(0,0) = (V 1, an,VPr-)(Qulv), Qu(0)) + (V joan APr—ef) (Wi(v,v))
+ (VdPrf) (DQi(v), Qu(v)) + (VAPr_.f) (Q:(v), DG:())
+ (VAP f)(Q1(v), Qr(v)) dt
F (V2 4 ) (VAP f)(Qu(0). Qr(r) d
+ SVNTAPE)(@il0), o) iy + 5V (dPr o f) (Wi(o, ) dl
+ (dPr—¢ f)(DWi(v, v)) + (D (dPT tf), DWi(v,v))
(3.14)  + 0y (dPp_ f)(Wi(v,v)) dt + = (tr V2 4 V) (dPr_ o f)(Wi(v,v)) dt.

Taking into account the commutation propertles (3.13) and according to the
definition of @), for the terms on the right side of (3.14), we observe that

OU(VAPr_of)(Qi(v), Qu(v)) dt + (VdPr_ ) (DQi(v), Qu(v))
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+(VdPrf) (Qi(v),DGy(w))
(V2 4 V) VAPr_ ) (Qilo). Qu(w)
+ (VAPr_of)(Rich,(Qr(v)), Q:(v)) dt — (VAP f)(RH(Qu(v), Qu(v))) dt
4 %dPT_t F(d"R — R(Z) + VRic2)!(O1(v), Qu(v))) dt
+ (VAPr_.f) (—Rich(Qu(v)) dt + (VN (Qu(v) dlr, Qu(v))
_ —% ((tr V2 + V2)VAPr_.f) (Qu(v), Ou(wv)) dt
— VdPr_ f(RH(Qu(v), Qs(v))) dt
+ 5dPr_f (@ R~ R(Z) + VRic)(@u(v), Qi(v))) dt
+VdPr-of (VNF(Qi(v)), Qe(v) ) dy.

Then using the definition of W;, we calculate the quadratic covariation of
dPr_.f and Wi(v,v) as

[D(dPr_f), DWy(v,v)] = [v s dPr_of, R(//:d By, Qt(v))Qt(v)]
— tr (V.dPr_f, R(-, Qy(0))Qy(v)) dt
= VdPr 1 f(RP(Qu(v), Qu(v))) dt

According to the definition of W;(v,v), we have
(dPr_if)(DWi(v,v)) + (OedPr_i f)(Wi(v,v)) d
= (@Pr-1f) (R(//dBy, Q1)) Q1(v)
~ J(@ R~ R(Z) + VRie2H(Qi(0), Qulo )
— S(VAN — RON)HQu(v), Qul)) dly + 3 (VNP (Wiv, ) e
- %(tr V2 4+ V2)dPr_i f(Wi(v,v)) dt.
We conclude that
(VaPr-1f) (PQ:(0): () + (VaPr-1f) (Q:(0). D))
+ 0,(VAPr_ £)(Qs(v), @ (v)) dt

(
)

+ (Y + V) (VdPr ) @ulw), Qulo) dr

+ (dPr—i f)(DWi(v,v)) + [D(dPT tf) DW¢(v,v)]

+OUAPr( f)(Wilv, ) i + L (tr V2 + V) (dPr_of) (Walw, )
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AP (VN = ROV (Gu(0), 01 (v))
(dPr_f)((VN) (Wi (v,v))) dly
+§Vde_tf<<VN>ﬁ<Qt<v>>,@t<v>>dzt
(3.15)
+ VAP F(Qul), (TNPHQulw)) die

On the other hand, for the terms in (3.14) related to the normal vector on
the boundary, we have

VN (VAPr_ ) (Q:(v), Qi (v) dlt+VN(dPT Wi (v,0)) dly

l\')\v—ll\D\

)
= —VdPr_¢f ((VN)*(Qu(v)), Qi(v )) dly = VAP f(Qe(v), (VN (Qu(v))) dle
—dPr— f((V°N + R(N))(Qi(v), Q:(v))) dly
—dPr_ f((VN) (Wy(v,v))) diy.
Combining this with (3.14) and (3.15), we obtain
dM;(v,v)

= 2(aPref) (V2N + ROV)@1(0), Q) (X6) i~ (VNP (Wifo.0)) (X0t )
— 5(@Pr_f) (V2N + RON))(Qi(), Qu(w)) ) (Xo)
+ 5 (@Pr_f) (VNP (Wilo,)) (X0 dl = 0,

In other words, M;(v,v) is a local martingale.
Let

M (v,0) = VAPr_y f(Qy(hev), Qs (v) + (APp—o f) (W (v, ).

From the definition of Wtﬁ(v, v), resp. Wi(v,v), and in view of the fact that
M;(v,v) is a local martingale, we see that

(3.16) M (v,v) — /0 (VAPr_sf)(Qs(hsv), Os(v)) ds

is a local martingale as well. Replacing in MZL(U, v) the second argument v
by hiv, we further get that also

M (o, ﬁ(t)v)— / (VAPr_,)(Qa(hav), Ou(uv)) ds
VdPT F(Oulhe), Oulhev)) ds — /0 (AP )W (0, hv) ds

+ /O /O (VAP )(Or (hy0), O, (hov)) dr ds
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(3.17)

is a local martingale. Note that Mfl(v, hw) = Mti‘(v, v) hy. Exchanging the
order of integration in the last term shows that

MP (v, huyv) — / (VAPr_s f)(Qs(hsv), Qs(hev)) ds
0

- /O VdPTfsf(Qs(ilSU)v QNS(hSU)) ds

- /O (dPr— f) (W} (v, hy)) ds

+ / (VdPr_, £)(Qr(hy), O (e — hp)v)) dr
0

= M"(v, hyv) — /O (dPr_f)(Wh(v, hyv)) ds

(3.18) ~2 /0 VdPr_f(Qs(hsv), Qs(hsv)) ds

is a local martingale. Moreover, since N Pr_f(X;)1{x,cony = 0 and by the
It6 formula, we have

(3.19) Pr_.f(Xy) = Prf(x) +/0 dPr_sf(//sdBs).

The usual integration by parts yields
¢

(3.20) /0 (dPr_o f)(WH(v, hov)) ds — Pr_f(Xy) /0 (Wh(v, hv), //, dB,)

is a local martingale.
On the other hand, from the It6 formula and the commutation rule (3.13),
we obtain

APy f(@()
= VAPl dBy, Qi) ~ 5 A(APr 1 f)(Qu(w)) dt
+ 56 V2 APr f)(Ql0)) dt + 5V APy £)(@:(0) di
— 5P (RIE(Qu(v) dt — SdPr (TN)H(Qile) dl
= VdPrf(/f:dBr, Qu(w) + 5V (APr—if)(Qu(w) dly
— S dPr F(VNH(@i (o) di

= VAPE ([} ABy, Qo) + 5AN(Pro)(@(w) i
= VdPr_f(//1 dB:, Q4(v)).
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It thus follows that

dPr_if(Qi(hw)) = dPpf(v) + /0 (VAPr_f)(//s dBs, Qs(hsv))

t
+ / dPr_,f(Qs(hsv)) ds.
0

Integration by parts yields that

/O(VdPT_Sf)(QS(th),QS(IN"LSU))ds

AP o f Qi) /0 (Gs(hav), //s dBy)

t
0
is also a local martingale. Concerning the last term in (3.21), we note that
¢

/ APy, f(Qs(hev)) ds / (Qu(hsv), /s dBY)
0 0

(3.21) ; /0 dPr_ f(Qu(he)) ds / (@u(hav)//+ dB)

-/ AP F (@) ([ @t reany)

is a local martingale. Combining this with (3.21) we conclude that

/0 (VdPT—sf)(Qs(hs'U), Qs(iLS’U)) ds
AP f(Qu(uv) /0 (Qs(hev), //s dBy)

(3.22) + /O dPr_,f(Os(hsv)) /0 (Onlhev), /2 dBy) ds

is a local martingale. Using the local martingales (3.20) and (3.22) to replace
the last two terms in (3.18), we conclude that

(VAPr—_ o f)(Qe(uv), Qe (hev)) + (APr— ) (W] (v, hyv))
—PT_tf(Xt)/O (Wh(v, hyv), //s ABy)
—2dPr_ f(Qu(v) / (Qs(hsv), //+ dBy)

(3.23) +2 /0 dPr_,f(Qs(hsv)) /0 S(Qr(hrv),//TdBr>ds

is a local martingale as well. On the other hand, by the product rule for
martingales, we have

([ @tna st>>2 - [1@maras
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(324 =2 [ ([ @) 08.) @t o0

which along with (3.19) implies that

Pr o f(X) (( / (Oulhev). /s dBS>>2 -/ 1 Qulha)? ds>

t s
~2 [ AP (@) [ Qo) aB) s
is a local martingale. Applying this observation to (3.23), we finally see that
(VdPr_.f) (Qt(iltv)y Qt(ﬁtv)) + (dPT—tf)(Wth(Uv Btv))

—2dPr f(Qu(ev)) / (Qs(hsv), //+ dBy)

0

 Pruf(X) /O (W (v, hev), //+ dB,)

T Prof(X) (( / (Qulhav). /s dBS>)2 -/ 1Gulhan)P? ds>

is a local martingale. This completes the proof. ([l

With the help of Lemma 3.3 and 3.4, we are now in position to prove
Theorem 3.1.

Proof of Theorem 3.1. Let h = 0 for s > (' — ¢) A 7,. Let By, := {z :
po(x) < k} for k > 1. By the strong Markov property, the boundedness of

P.f on [e,T] x By, and the boundedness of |dP.f| and [Hessp, f| on [¢, T] x B
for f € By(M), it follows from Lemma 3.4 that

(T—e)ATg -
(VdPyf)(0,0) = —E | f(X3) /0 (W (5w, 0), //+dB)

(T—e)A1y 2 (T—e)A1
F(x5) (( / <Qs<h§v>,//sd35>> - / Qs(hiv)2d8>

Letting € | 0, we have
(VAPrf)(v,v)

ey T W (), Jlas)

FXE) (( / ™ Gulh), //Sst>>2 - o IQs(hsv)|2ds>] |

+E

| I

+E
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By Lemma 3.3 and the observation that there exists a constant ¢ > 0 such
that

s | ([ @osana) - [T 1amora) |

T
<cE { / elo B (Xa) dst [ o™ (Xa) dls 2 ds} 7
0

we complete the proof by Fatou’s lemma. [l

3.2. Global Bismut type Hessian estimates of Neumann semigroup.
In this subsection, we continue the discussion on explicit global estimates
for Hessp,; under suitable conditions.

For e > 0 and v > 0, let

Dy :={p € C3(M): inf¢=1, Nlogp > o~ + e},

and consider the following condition:

(C) The functions K,o in (3.1) and «, 3,7 in (3.2) are constant, and
there exists ¢ € D, for some € > 0 such that

Ky 4 = sup { — Llog ¢ + 2q|V10g¢\2} < 00
xeM

for some positive constant ¢ > 1.

By [27, Section 3.2], such ¢ can be constructed if OM has strictly positive
injectivity radius, the sectional curvature of M being bounded above and
Z bounded. In particular, if the manifold is compact, this condition are
met automatically. Under the global bounds of condition (C), it has been
explained above that |V P f| is bounded on [0,7] x M for f € C}(M). Next
local Bismut formulae, as the one in Theorem 3.1 for Hessp, ;, permit us to
show that for any ¢ > 0,

(3.25) |Hessp¢| is bounded on [e,T] x M.

This requires for x € M and a given relatively compact open neighborhood
D of z, the construction of an adapted real process h; such that h; = 0 for

t>T AN 7p and fOT/\TD h; dt = —1 with the property that

T
sup E* [/ h?p dt] < 00, and sup E?[e?7 T9)l] < 0
zeM 0 zeM

for 1/p+1/q =1 and p,q > 1, where 7p := inf{t > 0: X} ¢ D} denotes
the first exit time of D, see estimate (3.5). In Appendix below we briefly
sketch the construction of processes h satisfying the required properties. To
this end, we also introduce the conformal change of the metric such that the
boundary under the new metric is convex in Remark 5.1 below as well.
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Theorem 3.5. Assume that condition (C) holds. Let h be a non-positive
and adapted process satisfying f(;[ hsds = —1 and

T T
E® U (h2 4+ h2)eo b ds+/ h2eo ls dls] < 00
0 0

where hy = 1+ fot hsds. Then for f € By(M) and v € T, M,
Hessp, f(v,v)(x)

= _E° [f(XT) /0T<Wf(v, hsv), //sst>]

F(Xr) (( / (G, 1z

Moreover for T >0 and f € By(M),

2
+E*

T ~
_/ |Qs(hsv)|2d8>] .
0
[Hesspy.f|(z) < <a + gﬁ-i- ;) TR [ (Pp )2 (2)
VK Tge {eolT}l/

2 T . 2
E” e2%' dl,
2T (/0 )

Proof. For the adapted process h, we see from Lemma 3.3 that

1/2

(Prf?) ().

1‘

sup | [ bl w0), .8

t€[0,T]

< 3K (Ex/o aléhgds>l/2
(v 2] (o [z

< 00,

N2

and
2
EZ‘

(Ew /0 ' e s p2 dls)m}
‘ ([ @ jramy) - [ @narias ]
<28 TR </0Teff‘ls B§d5> < 00

Moreover, by (3.25) both |VP f| and |Hessps| are bounded on [e,T] x M.
We complete the proof by following the steps as in the proof of Theorem 3.1
to obtain from (3.10),

Hess py 1 (v,0)(z) = ~E” {fom /0 (W (o, hew), //sstﬁ



30 L.-J. CHENG, A. THALMAIER, AND F.-Y. WANG

F(Xr) (( / T<@s<hsv>,//sd33>)2 -/ ! @smsv)y?ds)] |

Indeed, using the mentioned boundedness on [e,T] x M, we get (3.26) first

for f replaced by P.f and from this (3.26) is obtained by letting € tend to
zero. In particular, letting hy = —% when s € [0,7] and h(s) = L=* for

s € [0, 7], then

(3.26) +E?

[Hesspr ()

271/2

< (PrlfI?)? [E ( /0 T<Wf(v, hsv>,//sst>>

T
L a(Prlf1R) 2 /0 E? (el Ko ]2 (5) ds

< Z(PrlfP)? (Ex { /OT\@S /O s Qr1R(//rdBr,Qr(ﬁ(r)v))ér(v)fds]>1/2

M|

+ <Ex{/OT’Qs/OSQ;1(d*R —R(Z)+ VRiCZ)ﬁ(QT(iL(r)v)7 O, (v)) d’r’zds] ) 1/2

)]

N~ N

_l’_

([ [ [ [ @7 w2 - R @i, Qe

9 _ T
b o (Prl ) () e T/O Ee[e')ds

1/2
(Prlf1%)"2. O

< (a +GVT+ ;) T B o) (Pr| )2
_ 1
+ Y eK TE.Z’ [ealT:| /

2 T . 2
E* e27 dl,
20/T </0 )

The following is a direct consequence of the estimate in Theorem 3.5 by
letting ¢ = 1 in the condition (C).

Corollary 3.6. Assume that condition (C) holds with 0 =~ = 0. Then

VT | 2\ -
|HeSSpr‘ < (a + 7,3 + T e T(PT‘f|2)1/2

forT >0 and f € By(M).

3.3. Hessian formula with gradient terms for Neumann semigroup.
The main theorem in this section relies on the fact that under (B), along
with suitable conditions, the local martingale M; defined in (3.11) is a true
martingale. This fact will be exploited for further applications.
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Theorem 3.7. Assume that condition (C) holds. For T > 0 let h €
C([0,T7) such that fOT hydt = —1. Then for v € T,M and f € C}(M),
(3.27)

T -
Hessp, f(v,v) = E [df(QT(v))/O (Qs(hsv), //sdBs) + df (Wi (v,v))

where Bt =1+ fg hsds. Moreover, for T > 0,
1 , _
]HessPTf| < (Oé\/f—i- gT + \/T) E [ea ZT} KT vaHoo

T -
+ %E |:e2a_lT/0 027 ls dls:| eK TvaHoo
Proof. Recall that by (3.16)
VdPr_ f(Qu(rv), Qe(v)) + (dPr—of) (W (v,0))

- /O (VAPr_s )(Qs(hsv), Qs(v)) ds

is a local martingale. On the other hand, we know from the proof of Lemma

3.4 that
t

t ~ ~ ~ ~
| (VAP )@, Qul0) s = AP £ (@) [ (@), /1B
is a local martingale as well. We conclude that

VdPr_ f(Qe(hyv), Qu(v)) + (APr—o f)(W (v, v))

t
~ AP f (@) [ (@), 1B
is a local martingale. As ||R||cc < 00, Ric > K for some constant K, and
II > o for some non-positive constant o,
|[d*R + VRic}, — R(Z)|| <oo and ||[V2N +R(N)|_, <o,
we first get

sup E[Qs(v)]* < sup e F*E[e” 7] < o,
5€[0,T] S€[0.T]

and then
- _ _ 1/2 _ N 1/2
E [|W[LAT,€(U,U)|] <E [eK EATte ka} E [e*K tATk =0 lenry | (1) \2]

ATk

+ 2B [162,1] + 5E [12, ]

2t o 1/2
<aE [eK tro lf} / [/ Ele™ & 577 ]2 ds]
0

o1

2" g (Bds + ’Ydls):| :

_ _ t _
(3.28) +%IE [eK2t+U2[t / X+
0
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where £, €2 and £€G) are defined as above. Letting k tend to oo then
yields

E [|Wtﬁ(v,v)\] < 0.

Recall that |[VPf] is bounded on [0,7] x M and |VdP f| is bounded on
[e,T] x M for 0 < ¢ < T for f € C}(M), see Remark 5.4. Hence we
may again the claimed formulas show first for f replaced by f. := P.f and
then take the limit as € | 0 in the final formulas. Hence we may assume
that |VPf| and |VdPf| are bounded on [0,7] x M, so that (3.16) is a
true martingale. By taking expectations and passing to the limit as € | 0,
inequality (3.27) is obtained.

Let now hy = (T — s)/T for s € [0,T]. It is straightforward to deduce
from (3.27) and (3.28) that

T 1/2
Hessp, ;| < ||V f]loo e KT/2 Ble!/2]E [/ Q5|21 ds]
0

+ IVl [[WE v, 0)l]
B 1\ gl ootn] i
< IV flloo (a\/f+2T+ﬁ)E[el }eK T

T
+ %HVfHOOE (eé"lT/ e29ls dl5> T
0

which shows the second claim. O

For manifolds with specific boundary properties, more refined results can
be derived.

Corollary 3.8. Assume that the boundary OM is empty or I > 0 and
V2N + R(N) = 0. Moreover, suppose that Ricy > K > 0, a := || R||oo < 0
and B := ||VRic§/ +d*R+ R(VV)||e < 0.

(i) If Ricy > K, I1 >0, then for f € CL(M),

1 o
_|_ﬁ e_Kt/Q(Pt’VfF)l/Q.

_.I_
foteK’" dr VK K

|HeSSPtf | <

(ii) If Ricy = K, I1 =0, then for f € CL(M),

1 +da+@
fgeKTdr VE K

[Hessp, fus < e K2(p |V )Y

Proof. If I1 > 0, and Ricy > K, then by [27, Corollary 3.2.6] we know that
|[VPf| is bounded on [0,t] x M. Moreover, V2N + R(N) = 0, we choose h
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such that |h| < 1 and

- 1/2 t 1/2 t
(E|Wth(v,v)‘2) ! < e K2 </ e s ds> + geKt/Q/ e Ks/2 g
0 0

o Kt/2 | B

< —

Combining this with Theorem 3.7, we conclude that

t
|Hessp, ¢| < (P|Vf|?)1/2 e K1/ </ e K5 p2(s) ds)
0

RV (S DY et

o K2

1/2

The following choice of h:

(3.29) hs = — s € 0,1,

fg ek dr’
then leads to the first inequality.

If II = 0 and Ricy = K, then Q; = e %2 //; and from the conditions,
the local martingale in (3.11) is a true martingale, we then obtain

HessPtf(v, w)=E e Kt HeSSf(//tvv //1w)

rekrar (g [ e R RO/ aB, o))

- %e_Kt/Q df (//t /O e H3/2 J/7H(d*R — R(VV) + VRicy ) (//sv, [/ sw) ds) ] .

This implies

t 1/2
|HeSSPtf|HS S e_Kt Pt|HeSSf|HS —|— <dae_Kt/2 </ e_KS dS)
0

d t
(3.30) + fe‘Kt/Q/ e He/2 ds) (PIV £33,
0

On the other hand, by It6’s formula and the condition II = 0 we have
1
dVP_ fI*(Xs) = 3 (LIVP_sf|*(Xs) — (VPi—sf, VLP,_s f)(X;)) ds
+(VIVP—f[*(Xs), //sdBs), s €[0,1].

Using the Bochner-Weitzenbock formula and the assumption Ricy = K, we
obtain

d|VP_sfI*(Xs) > (Ricy (VPi—s f, VP_sf) + [Hessp,_ lis) (Xs)ds
+ (VIVP s f*(Xs), //sdBs)
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= K|VP,_sf[*(Xs)ds + [Hessp,_ flfis(Xs) ds
+ (VIVP_of|*(Xs), //«dB).

From this, we conclude that
t
BIVf|? — K| VPfI? > / oK (t=9) Ps|HeSSPt75f\12{S ds.
0

By the inequality of Cauchy-Schwarz, this yields
e_Kt/z(Pt|Vf’2)l/2

t
> (/ e_KS(PS|HeSSPtSf|HS)2dS>
0

K 1/2
> <eKtl) / Py|Hessp, , f|us ds.
- 0

Using inequality (3.30) obtained before, we have

t 1/2
e—Kt/?(Pt|Vf|2)1/2 > </ eKs d8> |HeSSPtf|HS
0

da |, e3Ks (Jge KT d7“)1/2 ds N g [, ez ks I e K7/2 qrds

\/fgem’ dr 2\/fgeK7“ dr

x (PIVfIA)Y,

1/2

which implies

—Kt/)2 d t 1Ks —Kr d 1/2d
[Hessp, rlns < (Pt|Vf]2)1/2[ e n ozfo ez (tfoKe 7”) s
VI ar Joet dar

g [, LS (fy e Kr/2 dr)ds
T 2 t Kr
fo et dr

_ 1 da  dp
< (B|Vf[})2 e K2 +—=t—. O
( fgem’ ar VE K)

4. STEIN METHOD AND LOG-SOBOLEV INEQUALITY
In this section, we consider L = A — VV for V € C?(M) such that
p(dz) = eV @ vol(dz)

is a probability measure where vol(dz) denotes the volume measure on M.
Let P, = 3Lt be the contraction semigroup generated by L on L?(u) with
Neumann boundary conditions. In [9], we used the Hessian formula to es-
tablish an HSI inequality on manifolds without boundary, which contains



SECOND ORDER BISMUT FORMULAE FOR NEUMANN SEMIGROUPS 35

the new quantity called Stein discrepancy and in a certain sense improves
the classical log-Sobolev inequality.

To establish such log-Sobolev inequalities on manifolds with boundary, we
first adapt the definition of Stein kernel and Stein discrepancy to manifolds
with boundary. A symmetric 2-tensor 7,: M — T*M x T*M on M is said
to be a Stein kernel for a probability measure v on M if 7,(v,w) € L'(v)
for every v,w € T, M, x € M, and

/(VV, Vi)dv = /(T,,,Hessf>Hs dv, feC¥ (L),
where VV is the first order part of the operator L and where
CY(L) ={f € C®(M): Nfloar =0, Lf € By(M)}.

/Lfduz/aMN(f)dMZO

for f € CRP(L), it is easy to see that the identity map id is a Stein kernel for
1b.

Since

Definition 4.1. Let 7, be a Stein kernel for v. The Stein discrepancy is
defined as

S(v| ,u)2 = inf/ |7, — id|%S dv,
M

where the infimum is taken over all Stein kernels of v, and takes the value
400 if no Stein kernel exists.

Let us first recall the classical log-Sobolev inequality on Riemannian man-
ifolds when the boundary is convex. Assume that

Ricy := Ric+ Hessy > K, 11 >0

holds for some positive constant K. Then the classical logarithmic Sobolev
inequality with respect to the measure p indicates that for every probability
measure dv = h dp with smooth density h: M — R,

1
H(v|p) < 5=1(v|p),

where
H(v|p) = /hloghdu = Ent,(h)

is the relative entropy of dv = h du with respect to p and

2
rvln = [ au = n,m)

the Fisher information of v (or h) with respect to p. This result is known as
the Bakry-Emery criterion due to [2] for the logarithmic Sobolev inequality.
Let us recall the following observations.
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Lemma 4.2. Assume that
Ricy > K and 11 >0

for some positive constant K, and let 7, be a Stein kernel for dv = hdp
where h € C§°(M). Fort > 0 let dvt = Pthdu. Then

(i) (Integrated de Bruijn’s formula)

1 o
H(v|p) =Ent,(h) = 2/ I,(P;h) dt;
0
(ii) (Exponential decay of Fisher information)
L(Ph) =TI p) <e X' I(w|p) =e X1 1,(h), t>0.

PT‘OOf. Since N(PtflogPtf) =0 and (%L _ %) (Pthlog Pth) _ ‘V;;i};lp’
have

(P.hlog Poh
H(u|u):/ hloghdu = — // t Og d(Phlog Bih) 4\ o,

_ /0 (/M (2L _ %)(Pthlog P.h) du> dt

1 [> [ |[VPh|?
= — d dt-
2 /0 w Pl

The second assertion can be checked by observing first from the derivative
formula that

|VPh|? < e K1 (PAV(\/E)Q{Y < 4e X Ph) B|VVh|?
which implies

|V P;h|? / et (Psh)P|VV/h|?
I,Ph)= | 22 du<4 AL B el B |
ulFeh) /M Pih = Me Ph a

:4/ e_KtPt]V\/EPdM:Zle_Kt/ \VVh|? du
M M
=e M I(w|p) =e X1, (h). O

All expressions should be considered for h + ¢ as £ | 0. We continue our
discussion under the condition that V2N + R(N) = 0 and —VN > 0. The
following assertions describe the relationship between the relative entropy
and Stein discrepancy.

Lemma 4.3. Assume that a := ||R|jec < 00, B := ||VRic%/ + d*R +
R(VV)|oo < 00 and

V2N + R(N) =
Let dv = hdp for h € C§°(M).
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(i) If Ricy > K, 11 > 0, then
2
1 « I5;

I,(Ph) < d? + + =] e EtS2w|p).
N( t ) fOteKr i \/ﬁ K ( ’ )
(ii) If Ricy = K, 11 =0, then
2
1 da d _
I,(Ph) < b e KES2 (v | ).

+ =t —
fg okrqr VE K
Proof. Let g; = log P,h. By the symmetry of (P;);>o in L?(u),

I, (Ph) = —/(Lgt)Pthdu = —/(Lptgt)hdM = - /LPtgt dv.

Hence according to the definition of Stein kernel and since Pig; € CR7(L),
we have

I;L(Pth) = — /<id7HeSSPtgt>HS dv — /<VV, VPtgt> dv

= /(7'1, — id, Hessp,g, )us dv.

This argument is due to [14] and connects the Fisher information to the
Stein discrepancy. We first prove assertion (i). By the Cauchy-Schwarz
inequality,

L.(Ph) = /(T,, —id, Hessp, g, )us dv

1/2 1/2

< (/ |1, — id\%s du) </ \HessPtgt\%S dl/>
1/2 1/2

<d (/ 17, — id|g dy) (/ ]HessPtgtIQdu)

1 1
1 2 2
<d ft P + \/O% +§ et </ 1T, — id|Zg dl/> (/Ptht2 dl/>
g€ T dr

where Corollary 3.8 is used for the function g, = log P;h. Since

/Pt|Vgt|2d1/ = /Pt|Vgt|2hdu:/|Vgt|2Pthdu

_ [|IVPhR?*
- Pth dﬂ - IH(—Pth)a
it then follows that
2
1 Q@ B
I,(Ph) < d? + + = e_Kt/Tl,—idQ dv.
H( t ) fOteKr i \/? K | ‘HS
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Taking the infimum over all Stein kernels of v, we finish the proof of (i).
Along the same steps, item (ii) can be proved by means of Corollary 3.8 as
well. O

Using the lemmata above, we are now in position to establish the following
result.

Theorem 4.4. Assume that o := |R||cc < 00, B := ||VRic§, + d*R +
R(VV)|loo < o0 and
V2N + R(N) = 0.
Let dv = hdp with h € C5°(M).
(i) If Ricy > K, 11> 0, then
1 2 o ,8 2 2 d2(1 + 6) 2
< 4= _ 2 T=
H ) < g (PU+) (T + ) Swlm) A ) - =5 8w
d*(1+HKS* (v | p)

2 a AN * 2 1 2
(11w - (1 +2) (S + £) S2w W) + R0+ HES2v|p)
for every e > 0. Moreover, if « =0 and =0, then

d? _, I
< — —_ ] .
Hv|p) < 25’ (1/|,u)ln<l—|—d2KS2(V|lu))
(i) If Ricy = K, 11 =0, then

HO ) < 5 (@0e) (o §)252<vru>) A p)

X In

R
. ( (L+ DES(v| ) )
2
(11w - @0 +e)(S+ £) S20 1) Vo+ 1+ HES2 (v | p)

for every e > 0. Moreover, if « = 8 =0, then

1
H < =52 In{l+———<].
w1 < 58w 0 (14 o )
Proof. We only need to prove the first estimate. To this end, we write
I =1I(v|p) and S = S(v|u) for simplicity. By Theorem 4.3 and Lemma
4.2, we have that for every € > 0,

oo

1 e 1
H(u],u)—Q/O IH(Pth)dt+2/ L,(Ph) dt

u

1 u oo K (o]
<-inf¢A [ e M Adt+B | g R
< 211Lr>10{ /0 e dt + /u oKi(eKT 1) dt—I—C/u e dt}
1 Al — e Ku) 4 C e Ku oy
= — inf B d
2520{ K * /0 1—r
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where

A=I(v|p): B=d2<1+i>52(1/|u);

2
C=d*(1+e¢) <j%( + f{) S%(v | ).

It is easy to see that if A < C, then inf is reached when u tends to oo; if

A > C, then inf is reached for e** = ’LFE%CM so that

C 1 A-C
< — 4 = i
H(v|p) 5 +2Bln(1—|— >

We conclude that

CANA 1 (A-C)VvoO
H < —Bln(14+-—F+—+——].
Win s = *3 n<+ BEK >
The rest of the proof is the same replacing B by
1
<1 + €> S%(v| ).
The details are omitted here. O

Let (M, g) be a connected complete Riemannian manifold M. Considering
the specific case that Hessy = K > 0, then by Obata’s Rigidity Theorem
(see [20, Theorem 2] or [30, Theorem 3.4]), M is isometric to R™. The
following corollary shows that the result is consistent with Ledoux-Nourdin-
Peccati [14] for the Gaussian measure on the Euclidean space R".

Corollary 4.5. Let (M,g) be a connected complete Riemannian manifold
with boundary. Assume that Hessy = K > 0, I = 0, and V2N = 0. Let
dv = hdp with h € C§°(M). Then,

I(v|p) )

1
I(v|p) < 552@ | 1) log <1 Wz oam

Proof. From the condition Hessy = K > 0, we know that the manifold M is
isometric to R™, i.e. ||R||c = 0, VRicz = 0 and d*R = 0. Then by Theorem
4.3 (ii),

K
I, (Ph) < m52(’/’ﬂ)-

The assertion can be obtained by a same arguments as in the proof of The-
orem 4.4. O

5. APPENDIX

In this section, we introduce the ways to construct a sequence of hy such
that when k tends to oo, the limit of hj; is a deterministic function which
belongs to C1([0,T]). Before this, let us first introduce the way to make
conformal change of the metric such that the boundary is convex under the
new metric and estimate the local time as well(see [27]).
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Remark 5.1 (Conformal change of the metric). We start with a conformal
change of the metric g. Since ¢ € D, we have Il > 0 > —(07 +¢) >
—Nlog ¢ and the boundary OM is convex under the metric ¢’ := ¢~2g. Let
A’ and V' be the Laplacian and gradient operator associated to the metric
g'. Then

L=¢ %A +¢*(Z+ (d—2)Viegg)) = ¢ (A + Z)

where Z' := ¢*(Z + (d — 2)Vlog¢). Let p'(z,y) be the geodesic distance
from x to y with respect to the metric ¢’ on M.
Furthermore, let

Us = 67 (1) Pl Vir i) = F(s)Us, 1< <d,

where {Vi}?:l is a g’-orthonormal basis of T, M, Pé(o) +(5) denotes parallel
displacement from x to y with respect to the metric ¢’ and f(s) = 1A
Then J;(0) = 0 and Ji(p') = ¢~ ' (y) Py, Vi, 1 < i <d,

¢’2(A’+Z’) Pz, ) ()

s
plz,y)AL”

<Z / LIV — (B G 3 3 3) Hs) ds + 672 0) 20 (2. ()

< Z /Op {f’(5)2¢_2(7(5)) + f(5)2(|V{VUZ|/)2 _ f(8)2<R,(ﬁ/, Uz)Uz;’}/>/}(5) ds
i=1
+o W) 20 (2, ) ().
(5.1)
On the other hand,
o W) 20 (z, ) (y)

- /OP % {F(5)?672(v(s)(Z' (4(s)),7(5))'} ds

=2 [ f()f(s)o 2 (v(s)(Z (), %) (s)

0

(5:2) —2/ f(s Y($)(V1og ¢(v(s)), ¥($))(Z' (7(s)), (5)) ds.

Note that |¥| =
We then conclude from (5.1) and (5.2) that
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o2 (WA + 2 (m, ) ()
siff@%2@@HBMW%$%W+M—QWMWd@V
+2(2,4(5))(V10g 6,4(s)) } ds
+g[M%V@w%mmzmnW$@
,
’S 2 -2 s s
*”A £(5)2672(v(s)) d

' (z,y)A1
<K= Kpaa)+d [ s ) ds

9 o' (z,y)A1
+ ﬁ /0 o2 (7(s))

P(z,y
X (Z(1(5)),%(s)) + (d — 2)(VIog ¢,5(s))| ds

d
< —(K — K/ (x, 2 Z|+ (d—2)|V S —
< (K~ K (e.)+2 s (7] +(d=2)IVo)() + s

Remark 5.2 (Estimate of local time). The next step is to check that for
a >0,

(5.3) suA%E’”[eM_lt] < ||gb||g§‘ exp (aKd),at) < 00,
xEe

(5.4) sup Ex[e("7+5)lt] < ||¢]|%, exp <K¢,t) < 00,
xeM

for ¢ € D, where
K¢ =sup {—L log ¢ + 2a|V log ¢]2}
M

and Ky := Ky for simplicity. By Ito’s formula,
_2a % 1. 9, | P
dp™**(Xe) = (Vo™ (X), [[1dBy) + S L™ (Xy) dt + SNG™>(Xy) iy

< (Vo2 (Xy), //+dBy) — a¢™>*(X4) (—Kp o At + Nlog p(Xy) dly)
< (Vo 2*(Xy), //1dBy) — agp?*(Xy) (—Kpadt + 0~ dly) ,
then

¢72(Xy) exp (—aKyat + ao 1)

is a local submartingale. Therefore, by Fatou’s lemma and taking into ac-
count that ¢ > 1, we get

E [¢_20‘(Xt) exp (—aqu’at + oo™ lt)] <1,
which proves (5.3) and (5.4).
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Remark 5.3 (Construction of ¢). We fist introduce the following condition
from [26] and give the estimate of ||¢| and K4 o. Using Condition (B),

F.-Y. Wang constructed a function ¢ € D (see [26, p.1436] or [28, Theorem
3.2.9] for the notation and result). Modifying his construction one defines

o~ 6(1) T1
log o(z) = 5 / (t6s) ~ )~ ds [ (eta) = ()" d

AT

where

cos Vkt — % sin Vkt, k>0,
(5.5) Lt) =< 1—0t, k=0,
cosh v —kt — smh v—kt, k<0,

and 71 := 1o A £~1(0) and
Ao i= (1 — £(ry)) /0 (0(s) — £(r))™" ds.
Then from the proof of [25, Theorem 1.1], we get:
(5.6) Ko <Ko= — +2(07)2a and ||¢]le <e7 9.
Remark 5.4 (Construction of h and applications to bound |Hessp ¢|). Let

D = B'(z, k) where B'(z,k) := {y € M: p/(z,y) < k} for some k > 0. We
search for an adapted real process h = hj satisfying fot (hx)sds = —1 for

t>T A7 and
T
R [/ (th)sds] < o0
0

where 75, is the first exit time from B(x, k). To hj we then consider

~ t
(hk)t:1+/ (he)s ds
0
so that (ilk)() =1 and (fzk)t =0fort>T AT1. For k> 0 let
/
ou(p) = cos (L) e Bl

Then set (hg)s = (ho Llg)s where a function h € C(]0,T]) is chosen so that
ho =1, hy = 0 with (h)’ = h and

fuls) = /0 02(X(2)) Ly <oy 1y

ou(s) = inf {r >0 /O 672(Xo(2)) du > s} .
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This construction is due to [22], the claim follows from [23, 22|, see the proof
of [7, Lemma 2.1] for the details. For this hg, we have

E [ /0 ) ds] _E [ /0 " (o 8 (516, (X ) ds]

_ / B2 (s)E [0, 7YX (2))] ds

0

where X'(x) denotes the diffusion starting at x with generator %OgL which
almost surely doesn’t not exit B'(x, k) by [22, Proposition 2.3.]. To estimate
the integration we use

4p —1

2

to obtain, via Ito’s formula, Gronwall’s lemma and the fact Np'(x,-) <0,
that

1, _
§9§L9k P2 — (2p — 1)0;, T [ VO[> — HkLGk]

E[6;, "2 (X(2))] < Ox ()~ 0H2 ecO0)s

where

4p—1
c(0k) = (2p —1) sup {(pz)\ve,f - ekwk} .
B’ (z,k)

Using 0y (z) = 1 and taking

T C(ek) ! —c(Ok)r/p
ht =1- p(]_ — e—C(ek)T/p) /O (§] dr

we obtain
TAT T 2p —c(Ok)s
2p c(bk) €
E UO . (s) ds] g/o ( , (0 o Ty ds
_ (<) 2p T 2c(0)T
- P (1 —e—c@x)T/p)2p — T2=1 "
Indeed, according to the definition of 6, we have
T
0 < —
VOl < o
and by the Laplacian comparison theorem
— (0 LOx)(p)
mp'(z,p)\ . (7P (z,p)\ 7 7o (z,p)\? 2
= cos <2k> sin <2k ar L @ @) +eos (THp ) g
mp'(z,p) [ (d—1) m?
< : K — Ky)p' —
2 2 K-K 2
< tim $)7 p'(x,p) <k,

Y 4k? 4 ’



44 L.-J. CHENG, A. THALMAIER, AND F.-Y. WANG
where

Ricyz + Llog¢ — 2|Vlog ¢|* > K — K.
We then conclude that

w2 (2d+4p+ )72 (K — Ky)n?
C(Gk)§(2p—1)<2k+( 7 L 5 )

Then by the local version of the Bismut type Hessian formula, we have

|Hesspy.f| ()

T 1/2
<3¢ sl [ [ hoe ]
0
B T -
X [(3+\/ﬁ)a+2] (]E"”/ e s ds>
0
T 1/2 9 T 1/2
+ 2 (E / ¢ ldl) 4+ (B / h3(s)e” b ds
2 0 3 0

ch(ek)T> 1/p\ 1?2

1/2

<357 fllsoll @l | e TV ( T3

X { ((3+ V10)a + g) (eFoT T)1/2 N el < ooT )1/2

2 \o~ + e

b

where ¢ € D, for small € > 0. When the manifold is non-compact, letting
k tend to oo yields

1/2

1/p
) o T 620(9k)T
+ 3 le s.aT /4 ( o

_ 2p—1pr_ 2 \1/2
[Hesspy (@) < 3™ T[] oo (o™ 5 (KR 1)

(i 2y ot (220

2 \o™ + e

for T'> 0. We can use the same strategy to construct ¢ € D,. by replacing
o~ with 0~ + e in Remark 5.3, where the estimates of ||¢|« and K, then
are modified as follows

d(o™ + ve)

+2(0" +72)% and ||¢]e < ez T
1

Ky <
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