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By methods of stochastic analysis on Riemannian manifolds, we derive explicit con-

stants c1(D) and c2(D) for a d-dimensional compact Riemannian manifold D with

boundary such that c1(D)
√

λ‖φ‖∞ � ‖∇φ‖∞ � c2(D)
√

λ‖φ‖∞ holds for any Dirichlet

eigenfunction φ of −� with eigenvalue λ. In particular, when D is convex with nonneg-

ative Ricci curvature, the estimate holds for c1(D) = 1/de and c2(D) = √
e
(√

2√
π

+
√

π

4
√

2

)
.

Corresponding two-sided gradient estimates for Neumann eigenfunctions are derived

in the second part of the paper.

1 Introduction

Let D be a d-dimensional compact Riemannian manifold with boundary ∂D. We write

(φ, λ) ∈ Eig(�) if φ is a Dirichlet eigenfunction of −� in D with eigenvalue λ > 0.

According to [7], there exist two constants c1(D), c2(D) > 0 such that

c1(D)
√

λ‖φ‖∞ � ‖∇φ‖∞ � c2(D)
√

λ‖φ‖∞, (φ, λ) ∈ Eig(�). (1.1)

An analogous statement for Neumann eigenfunctions has been derived in [5].
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Concerning Dirichlet eigenfunctions, an explicit upper constant c2(D) can be

derived from the uniform gradient estimate of the Dirichlet semigroup in an earlier

paper [10] of the third named author. More precisely, let K, θ � 0 be two constants such

that

RicD � −K, H∂D � −θ , (1.2)

where RicD is the Ricci curvature on D and H∂D the mean curvature of ∂D. Let

α0 = 1

2
max

{
θ ,
√

(d − 1)K
}

. (1.3)

Consider the semigroup Pt = et� for the Dirichlet Laplacian �. According to [10,

Theorem 1.1] where c = 2α0, for any nontrivial f ∈ Bb(D) and t > 0, the following

estimate holds:

‖∇Pt f ‖∞
‖ f ‖∞

� 9.5α0 + 2
√

α0(1 + 42/3)1/4 (1 + 5 × 2−1/3)

(tπ)1/4 +
√

1 + 21/3 (1 + 42/3)

2
√

tπ
=: c(t).

Consequently, for any (φ, λ) ∈ Eig(�),

‖∇φ‖∞ � ‖φ‖∞ inf
t>0

c(t)eλt.

In particular, when RicD � 0, H∂D � 0,

‖∇φ‖∞ �
√

e (1 + 21/3) (1 + 42/3)√
2π

√
λ ‖φ‖∞, (φ, λ) ∈ Eig(�). (1.4)

In this paper, by using stochastic analysis of the Brownian motion on D, we

develop two-sided gradient estimates; the upper bound given below in (1.8) improves

the one in (1.4). Our result will also be valid for α0 ∈ R satisfying

1

2
�ρ∂D � α0 outside the focal set, (1.5)

where ρ∂D is the distance to the boundary. The case α0 < 0 appears naturally in many

situations, for instance when D is a closed ball with convex distance to the origin. Note

that by [10, Lemma 2.3], if under (1.2) we define α0 by (1.3) then condition (1.5) holds as

a consequence.

For x � 0, in what follows in the limiting case x = 0 we use the convention

(
1

1 + x

)1/x

:= lim
r↓0

(
1

1 + r

)1/r

= 1

e
.
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Theorem 1.1. Let K, θ � 0 be two constants such that (1.2) holds and let α0 be given by

(1.3) or more generally satisfy (1.5). Then, for any nontrivial (φ, λ) ∈ Eig(�),

λ√
de(λ + K)

� λ√
d(λ + K)

(
λ

λ + K

)λ/(2K)

� ‖∇φ‖∞
‖φ‖∞

(1.6)

and

‖∇φ‖∞
‖φ‖∞

�

⎧⎨
⎩

√
e(λ + K) if

√
λ + K � 2A

√
e
(
A + λ+K

4A

)
if

√
λ + K � 2A,

(1.7)

where

A := 2α+
0 +

√
2(λ + K)√

π
exp

(
− α2

0

2(λ + K)

)
.

In particular, when RicD ≥ 0, H∂D � 0,

√
λ√

de
� ‖∇φ‖∞

‖φ‖∞
�

√
λ

(√
2e√
π

+
√

πe

4
√

2

)
, (φ, λ) ∈ Eig(�). (1.8)

Proof. This result follows from Theorem 2.1 and Theorem 2.2 below in the special case

V = 0. In this case, RicV
D = RicD � −K is equivalent to (2.1) with n = d. More sophisti-

cated upper bounds are given below in Theorem 2.2. �

By (1.8), if D is convex with nonnegative Ricci curvature then (1.1) holds with

c1(D) = 1√
de

, c2(D) =
√

2e√
π

+
√

πe

4
√

2
.

To give explicit values of c1(D) and c2(D) for positive K or θ , let λ1 > 0 be the first

Dirichlet eigenvalue of −� on D. Then Theorem 1.1 implies that (1.1) holds for

c1(D) =
√

λ1√
de(λ1 + K)

,

c2(D) =
√

e(λ1 + K)√
λ1

1{B>2A} +
√

e√
λ1

(
2α+

0 +
√

2(λ1 + K)

π
+ λ1 + K

4
(
2α+

0 +√2(λ1 + K)/π
)
)
1{B�2A}

with

B = √λ1 + K and A = 2α+
0 +

√
2(λ1 + K)

π
.
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This is due to the fact that the expression for c1(D) is an increasing function of λ and the

expression for c2(D) a decreasing function of λ. Since there exist explicit lower bound

estimates on λ1 (see [9] and the references within), this gives explicit lower bounds of

c1(D) and explicit upper bounds of c2(D).

The lower bound for ‖∇φ‖∞ will be derived by using Itô’s formula for |∇φ|2(Xt)

where Xt is a Brownian motion (with drift) on D, see Subsection 2.1 for details. To derive

the upper bound estimate, we will construct some martingales to reduce ‖∇φ‖∞ to

‖∇φ‖∂D,∞ := sup∂D |∇φ|, and to estimate the latter in terms of ‖φ‖∞, see Subsection 2.2

for details.

Next, we consider the Neumann problem. Let EigN(�) be the set of nontrivial

eigenpairs (φ, λ) for the Neumann eigenproblem, that is, φ is nonconstant, �φ = −λφ

with Nφ|∂D = 0 for the unit inward normal vector field N of ∂D. Let I∂D be the second

fundamental form of ∂D,

I∂D(X, Y) = −〈∇XN, Y〉, X, Y ∈ Tx∂M, x ∈ ∂M.

With a concrete choice of the function f , the next theorem implies (1.1) for (φ, λ) ∈
EigN(�) together with explicit constants c1(D), c2(D).

Theorem 1.2. Let K, δ ∈ R be constants such that

RicD � −K, I∂D � −δ. (1.9)

For f ∈ C2
b(D̄) with inf

D
f = 1 and N log f |∂D � δ, let

cε( f ) = sup
D

{
4ε|∇ log f |2

1 − ε
+ K − 2� log f

}
, ε ∈ (0, 1),

K( f ) = sup
D

{
2|∇ log f |2 + K − � log f

}
.

Then for any nontrivial (φ, λ) ∈ EigN(�), we have λ + cε( f ) > 0 and

sup
ε∈(0,1)

ελ2

de(λ + cε( f ))‖ f ‖2∞
� sup

ε∈(0,1)

ελ2

d(λ + cε( f ))‖f ‖2∞

(
λ

λ + cε(f )

)λ/cε( f )

� ‖∇φ‖2∞
‖φ‖2∞

� 2‖f ‖2∞(λ + K( f ))

π

(
1 + K(f )

λ

)λ/K( f )

� 2e ‖ f ‖2∞
λ + K( f )

π
.
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Gradient Estimates on Eigenfunctions 7283

Proof. Under the conditions (1.2), Theorem 3.3 below applies with L = �, KV = K, and

n = d. The desired estimates are immediate consequences. �

When ∂D is convex, that is, I∂D � 0, we may take f ≡ 1 in Theorem 1.2 to derive

the following result. According to Theorem 3.2 below, this result also holds for ∂D = ∅

where Eig(�) is the set of eigenpairs for the closed eigenproblem.

Corollary 1.3. Let ∂D be convex or empty. If RicV
D � −K for some constant K, then for

any nontrivial (φ, λ) ∈ EigN(�), we have λ + K > 0 and

λ2

de(λ + K+)
� λ2

d(λ + K)

(
λ

λ + K

)λ/K

� ‖∇φ‖2∞
‖φ‖2∞

� 2(λ + K)

π

(
1 + K

λ

)λ/K

� 2e(λ + K+)

π
.

2 Proof of Theorem 1.1

In general, we will consider Dirichlet eigenfunctions for the symmetric operator L :=
� + ∇V on D where V ∈ C2(D). We denote by Eig(L) the set of pairs (φ, λ) where φ is a

Dirichlet eigenfunction of −L on D with eigenvalue λ.

In the following two subsections, we consider the lower bound and upper bound

estimates.

2.1 Lower bound estimate

In this subsection we will estimate ‖∇φ‖∞ from below using the following Bakry–Émery

curvature-dimension condition:

1

2
L|∇f |2 − 〈∇Lf , ∇f 〉 � −K|∇f |2 + (L f )2

n
, f ∈ C∞(D), (2.1)

where K ∈ R, n � d are two constants. When V = 0, this condition with n = d is

equivalent to RicD � −K.

Theorem 2.1 (Lower bound estimate). Assume that (2.1) holds. Then

‖∇φ‖2∞ � ‖φ‖2∞ sup
t>0

λ2(eKt − 1)

nKe(λ+K)+t
, (φ, λ) ∈ Eig(L). (2.2)

Consequently, for K+ := max{0, K} there holds

‖∇φ‖2∞ � λ2‖φ‖2∞
n(λ + K+)

(
λ

λ + K+

)λ/K+

� λ2‖φ‖2∞
ne(λ + K+)

, (φ, λ) ∈ Eig(L). (2.3)
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Proof. Let Xt be the diffusion process generated by 1
2L in D, and let

τD := inf{t � 0 : Xt ∈ ∂D}.

By Itô’s formula, we have

d|∇φ|2(Xt) = 1

2
L|∇φ|2(Xt) dt + dMt, t � τD, (2.4)

for some martingale Mt. By the curvature dimension condition (2.1) and Lφ = −λφ,

we obtain

1

2
L|∇φ|2 = 1

2
L|∇φ|2 − 〈∇Lφ, ∇φ〉 − λ|∇φ|2 � −(K + λ)|∇φ|2 + λ2

n
φ2. (2.5)

Therefore, (2.4) gives

d|∇φ|2(Xt) �
(

λ2

n
φ2 − (K + λ)|∇φ|2

)
(Xt) dt + dMt, t � τD.

Hence, for any t > 0,

e(K+λ)+t ‖∇φ‖2∞ � E

[
|∇φ|2(Xt∧τD

)e(K+λ)(t∧τD)
]

� λ2

n
E

[∫ t∧τD

0
e(K+λ)sφ(Xs)

2 ds
]

= λ2

n
E

[∫ t

0
1{s<τD}e(K+λ)sφ(Xs)

2 ds
]

.

Since φ|∂D = 0 and Lφ = −λφ, by Jensen’s inequality we have

E

[
1{s<τD}φ(Xs)

2
]

�
(
E[φ(Xs∧τD

)]
)2 = e−λsφ(x)2,

where x = X0 ∈ D is the starting point of Xt. Then, by taking x such that φ(x)2 = ‖φ‖2∞,

we arrive at

e(K+λ)+t ‖∇φ‖2∞ � λ2

n

∫ t

0
e(K+λ)se−λsφ(x)2 ds

= λ2‖φ‖2∞
n

∫ t

0
eKs ds = λ2(eKt − 1)

nK
‖φ‖2∞.

This completes the proof of (2.2).
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Since (2.1) holds for K+ replacing K, we may and do assume that K � 0. By taking

the optimal choice t = 1
K log(1 + K

λ
) (by convention t = λ−1 if K = 0) in (2.2), we obtain

‖∇φ‖2∞ � λ2‖φ‖2∞
λ + K

(
λ

λ + K

)λ/K

� λ2‖φ‖2∞
ne(λ + K)

.

Hence (2.3) holds. �

2.2 Upper bound estimate

Let RicV
D = RicD − HessV . For K0, θ � 0 such that RicD � −K0 and H∂D � −θ , let

α = 1

2

(
max

{
θ ,
√

(d − 1)K0

}
+ ‖∇V‖∞

)
. (2.6)

We note that 1
2Lρ∂D � α by [10, Lemma 2.3].

Theorem 2.2 (Upper bound estimate). Let KV , θ � 0 be constants such that

RicV
D � −KV , H∂D � −θ .

Let α ∈ R be such that
1

2
Lρ∂D � α. (2.7)

1. Assume α ≥ 0. Then, for any nontrivial (φ, λ) ∈ Eig(L),

‖∇φ‖∞
‖φ‖∞

�

⎧⎨
⎩
√

e(λ + KV) if
√

λ + KV � 2A
√

e
(
A + λ+KV

4A

)
if

√
λ + KV � 2A,

(2.8)

where

A := α +
√

2(λ + KV)√
π

exp
(

− α2

2(λ + KV)

)
+ |α| ∧

√
2α2√

π(λ + KV)
. (2.9)

In particular, (2.8) holds with A replaced by

A′ := 2α +
√

2(λ + KV)√
π

exp
(

− α2

2(λ + KV)

)
. (2.10)

We also have

‖∇φ‖∞
‖φ‖∞

�
√

e

(
2α +√2(λ + KV)√

π
+ λ + KV

4

√
π

2α +√2(λ + KV)

)
. (2.11)
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2. Assume α ≤ 0. Then, for any nontrivial (φ, λ) ∈ Eig(L),

‖∇φ‖∞
‖φ‖∞

�

⎧⎨
⎩
√

e(λ + KV) if
√

λ + KV � 2A∗
√

e
(
A∗ + λ+KV

4A∗
)

if
√

λ + KV � 2A∗,
(2.12)

where

A∗ :=
√

2(λ + KV)√
π

exp
(

− α2

2(λ + KV)

)
. (2.13)

In particular,

‖∇φ‖∞
‖φ‖∞

�
√

λ + KV

(√
2

π
+ 1

4

√
π

2

)√
e. (2.14)

In addition, the following estimate holds:

‖∇φ‖∞
‖φ‖∞

�

⎧⎨
⎩
√

e(λ + KV) if
√

λ + KV � 2
√

eÂ

eÂ + λ+KV

4Â
if

√
λ + KV < 2

√
eÂ,

(2.15)

where

Â := α +
√

2λ√
π

e− α2
2λ + |α| ∧

√
2α2

√
πλ

. (2.16)

The strategy to prove Theorem 2.2 will be to first estimate ‖∇φ‖∞ in terms of

‖φ‖∞ and ‖∇φ‖∂D,∞ (see estimate (2.24) below) where ‖f ‖∂D,∞ := 1‖∂D f ‖∞ for a function

f on D. The this end we construct appropriate martingales in terms of φ and ∇φ.

We start by recalling the necessary facts about the diffusion process generated

by 1
2L, see for instance [1, 3]. For any x ∈ D, the diffusion Xt solves the stochastic

differential equation (SDE)

dXt = 1

2
∇V(Xt) dt + ut ◦ dBt, X0 = x, t � τD, (2.17)

where Bt is a d-dimensional Brownian motion, ut is the horizontal lift of Xt onto the

orthonormal frame bundle O(D) with initial value u0 ∈ Ox(D), and

τD := inf{t � 0 : Xt ∈ ∂D}

is the hitting time of Xt to the boundary ∂D. Setting Z := ∇V, we have

dut = 1

2
Z∗(ut) dt +

d∑
i=1

Hi(ut) ◦ dBi
t (2.18)
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where Z∗(u) := hu(Zπ(u)) and Hi(u) := hu(uei) are defined by means of the horizontal lift

hu : Tπ(u)D → TuO(D) at u ∈ O(D). Note that formally hut
(ut ◦ dBt) = ∑i hut

(utei) ◦ dBi
t =∑

i Hi(ut) ◦ dBi
t.

For f ∈ C∞(D), let a := df ∈ 
(T∗D). Setting mt := u−1
t a(Xt), we see by Itô’s

formula that

dmt
m= 1

2
u−1

t (�a + ∇Za)(Xt) dt (2.19)

where �a = tr ∇2a denotes the so-called connection (or rough) Laplacian on one-forms

and
m= equality modulo the differential of a local martingale.

Denote by Qt : TxD → TXt
D the solution, along the paths of Xt, to the covariant

ordinary differential equation

DQt = −1

2
(RicV

D)�Qt dt, Q0 = idTxD, t � τD,

where D := utdu−1
t and where by definition

(RicV
D)�v = RicV

D(·, v)�, v ∈ TxD.

Thus, condition RicV
D � −KV implies

|Qtv| � e
KV
2 t |v|, t � τD. (2.20)

Finally, note f on D, we have by the Weitzenböck formula:

d (� + Z) f = d
(−d∗df + (df )Z

)
= �(1)df + ∇Zdf + 〈∇.Z, ∇f 〉
= (� + ∇Z)(df ) − RicV

D(·, ∇f )

=
(
� − RicV

D + ∇Z

)
(df ) (2.21)

where �(1) denotes the Hodge–deRham Laplacian on one-forms.

Now let (φ, λ) ∈ Eig(L), that is, Lφ = −λφ, where L = � + Z. For v ∈ TxD, consider

the process

nt(v) := (dφ)(Qtv).

Then

nt(v) = 〈∇φ(Xt), Qtv〉 = 〈u−1
t (∇φ)(Xt), u−1

t Qtv〉.
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7288 M. Arnaudon et al.

Using (2.19), we see by Itô’s formula and formula (2.21) that

dnt(v)
m= 1

2
(�dφ + ∇Zdφ)(Xt) Qtv dt + dφ(Xt)(DQtv) dt = −λ

2
nt(v) dt.

It follows that

eλt/2 nt(v) = eλt/2 〈∇φ(Xt), Qtv〉, t � τD, (2.22)

is a martingale.

Lemma 2.3. Let (φ, λ) ∈ Eig(L). We keep the notation from above. Then, for any function

h ∈ C1([0, ∞);R), the process

Nt(v) := ht eλt/2 〈∇φ(Xt), Qtv〉 − eλt/2 φ(Xt)

∫ t

0
〈ḣsQsv, us dBs〉, t � τD, (2.23)

is a martingale. In particular, for fixed t > 0 and h ∈ C1([0, t]; [0, 1]) monotone such that

h0 = 1 and ht = 0, we have

‖∇φ‖∞ � ‖∇φ‖∂D,∞ P{t > τD} e(λ+KV )+t/2

+ ‖φ‖∞ eλt/2
P{t � τD}1/2

(∫ t

0
|ḣs|2eKV s ds

)1/2

. (2.24)

Proof. Indeed, from (2.22) we deduce that

ht eλt/2 〈∇φ(Xt), Qtv〉 −
∫ t

0
ḣs eλs/2 〈∇φ(Xs), Qsv〉 ds, t � τD,

is a martingale as well. By the formula

eλt/2 φ(Xt) = φ(X0) +
∫ t

0
eλs/2 〈∇φ(Xs), us dBs〉

we see then that Nt(v) is a martingale. To check inequality (2.24), we deduce from the

martingale property of {Ns∧τD
(v)}s∈[0,t] that

‖∇φ‖∞ � ‖∇φ‖∂D,∞ E

[
1{t>τD} eλτD/2 |hτD

| |QτD
|
]

+ ‖φ‖∞ eλt/2
E

[
1{t�τD} sup

|v|�1

(∫ t

0
〈ḣs Qsv, us dBs〉

)2
]1/2

.

The claim follows by using (2.20). �
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To estimate the boundary norm ‖∇φ‖∂D,∞, we shall compare φ(x) and

ψ(t, x) := P(τx
D > t), t > 0,

for small ρ∂D(x) := dist(x, ∂D). Let PD
t be the Dirichlet semigroup generated by 1

2L. Then

ψ(t, x) = PD
t 1D(x),

so that

∂tψ(t, x) = 1

2
Lψ(t, ·)(x), t > 0. (2.25)

Lemma 2.4. For any (φ, λ) ∈ Eig(L),

‖∇φ‖∂D,∞ � ‖φ‖∞ inf
t>0

eλt/2 ‖∇ψ(t, ·)‖∂D,∞. (2.26)

Proof. To prove (2.26), we fix x ∈ ∂D. For small ε > 0, let xε = expx(εN), where N is the

inward unit normal vector field of ∂D. Since φ|∂D = 0 and ψ(t, ·)|∂D = 0, we have

|∇φ(x)| = |Nφ(x)| = lim
ε→0

|φ(xε)|
ε

, |∇ψ(t, ·)(x)| = lim
ε→0

|ψ(t, xε)|
ε

. (2.27)

Let Xε
t be the L-diffusion starting at xε and τ ε

D its first hitting time of ∂D. Note that

Nt := φ
(
Xε

t∧τ ε
D

)
eλ(t∧τ ε

D)/2, t ≥ 0,

is a martingale. Thus, for each fixed t > 0, we can estimate as follows:

|∇φ(x)| = lim
ε→0

|φ(xε)|
ε

= lim
ε→0

∣∣∣E[φ(Xε
t )1{t<τε

D}] eλ(t∧τ ε
D)/2
∣∣∣

ε

� ‖φ‖∞ eλt/2 lim
ε→0

E[1{t>τε
D}]

ε

� ‖φ‖∞ eλt/2 lim
ε→0

ψ(t, xε)

ε

= ‖φ‖∞ eλt/2 |∇ψ(t, ·)|(x).

Taking the infimum over t gives the claim. �
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We now work out an explicit estimate for ‖∇ψ(t, ·)‖∂D,∞. Let cut(D) be the cut-

locus of ∂D, which is a zero-volume closed subset of D such that ρ∂D := dist(·, ∂D) is

smooth in D \ cut(D).

Proposition 2.5. Let α ∈ R such that

1

2
Lρ∂D

� α. (2.28)

Then

‖∇ψ(t, ·)‖∂D,∞ � α +
√

2√
πt

+
∫ t

0

1 − e− α2s
2√

2πs3
ds

� α +
√

2√
πt

e− α2t
2 + min

{
|α|, α2

√
2t√

π

}
, (2.29)

and

‖∇ψ(t, ·)‖∂D,∞ �
√

2√
πt

+ α +
√

t√
2π

α2. (2.30)

Notice that by [10, Lemma 2.3] the condition 1
2Lρ∂D � α holds for α defined by

(2.6).

Proof. Let x ∈ D and let Xt solve SDE (2.17). As shown in [6], (ρ∂D(Xt))t�τD
is a

semimartingale satisfying

ρ∂D(Xt) = ρ∂D(x) + bt + 1

2

∫ t

0
Lρ∂D(Xs) ds − lt, t � τD, (2.31)

where bt is a real-valued Brownian motion starting at 0, and lt a nondecreasing process

that increases only when Xx
t ∈ cut(D). Setting ε = ρ∂D(x), we deduce from (2.31) together

with 1
2Lρ∂D � α that

ρ∂D(Xt(x)) � Yα
t (ε) := ε + bt + αt, t � τD. (2.32)

Consequently, letting Tα(ε) be the first hitting time of 0 by Yα
t (ε), we obtain

ψ(t, x) � P(t < Tα(ε)). (2.33)
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On the other hand, since ψ(t, ·) vanishes on the boundary and is positive in D, we have

for all y ∈ ∂D

|∇ψ(t, y)| = lim
x∈D, x→y

ψ(t, x)

ρ∂D(x)
. (2.34)

Hence, by (2.33), to prove the first inequality in (2.29) it is enough to establish that

lim sup
ε↓0

P(t < Tα(ε))

ε
� α +

√
2√
πt

+
∫ t

0

1 − e− α2s
2√

2πs3
ds. (2.35)

It is well known that the (sub-probability) density fα,ε of Tα(ε) is

fα,ε(s) = ε exp
(−(ε + αs)2/(2s)

)
√

2πs3
, (2.36)

which can be obtained by the reflection principle for α = 0 and the Girsanov transform

for α �= 0. Thus

P(t � Tα(ε)) = ε

∫ t

0

exp
(−(ε + αs)2/(2s)

)
√

2πs3
ds

= ε exp(−αε)

∫ t

0

e−α2s/2
√

2πs3
exp

(
− ε2

2s

)
ds

= exp(−αε)

∫ 2t/ε2

0

e−1/r
√

πr3
exp

(
−α2ε2r

4

)
dr,

(2.37)

where we have made the change of variable r = 2s/ε2. With the change of variable

v = 1/r we easily check that

∫ ∞

0
r−3/2e−1/r dr = 
(1/2) = √

π , (2.38)

and this allows to write

P(t � Tα(ε)) = exp(−αε)

(
1 −

∫ ∞

2t/ε2

e−1/r

√
πr3

dr −
∫ 2t/ε2

0

e−1/r

√
πr3

(
1 − e−α2ε2r/4

)
dr

)
. (2.39)

As ε → 0,

∫ ∞

2t/ε2

e−1/r
√

r3
dr =

∫ ∞

2t/ε2

1√
r3

dr + o(ε) = ε
√

2√
t

+ o(ε),
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7292 M. Arnaudon et al.

and with change of variable s = 1
2ε2r

∫ 2t/ε2

0

e−1/r
√

πr3

(
1 − e− α2ε2r

4

)
dr = ε

∫ t

0

e− ε2
2s√

2πs3

(
1 − e− α2s

2

)
ds

= ε

∫ t

0

1 − e− α2s
2√

2πs3
ds + o(ε)

by monotone convergence. Combining these with e−αε = 1 − αε + o(ε), we deduce from

(2.39) that

P(t � Tα(ε)) = 1 − ε

⎛
⎝α +

√
2√
πt

+
∫ t

0

1 − e− α2s
2√

2πs3
ds

⎞
⎠+ o(ε), (2.40)

which yields (2.35).

Next, an integration by parts yields

∫ t

0

1 − e− α2s
2√

2πs3
ds = α2

√
2π

∫ t

0

1√
u

e− α2u
2 du −

√
2√
πt

(
1 − e− α2t

2

)
. (2.41)

With the change of variable s = |α|
√

u
t in the first term in the right we obtain

α2
√

2π

∫ t

0

1√
u

e− α2u
2 du = |α|

√
2t

π

∫ |α|

0
e− s2t

2 ds. (2.42)

We arrive at

f (α) := α +
√

2√
πt

+
∫ t

0

1 − e− α2s
2√

2πs3
ds =

√
2√
πt

e− α2t
2 + α + |α|

√
2t

π

∫ |α|

0
e− s2t

2 ds. (2.43)

Bounding
√

2t
π

∫ |α|
0 e− s2t

2 ds by
√

2t
π

∫∞
0 e− s2t

2 ds = 1, respectively bounding e− s2t
2 by 1 in the

integral, yields (2.29).

The function

f (α) =
√

2√
πt

e− α2t
2 + α + |α|

√
2t

π

∫ |α|

0
e− s2t

2 ds

is smooth and an easy computation shows that

f (0) =
√

2√
πt

, f ′(0) = 1, f ′′(α) =
√

2t√
π

e− α2t
2 . (2.44)
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Using the fact that f (α) − α is even, we also get

f (α) =
√

2√
πt

+ α +
∫ |α|

0

√
2t√
π

e− s2t
2 s ds �

√
2√
πt

+ α +
√

t√
2π

α2, (2.45)

which yields (2.30). �

Remark 2.6. One could use estimate (2.24) (optimizing the right-hand side with respect

to t) together with Lemma 2.4 (again optimizing with respect to t) to estimate ‖∇φ‖∞ in

terms of ‖φ‖∞. We prefer to combine the two steps.

Lemma 2.7. Assume RicV
D � −KV for some constant KV ∈ R. Let α be determined by

(2.28).

(a) If α � 0, then for any (φ, λ) ∈ Eig(L),

‖∇φ‖∞� inf
t>0

max
ε∈[0,1]

e
(λ+K+

V )t
2

{
ε

(
α+

√
2√
πt

e− α2t
2 + min

(
|α|, α2

√
2t√

π

))
+
√

1 − ε

t

}
‖φ‖∞ ,

as well as

‖∇φ‖∞ � inf
t>0

max
ε∈[0,1]

e(λ+K+
V )t/2

{
ε

(
α +

√
2

πt
+

√
t√

2π
α2

)
+
√

1 − ε

t

}
‖φ‖∞

and

‖∇φ‖∞ � inf
t>0

max
ε∈[0,1]

e(λ+K+
V )t/2

{
ε

(
2α +

√
2

πt

)
+
√

1 − ε

t

}
‖φ‖∞.

(b) If α ≤ 0, then

‖∇φ‖∞ � inf
t>0

max
ε∈[0,1]

e(λ+K+
V )t/2

{
ε

√
2

πt
e− α2t

2 +
√

1 − ε

t

}
‖φ‖∞.

In particular,

‖∇φ‖∞ � inf
t>0

max
ε∈[0,1]

e(λ+K+
V )t/2

{
ε

√
2

πt
+
√

1 − ε

t

}
‖φ‖∞.
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7294 M. Arnaudon et al.

Proof. For fixed t > 0 in (2.23), we take h ∈ C1([0, t]; [0, 1]) such that h0 = 1 and ht = 0.

Then, by the martingale property of {Ns∧τD
(v)}s∈[0,t], we obtain

|∇vφ|(x) = |N0(v)| = |ENt∧τD
(v)|

=
∣∣∣∣E
[
1{t>τD} eλτD/2 hτD

〈∇φ(XτD
), QτD

v〉 − 1{t�τD}eλt/2φ(Xt)

∫ t

0
〈ḣs Qsv, us dBs〉

]∣∣∣∣ .
(2.46)

Note that using (2.20) along with Lemma 2.4 we may estimate

∣∣∣E [1{t>τD} eλτD/2 hτD
〈∇φ(XτD

), QτD
v〉
]∣∣∣

� E

[
1{t>τD} eλτD/2 |hτD

| ‖∇φ‖∂D,∞ eKVτD/2|v|
]

� E

[
1{t>τD} eλτD/2 |hτD

| ‖φ‖∞ ‖∇ψ(t − τD, ·)‖∂D,∞ eλ(t−τD)/2 eKVτD/2 |v|
]

= E

[
1{t>τD} |hτD

| ‖φ‖∞ ‖∇ψ(t − τD, ·)‖∂D,∞ eλt/2 eKVτD/2 |v|
]

� e(λ+K+
V )t/2 ‖φ‖∞ E

[
1{t>τD} |hτD

| ‖∇ψ(t − τD, ·)‖∂D,∞ |v|
]

,

as well as

E

[
1{t�τD} eλt/2φ(Xt)

∫ t

0
〈ḣs Qsv, us dBs〉

]
� eλt/2 ‖φ‖∞ P{t � τD}1/2

(∫ t

0
|ḣs|2eKV s ds

)1/2

.

Taking

hs = t − s

t
, s ∈ [0, t],

we obtain thus from (2.46)

|∇φ(x)| � e(λ+K+
V )t/2

t
‖φ‖∞ E

[
1{t>τD} (t − τD) ‖∇ψ(t − τD, ·)‖∂D,∞

]

+ eλt/2 ‖φ‖∞ P{t � τD}1/2 1

t

(
eK+

V t − 1

K+
V

)1/2

.

Note that

eK+
V t − 1

K+
V

� teK+
V t.
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(i) By (2.29), assuming that α ≥ 0, we have on {t > τD}

t − τD

t
‖∇ψ(t − τD, ·)‖∂D,∞ � α

t − τD

t
+

√
2√
π

√
t − τD

t
+ t − τD

t

∫ t−τD

0

1 − e− α2s
2√

2πs3
ds

� α +
√

2√
πt

+
∫ t

0

1 − e− α2s
2√

2πs3
ds

� α +
√

2√
πt

e− α2t
2 + min

{
α,

α2
√

2t√
π

}
.

Thus, letting ε = P(t > τD), we obtain

|∇φ(x)| � e(λ+K+
V )t/2 ‖φ‖∞

[
ε

(
α +

√
2√
πt

e− α2t
2 + min

{
α,

α2
√

2t√
π

})
+
√

1 − ε

t

]
.

(ii) Still under the assumption α ≥ 0, this time using estimate (2.30), we have on

{t > τD}

‖∇ψ(t − τD, ·)‖∂D,∞ �
√

2√
π(t − τD)

+ α +
√

t − τD√
2π

α2,

and thus letting ε = P(t > τD), we get

|∇φ(x)| � e(λ+K+
V )t/2

t
‖φ‖∞ E

[
1{t>τD}

(√
2

π

√
t − τD + α(t − τD) + (t − τD)3/2

√
2π

α2

)]

+ eλt/2 ‖φ‖∞ P{t � τD}1/2 1

t

(
eK+

V t − 1

K+
V

)1/2

� e(λ+K+
V )t/2 ‖φ‖∞

[
ε

(√
2

πt
+ α +

√
t√

2π
α2

)
+
√

1 − ε

t

]
.

(iii) In the case α ≤ 0, we get from (2.29) in a similar way

|∇φ(x)| � e(λ+K+
V )t/2 ‖φ‖∞

{
ε

√
2√
πt

e− α2t
2 +

√
1 − ε

t

}
.

This concludes the proof of Lemma 2.7. �
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Proposition 2.8. We keep the assumptions of Lemma 2.7.

(a) If α ≥ 0, then for any (φ, λ) ∈ Eig(L),

‖∇φ‖∞ �
√

e maxε∈[0,1]

{
ε

(
α +

√
2(λ+K+

V )√
π

exp
(
− α2

2(λ+K+
V )

)
+ min

(
|α|,

√
2α2√

π(λ+K+
V )

))

+ √
1 − ε

√
(λ + K+

V )

}
‖φ‖∞,

as well as

‖∇φ‖∞ �
√

e max
ε∈[0,1]

⎧⎨
⎩ε

⎛
⎝α +

√
2(λ + K+

V )
√

π
+ α2√

2π(λ + K+
V )

⎞
⎠

+ √
1 − ε

√
(λ + K+

V )

⎫⎬
⎭ ‖φ‖∞

and

‖∇φ‖∞ �
√

e max
ε∈[0,1]

⎧⎨
⎩ε

⎛
⎝2α +

√
2(λ + K+

V )
√

π

⎞
⎠+ √

1 − ε

√
(λ + K+

V )

⎫⎬
⎭ ‖φ‖∞.

(b) If α ≤ 0, then

‖∇φ‖∞ �
√

e max
ε∈[0,1]

⎧⎨
⎩ε

√
2(λ + K+

V )
√

π
exp

(
− α2

2(λ + K+
V )

)
+ √

1 − ε

√
(λ + K+

V )

⎫⎬
⎭‖φ‖∞.

Proof. Take t = 1/(λ + K+
V ) in Lemma 2.7. �

We are now ready to complete the proof of Theorem 2.2.

Proof of Theorem 2.2. The claims of Theorem 2.2 (with the exception of estimate (2.15))

follow directly from the inequalities in Proposition 2.8 together with the fact that for

any A, B � 0,
max
ε∈[0,1]

{
εA + √

1 − εB
}

= B{B>2A} +
(

A + B2

4A

)
1{B�2A}. (2.47)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2020/20/7279/5090288 by C
onsortium

 Luxem
bourg user on 08 N

ovem
ber 2020



Gradient Estimates on Eigenfunctions 7297

Finally, to check (2.15) we may go back to (2.24) from where we have

‖∇φ‖∞ � εe(λ+KV )+t/2 ‖∇φ‖∂D,∞ + √
1 − ε eλt/2 ‖φ‖∞

(∫ t

0
|ḣs|2eKV s ds

)1/2

.

Taking

hs = e−KV t − e−KV s

e−KV t − 1
, s ∈ [0, t],

we obtain

‖∇φ‖∞ � inf
t>0

max
ε∈[0,1]

{
εe(λ+KV )+t/2 ‖∇φ‖∂D,∞ + ‖φ‖∞ eλt/2

√
1 − ε

(
KV

1 − e−KV t

)1/2
}

.

Noting that

KV

1 − e−KV t �
K+

V

1 − e−K+
V t

� t−1eK+
V t,

and taking t = (K+
V + λ)−1 we obtain

‖∇φ‖∞ �
√

e max
ε∈[0,1]

{
ε‖∇φ‖∂D,∞ +

√
(1 − ε)(λ + K+

V ) ‖φ‖∞
}

.

Applying Lemma 2.4 and Proposition 2.5 with t = 1/λ, we arrive at

‖∇φ‖∞ � ‖φ‖∞ max
ε∈[0,1]

{
eε

(
α +

√
2λ√
π

e− α2
2λ + |α| ∧ α2

√
2√

πλ

)
+
√

e(1 − ε)(λ + K+
V )

}
.

The proof is then finished as above with observation (2.47). �

3 Proof of Theorem 1.2

As in Section 2, we consider L = � + ∇V and let EigN(L) be the set of the corresponding

nontrivial eigenpairs for the Neumann problem of L. We also allow ∂D = ∅, then we

consider the eigenproblem without boundary. We first consider the convex case, then

extend to the general situation. In this section, Pt denotes the (Neumann if ∂D �= ∅)

semigroup generated by L/2 on D. Let Xt be the corresponding (reflecting) diffusion

process that solves the SDE

dXt = ut ◦ dBt + 1

2
∇V(Xt) dt + N(Xt) d�t, (3.1)
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where Bt is a d-dimensional Euclidean Brownian motion, ut the horizontal lift of Xt onto

the orthonormal frame bundle, and �t the local time of Xt on ∂D.

We will apply the following Bismut type formula for the Neumann semigroup Pt,

see [15, Theorem 3.2.1], where the multiplicative functional process Qs was introduced

in [4].

Theorem 3.1 ([15]). Let RicV
D � −KV and I∂D � −δ for some KV ∈ C(D̄) and δ ∈ C(∂D).

Then there exists a R
d ⊗ R

d-valued adapted continuous process Qs with

‖Qt‖ � exp
(

1

2

∫ t

0
KV(Xs) ds +

∫ t

0
δ(Xs) d�s

)
, s � 0, (3.2)

such that for any t > 0 and h ∈ C1([0, t]) with h(0) = 0, h(t) = 1, there holds

∇Ptf = E

[
f (Xt)

∫ t

0
h′(s)Qs dBs

]
, f ∈ Bb(D). (3.3)

3.1 The case with convex or empty boundary

In this part we assume that ∂D is either convex or empty. When ∂D is empty, D is a

Riemannian manifold without boundary and EigN(L) denotes the set of eigenpairs for

the eigenproblem without boundary. In this case, if RicV � KV for some constant KV ∈ R,

then λ + KV � 0 for (φ, λ) ∈ EigN(L), see for instance [8].

Theorem 3.2. Assume that ∂D is either convex or empty.

(1) If the curvature-dimension condition (2.1) holds, then for any (φ, λ) ∈ EigN(L),

‖∇φ‖2∞ � λ2‖φ‖2∞
n(λ + K)

(
λ

λ + K

)λ/K

� λ2‖φ‖2∞
ne(λ + K+)

.

(2) If RicV
D � −KV for some constant KV ∈ R, then for any (φ, λ) ∈ EigN(L),

‖∇φ‖2∞
‖φ‖2∞

� 2(λ + KV)

π

(
1 + KV

λ

)λ/KV

�
2e(λ + K+

V )

π
.

Proof.

(a) We start by establishing the lower bound estimate. By Itô’s formula, for any

(φ, λ) ∈ EigN(L) we have

d|∇φ|2(Xt) = 1

2
L|∇φ|2(Xt) dt + 2I∂D(∇φ, ∇φ)(Xt) d�t + dMt, t � 0, (3.4)
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where �t is the local time of Xt at ∂D, which is an increasing process. Since

I∂D � 0, and since (2.1) and Lφ = −λφ imply

1

2
L|∇φ|2 � −(K + λ)|∇φ|2 + λ2

n
φ2,

we obtain

d|∇φ|2(Xt) �
(

λ2

n
φ2 − (λ + K)|∇φ|2

)
(Xt) dt + dMt, t � 0.

Noting that for X0 = x ∈ D we have

E[φ(Xs)
2] � (E[φ(Xs)])

2 = e−λsφ(x)2,

we arrive at

e(λ+K)t ‖∇φ‖2∞ � e(λ+K)t
E[|∇φ|2(Xt)] � λ2

n

∫ t

0
e(λ+K)s

E[φ2(Xs)] ds

� λ2

n

∫ t

0
eKsφ(x)2 ds = λ2(eKt − 1)

nK
φ(x)2.

Multiplying by e−(λ+K)t, choosing t = 1
K log(1 + K

λ
) (noting that λ + K � 0, in

case λ + K = 0 taking t → ∞), and taking the supremum over x ∈ D, we finish

the proof of (1).

(b) Let ∂D be convex and RicV
D � −KV for some constant KV . Then Theorem 3.1

holds for δ = 0, so that

σt :=
(
E

∫ t

0
|h′(s)|2‖Qs‖2 ds

)1/2

�
(∫ t

0
|h′(s)|2 eKV s ds

)1/2

.

Taking

h(s) =
∫ s

0 e−KV r dr∫ t
0 e−KV r dr

we obtain

σt �
(

KV

1 − e−KV t

)1/2

.
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Therefore,

‖∇Ptf ‖∞ � ‖ f ‖∞ E

∣∣∣∣
∫ t

0
h′(s)Qs dBs

∣∣∣∣
� ‖ f ‖∞

2√
2π σt

∫ ∞

0
s exp

(
− s2

2σ 2
t

)
ds

= ‖ f ‖∞
σt

√
2√

π
, t > 0, f ∈ Bb(D).

(3.5)

Applying this to (φ, λ) ∈ EigN(L), we obtain

e−λt/2|∇φ| � ‖φ‖∞
σt

√
2√

π
� ‖φ‖∞

(
2KV

π(1 − e−2KV t)

)1/2

, t > 0.

Consequently, λ + KV � 0. Taking t = 1
KV

log(1 + KV
λ

) as above, we arrive at

‖∇φ‖2∞
‖φ‖2∞

� 2(λ + KV)

π

(
1 + KV

λ

)λ/KV

.

�

3.2 The non-convex case

When ∂D is non-convex, a conformal change of metric may be performed to make ∂M

convex under the new metric; this strategy has been used in [2, 12–14] for the study of

functional inequalities on non-convex manifolds. According to [15, Theorem 1.2.5], for a

strictly positive function f ∈ C∞(D̄) with I∂D + N log f |∂D � 0, the boundary ∂D is convex

under the metric f −2〈·, ·〉. For simplicity, we will assume that f � 1. Hence, we take as

class of reference functions

D :=
{
f ∈ C2(D̄) : inf f = 1, I∂D + N log f � 0

}
.

Assume (2.1) and RicV
D � −KV for some constants n � d and K, KV ∈ R. For any f ∈ D

and ε ∈ (0, 1), define

cε( f ) := sup
D

{
4ε|∇ log f |2

1 − ε
+ εK + (1 − ε)KV − 2L log f

}
.

We let λN
1 be the smallest nontrivial Neumann eigenvalue of −L. The following result

implies λ1 � −cε( f ).
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Theorem 3.3. Let f ∈ D .

(1) If (2.1) and RicV
D � −KV hold for some constants n � d and K, KV ∈ R. Then

for any nontrivial (φ, λ) ∈ EigN(L), we have λ + cε( f ) � 0 and

‖f ‖2∞‖∇φ‖2∞
‖φ‖2∞

� sup
ε∈(0,1)

ελ2

n(λ + cε( f ))

(
λ

λ + cε( f )

)λ/cε( f )

� sup
ε∈(0,1)

ελ2

ne(λ + cε( f )+)
.

(2) Let RicV
D � −KV for some KV ∈ C(D̄), and

K( f ) = sup
D

{
2|∇ log f |2 + KV − L log f

}
.

Then for any nontrivial (φ, λ) ∈ EigN(L), we have λ + K( f ) � 0 and

‖∇φ‖2∞
‖φ‖2∞‖ f ‖2∞

� 2(λ + K( f ))

π

(
1 + K( f )

λ

)λ/K(f )

� 2e(λ + K( f )+)

π
.

Proof. Let f ∈ D and (φ, λ) ∈ EigN(L).

(1) On ∂D we have

N( f 2|∇φ|2) = (N f 2)|∇φ|2 + f 2N|∇φ|2

= f 2
(
(N log f 2)|∇φ|2 + 2I∂D(∇φ, ∇φ)

)
= 2f 2

(
(N log f )|∇φ|2 + I∂D(∇φ, ∇φ)

)
� 0. (3.6)

Next, by the Bochner–Weitzenböck formula, using that RicV
D � −KV and Lφ = −λφ, we

observe

1

2
L|∇φ|2 = 1

2
L|∇φ|2 − 〈∇Lφ, ∇φ〉 − λ|∇φ|2

� ‖Hessφ‖2
HS − (KV + λ)|∇φ|2.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2020/20/7279/5090288 by C
onsortium

 Luxem
bourg user on 08 N

ovem
ber 2020



7302 M. Arnaudon et al.

Combining this with (2.5), for any ε ∈ (0, 1), we obtain

f 2

2
L|∇φ|2 + 〈∇f 2, ∇|∇φ|2〉

� −f 2(εK + (1 − ε)KV + λ)|∇φ|2 + ελ2

n
f 2φ2

+ (1 − ε)f 2‖Hessφ‖2
HS − 2‖Hessφ‖HS × |∇f 2| × |∇φ|

� −
{ |∇ log f 2|2

1 − ε
+ εK + (1 − ε)KV + λ

}
f 2|∇φ|2 + ελ2

n
f 2φ2.

Combining this with (3.6) and applying Itô’s formula, we obtain

d( f 2|∇φ|2)(Xt)
m= 1

2
L( f 2|∇φ|2)(Xt) dt + N( f 2|∇φ|2)(Xt) d�t

� −1

2

(
f 2L|∇φ|2 + 2〈∇f 2, ∇|∇φ|2〉 + |∇φ|2Lf 2

)
(Xt) dt

�
{

ελ2

n
f 2φ2 −

( |∇ log f 2|2
1 − ε

+ εK + (1 − ε)KV + λ − f −2Lf 2
)

f 2|∇φ|2
}

(Xt) dt

�
(

ελ2

n
φ2 − (λ + cε( f )

)
f 2|∇φ|2

)
(Xt) dt.

Hence, for X0 = x ∈ D,

‖f ‖2∞ ‖∇φ‖2∞ e(λ+cε( f ))t � E

[
ecε( f )t(f 2|∇φ|2)(Xt)

]

� ελ2

n

∫ t

0
e(λ+cε( f ))s

E[φ(Xs)
2] ds

� ελ2

n

∫ t

0
ecε( f )sφ(x)2 ds

= ελ2(ecε( f )t − 1)

ncε( f )
φ(x)2.

This implies λ + cε( f ) � 0 and

‖f ‖2∞‖∇φ‖2∞
‖φ‖2∞

� sup
t>0

ελ2
(
e−λt − e−(λ+cε( f ))t

)
ncε( f )

= ελ2

n(λ + cε( f ))

(
λ

λ + cε( f )

)λ/cε(f )

� ελ2

ne(λ + cε( f )+)
.
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(2) The claim could be derived from [2, inequality (2.12)]. For the sake of

completeness we include a sketch of the proof. For any p > 1, let

Kp( f ) = sup
D

{
KV + p|∇ log f |2 − L log f

}
.

Note that p|∇ log f |2 − L log f = p−1f pLf −p. Since f ∈ D implies I∂D � −N log f , we have

‖Qt‖2 � exp
(∫ t

0
KV(Xs) ds + 2

∫ t

0
N log f (Xs) d�s

)

� exp
(
Kp( f )t

)
exp

(
−1

p

∫ t

0
( f pLf −p)(Xs) ds + 2

∫ t

0
N log f (Xs) d�s

)
.

As

df −p(Xt)
m= 1

2
Lf −p(Xt) dt + Nf −p(Xt) d�t

= −f −p(Xt)

(
−1

2
f pLf −p(Xt) dt + pN log f (Xt) d�t

)
,

we obtain that

Mt := f −p(Xt) exp
(

−1

2

∫ t

0
f p(Xs)Lf −p(Xs) ds + p

∫ t

0
N log f (Xs) d�s

)

is a (local) martingale. Proceeding as in the proof of [15, Corollary 3.2.8] or [2, Theorem

2.4], we get

‖f ‖−p
∞ E

[
exp

(
−1

2

∫ t

0
f p(Xs)Lf −p(Xs) ds + p

∫ t

0
N log f (Xs) d�s

)]

� E

[
f −p(Xt) exp

(
−1

2

∫ t

0
f p(Xs)Lf −p(Xs) ds + p

∫ t

0
N log f (Xs) d�s

)]

= f −p(x) ≤ 1,

since f ≥ 1 by assumption. This shows that

E‖Qt‖2 � eKp( f )t ‖f ‖p
∞, t ≥ 0.
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Combining this for p = 2 with Theorem 3.1 and denoting K( f ) = K2( f ), we obtain

σ 2
t := E

∫ t

0
|h′(s)|2‖Qs‖2 ds � ‖f ‖2∞

∫ t

0
|h′(s)|2eK(f )s ds.

Therefore, repeating step (b) in the proof of Theorem 3.2 with K( f ) replacing KV , we

finish the proof of (2). �
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