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By methods of stochastic analysis on Riemannian manifolds, we derive explicit con-
stants ¢;(D) and c,(D) for a d-dimensional compact Riemannian manifold D with
boundary such that ¢; D)VAl$lls, < IVells < €3(D)vVAl¢lls holds for any Dirichlet
eigenfunction ¢ of —A with eigenvalue A. In particular, when D is convex with nonneg-
ative Ricci curvature, the estimate holds for ¢, (D) = 1/de and ¢,(D) = e (\/L}% + %) .
Corresponding two-sided gradient estimates for Neumann eigenfunctions are derived

in the second part of the paper.

1 Introduction
Let D be a d-dimensional compact Riemannian manifold with boundary aD. We write
(¢, 1) € Eig(A) if ¢ is a Dirichlet eigenfunction of —A in D with eigenvalue A > O.
According to [7], there exist two constants ¢, (D), ¢,(D) > 0 such that

DVl < IVl < DIVl (,2) € Eig(A). (1.1)

An analogous statement for Neumann eigenfunctions has been derived in [5].
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7280 M. Arnaudon et al.

Concerning Dirichlet eigenfunctions, an explicit upper constant c,(D) can be
derived from the uniform gradient estimate of the Dirichlet semigroup in an earlier
paper [10] of the third named author. More precisely, let K,6 > 0 be two constants such
that

Ricp, > —K, H,p > —0, (1.2)

where Ricy, is the Ricci curvature on D and H,;, the mean curvature of dD. Let

oy = %max {0,\/(d— 1)K}. (1.3)

Consider the semigroup P, = e'® for the Dirichlet Laplacian A. According to [10,
Theorem 1.1] where ¢ = 2«,, for any nontrivial f € %,(D) and t > 0, the following

estimate holds:

VP 2 /ag(1 +4%/3H)14 (1 45 x 271/3) /1 52173 (1 +42/3
VP flloo < 9.500 + of ) 1(4 ) Gyt A+47) _. c(t).

If oo (tm)l/ 2tn

Consequently, for any (¢, 1) € Eig(A),
Vol < ||¢||ooinC(t)€M-
t>0
In particular, when Ricp > 0, Hyp > 0,
Vel +21/3) (1 +4%/3) ,
IVl < Vil (6,1) € Eig(a). (1.4)

Var

In this paper, by using stochastic analysis of the Brownian motion on D, we
develop two-sided gradient estimates; the upper bound given below in (1.8) improves

the one in (1.4). Our result will also be valid for ¢ € R satisfying

1
EA:%D < o outside the focal set, (1.5)

where p,, is the distance to the boundary. The case ¢y < 0 appears naturally in many
situations, for instance when D is a closed ball with convex distance to the origin. Note
that by [10, Lemma 2.3], if under (1.2) we define o by (1.3) then condition (1.5) holds as
a consequence.

For x > 0, in what follows in the limiting case x = 0 we use the convention

1 1/x 1 1/r 1
— = lim = —.
1+x rio \1+r e
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Theorem 1.1. LetK,6 > 0 be two constants such that (1.2) holds and let o be given by
(1.3) or more generally satisfy (1.5). Then, for any nontrivial (¢, 1) € Eig(A),

Jde(h+K) ~/d*r+K) \A+K 11l o0
and
IVl o . e + K) if VA+KZ>2A .7
I9le | Vo(a+5E) if VATE<24,
where
Yo RNEE oY 2
JT 2(A +K)
In particular, when Ricy > 0, Hyp, > 0,
N Vol J2e /me
B © <l 2=+ X2, ,A) € Eig(A). (1.8)
Vae = Tl Jr Tag) P eEE®

Proof. This result follows from Theorem 2.1 and Theorem 2.2 below in the special case
V = 0. In this case, Ricg = Ric, > —K is equivalent to (2.1) with n = d. More sophisti-

cated upper bounds are given below in Theorem 2.2. |

By (1.8), if D is convex with nonnegative Ricci curvature then (1.1) holds with

1 2
¢, (D) = Ve’ cy(D) = % + ;/—_j;;-

To give explicit values of ¢, (D) and c,(D) for positive K or 6, let A; > 0 be the first
Dirichlet eigenvalue of —A on D. Then Theorem 1.1 implies that (1.1) holds for

VM
Jde(h, +K)’

Jel, +K) Je n 2(0 +K) M +K
T N/ L A O R T ST

with
20 +K
B=,/A +K and A:2a§+,/£.
T

c,D) =
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This is due to the fact that the expression for ¢, (D) is an increasing function of A and the
expression for c,(D) a decreasing function of A. Since there exist explicit lower bound
estimates on A, (see [9] and the references within), this gives explicit lower bounds of
c¢;(D) and explicit upper bounds of ¢, (D).

The lower bound for ||V¢||,, will be derived by using It6's formula for |V¢|2(Xt)
where X, is a Brownian motion (with drift) on D, see Subsection 2.1 for details. To derive
the upper bound estimate, we will construct some martingales to reduce [|[V¢|,, to
IVél3p 00 = SUPyp VI, and to estimate the latter in terms of |¢||,,, see Subsection 2.2
for details.

Next, we consider the Neumann problem. Let Eigy(A) be the set of nontrivial
eigenpairs (¢, A) for the Neumann eigenproblem, that is, ¢ is nonconstant, A¢p = —i¢
with N¢|,, = 0 for the unit inward normal vector field N of 3aD. Let I, be the second

fundamental form of 4D,

I,p(X,Y) = —(V4xN,Y), X,Y e T,0M, x € dM.

With a concrete choice of the function f, the next theorem implies (1.1) for (¢,A) €

Eigy(A) together with explicit constants ¢, (D), c,(D).
Theorem 1.2. Let K,§ € R be constants such that
Ricp > —K, I;p > —6. (1.9)

For f € CZ(D) with ill%ff =1and Nlogfl,p > 8, let

4¢|V log f|?
c.(f) = sup [ll_gf'
D — &

+K—2Alogf], g€ (0,1),
K(f) =sup {2|Vlogf|2+K—Alogf}.
D

Then for any nontrivial (¢, 1) € Eigy(A), we have A 4+ c.(f) > 0 and

“ Y - w o2 ( A )A/cs(f)
o) A0+ G (A eoony 0+ e (PVIFIE \X + . (D)

2 2 AE(f)
_IVeIE _ 20f13.0-+ K(f) (1 . K(f))

~ ~ )\‘

2
ol T

< 2e ||f||§oHTK(f)-
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Proof. Under the conditions (1.2), Theorem 3.3 below applies with L = A, K, = K, and

n = d. The desired estimates are immediate consequences. |

When 9D is convex, that is, I, > 0, we may take f = 1 in Theorem 1.2 to derive
the following result. According to Theorem 3.2 below, this result also holds for 4D = &

where Eig(A) is the set of eigenpairs for the closed eigenproblem.

Corollary 1.3. Let 0D be convex or empty. If Ricg > —K for some constant K, then for

any nontrivial (¢, 1) € Eigy(A), we have A + K > 0 and

2 2 L/K 2 1K +
A A ( A ) < VoIS _ 20+ K) (1+K) o 260+ K

< S -~ X
deA+Kt) S d(A+K) \L+K o2, T A ”

2 Proof of Theorem 1.1

In general, we will consider Dirichlet eigenfunctions for the symmetric operator L :=
A + VV on D where V e C%(D). We denote by Eig(L) the set of pairs (¢, 1) where ¢ is a
Dirichlet eigenfunction of —L on D with eigenvalue A.

In the following two subsections, we consider the lower bound and upper bound

estimates.

2.1 Lower bound estimate

In this subsection we will estimate || V||, from below using the following Bakry-Emery
curvature-dimension condition:

(Lf)?
n

1
§L|Vf|2 — (VLf, Vf) > —K|Vf? + , fec>®D), (2.1)

where K € R, n > d are two constants. When V = 0, this condition with n = d is

equivalent to Ricp > —K.

Theorem 2.1 (Lower bound estimate). Assume that (2.1) holds. Then

Yol1Z > 1612 A2kt —1)
” ¢||oo = ||¢||oo St]:g nKe()H_K)th’

(¢, 1) € Eig(L). (2.2)

Consequently, for K+ := max{0, K} there holds

IVolZ >

201 12 A/Kt 211112
A||¢||oo( A ) > M0l o) € Big). (2.3)

n(A+K*t) \L+K+ ~ ne(A+K+)’
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7284 M. Arnaudon et al.

Proof. Let X, be the diffusion process generated by %L in D, and let
Tp :=inf{t > 0: X, € 9D}.
By It0’s formula, we have

1
dIvel2(X,) = §L|V¢|2<Xt> dt +dmM,, t<1p,

for some martingale M,. By the curvature dimension condition (2.1) and L¢ =

we obtain
ZLIVGIE = STV - (VI§, V) — MV > —(K + IVl + 2 g2
2 - 2 ’ = n .
Therefore, (2.4) gives
)»2
dIVel2(X,) > (;qsz - (K+ x>|V¢|2) (X, dt +dM,, t< 1.
Hence, for any t > 0,

n
e(K-‘r}») t ||V¢||§o 2 E |:|V¢|2(Xt/\ e(K—i-)»)(tA‘L’D):I

)

)\‘2 tATD
2 —E |:/ e(K+)L)S¢(XS)2 ds]
n 0

)"2

t
=—E [ /0 Lo, e (x,)? ds:| :

Since ¢|,p = 0 and L¢ = —1r¢, by Jensen’s inequality we have

E (L@ %07 ] > (B9 (X)) = 650 (x)%,

where x = X, € D is the starting point of X;. Then, by taking x such that d(x)? = ol

we arrive at

2t
+ A _
e®+HTt g2 > i / eK+Msg=As 4 ()2 dg
0

_ Mgl /teKs gs— =D o
n 0 nkK oo

This completes the proof of (2.2).

(2.4)

—rp,

(2.5)

2
oo’
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Since (2.1) holds for K+ replacing K, we may and do assume that K > 0. By taking
the optimal choice t = % log(1 + %) (by convention t = A~! if K = 0) in (2.2), we obtain

Alol% [ » V5 221913
IVp)2, > ——= > o0

A+K \AL+K “ ne(A+K)°

Hence (2.3) holds. |

2.2 Upper bound estimate

et Ric/, = Ric, — Hessy,. For K,,0 > 0 suc at Ricp, > — K, an > -0, le
Let Ric} = Ricj, — Hessy,. For Ky, 6 > 0 such that Ricp > —K, and Hyp, > —6, let

a= % (max [9,,/(d - 1)K0] + ||VV||OO) . (2.6)

We note that %L,oaD < « by [10, Lemma 2.3].
Theorem 2.2 (Upper bound estimate). Let K, 6 > 0 be constants such that
Ric) > —Ky, H,p > 9.

Let o € R be such that
1
EL'OBD < a. (2.7)

1. Assume « > 0. Then, for any nontrivial (¢, A) € Eig(L),

IVollo _ [VEGF+EKy) i A+Ky>24 o8
I8l | Vo (a+25y) if VAtERy <24,

where

/ 2 2
A':a—l—M exp (_O{—)_Hm/\ﬁ—a_ (2.9)
N 20, +Ky) J70+ Ky)

In particular, (2.8) holds with A replaced by

A = 2a +

Y NN ey 2
v20 +Ky) exp( a—) . (2.10)

JT 200+ Kp)

We also have

(2.11)

||V¢||°°<JE 205+\/2(k+KV)+)L+KV Jr
Il JT 4 20+ .,20+Kp )
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2. Assume « < 0. Then, for any nontrivial (¢, A) € Eig(L),

IVollos e(k + Ky) if /A+Ky, > 24"

(2.12)
¢l A* + A+Kv) if /AtK, <24
where
20+ K 2
A* = @ exp (_a—) . (2.13)
T 2(x +Ky)

In particular,

1Vl oo \/Z 1/2
ol g,/,\+KV( —+7 2)“/5‘ (2.14)

In addition, the following estimate holds:

IVgll, _ |VeO+Ky) if i+ Ky>2/6A 2.15)
||¢||oo eA+ =50 if A+ Ky <264,
where
A A/ 2)\ o? \/5062
A=a+——e 22 +|u| A . (2.16)
JT i A

The strategy to prove Theorem 2.2 will be to first estimate ||V¢|, in terms of
léllo and IVéllsp o (see estimate (2.24) below) where ||f||8D,oo :=1|5p fllo for a function
f on D. The this end we construct appropriate martingales in terms of ¢ and V¢.

We start by recalling the necessary facts about the diffusion process generated
by %L, see for instance [1, 3]. For any x € D, the diffusion X; solves the stochastic

differential equation (SDE)
1
dX, = SVV(X)dt +u 0 dB, X =x t<7p, (2.17)

where B, is a d-dimensional Brownian motion, u, is the horizontal lift of X; onto the

orthonormal frame bundle O(D) with initial value u, € O,(D), and
Tp:=inf{t > 0: X, € dD}

is the hitting time of X, to the boundary dD. Setting Z := VV, we have

d
1 .
du, = Ez*(ut) dt + 2 H;(u,) o dB} (2.18)
i=1
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where Z*(u) := hu(Zﬂ(u)) and H;(u) := h,(ue;) are defined by means of the horizontal lift
hy: TyqyD — T,0(D) at u € O(D). Note that formally h, (u, o dB,) = > ; h,, (use;) o dBi =
> Hy(u,) o dBL.

For f € C*(D), let a := df e I'(T*D). Setting m, := u;la(Xt), we see by Itd’s

formula that
1
dm, = Eu;l(Da + Vza)(X,) dt (2.19)

where Oa = tr V2a denotes the so-called connection (or rough) Laplacian on one-forms
and = equality modulo the differential of a local martingale.
Denote by Q,: T,D — Ty, D the solution, along the paths of X, to the covariant

ordinary differential equation
DQ, = —l(RicV)ﬁo dt, Q,=id; ,, t<t
t= "5 p) Uy at, U =1dr p, X Tp,
where D := u,du; ' and where by definition
(Ricp)v = Ricj(-,v)*, v e T,D.

Thus, condition Ric} > —Kj, implies

KVt

Qv <ezt|v], t< 1. (2.20)

Finally, note f on D, we have by the Weitzenbock formula:

d(A+2)f =d(-d*df + (df)2)
= ADdf + V,df + (V.Z, Vf)
= (@ + V)(df) — Ricp(-, V)
- (D — Ric} + VZ) df) (2.21)
where A denotes the Hodge-deRham Laplacian on one-forms.

Now let (¢, 1) € Eig(L), that is, L¢ = —r¢, where L = A+ Z. For v € T, D, consider

the process
n,(v) := (d¢)(Q,v).
Then

n,(v) = (Vo(X,), Q,v) = (u; (Vo) (X,), u; ' Quv).
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7288 M. Arnaudon et al.
Using (2.19), we see by Itd’s formula and formula (2.21) that

m

A
dn,(v) (Od¢ + V,d¢)(X,) Q,vdt + d¢(X,)(DQ,v) dt = —E”t(V) dt.

1
2
It follows that

eM2n,(v) = % (Vo(X,),Qv), t<1p, (2.22)

is a martingale.

Lemma 2.3. Let (¢,)) € Eig(L). We keep the notation from above. Then, for any function
h € C'([0,>0); R), the process

t
N,(v) := h, "2 (Vo (X,),Q,v) — e*V/? ¢(Xt)/ (h,Q,v,us dBy), t< 1p, (2.23)
0

is a martingale. In particular, for fixed t > O and h € c1([0, t]; [0, 1]) monotone such that

hy =1 and h, =0, we have
IVl < 11V llyp o0 PAE > T} @KW 82
t . 1/2
+ ¢l €2 Pit < 7p}1/2 (/ |hg|?eXVs ds) : (2.24)
0
Proof. Indeed, from (2.22) we deduce that
t .
h, "% (Vp(X,),Q,v) — /0 hye*/? (Vo(X,),Q.v)ds, t< 1,
is a martingale as well. By the formula
t
12 §(X,) = §(Xy) + /0 €512 (Y (X,), ug dB;)

we see then that N,(v) is a martingale. To check inequality (2.24), we deduce from the

martingale property of {N,, (v)}sc 4 that
1V0lloo < 1V llop00 B | Loy €72 1oy 110, ]

¢ 271/2
+ 10l oo 2K |:]l{t<m} sup (/0 (hg Qgv, ug dBS)) j| .

lvi<1

The claim follows by using (2.20). |
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To estimate the boundary norm IV@llyp,00r WE shall compare ¢ (x) and
Y(t,x) =Py >1), t>0,
for small p,,(x) := dist(x, D). Let PP be the Dirichlet semigroup generated by %L. Then
¥(t,x) = PP 1p(x),

so that

1
AW (t,x) = ELIﬁ(t, )(x), t>O0. (2.25)
Lemma 2.4. For any (¢, 1) € Eig(L),
IV@lap,00 < ¢l IDECXZIVY (2, )llyp, - (2.26)

Proof. To prove (2.26), we fix x € dD. For small ¢ > 0, let x* = exp,(¢N), where N is the

inward unit normal vector field of dD. Since ¢|,, = 0 and ¥ (¢, -)|;p = O, we have
| ( x°)| (@, x%)|
Ve (x)| = IN¢(x)| = 1 m —— ¢ VYR )@= 21_13(1) IPT (2.27)
Let X; be the L-diffusion starting at x° and 7, its first hitting time of dD. Note that

Ny:=¢ ( f/\rg) D2, 1> 0,

is a martingale. Thus, for each fixed ¢t > 0, we can estimate as follows:

XE
Vo (x )|_1m|¢( )|
]E[(p(Xf) ]]-{t<t5}] e)»(t/\‘rg)/Z
= lim z
e—0 &

ol s R

< /2 1 {t>7p)
o lim ———

At/Zl ¥ (t,x°)

&

< 19l

= gl €2 VY (L, )I(x).

Taking the infimum over ¢ gives the claim. |
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We now work out an explicit estimate for ||V (¢, -)[;p - Let cut(D) be the cut-
locus of 9D, which is a zero-volume closed subset of D such that p,;, := dist(-,dD) is
smooth in D \ cut(D).

Proposition 2.5. Let o € R such that

1
FLPy, <. (2.28)
Then
0125
IV, )l + = / Ll NP
<a
aD,0c0 27TS
2 2 2J2t
cot L% L minl e, CY2 (2.29)
Tt JT
and
V2 Vi
Vi (e, )l <—=+a+ o (2.30)
IVY (@ llyp,eo It N
Notice that by [10, Lemma 2.3] the condition $Lp,p, < o holds for o defined by
(2.6).

Proof. Let x € D and let X, solve SDE (2.17). As shown in [6], (pp(X}))i<,, is @

semimartingale satisfying

1 t
PapXp) = pyp ) + b, + E/ Lpy;pnX,)ds =1, t<tp, (2.31)
0
where b, is a real-valued Brownian motion starting at 0, and I, a nondecreasing process
that increases only when X} € cut(D). Setting & = p,,(x), we deduce from (2.31) together
with $Lp,p < o that
Pap X (X)) < Y{(e) :=e+ b, +at, t<1p. (2.32)

Consequently, letting T”(¢) be the first hitting time of 0 by Y7 (¢), we obtain

Yt x) <P < T%). (2.33)
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On the other hand, since (¢, -) vanishes on the boundary and is positive in D, we have
forall y € 9D

V) = lim 2

. (2.34)
xeD, x—=y Pyp (%)

Hence, by (2.33), to prove the first inequality in (2.29) it is enough to establish that

m

) P(t < T"‘(s)) / l—e 7
lim sup ——= (2.35)
€l0 € «/ V2753
It is well known that the (sub-probability) density f, . of T*(¢) is
e exp (—(s + as)?/(2s)
Jae(s) = p( /(29) : (2.36)

2ms3

which can be obtained by the reflection principle for « = 0 and the Girsanov transform
for o # 0. Thus

t _ 2 2
Bt > T9e)) :g/ exp (—(e + as)?/(2s)) ds
0 27 s3
t o—a?s/2 2
= g exp(—ue) ex (——) ds (2.37)
P 0 V2ms3 P\72s
2t /g2 e~ lr a2e2r
= ex (—aa)/ ex ( ) dr,
P 0 L P 4

where we have made the change of variable r = 2s/¢2. With the change of variable

v = 1/r we easily check that

/ r3/2¢=1r qr = 1 (1/2) = /7, (2.38)
0

and this allows to write

o]

e—1/r 2t /2 e—1/r -
P(t > T%(¢)) = exp(—as) / dr—/ 1—e*¢74) dr). (2.39)
P ( 2t/e2 /713 0 ars ( )

Ase — 0,

71/r o) 8«/5
dr+ o(e) = — + o(e),
/2t/82 r3 2t /2 «/_
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7292 M. Arnaudon et al.

and with change of variable s = % 2r

2t/€2 e—l/r «262r t ei% a?s
/ —(1—e_ 4 )dr:s/ (l—e_z)ds
0 ard 0 v2ms3

tl_ 2
28/ —ds-l—o(e)
0 27 3

by monotone convergence. Combining these with e™** = 1 — a¢ 4+ o(¢), we deduce from
(2.39) that

(125

l1—-e 2z
Pt>Te))=1—¢|a+ / ds | 4 o(e), (2.40)

VT V2rsd
which yields (2.35).
Next, an integration by parts yields
t oZs 2 t V2
l—e 2 1 oZu 2 o?

/ S P du——(l—e_zt). (2.41)

0 +/2ms3 2 Jo Ju St

With the change of variable s = |a|\/¥ in the first term in the right we obtain

o /t e |,/2t/|a| -5 4 (2.42)
Ey— — € u=\|u —_— e S. .
V2r Jo Ju 7 Jo

We arrive at

2
1-e 7 f 2, 2t [l g2,
_ d -7 J= ~*7 ds. 2.4
fle) = a+J_ / Nz RN T et n/o ¢ E 2:43)

32 32 Sz
Bounding @fga‘ e~ 2 dsby \/gfo e~Z ds = 1, respectively bounding e~z by 1 in the
integral, yields (2.29).

fla) = \/\/;_2t+a+|a|\/7/la -5t d

is smooth and an easy computation shows that

The function

fO=—=, fO=1 fla= (2.44)

V2 , \/2te_aT2t
Jrt' Jr '
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Using the fact that f(«) — « is even, we also get

|| 2
f(a)=£+a+ \/_ 7' ds<£+a+ia2, (2.45)
Vrt 0o V. Vrt Nezd
which yields (2.30). [ |

Remark 2.6. One could use estimate (2.24) (optimizing the right-hand side with respect
to t) together with Lemma 2.4 (again optimizing with respect to t) to estimate [|V¢| o, in

terms of ||¢||,. We prefer to combine the two steps.

Lemma 2.7. Assume Ric} > —K,, for some constant K;, € R. Let « be determined by
(2.28).

(@) If « > 0, then for any (¢, A) € Eig(L),

(AR 2 22 2. /2t 1—
V9l <inf max e~z [s(a+%e—f+min(|a|,“T + = {19l
1 T T

as well as

2 Jt 1—c¢
v 1nf max eC-+Kp)t/2 S -
VPl { max elaty — + m“ +4/ ” &l oo
and

2 1—¢
\Y% < inf max e K2 Lo fog 4 [ 2 )4 2% _
Vol < inf max aty )ty (19l

(b) If « <0, then
—¢
} &1l oo

v inf max eC-+Kv)t/2 ,/ TL
I ¢”oo t>0¢€[0,1]
—¢
] Il

In particular,

2
Vol < inf max QOA+KD)T/2 [8 /2
>0 e€(0,1] Tt
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Proof. For fixed t > 0 in (2.23), we take h € C1([0, t]; [0, 1]) such that hg=1andh, =0.

Then, by the martingale property of {N;, . (v)}sc[ 4, We obtain

ATD

[Vy@|(x) = [Ng(V)| = [EN ., (V)]

t
= ‘E |:]1{t>fu} et™/2 htp<v¢(XrD)' a‘L’DV> o ﬂ{térD}eM/Z(p(Xt)/o (hs Qgv, ug st>iH :

(2.46)

Note that using (2.20) along with Lemma 2.4 we may estimate

B [ ) €72 iy (6 (X,,), 0, 0) |
< B[ €7 ey 1995057 2111
<E [ﬂ{t>rp} /2 |h | $lloo IV (E = Tp, Hlyp,ee €22 KVTD/2 |v|]
= E[11e o Vg 1911 VU (2 = T, e €% KV0/2 1]

N
< eMRVIZ ) L E [ﬂ{tm} 1hep |l IV (= T, llsp oo |v|] ,

as well as

t t 1/2
IE|:]l{t<TD} 6“/2¢(Xt)/0 (hyQ.v, ug dBS)] < M2 o)l Pit < tp)/? (/0 |hg|?eKvs ds) .

Taking
hy=""=, sclod,

we obtain thus from (2.46)

e(-+K)T/2
VG0 € 18l E [ Loy (¢ = 70) IVY/(E = T, llapc
+ 1/2
1 [ekvt—1
+ 2 gl Pt < o2 - [ S )
t\ Kf
Note that
Kyt _ 1
e — < tekvt
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(i) By (2.29), assuming that o > 0, we have on {t > 7}

DtZS

t—t, N2 Jf—t1, t—t1p [FP1-eZ
+ — + ——ds
t NI t Jo V2ms3

t—1p

IV @ —1p, Illpp,ec < @

V2 t]1—e 2

<o+ + ds
Jrt  Jo +/2ms3
N

a‘t . Olz 2t
<a+ e 2 4+ minjc«, .

Jrt

Thus, letting ¢ = P(¢ > 1), we obtain

V2 a2t l1—¢
Vo (x)| < eOHEDT/2 ela+—e 2 +minfa, —t }+.,/—|.
Vo (x)] &l oo NeT N ;

(ii) Still under the assumption « > 0, this time using estimate (2.30), we have on

{t > tp}

V2 t—1tp o
VY (@ —p, )l; < ——=+ao+ —=a,
V= Moo Jrt—1p) Nex:

and thus letting ¢ = P(t > t5), we get

(+KH)t/2

|V¢(X)|<e—||¢|| El1l \/zﬁ—f-a(t—r )_+_(1,‘—TD)3/20l2
= t 00 {t>p} T D D —\/Z

+ 1/2
1[ekvt—1
+ &2 |l Pt < 1p)'/2 ?(T)
14

2 Jt 1—c¢
<MD g [e (,/n—t +ao+ —Zoﬂ) + T} :

(iii) In the case o < 0, we get from (2.29) in a similar way

«/5 o2t 1 — &
Vo (x)| < ePHEDH2 E——e z + )
Vo (x)] &l oo NeT ;

This concludes the proof of Lemma 2.7. |
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Proposition 2.8. We keep the assumptions of Lemma 2.7.

(@) If o > 0, then for any (¢, 1) € Eig(L),

J20+K7) o? - Vaa?
IV$lloo < vemax, o,y [s(a T eXp (—2<HK;>) * mm(’“" JrOAKD)
+V/T—¢,/0 +K;>] 191l0c

as well as
IV < Ve max e a+\/m+ o?
e€l0,1] JT \/m
+VT =&/ +ED) t 9l
and

J200+K)
VOV L T

Nz

Vol < «/_max e | 20+ A +EKp) ¢ 10lloo-

(b) If ¢ <0, then

J200+ KD 2
V9l < Ve max Y TV exp(—a—)—i-«/l—s,/()»—i-KJVr) 161l

VT 20+ Kp)

Proof. Take t=1/(x+K;) in Lemma 2.7. [ ]
We are now ready to complete the proof of Theorem 2.2.

Proof of Theorem 2.2. The claims of Theorem 2.2 (with the exception of estimate (2.15))
follow directly from the inequalities in Proposition 2.8 together with the fact that for

any A,B > 0, 9

B
max {eA +v1—¢B| =B A+ =) Lpeon 2.47
86[0,1]{ * {B>2A}+< +4A) (B<24) (2.47)
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Finally, to check (2.15) we may go back to (2.24) from where we have

1/2
.
IVl < e 21V o+ VT — e €™ 1l (/ s %57 d ) .

Taking
—Kyt —Kys
(S — €
hszm, Se[o,t],

we obtain

0 ¢€[0,1]

1/2
. Ky
IVl mfmax{se““” V211V llap 00 + 9]0 €231 = (m) ]

Noting that

K K N
|4 |4 < tfleK t

Kyt X _ts
1 —e&v 1_eKVt

and taking ¢ = (K, + »)~! we obtain

Vol < x/ésrélmaili] [8||V</5||3D,C>O +yA -G +Kp) ||¢|Ioo} .

Applying Lemma 2.4 and Proposition 2.5 with t = 1/, we arrive at

2
Vol < ||¢”oo§§3’f] [ee(a + %e?i + la| A Oi/nif)+ \/e(l —e)(x +K;)] )

The proof is then finished as above with observation (2.47). |

3 Proof of Theorem 1.2

As in Section 2, we consider L = A + VV and let Eigy (L) be the set of the corresponding
nontrivial eigenpairs for the Neumann problem of L. We also allow dD = &, then we
consider the eigenproblem without boundary. We first consider the convex case, then
extend to the general situation. In this section, P, denotes the (Neumann if 9D # ©)
semigroup generated by L/2 on D. Let X, be the corresponding (reflecting) diffusion
process that solves the SDE

1
dx; = u; 0 dB, + o VV(X,) dt + N(X,) de, (3.1)
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where B, is a d-dimensional Euclidean Brownian motion, u, the horizontal lift of X; onto
the orthonormal frame bundle, and ¢, the local time of X; on dD.

We will apply the following Bismut type formula for the Neumann semigroup P,,
see [15, Theorem 3.2.1], where the multiplicative functional process Qg was introduced
in [4].

Theorem 3.1 ([15]). Let Ric}, > —K, and I,;, > —§ for some K, € C(D) and § € C(3D).

Then there exists a R ® R%-valued adapted continuous process Q, with

1 t t
lQ;l < exp (5/ Ky (X,) ds+/ 8(X,) dﬁs) , $=0, (3.2)
0 0
such that for any ¢ > 0 and h € C!([0, t]) with h(0) = 0, h(t) = 1, there holds

t
VPf=E [f(Xt) / H (s)Q, dBS] . f € ByD). (3.3)
0

3.1 The case with convex or empty boundary

In this part we assume that 9D is either convex or empty. When dD is empty, D is a
Riemannian manifold without boundary and Eig, (L) denotes the set of eigenpairs for
the eigenproblem without boundary. In this case, if Ric” > K, for some constant K, € R,
then A + Ky, > 0 for (¢, A) € Eigy (L), see for instance [8].

Theorem 3.2. Assume that 9D is either convex or empty.

(1) If the curvature-dimension condition (2.1) holds, then for any (¢, A) € Eigy (L),

A2||¢>||§o( A )”K> 121913,

Vo2 > = Pl
| ¢”°°/n(/\+K) r+K ne(h +KT)

(2) If Ricg > —Ky, for some constant K, € R, then for any (¢, 1) € Eigy (L),

IVollZ, 204Ky (1 Ky */Ky _ 2e(r +K7)
lollZ A = p :

Proof.

(a) We start by establishing the lower bound estimate. By It6’s formula, for any
(¢, 1) € Eigy (L) we have

1
dIVel2(X,) = §L|V¢|2<Xt> dt + 21,,(Vo, Vo) (X,) d¢, + dM,, t>0, (3.4)
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where ¢, is the local time of X, at 9D, which is an increasing process. Since
I,p > 0, and since (2.1) and L¢ = —A¢ imply

1 2 2 A 2
FLVOP > —(K + 0|V + —¢?,

we obtain

2

WV
o

A
d|Ve|2(X,) > (

?pz - +K)|v¢|2) (X, dt+dM,, ¢

Noting that for X; = x € D we have
Elp (X,)?] > (Elp X))* = e ¢ (x)?,
we arrive at

)\‘2 t
e()L+K)t ||V¢)||§O 2 e()»+K)t E[|V¢|2(Xt)] 2 ;/ e()\"'K)S ]E[¢2(XS)] dS
0

A2(eKt —1)

2
AU

)‘2 ! Ks 2
> — [ epx)°ds =

n Jo
Multiplying by e~**%) choosing t = +log(l + £) (noting that A + K > 0, in
case A + K = 0 taking t — o0), and taking the supremum over x € D, we finish
the proof of (1).
Let D be convex and Ricj, > —Kj, for some constant Ky,. Then Theorem 3.1
holds for § = 0, so that

t 1/2 t 1/2
o, 1= (E/O |h'(s)|2||as||2ds) g(/o |h/(s)|2eKVSds) )

Taking

_ JpeFvrdr

h(s) =20—  —
fot e~Kvrdr

we obtain
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Therefore,

t
VPl < IFllo E ‘ /0 W (s)Q, dB,

2 o0 g2 d
< e S ex —_—— S 3.5
If 1o oS Gt/o P( 20t2) (3.5)
o2
= [ flloo—t t>0, f € ByD).

T

Applying this to (¢, 1) € Eigy (L), we obtain

_ o2 2K 1/2
e M2|Vg| < ||¢||oot7 < 6loo (mTzzm)) , t>0.

Consequently, A + Ky, > 0. Taking ¢t = KLV log(1 + %) as above, we arrive at

2 A/ Ky
IVoIZ, _ 26+ Ky) (1 +I&) '
612, X

3.2 The non-convex case

When 9D is non-convex, a conformal change of metric may be performed to make oM
convex under the new metric; this strategy has been used in [2, 12-14] for the study of
functional inequalities on non-convex manifolds. According to [15, Theorem 1.2.5], for a
strictly positive function f € C*°(D) with I, + Nlogf|,5 > 0, the boundary 9D is convex
under the metric f‘2(~, -). For simplicity, we will assume that f > 1. Hence, we take as

class of reference functions
P = {f € C*(D): inff =1, I, + Nlogf > 0}.

Assume (2.1) and Ric}, > —K, for some constants n > d and K,K;, € R. For any f € 2
and ¢ € (0, 1), define

4¢|V log f|?

c.(f) ::sup[ I +8K+(1—8)KV—2Llogf].
s —
We let A} be the smallest nontrivial Neumann eigenvalue of —L. The following result

implies 1, > —c,(f).

0202 J8qWBAON g0 UO Jasn Binoquiaxn wniuosuo) Aq 882060S/6.2./02/0202/3191e/uiwi/wod dno olwapese//:sdjjy Wol) papeojumoc]



Gradient Estimates on Eigenfunctions 7301

Theorem 3.3. Letf € 2.

(1) If (2.1) and Ricg > —K, hold for some constants n > d and K, K, € R. Then
>0

for any nontrivial (¢, A) € Eigy (L), we have A + c,.(f) and

IFIZIVeNs e)? ( A )“Cf(f "2 sup 2
lollZ " econy P+ ¢, () \ A+ (f) " ec0) ne(l+ ¢ (HH)

(2) Let Ric}, > —Ky, for some Ky, € C(D), and
K(f) =sup {2|Vlogf|2 + Ky —Llogf} .
D

Then for any nontrivial (¢, 1) € Eigy (L), we have A + K(f) > 0 and

IVoIE,  _ 20+ K (| KOVED _ 2e0+K (D)
IPZIfIE ~ A b T~

Proof. Letf e 2 and (¢,1) € Eigy(L).
(1) On 0D we have

N(f2IV¢l?) = (Nf2)|Ve|* + f2N|Ve|?
= 1* (W 1og )| VeI + 21,5(V9, V)

= 2f? (W 10g NIVI® + L;p(V, V9)) > . (3.6

Next, by the Bochner-Weitzenbock formula, using that Ricg > —Kj, and Lp = —r¢, we

observe

LLivg2 = LLive? — (vig, V) — a1V P2
2 2 '

> |Hess s — Ky + 1)Vl
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Combining this with (2.5), for any ¢ € (0, 1), we obtain

2
%waz +(VF2,V|Vg|?)
A2
> —f2(eK + (1 — &)Ky + 2|Vl + 7f2¢2

+ (1 — e)f||Hess,y | &g — 2| Hess llgs x V2] x [Vl

S I |V log f2|?

eA?
T TeK+ (1 —oKy+h f2|v¢|2+7f2¢2.

Combining this with (3.6) and applying It6's formula, we obtain
1
d(f2IVel?) (X, = EL(f2|V¢|2>(Xt> dt + N(f2Ve|)(X,) de,

> 3 (PPl + 2097 VIVo) + IV PLF?) (X dt

> {¥f2¢2_ (|V108f2|2

T TeK+ (- oKyt —f—szZ)f2|v¢|2} (X, dt

52
> (%dﬂ - (e cs<f>)f2|V¢|2) (X, dt.
Hence, for X, =x € D,

12 IVgIZ oDt > B[ oD (2ve ) X,

ex? [t (+ce(f)s 2
> —/ e TS Elp (X,)*] ds
n Jjo
2 t
> & eCs(f)S(p(X)Z ds
n Jjo
er2(e% Nt —1
= D 2,
ne,(f)
This implies A + ¢, (f) > 0 and
If 12,1 VolIZ, e)? (e74 — e~ (e (M)
——— =2 Su
Ip11% b nc. ()
eA? A Ace(f) e12
= 2 _— .
n +c.(f) <k+cg(f)) ne(A +c,(f)1)
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(2) The claim could be derived from [2, inequality (2.12)]. For the sake of

completeness we include a sketch of the proof. For any p > 1, let
Ky(f) = sup {Ky +pIViogfP? — Llogf}.

Note that p|Vlogf|? — Llogf = p~'fPLfP. Since f € Z implies I,;, > —Nlogf, we have

t t
”Qt”z < exp (/0 KV(XS) ds + 2/0 Nlng(XS) des)

t t
<exp (K (D) exp (—= [ (FPLF Py ds+2 [ Nlogfuxyar,).
P pPJo 0

As
AF PO 2 JLF (%) de -+ NFP(X,) e

1
— 2 (= 7B P de o+ pNlog X ),
we obtain that
1 t t
M, = fP(X,) exp (—5/ fP(XH)LfP(X,)ds ~|—p/ Nlogf(X,) dZS)
0 0

is a (local) martingale. Proceeding as in the proof of [15, Corollary 3.2.8] or [2, Theorem

2.4], we get

t t
1P E [exp (5 [ Ptns P asp [ Mlogfixac,)|

t t
<E[rraen (-5 [ i raydsp [ Mograa,)|

=fPx <1,

since f > 1 by assumption. This shows that

ElQ,)? < oDt £E, t=o.
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Combining this for p = 2 with Theorem 3.1 and denoting K(f) = K,(f), we obtain

t t
of =F /0 IR (s)1211Q411* ds < [If1I% /0 W (s)|2eKP)s ds.

Therefore, repeating step (b) in the proof of Theorem 3.2 with K(f) replacing K,, we
finish the proof of (2). n
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