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Abstract. On Sasakian manifolds with their naturally occurring sub-Riemannian structure, we
consider parallel and mirror maps along geodesics of a taming Riemannian metric. We show that
these transport maps have well-defined limits outside the sub-Riemannian cut-locus. Such maps
are not related to parallel transport with respect to any connection. We use this map to obtain
bounds on the second derivative of the sub-Riemannian distance. As an application, we get some
preliminary result on couplings of sub-Riemannian Brownian motions.

1. Introduction

Studying couplings on Riemannian manifolds has been a successful method of obtaining func-
tional inequalities related to local geometric invariants, see, for example, [37] and the references
therein. A key preliminary step is to first establish comparison results, in particular related to
derivatives of the Riemannian distance. There has been much interest in finding functional in-
equalities involving the sub-Laplacian which depends on sub-Riemannian geometric identities; see
[4, 9, 11, 12, 13, 14, 16, 17, 25, 26, 27] for examples of progress in this direction. Recall that a
sub-Riemannian manifold is a triple (M,H, gH), where H is a bracket-generating subbundle of the
tangent bundle TM of the manifold M and gH is a smoothly varying inner product on H. Such
manifolds are related to second-order operators with a positive semi-definite symbol ∆H called a
sub-Laplacian. These operators are not elliptic, but both the sub-Laplacian and its heat operator
will be hypoelliptic by Hörmander’s classical result in [28]. The interest in such results comes not
only from the applications to hypoelliptic PDEs but also in deepening the understanding of sub-
Riemannian geometry itself. Recently, there have been several comparison results using curvature
bounds to control the Hessian and sub-Laplacian of the sub-Riemannian distance function; see
[2, 3, 30, 31, 18, 20] for examples, with an application found in [15]. We want to emphasize the
previous results found in [18, 20] obtain Hessian comparison theorems by considering the index
forms and Jacobi fields of a model taming Riemannian metric gε that approaches a sub-Riemannian
metric as ε→ 0. We will expand the application of this method in the current paper.

The aim of this paper is to pave the way for constructing couplings of processes whose infinites-
imal generator is a sub-Laplacian. Such couplings have already been studied in [21] for the case of
the Heisenberg group (see also [8] for non-Markovian couplings on the Heisenberg group). We will
begin with the study of sub-Riemannian manifolds that can be obtained from Sasakian contact
manifolds, where the horizontal bundle H is the kernel of the contact form. We consider a taming
Riemannian metric gε that converge to the sub-Riemannian metric (H, gH) defined such that the
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Reeb vector field remains orthogonal to H. We then study derivatives of the Riemannian distance
function dε(γ1,ε(t), γ2,ε(t)), where γ1,ε(t) and γ2,ε(t) are two different gε-geodesics. We construct
a parallel and mirror coupling between such choices of geodesics, and show that these coupling
maps have a well defined limit as we let the Riemannian geodesics approach their sub-Riemannian
counterpart. We note however that the limiting parallel map is not the parallel transport of any
affine connection. Using curvature bounds, we are able to control the first and second derivative
dε(γ1,ε(t), γ2,ε(t)) such that we have a well defined limits as ε→ 0, giving a sub-Riemannian result.
It is a basic feature of the subject that such derivatives of dε(γ1,ε(t), γ2,ε(t)) are only well defined
at points that are not in the cut locus. We restrict our attention to this situation in the present
paper, since it forms the geometric foundation to analyze coupled Brownian motions and is also
of independent interest. The extension to globally defined couplings and their applications will be
the subject of future research.

The structure of the paper is as follows. In Section 2 we consider the necessary preliminaries of
the paper, such as index forms on Riemannian manifolds, sub-Riemannian geometry, and cut loci
of both sub-Riemannian and Riemannian manifolds. We will also describe how sub-Riemannian
manifolds can be considered as a limit of Riemannian manifolds. In Section 3, we consider our main
results on sub-Riemannian Sasakian manifolds. We define parallel and mirror maps in Section 3.2
that preserves both the Riemannian structure gε as well as the horizontal and vertical bundle,
and we show that these have a well-defined limits. We will use these maps to get a short-time
expansion of the sub-Riemannian distance along coupled geodesics in Theorem 3.7. We finally use
these results in Section 4 to get some bounds for the distances between coupled sub-Riemannian
Brownian motions that hold up to the cut locus.

2. Preliminaries

2.1. Variation of Riemannian distance and the index form. Let (M, g) be a Riemannian
manifold with corresponding Riemannian distance dg. For any x ∈ M, define rg,x(y) = dg(x, y).
The cut locus Cutg(x) is defined such that y ∈ M\Cutg(x) if there exists a unique, non-conjugate,
length-minimizing geodesic from x to y relative to g. The global cut-locus of M is defined by

Cutg(M) = {(x, y) ∈ M×M, y ∈ Cutg(x)} ,

and note that it is symmetric (that is, (x, y) ∈ Cutg(M) if and only if (y, x) ∈ Cutg(M)).

Lemma 2.1 ([1], [33]). The following statements hold:
(a) The set M \Cutg(x) is open and dense in M for any x ∈M .
(b) The function (x, y) → dg(x, y)

2 is smooth on M×M \Cutg(M).

Let γ : [0, r] → M be a geodesic of g, parametrized by arc length. For vector fields along γ, we
define a symmetric map Ig = Ig,γ : (X,Y ) 7→ Ig(X,Y ) by

Ig(Y, Y ) =

∫ r

0

(
‖∇g

γ̇Y (t)‖2g + 〈Rg(γ̇(t), Y (t))γ̇(t), Y (t)〉g
)
dt.

where ∇g is the Levi-Civita connection of g and Rg is its curvature. The following result can be
found in e.g. [36].

Lemma 2.2. Let γ1 and γ2 be two geodesics with initial velocity

γ′1(0) = v ∈ TxM, γ′2(0) = w ∈ TyM.

Assume that y is not in the cut locus of x and let γx,y : [0, r] → M be the unique unit speed
geodesic from x to y with r = dg(x, y). Let Y be the Jacobi field along γx,y satisfying Y (0) = v and
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Y (r) = w and Y ⊥(t) is the projection to the orthogonal complement of γ̇x,y. Then
d
dtdg(γ1(t), γ2(t))|t=0 = 〈w, γ̇x,y(r)〉 − 〈v, γ̇x,y(0)〉;

d2

dt2 dg(γ1(t), γ2(t))|t=0 = Ig(Y
⊥, Y ⊥) = Ig(Y, Y )− 1

r
(〈w, γ̇x,y(r)〉g − 〈v, γ̇x,y(0)〉g)2 .

This result gives us a way of computing derivatives of the distance if we know the Jacobi
fields along the curve. We can also estimate the derivate using the following Lemma, see e.g. [29,
Corollary 6.2] and [36, Theorem 1.1.11].

Lemma 2.3 (Index Lemma). Let γ : [0, r] → M be a minimizing geodesic and let Ig = Ig,γ be its
index form. Let Y be a Jacobi field and let X be any vector field along γ with X(0) = Y (0) and
Y (r) = X(r). Then

Ig(Y, Y ) ≤ Ig(X,X).

We note that Ig can be rewritten using other connections rather than the Levi-Civita connection.
Let ∇′ be an arbitrary connection. We say that ∇′ is compatible with g if ∇′g = 0. A compatible
connection has the same geodesics as the Levi-Civita connection if and only if its torsion T ′ is
skew-symmetric, meaning that 〈T ′(u, v), w〉g = −〈v, T ′(u,w)〉g, u, v, w ∈ TM. Alternatively, a
compatible connection ∇′ is skew-symmetric if and only if its adjoint connection ∇̂′ defined by
∇̂′

XY = ∇′
XY − T ′(X,Y ) is compatible with g as well.

Let ∇′ be a compatible connection with skew symmetric torsion and with curvature R′. In this
case, we can write

Ig(Y, Y ) =

∫ r

0

(
〈∇′

γ̇Y, ∇̂′
γ̇Y 〉g + 〈R′(γ̇, Y )γ̇, Y 〉g

)
dt.

For details, see [18, 20]. In what follows, we will focus on the choice of connection that will preserve
a given decomposition of the tangent bundle TM = H⊕ V .

2.2. Sub-Riemannian manifolds. A sub-Riemannian manifold is a triple (M,H, gH), where
M is a connected manifold, H is a subbundle of the tangent bundle TM and gH = 〈·, ·〉H is a
metric tensor on H. The subbundle H is assumed to be bracket-generating, meaning that TM is
spanned by sections of H and their iterated brackets. This assumption is a sufficient condition for
connectivity of any pair of points by a horizontal curve, that is, an absolutely continuous curve γ
which is tangent to H almost everywhere. For such a curve γ : [0, t1] → M, we can define its length
as L(γ) =

∫ t1
0
〈γ̇(t), γ̇(t)〉1/2H dt. Subsequently, we can define a distance on M,

d0(x, y) = inf
γ

{
L(γ) : γ(0) = x, γ(t1) = y, γ a horizontal curve

}
,

which induces the same topology as the manifold topology.
The exponential map on a sub-Riemannian manifold is defined as follows. Let π : T ∗M → M

denote the canonical projection of the cotangent bundle. From the sub-Riemannian structure
(H, g), we have a corresponding vector bundle morphism ♯0 : T ∗M → H uniquely defined by

p(v) = 〈♯0p, v〉H, for any p ∈ T ∗
xM, v ∈ H, x ∈ M.

Define a Hamiltonian function H : T ∗M → R by H(p) = 1
2 〈♯0p, ♯0p〉H. Let H⃗ denote the corre-

sponding Hamiltonian vector field with local flow t 7→ etH⃗ . For any p ∈ T ∗M , we write

exp0(tp) = π(etH⃗(p)).

for any sufficiently small t such that the above expression is well defined. We remark that if
λ(t) = etH⃗(p) and γ(t) = exp0(tp) = π(λ(t)), then γ̇(t) = ♯0λ(t) and we have that the speed is
constant and equal to 〈♯0p, ♯0p〉1/2. We say that γ(t) = exp0(tp) is the normal geodesic with initial
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covector p ∈ T ∗M . Such normal geodesics are always local length minimizers. However, there
can be curves that are local length minimizers, but not normal geodesics. Such curves then have
to belong to a class called abnormal curves; see [32] for details and for further background on
sub-Riemannian geometry.

Relative to the sub-Riemannian structure and the point x ∈ M, let Cut0(x) be the set of points
not connected to x by a unique, non-conjugate minimizing curve. We also define Cut0(M) =
{(x, y) : y ∈ Cut0(x)}. We note that Lemma 2.1 also holds for the sub-Riemannian cut locus,
and that it is again symmetric.

2.3. Sub-Riemannian manifolds as limits of Riemannian manifolds. Let (M, g) be a Rie-
mannian manifold and let H be a subbundle of TM that is bracket generating. Let V = H⊥ denote
the orthogonal complement and decompose the metric g into a direct sum g = gH ⊕ gV , where gH
and gV denote the restrictions of g to respectively H and V. We define the canonical variation gε
of g such that for every ε > 0,

(2.1) gε = gH ⊕ 1

ε
gV .

We can then see the sub-Riemannian manifold (M,H, gH) as the limit as ε ↓ 0, in the way described
below in Lemma 2.4. See [20, Section 2, Appendix A] for details and proof.

Relative to gε, let dε be its Riemannian distance and with exponential map expε. We define
this exponential map on the cotangent bundle to the manifold, such that if ♯ε : T ∗M → TM is
the identification of the cotangent bundle with the tangent bundle using gε, then γ(t) = expε(tp),
p ∈ T ∗M, is the gε-geodesic with initial vector ♯εp.

Lemma 2.4. Assume that (M, g) is a complete manifold. Fix a point x ∈ M.
(a) Let dε be the distance of the metric gε. Then dε → d0 uniformly on compact sets as ε ↓ 0.
(b) For ε1 ≥ ε > 0, let γε : [0, 1] → M, t 7→ exp(tpε), pε ∈ T ∗

xM a family of minimizing gε-
geodesics contained in a compact set with limε↓0 γε(1) = y 6∈ Cut0(x). Let γ0(t) = exp0(tp0)
be the unique sub-Riemannian geodesic from x to y. Then γε → γ0 uniformly and pε → p0
as ε ↓ 0.

(c) If y 6∈ Cut0(x), then there exists a neighborhood U 3 y and an ε2 > 0, such that U∩Cutε(x) =
∅ for 0 ≤ ε < ε2 and the map

(ε, z) 7→ rε(z) = dε(x, z),

is smooth on [0, ε2)× U .
(d) Let ∇f = ♯1df denote the gradient of the metric g and let ∇Hf and ∇Vf denote its projection

to respectively H and V. Then ∇Hrε → ∇Hr0 and ∇Vrε → ∇Vr0 as ε ↓ 0 uniformly on
compact sets in M \ Cut0(x). In particular, ‖∇Hrε‖2 → 1 uniformly on compact sets in
M \Cut0(x).

2.4. Sasakian manifolds. Let θ be a non-vanishing one-form on a connected manifold M with
H = ker θ. We call θ a contact form if dθ|∧2H is non-degenerate. It follows that M is odd
dimensional, that H has even rank and that it is bracket-generating. The Reeb vector field is the
unique vector field Z satisfying

θ(Z) = 1, dθ(Z, · ) = 0.

We define V as the subbundle spanned by Z. There then exists a unique Riemannian metric g and
vector bundle map J : TM → TM such that

g(Z,X) = θ(X), 〈JX, Y 〉g = dθ(X,Y ), J2X = −X + θ(X)Z,

for any X ∈ TM. We emphasize that H and V are orthogonal under this metric.
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On contact manifolds (M, θ, g), there is a also preferred choice of connection that preserves the
decomposition TM = H⊕V , called the Tanno’s connection, which was introduced in [35]. It is the
unique connection with torsion T that satisfies:

(i) ∇θ = 0;
(ii) ∇Z = 0;
(iii) ∇g = 0;
(iv) T (X,Y ) = dθ(X,Y )Z for any X,Y ∈ Γ(H);
(v) T (Z, JX) = −JT (Z,X) for any vector field X ∈ Γ(H).

The manifold (M, θ, g) is called K-contact if T (Z, · ) = 0. This is equivalent to assuming that the
Reeb vector field Z is also Killing. It is called Sasakian if it in addition satisfies ∇T = 0.

Remark 2.5. If (M, θ, g) is K-contact, then the Tanno connection coincides with the Bott con-
nection. That is, if πH : TM → H is the orthogonal projection, ∇g is the Levi-Civita connection
of g, Z is the Reeb vector field and X,Y ∈ Γ(H), we can then describe ∇ by

∇XY = πH∇g
XY, ∇ZX = [Z,X], ∇Z = 0.

See e.g. [18] for details. If M is a strongly pseudo convex CR manifold with pseudo-Hermitian form
θ, then the Tanno’s connection is the Tanaka-Webster connection. CR manifolds of K-contact type
are Sasakian manifolds (see [23]).

If ∇ is our Tanno connection on a Sasakian manifold (M, θ, g), then its torsion T is given by
T (X,Y ) = 〈JX, Y 〉gZ.

Let gε be the canonical variation of g as defined in (2.1). The geodesics of gε are in general not
∇-geodesics since its torsion is not skew-symmetric for any gε. For this reason, we also consider
the connection

∇̂ε
XY = ∇XY +

1

ε
θ(X)JY,

with adjoint
∇ε

XY = ∇XY − 1

ε
θ(Y )JX − T (X,Y ).

These connections are both compatible with gε, and hence have skew-symmetric torsion. However,
∇̂ε also preserves the decomposition TM = H ⊕ V . It is hence also compatible with gε2 for any
other ε2 > 0 as well. Furthermore, if γ̇ is the tangent vector of a geodesic of gε, not only is this
parallel with respect to ∇̂ε, but the same holds for its projection to H and V, denoted by γ̇H and
γ̇V , respectively.

If T̂ ε and R̂ε denote the torsion and the curvature, respectively, of ∇̂ε, then

T̂ ε(X,Y ) = 〈JX, Y 〉Z +
1

ε
(θ(X)JY − θ(Y )JX),

while from [18], we have

R̂ε(X,Y )W = R(X,Y )W +
1

ε
〈JX, Y 〉gJW.

Remark 2.6. In a Sasakian space, for every non-vanishing horizontal vector field X, TM is always
generated by [X,H] and H. Therefore the sub-Riemannian structure on a Sasakian foliation is fat.
All sub-Riemannian geodesics are thus normal. See [34] for a detailed discussion of such structures.
Furthermore, from Corollary 6.1 in [33], for every x0 ∈ M, the distance function x → r0(x) is
locally semi-concave in M \ {x0}, and hence twice differentiable almost everywhere. Also, from
Corollary 32 in [9], x 6= x0 is in Cut0(x0) if and only if r0 fails to be semi-convex at x. Therefore,
Cut0(x0) has measure 0.
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3. Parallel and mirror maps on Sasakian manifolds with comparison results

3.1. Hessian comparison theorem for Sasakian manifold. We will first state a Hessian com-
parison theorem on Sasakian manifolds found in [18, 20], which uses notation needed later in the
paper. Let R be the curvature tensor of the Tanno connection ∇. If Sec denotes the sectional
curvature relative to ∇, we introduce a 2-tensor KH,J such that for any w ∈ H \ 0,

KH,J(w,w) = ‖w‖2g Sec(span{w, Jw}).
The quantity KH,J is sometimes called the pseudo-Hermitian sectional curvature of the Sasakian
manifold, which can be seen as the CR-analog of the holomorphic sectional curvature of a Kähler
manifold [10]. By removing this sectional curvature from the sum in the Ricci curvature, we define

RicH,J⊥(w,w) = RicH(w,w)−KH,J(w,w), RicH(w,w) = trH〈R(w,×)×, w〉g.
For any ε ≥ 0, let rε,x(y) = dε(x, y) and consider the subset
(3.1) Σε = M×M \Cutε(M),

We define functions hε, vε : Σε → R, by
(3.2) hε(x, y) = ‖∇Hrε,x(y)‖H, vε(x, y) = ‖∇Vrε,x(y)‖V .
Note that h2ε+εv2ε = 1. Next, for any k ∈ R, let sk(t) denote the solution of the equation ÿ+ky = 0
with initial condition y(0) = 0 and ẏ(0) = 1. Write ck(t) for its derivative, which satisfies the same
ODE with initial conditions y(0) = 1 and ẏ(0) = 0. In other words,

sk(t) =


sin

√
kt√

k
if k > 0,

t if k = 0,
sinh

√
−kt√

−k
if k < 0,

ck(t) =


cos

√
kt if k > 0,

1 if k = 0,

cosh
√
−kt if k < 0.

We can use these to introduce comparison functions

FRie(r, k) =
d

dr
log |sk(r)|, FSas(r, k) =

d

dr
log

1

k2
|2− 2ck(r)− krsk(r)|,

or, in more detail,

FRie(r, k) =


√
k cos

√
kr

sin
√
kr

k > 0,

1
r

k = 0,
√

|k| cosh
√

|k|r
sinh

√
|k|r

k < 0,

FSas(r, k) =


√
k(sin

√
kr−

√
kr cos

√
kr)

2−2 cos
√
kr−

√
kr sin

√
kr

k > 0,

4
r

k = 0,
√

|k|(
√

|k|r cosh
√

|k|r−sinh
√

|k|r)
2−2 cosh

√
|k|r+

√
|k|r sinh

√
|k|r

k < 0.

The following result is found in [18, 20] for the Hessian with respect to the Tanno connection ∇.

Theorem 3.1 (Hessian comparison theorem). Let (x, y) ∈ Σε be given and write h = hε(x, y),
v = vε(x, y) and r = rε,x(y). Write γ = γε,x,y : [0, r] → M for the length minimizing geodesic from
x to y. For constants k1 and k2 to be defined, write

K1 = K1,ε(x, y) = k1hε(x, y)
2 + vε(x, y)

2, K2 = K2,ε(x, y) = k2hε(x, y)
2 +

1

4
vε(x, y)

2.(3.3)

We then have the following bounds.
(a) If u = γ̇H(r), then 1

h2∇2
u,urε,x(y) ≤ 1−h

r . Furthermore, if KH,J(γ̇H(t), γH(t)) ≥ k1, then
1

h2
∇2

Ju,Jurε,x(y) ≤ FSas(r,K1).

(b) If Sec(span{γ̇H(t), v}) ≥ k2 for any v ∈ Hγ(t) \ 0, and w ∈ Hy is a unit vector orthogonal
to γ̇H(t) and Jγ̇H(t), then

∇2
w,wrε,x(y) ≤ FRie(r,K2).
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In particular, if we have global bounds

(3.4) KH,J(w,w) ≥ k1, RicH,J⊥(w,w) ≥ (n− 2)k2, w ∈ H, ‖w‖g = 1,

and if ∆H = trH ∇2
×,× is the sub-Laplacian of ∇, then

∆Hrε,x(y) ≤ FSas(r,K1) + (n− 2)FRie(r,K2).

3.2. Parallel map, mirror map, and their limit on Sasakian manifolds. Let Σε be defined
as the complement of Cutε(M) in M × M for any ε ≥ 0 as in (3.1). We write π1, π2 : Σε → M
for the respective projections π1(x, y) = x and π2(x, y) = y. For ε > 0, we can define a section
Pε ∈ Γ(π∗

1T
∗M ⊗ π∗

2TM) such that for any (x, y) ∈ Σε, the map Pε(x, y) : TxM → TyM denotes
parallel transport along γε,x,y with respect to ∇̂ε. This map gives us a parallel transport that
preserve the metric, as well as H and V. Observe that for γ = γε,x,y and r = rε,x(y)

Pε(x, y)γ̇H(0) = γ̇H(r), Pε(x, y)γ̇V(0) = γ̇V(r).

For ε = 0, we define the linear map P0(x, y) : TxM → TyM, (x, y) ∈ Σ0 such that P0(x, y)w 7→
Xw(r0,x(y)) where Xw is the vector field along γ0,x,y solving

∇γ̇0,x,yX
w(t) + v0(x, y)JX

w(t) = 0, Xw(0) = w.

In particular, for γ = γ0,x,y and r = r0,x(y), we have

P0(x, y)γ̇(0) = γ̇(r), P0(x, y)Zx = Zy, P0(x, y)J = JP0(x, y),

and P0(x, y) maps Hx onto Hy isometrically.
For the construction of the mirror map, define Σ′

ε = {(x, y) ∈ Σε : hε(x, y) > 0} for ε ≥ 0.
Observe that Σ0 = Σ′

0 since h0 is identically 1. For (x, y) ∈ Σ′
ε define Mε(x, y) : TxM → TyM such

that Mε(x, y)w = Pε(x, y)w (resp. −Pε(x, y)w) if w is orthogonal (resp. parallel) to (γ̇ε,x,y(0))H.

Lemma 3.2. For any (x, y) ∈ Σ0, there is a neighborhood U 3 (x, y) and some ε2 > 0, such that
U ⊆ Σ′

ε for 0 ≤ ε < ε2 and we have Pε → P0 and Mε →M0 uniformly as ε ↓ 0.

Proof. It is sufficient to complete the proof for Mε. Let (x, y) ∈ Σ0 be an arbitrary pair of points.
From Lemma 2.4, we know that for any x̃ ∈ M, there is a relatively compact neighborhood Ũx̃ of y
and a constant εx̃ > 0 such that Ũx̃ ⊆ M\Cutε(x̃) for any 0 ≤ εx̃ and such that dε(x̃, · ) converges
uniformly. Let W be a relatively compact neighborhood of x. If we define

ε2 = min
x̃∈W

εx̃.

then U = {(x̃, ỹ) : x̃ ∈ W, ỹ ∈ Ux̃} ⊆ Σε for any 0 ≤ ε ≤ ε2. Since h0(x, y) = 1, and by possibly
shrinking ε2 and Ux̃, we can assume that U ⊆ Σ′

ε for any 0 ≤ ε ≤ ε2.
For 0 ≤ ε ≤ ε2 and (x̃, ỹ) ∈ U , we define pε ∈ T ∗

x̃M such that expε(tpε) = γε,x̃,ỹ(t) = γε,H(t) is
a gε-minimizing geodesic. We then note that

Mε : γ̇ε,H(0) 7→ −γ̇ε,H(rε,x(y)), γ̇ε,H(0) 7→ Jγ̇ε,H(rε,x(y)), Zx̃ 7→ Zỹ.

If w ∈ Hx̃ is orthogonal to span{γ̇ε,H(0), Jγ̇ε,H(0), Zx̃}, we have that Mε(x, y) : w 7→ Xw
ε (rε,x(y)),

where Xw
ε (t) is the result of ∇̂ε-parallel transport along γε. Since γ̇ε,V(t) = εvZ(t), v = vε(x̃, ỹ),

we have that
0 = ∇̂ε

γ̇X
w = ∇γ̇X

w +
1

ε
θ(γ̇ε)JX

w = ∇γ̇X
w + vJXw.

The result now follows. □
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3.3. Jacobi fields and Sasakian models. In what follows, we need to consider Jacobi fields
and approximate solutions to the Jacobi equations. For the rest of the paper, if Y is a vector field
along γ, we will simply write Y ′ for the covariant derivative ∇̂ε

γ̇Y (t). We will also identify vectors
with their corresponding ∇̂ε-parallel vector fields in the notation. If Y is a Jacobi field along a
unit speed geodesic γ, then its defining equation is given by

0 = ∇̂ε
γ̇∇ε

γ̇Y − R̂ε(γ̇, Y )γ̇

= Y ′′ − 〈Jγ̇H, Y ′〉gZ − 1

ε
θ(γ̇)JY ′ +

1

ε
θ(Y ′)Jγ̇H −R(γ̇H, Y )γ̇H − 1

ε
〈Jγ̇H, Y 〉gJγ̇H.(3.5)

With X horizontal and orthogonal to γ̇H and Jγ̇H, write

Y = cγ̇ +
a

h
Jγ̇H − b

(
Z − v

h2
γ̇H

)
+X.

Inserting this form into equation (3.5), we obtain

0 = c̈γ̇ +
ä

h
Jγ̇H + b̈

(
Z − v

h2
γ̇H

)
+X ′′ − hȧZ − v

h2
(h2ċ− vḃ)Jγ̇H

+
v

h
ȧγ̇H − vJX ′ +

1

ε
(ḃ+ εvċ)Jγ̇H − 1

ε
haJγ̇H −R

(
γ̇H,

a

h
Jγ̇H +X

)
γ̇H.

If we consider these equations in the constant curvature case where

R(γ̇H, Jγ̇H)γ̇H = −h2k1Jγ̇H, R(γ̇H, X)γ̇H = −h2k2X,

and with K1 = h2k1 + v2 and K2 = h2k2 +
1
4v

2, our equations become

(3.6)



0 = c̈

0 = ä+
1

hε
(ḃ− ha) +K1a,

0 = b̈− hȧ,

0 = X ′′ − vJX ′ +
(
K2 − v2/4

)
X.

These are the model equations for Jacobi fields. We consider a vector field Ŷ = Ŷ a0,a1,u0,u1,K1,K2 ,
of the form

Ŷ =
a

h
Jγ̇H − b

(
Z − v

h2
γ̇H

)
+X,

solving the equation (3.6) with a(0) = a0, a(r) = a1, X(0) = u0 and X(r) = Pεu1.
To simplify notation, we introduce the following conventions. If u0 ∈ Hx is a vector, we will

use the same symbol for the corresponding ∇̂ε-parallel vector field along γ = γε,x,y. If z ∈ C is a
complex number, we use the convention z · u0 = Re(z)u0 + Im(z)Ju0.

Lemma 3.3. The vector field Ŷ = Ŷ a0,a1,u1,u2,K1,K2 = a
hJγ̇H − b

(
Z − v

h2 γ̇H
)
+X is given by

b(t) = h

∫ t

0

a(s) ds− t

r

∫ r

0

a(s) ds

a(t) =
1

φ(r)
(a1φ(t) + a0φ(r − t)),

X(t) =
z−v(r − t)

z−v(r)
u0 +

zv(t)

zv(r)
u1,

where

φ(t) = −K1(r − sK1(r)− εhK1r)sK1(t) + (1− cK1(r))(1− cK1(t)), zv(t) = eiv/2sK2(t).
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Proof. Solving equations (3.6) with our given initial conditions, since b(0) = b(r) = 0, it follows
that b = h

∫ t

0
a(s) ds− t

r

∫ r

0
a(s) ds. Hence, we are reduced to the equations

(3.7)


1

rhε

∫ r

0

a(s)ds = ä+K1a,

0 = X ′′ − vJX ′ +
(
K2 − v2/4

)
X.

We first consider the solution of these equations with a0 = 0 and u0 = 0. By direct computation, we
see that X = zv(t)

zv(r)
u1. Furthermore, using that

∫ r

0
sk(s) ds =

1−ck(r)
k and that

∫ r

0
sk(s)ds = ck(r),

we obtain that a(t) = a1
φ(t)
φ(r) . Observing how the equation (3.7) behaves under time-reversal, the

result follows. □

Recall the geometric identities from Section 2.4. We define new comparison functions

GRie(r, k) = 2
d

dr
log |ck(r/2)|, GSas(r, k) = 2

d

dr
log

1

|k|
|sk(r/2)− r/2 · ck(r/2)|.

or in more detail,

GRie(r, k) =


−
√
k tan

√
kr
2

if k > 0,

0 if k = 0,√
|k| tanh

√
|k|r
2

if k < 0,

GSas(r, k) =


rk tan

√
kr
2

2 tan
√

kr
2

−r
√
k

if k > 0,

6
r

if k = 0,

r|k| tanh
√

|k|r
2

r
√

|k|−2 tanh

√
|k|r
2

if k < 0.

Lemma 3.4. Inserting Ŷ = Ŷ a0,a1,u1,u2,K1,K2 into the index form Iε, we obtain

Iε(Ŷ , Ŷ ) = (a21 + a20)FSas(r,K1)− 2a0a1 (FSas(r,K1)−GSas(r,K1))

+ (‖u0‖2 + ‖u1‖2)GRie(r,K2) +
1

sK2(r)

(
‖u0‖2 + ‖u1‖2 − 2〈u1, eirv/2u0〉

)
−
∫ r

0

〈R(γ̇H, Ŷ )Ŷ , γ̇H〉 dt+ (K1 − v2)

∫ r

0

a(t)2 dt−
(
K2 −

v2

4

)∫ r

0

‖X‖2 dt.

In particular, if a0 = a1, u0 = u1 and we have curvature bounds
〈R(γ̇H, Jγ̇H)Jγ̇H, γ̇H〉g ≥ h4(k1 + k3),

〈R(γ̇H, X)X, γ̇H〉g ≥ h2(k2 + k3)‖X‖2,
|〈R(γ̇H, X)Jγ̇H, γ̇H〉g| ≤ h3k3‖X‖,

then
Iε(Ŷ , Ŷ ) ≤ 2a21GSas(r,K1) + 2‖u1‖2GRie(r,K2).

Proof. Inserting Ŷ into the index form, we obtain

Iε(Ŷ , Ŷ ) = 〈Ŷ (r), Ŷ ′(r)〉ε − 〈Ŷ (0), Ŷ ′(0)〉ε −
∫ r

0

〈Ŷ , ∇̂ε
γ̇∇ε

γ̇ Ŷ − R̂ε(γ̇, Ŷ )γ̇〉ε dt

= a1 · ȧ(r)− a0 · ȧ(0) + 〈u0, X ′(r)〉 − 〈u1, X ′(0)〉

−
∫ r

0

〈R(γ̇H, Ŷ )Ŷ , γ̇H〉 dt+ (K1 − v2)

∫ r

0

a(t)2 dt−K2

∫ r

0

‖X‖2 dt.

We now compute that
φ(r) = 2− 2cK1

(r)−K1rsK1
(r) + εhK2

1rsK1
(r),
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φ̇(0) = −K1(r − sK1
(r)− εhK1r) ȧ(0) =

1

φ(r)
(a1φ̇(0)− a0φ̇(r)),

φ̇(r) = K1(sK1(r)− rcK1(r) + εhK1rcK1(r)) ȧ(r) =
1

φ(r)
(a1φ̇(r)− a0φ̇(0)),

X ′(0) =
iv

2
u0 −

cK2
(r)

sK2
(r)

u0 +
1

zv(r)
u1, X ′(r) = − 1

z−v(r)
u0 +

iv

2
u1 +

cK2
(r)

sK2
(r)

u1.

By taking derivatives in ε, we see that
φ̇(r)

φ(r)
=

K1(sK1
(r)− rcK1

(r) + εhK1rcK1
(r))

2− 2cK1(r)−K1rsK1(r) + εhK2
1rsK1(r)

≤ K1(sK1
(r)− rcK1

(r))

2− 2cK1
(r)−K1rsK1

(r)
= FSas(r,K1)

φ̇(r)− φ̇(0)

φ(r)
=

K1r(1− cK1(r))(1− εhK1)

2− 2cK1
(r)−K1rsK1

(r) + εhK2
1rsK1

(r)

≤ K1r(1− cK1
(r))

2− 2cK1(r)−K1rsK1(r)
= GSas(r,K1).

We furthermore see that

〈u1, X ′(r)〉 − 〈u0, X ′(0)〉

= (‖u0‖2 + ‖u1‖2)
cK2(r)

sK2
(r)

+
1

sK2
(r)

(
〈u1,−eirv/2u0〉g − 〈u0, e−irv/2u1〉g

)
= (‖u0‖2g + ‖u1‖2g)FRie(r,K2)−

2

sK2
(r)

〈u1, eirv/2u0〉g

= (‖u0‖2 + ‖u1‖2)GRie(r,K2) +
1

sK2(r)

(
‖u0‖2 + ‖u1‖2 − 2〈u1, eirv/2u0〉

)
.

The result follows. □

3.4. Index form relative to the parallel transport map. Let Σε be defined as in Section 3.2.
For any (x, y) ∈ Σε, we define

(3.8) Iε(x, y) =

n∑
i=1

Iε(Yi, Yi)

where Yi are Jacobi fields along γε,x,y such that Y1(0), . . . , Yn(0) is an orthonormal basis of Hx

and Yi(dε(x, y)) = Pε(x, y)Yi(0). We want a way to bound this function using the curvature of the
Tanno connection ∇.

Lemma 3.5. Assume that for some k1 and k2, the bounds in (3.4) hold. Let (x, y) ∈ Σε be fixed.
Then for K1 and K2 as in (3.3),

Iε(x, y) ≤ 2GSas(r,K1) + 2(n− 2)GRie(r,K2).

Proof. Let γ be the unique unit speed geodesic from x to y, and use r = dε(x, y), h = hε(x, y) =
‖γ̇H‖g and v = vε(x, y) = ε−1‖γ̇V‖g. If h = 0, we can choose Y1, . . . , Yn as an orthonormal basis
of ∇̂ε-parallel vector fields along γ. These will not be Jacobi fields, but we will still have

Iε(x, y) ≤
∑n

i=1 Iε(Yi, Yi) = 0,

and the theorem holds true in this case. For the remainder of the proof we will assume that h > 0.
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First, we define Y1(t) = 1
h γ̇H = 1

h(1+εv2) γ̇ − εv
h(1+εv2)

(
Z − v

h2 γ̇H
)
. Then Iε(Y1, Y1) = 0. The

remaining elements of the basis will be on the form Ŷ = Ŷ a0,a1,u0,u1,K1,K2 as in Lemma 3.3 with
K1 = h2k1 + v2 and K2 = h2k2 +

1
4v

2. For Y2, we choose a0 = a1 = 1 and u0 = u1 = 0, so that
Iε(Y2, Y2) ≤ GSas(r,K1).

For the other terms, let w3, . . . , wn be a choice of orthonormal basis of the complement to γ̇ and Jγ̇.
We then consider Yj on the previously mentioned from with a0 = a1 = 0 and u0 = u1 = wj and
obtain ∑n

j=3 Iε(Yj , Yj) ≤ 2GRie(r,K2).

Both of these inequalities follow from bounds (3.4) which combined with Lemma 3.4 completes the
proof. □
Remark 3.6. We note the analogy of the Riemannian and Sasakian comparison functions in the
Hessian bounds and the bounds for Iε, in that we have relations

d

dr
sk(r) = ck(r),

d

dr

1

k2
(2− 2ck(r)− krsk) =

1

k
(sk(r)− rck(r)).

Observe also that, in contrast to GRie(r, k), the function GSas(r, k) is always nonnegative for any
k.
3.5. Expansion of distance along geodesic. Consider M with the metric gε and let η(t) be a
gε-geodesic. Observe that we have geodesic equation

0 = ∇̂ε
η̇ η̇(t) = ∇η̇ η̇(t) +

1

ε
θ(η̇(t))Jη̇(t).

If η̇(0) ∈ H, then it follows that η(t) is the solution of ∇η̇ η̇ = 0 and in particular will remain
tangent to H for all time. Furthermore, as this equation is independent of ε, η(t) will be a gε for
any ε. This includes the case ε = 0 as η(t) = exp0(tψ) with ψ being the unique covector in T ∗

η(0)M
vanishing on V and satisfying ♯εψ = ♯0ψ = η̇(0). We remark that a sub-Riemannian Brownian
motion can be constructed as a random walk of such geodesics, see [22] or [24] for details. We want
to understand how the sub-Riemannian metric will change with respect steps along such geodesics.

Let (x, y) be any pair of points in M×M and let γ(t) = exp(tp) be a length-minimizing geodesic
from x and y, parametrized by arc length. Write pZ = p(Z|x). Similar to earlier, we define
P0(γ) : TxM → TyM by parallel transport corresponding to the operator

X 7→ ∇γ̇X + pZJX,

but with this definition independent of whether or not (x, y) is in Cut(M). We use the same
symbol for the map P0(γ) : T

∗
xM → T ∗

yM, α 7→ P (γ)∗α. Define M0(γ) analogously.
Theorem 3.7. Let ψ0, ψ1 ∈ T ∗

xM be any pair of covectors satisfying 〈ψ0, Zx〉g = 〈ψ1, Zx〉g = 0.
For j = 0, 1, write
(3.9) ♯0ψj = cj γ̇(0) + ajJγ̇(0) + uj ,

with uj being orthogonal to γ̇(0) and Jγ̇(0). Finally, let R be the curvature of the Tanno connection
∇ and define

k1 + k3 = min
0≤t≤r

Sec(span{γ̇(t), Jγ̇(t)}),

k2 = min
0≤t≤r

min
u∈Hγ(t),∥u∥g=1

⟨u,γ̇(t)⟩g=⟨u,Jγ̇(t)⟩g=0

Sec(span{γ̇(t), u}),

k3 = max
0≤t≤r

max
u∈Hγ(t),∥u∥g=1

⟨u,γ̇(t)⟩g=⟨u,Jγ̇(t)⟩g=0

|〈R(γ̇(t), u)Jγ̇(t), γ̇(t)〉g|.
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Define K = k1 + p2Z and K2 = k2 + p2Z/4. We then have bounds

d0(exp(tψ0), exp(tP0(γ)ψ1))− r − t(c1 − c0)

≤ t2

2
(a21 + a20)FSas(r,K1)− t2a0a1 (FSas(r,K1)−GSas(r,K1))

+
t2

2
(‖u0‖2 + ‖u1‖2)GRie(r,K2) +

t2

2sK2(r)

(
‖u0‖2 + ‖u1‖2 − 2〈u1, eirv/2u0〉

)
+O(t3).

Proof. Without loss of generality, we may assume that (x, y) ∈ Σ0. If not, we may partition γ
into pieces without conjugate points and finish by using the triangle inequality. This can always
be done to avoid the cut locus when there are no abnormal geodesics, see [7] for details.

For sufficiently small ε2 > 0, (x, y) is not in the cut locus of gε for ε ≤ ε2 by Lemma 2.4. Let γε
be the unique gε-geodesic from x to y with Pε = Pε(x, y) denoting ∇̂ε-parallel transport along this
curve. As before, write hε = ‖γ̇ε,H(0)‖g and vε = ε−1‖γε,V(0)‖g. For sufficiently small values of ε,
hε is positive by Lemma 3.2. We introduce the covectors ψ0,ε, ψ1,ε ∈ T ∗M such that,

♯εψj = cj γ̇ε(0) + ajJγ̇ε(0) + uj ,

By uniform convergence of geodesics, expε(tψj,ε) converge to exp0(tψj).
We consider fε(t) = dε(exp(tψ0,ε), exp(tPεψ1,ε)) with rε = fε(0) = dε(x, y). We know that fε(t)

converges to f0(t) uniformly for any sufficiently small t. We also know from Lemma 2.2 that
d

dt
fε(0) = 〈Pε♯εψ1,ε, γ̇ε(rε)〉g − 〈♯εψ1,ε, γ̇ε(0)〉g = 〈ψ1,ε − ψ0,ε, γ̇ε(0)〉 = c1 − c0,

and furthermore
d2

dt2
fε(0) = Iε(Ŷ , Ŷ ),

where Ŷ = Y ⊥ is the gε-Jacobi field with initial conditions Y (0) = a0Jγ̇ε(0)+u0 and final condition
Y (rε) = Pε(a1Jγ̇ε(0) + u1). The result now follows from the Index Lemma and Lemma 3.4. □

4. Application: Couplings on Sasakian manifolds

We now want to consider a coupling of diffusions with generators 1
2∆H. Let Bt = Bt(x) be the

Brownian motion of the inner product space Hx, x ∈ M, defined on a probability space (Ω,F·,P).
We define a coupling of Zε

t (x, y) = (Xt(x), Y
ε
t (y)) by X0(x) = x, Y ε

0 (y) = y,

dXt(x) = /̂/εt ◦ dBt, dY ε
t = Pε(Xt(x), Y

ε
t (y))/̂/

ε
t ◦ dBt,

where /̂/εt : TxM → TXt(x)M denotes ∇̂ε-parallel transport along Xt(x). This coupling process is
defined up to a time

τε = inf{t > 0 : (Xt, Y
ε
t ) ∈ Cutε(M)},

when the process hits the cut-locus. We then note the following consequence of our previous
comparison result.

Proposition 4.1. Define ϱεt = ϱεt (x, y) = dε(Z
ε
t (x, y)) = dε(Xt(x), Y

ε
t (y)) and Zε

t = Zε
t (x, y).

Assume that the curvature bounds (3.4). Then for t < τε, we have inequality

dϱεt ≤ GSas(ϱε,K1(Z
ε
t ))dt+ (n− 2)GRie(ϱε,K2(Z

ε
t ))dt,

Proof. Recall that the rank of H is n. Let π : O(H) → M denote the orthonormal frame bundle
bundle, i.e. the O(n)-principal bundle where the fiber at x ∈ M consists of all linear isometries
φ : Rn → Hx. Let E = Eε ⊆ TO(H) denote the subbundle defined by derivatives of all ∇̂ε-parallel



VARIATIONS OF THE SUB-RIEMANNIAN DISTANCE ON SASAKIAN MANIFOLDS 13

frames along curves in M. Then E is a principal Ehresmann connection on π. For any e ∈ Rn, let
He denote the vector field on O(H) uniquely determined by the properties

He(φ) ∈ Eφ, π∗He(φ) = φe.

We write the lift Z̃ε
t = (X̃t, Ỹ

ε
t ) of Zε

t to O(H)×O(H) with respect to the two copies of E . Write
Π : O(H) × O(H) → M × M for the projection on the product. Define He,1 and He,2 analogues
of He but on respectively the first and the second component. If e1, . . . , en denotes the standard
basis on Rn, it follows that Z̃ε

t is a solution of the SDE,

dZ̃ε
t =

n∑
i=1

(Hei,1 +HPεei) ◦ dBi
t.

This gives us the following expression for Itô differential of ϱεt

dϱεt =

n∑
i=1

(Hei,1 +HPεei,2)(dε ◦Π)(X̃t, Ỹ
ε
t )dB

i
t +

1

2

n∑
i=1

(Hei,1 +HPεei,2)
2(dε ◦Π)(X̃t, Ỹ

ε
t )dt

Using Lemma 2.2, we can conclude that the martingale term vanishes, as for any (x, y) the
corresponding geodesic γ = γx,y satisfies Pε,x,yγ̇H(0) = γ̇H(r). These two observations also give us
the conclusion that for t < τε

dϱεt (x, y) =
1

2
Iε(Xt(x), Yt(y))dt.

The result now follows from Lemma 3.5. □

Corollary 4.2. If the bounds (3.4) holds with k1 = 0 and k2 ≤ 0, then for t < τε,

ϱεt (x, y) = dε(Xt(x), Y
ε
t (y)) ≤

√
dε(x, y)2e(n−2)|k2|t +

12

(n− 2)|k2|
(
e(n−2)|k2|t − 1

)
,

where we interpret the expression above for k2 = 0 as ϱεt ≤
√
dε(x, y)2 + 12t.

Proof. Write hε,t = hε(Xt(x), Y
ε
t (y)). From Proposition 4.1 and using that 0 ≤ hε,t ≤ 1, we know

that

dϱεt ≤
6

ϱεt
dt+ (n− 2)

√
h2ε,t|k2| tanh


√
h2ε,t|k2|ϱεt

2

 dt

≤ 6

ϱεt
dt+

n− 2

2
|k2|ϱεtdt.

Hence,
d(e−(n−2)|k2|t(ϱεt )

2) ≤ 12e−(n−2)|k2|tdt.

The result follows. □
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