VARIATIONS OF THE SUB-RIEMANNIAN DISTANCE ON SASAKIAN
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ABSTRACT. On Sasakian manifolds with their naturally occurring sub-Riemannian structure, we
consider parallel and mirror maps along geodesics of a taming Riemannian metric. We show that
these transport maps have well-defined limits outside the sub-Riemannian cut-locus. Such maps
are not related to parallel transport with respect to any connection. We use this map to obtain
bounds on the second derivative of the sub-Riemannian distance. As an application, we get some
preliminary result on couplings of sub-Riemannian Brownian motions.

1. INTRODUCTION

Studying couplings on Riemannian manifolds has been a successful method of obtaining func-
tional inequalities related to local geometric invariants, see, for example, [37] and the references
therein. A key preliminary step is to first establish comparison results, in particular related to
derivatives of the Riemannian distance. There has been much interest in finding functional in-
equalities involving the sub-Laplacian which depends on sub-Riemannian geometric identities; see
[4, 9, 11, 12, 13, 14, 16, 17, 25, 26, 27] for examples of progress in this direction. Recall that a
sub-Riemannian manifold is a triple (M, H, g% ), where H is a bracket-generating subbundle of the
tangent bundle TM of the manifold M and g3 is a smoothly varying inner product on H. Such
manifolds are related to second-order operators with a positive semi-definite symbol Ay called a
sub-Laplacian. These operators are not elliptic, but both the sub-Laplacian and its heat operator
will be hypoelliptic by Hérmander’s classical result in [28]. The interest in such results comes not
only from the applications to hypoelliptic PDEs but also in deepening the understanding of sub-
Riemannian geometry itself. Recently, there have been several comparison results using curvature
bounds to control the Hessian and sub-Laplacian of the sub-Riemannian distance function; see
(2, 3, 30, 31, 18, 20] for examples, with an application found in [15]. We want to emphasize the
previous results found in [18, 20] obtain Hessian comparison theorems by considering the index
forms and Jacobi fields of a model taming Riemannian metric g. that approaches a sub-Riemannian
metric as ¢ — 0. We will expand the application of this method in the current paper.

The aim of this paper is to pave the way for constructing couplings of processes whose infinites-
imal generator is a sub-Laplacian. Such couplings have already been studied in [21] for the case of
the Heisenberg group (see also [8] for non-Markovian couplings on the Heisenberg group). We will
begin with the study of sub-Riemannian manifolds that can be obtained from Sasakian contact
manifolds, where the horizontal bundle H is the kernel of the contact form. We consider a taming
Riemannian metric g. that converge to the sub-Riemannian metric (H, g3) defined such that the
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Reeb vector field remains orthogonal to H. We then study derivatives of the Riemannian distance
function de(v1,:(t), v2,¢(t)), where 71 .(t) and 72 o (t) are two different g.-geodesics. We construct
a parallel and mirror coupling between such choices of geodesics, and show that these coupling
maps have a well defined limit as we let the Riemannian geodesics approach their sub-Riemannian
counterpart. We note however that the limiting parallel map is not the parallel transport of any
affine connection. Using curvature bounds, we are able to control the first and second derivative
de(71,6(t),72,:(t)) such that we have a well defined limits as ¢ — 0, giving a sub-Riemannian result.
It is a basic feature of the subject that such derivatives of do(v1,6(t),72,c(t)) are only well defined
at points that are not in the cut locus. We restrict our attention to this situation in the present
paper, since it forms the geometric foundation to analyze coupled Brownian motions and is also
of independent interest. The extension to globally defined couplings and their applications will be
the subject of future research.

The structure of the paper is as follows. In Section 2 we consider the necessary preliminaries of
the paper, such as index forms on Riemannian manifolds, sub-Riemannian geometry, and cut loci
of both sub-Riemannian and Riemannian manifolds. We will also describe how sub-Riemannian
manifolds can be considered as a limit of Riemannian manifolds. In Section 3, we consider our main
results on sub-Riemannian Sasakian manifolds. We define parallel and mirror maps in Section 3.2
that preserves both the Riemannian structure g. as well as the horizontal and vertical bundle,
and we show that these have a well-defined limits. We will use these maps to get a short-time
expansion of the sub-Riemannian distance along coupled geodesics in Theorem 3.7. We finally use
these results in Section 4 to get some bounds for the distances between coupled sub-Riemannian
Brownian motions that hold up to the cut locus.

2. PRELIMINARIES

2.1. Variation of Riemannian distance and the index form. Let (M, g) be a Riemannian
manifold with corresponding Riemannian distance d,. For any x € M, define ry,(y) = dgy(z,y).
The cut locus Cut,(z) is defined such that y € M\ Cut,(x) if there exists a unique, non-conjugate,
length-minimizing geodesic from z to y relative to g. The global cut-locus of M is defined by

Cuty,(M) = {(z,y) e M x M, y € Cuty(z)},
and note that it is symmetric (that is, (z,y) € Cut,(M) if and only if (y, z) € Cut,(M)).

Lemma 2.1 ([1], [33]). The following statements hold:

(a) The set M\ Cuty(x) is open and dense in M for any x € M.
(b) The function (z,y) — dg(z,y)? is smooth on M x M \ Cuty(M).

Let v : [0,7] — M be a geodesic of g, parametrized by arc length. For vector fields along ~, we
define a symmetric map Iy, = I, 5 : (X,Y) — I,(X,Y) by

L) = [ (I99Y O + (R9G0. Y 0300 Y (0),) .

where VY is the Levi-Civita connection of g and RY is its curvature. The following result can be
found in e.g. [36].
Lemma 2.2. Let 1 and 2 be two geodesics with initial velocity

71(0) =v € T, M, v5(0) = w € T, M.

Assume that y is not in the cut locus of x and let v, : [0,7] — M be the unique unit speed
geodesic from x to y with r = dg(x,y). LetY be the Jacobi field along v, 4 satisfying Y (0) = v and
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Y (r) = w and Y1(t) is the projection to the orthogonal complement of %.,. Then
2 dg (1), 72(t)) =0 = (W, Az, (1)) = (v, 32, (0));
2 1 . .
%dg(%(t)m(t))lt:o = Ig(Yla YL) =1,(Y)Y) - - (W, Yay (r))g — <vv%,y(0)>g)2 ‘

This result gives us a way of computing derivatives of the distance if we know the Jacobi
fields along the curve. We can also estimate the derivate using the following Lemma, see e.g. [29,
Corollary 6.2] and [36, Theorem 1.1.11].

Lemma 2.3 (Index Lemma). Let v : [0,7] — M be a minimizing geodesic and let I, = I, ., be its
index form. Let'Y be a Jacobi field and let X be any vector field along v with X (0) = Y (0) and
Y(r)=X(r). Then

IL,(Y)Y) <I,(X,X).

We note that I, can be rewritten using other connections rather than the Levi-Civita connection.
Let V/ be an arbitrary connection. We say that V' is compatible with g if Vg = 0. A compatible
connection has the same geodesics as the Levi-Civita connection if and only if its torsion T” is
skew-symmetric, meaning that (T"(u,v),w)y = —(v,T"(u,w))y, w,v,w € TM. Alternatively, a
compatible connection V' is skew-symmetric if and only if its adjoint connection V' defined by
VY = V4 Y —T'(X,Y) is compatible with g as well.

Let V'’ be a compatible connection with skew symmetric torsion and with curvature R’. In this
case, we can write

L) = [ (O 950, 4 (R Y). 7)) de.

For details, see [18, 20]. In what follows, we will focus on the choice of connection that will preserve
a given decomposition of the tangent bundle TM = H & V.

2.2. Sub-Riemannian manifolds. A sub-Riemannian manifold is a triple (M, H, g% ), where
M is a connected manifold, H is a subbundle of the tangent bundle TM and gy = (-,-)3 is a
metric tensor on H. The subbundle H is assumed to be bracket-generating, meaning that TM is
spanned by sections of H and their iterated brackets. This assumption is a sufficient condition for
connectivity of any pair of points by a horizontal curve, that is, an absolutely continuous curve ~
which is tangent to H almost everywhere. For such a curve 7 : [0,t;] — M, we can define its length

as L(y) = Otl ((¢), "y(t)ﬁf dt. Subsequently, we can define a distance on M,

do(z,y) = inf {L(v) :(0) = z,v(t1) = y,~ a horizontal curve}7
Bt

which induces the same topology as the manifold topology.

The exponential map on a sub-Riemannian manifold is defined as follows. Let 7 : T"M — M
denote the canonical projection of the cotangent bundle. From the sub-Riemannian structure
(H,g), we have a corresponding vector bundle morphism fo : 7*M — H uniquely defined by

p(v) = (fop, V)2, for any p € TyM, v € H, x € M.

Define a Hamiltonian function H : T*M — R by H(p) = 3 (fop, fop)n. Let H denote the corre-
sponding Hamiltonian vector field with local flow t + e*f. For any p € T* M, we write

expy (tp) = w(e'H (p)).
for any sufficiently small ¢ such that the above expression is well defined. We remark that if

At) = etﬁ(p) and y(t) = expy(tp) = w(A(t)), then 4(¢) = #oA(¢) and we have that the speed is
constant and equal to (fop, fop)/2. We say that v(t) = exp,(tp) is the normal geodesic with initial
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covector p € T*M. Such normal geodesics are always local length minimizers. However, there
can be curves that are local length minimizers, but not normal geodesics. Such curves then have
to belong to a class called abnormal curves; see [32] for details and for further background on
sub-Riemannian geometry.

Relative to the sub-Riemannian structure and the point = € M, let Cut(x) be the set of points
not connected to z by a unique, non-conjugate minimizing curve. We also define Cuty(M) =
{(z,y) : y € Cutp(x)}. We note that Lemma 2.1 also holds for the sub-Riemannian cut locus,
and that it is again symmetric.

2.3. Sub-Riemannian manifolds as limits of Riemannian manifolds. Let (M, g) be a Rie-
mannian manifold and let H be a subbundle of TM that is bracket generating. Let V = H* denote
the orthogonal complement and decompose the metric g into a direct sum g = gy D gy, where gy
and gy denote the restrictions of g to respectively H and V. We define the canonical variation g,
of g such that for every € > 0,

1
(2.1) 9e = 9u B Zgv-

We can then see the sub-Riemannian manifold (M, H, g3/) as the limit as ¢ | 0, in the way described
below in Lemma 2.4. See [20, Section 2, Appendix A] for details and proof.

Relative to g, let d. be its Riemannian distance and with exponential map exp,. We define
this exponential map on the cotangent bundle to the manifold, such that if . : 7"M — TM is
the identification of the cotangent bundle with the tangent bundle using g., then v(t) = exp_(tp),
p € T*M, is the g.-geodesic with initial vector f.p.

Lemma 2.4. Assume that (M, g) is a complete manifold. Fiz a point x € M.

(a) Let d. be the distance of the metric g.. Then d. — doy uniformly on compact sets as € | 0.

(b) Forey > e >0, let v. : [0,1] = M, t — exp(tp:), pe € TieM a family of minimizing g.-
geodesics contained in a compact set with lim.|07.(1) = y & Cutg(z). Let vo(t) = expy(tpo)
be the unique sub-Riemannian geodesic from x to y. Then v. — o uniformly and p. — po
as e | 0.

(¢) Ify & Cutg(x), then there exists a neighborhood U 3 y and an 3 > 0, such that UNCut.(z) =
0 for 0 < e < &y and the map

(g,2) = re(2) = do(x, 2),

is smooth on [0,e2) x U.

(d) Let Vf = t1df denote the gradient of the metric g and let Vy f and Vv f denote its projection
to respectively H and V. Then Vyre — Vyrg and Vyre — Vyrg as € | 0 uniformly on
compact sets in M\ Cutg(z). In particular, |Vyr:||*? — 1 uniformly on compact sets in
M\ Cutg(z).

2.4. Sasakian manifolds. Let 6 be a non-vanishing one-form on a connected manifold M with
H = kerf. We call 6§ a contact form if df|s24 is non-degenerate. It follows that M is odd
dimensional, that H has even rank and that it is bracket-generating. The Reeb vector field is the
unique vector field Z satisfying

0(Z)=1, do(Z,-)=0.

We define V as the subbundle spanned by Z. There then exists a unique Riemannian metric g and
vector bundle map J : TM — TM such that

9(Z,X) =0(X), <JX7Y>g:d9(XaY)a J2X:_X+9(X)Z»
for any X € TM. We emphasize that H and V are orthogonal under this metric.
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On contact manifolds (M, 6, g), there is a also preferred choice of connection that preserves the
decomposition TM = H @&V, called the Tanno’s connection, which was introduced in [35]. It is the
unique connection with torsion 7" that satisfies:

(i) V8 =0;
(if) VZ =0;
(iii) Vg =0;

(iv) T(X,Y) =d0(X,Y)Z for any X,Y € ['(H);

(v) T(Z,JX) = —JT(Z,X) for any vector field X € I'(H).
The manifold (M, 6, g) is called K-contact if T(Z, -) = 0. This is equivalent to assuming that the
Reeb vector field Z is also Killing. It is called Sasakian if it in addition satisfies VI = 0.

Remark 2.5. If (M, 0,g) is K-contact, then the Tanno connection coincides with the Bott con-
nection. That is, if my : TM — H is the orthogonal projection, V9 is the Levi-Civita connection
of g, Z is the Reeb vector field and X,Y € T'(H), we can then describe V by

VxY =mu V%Y, VzX=[2,X], VZ=0.

See e.g. [18] for details. If M is a strongly pseudo convex CR manifold with pseudo-Hermitian form
0, then the Tanno’s connection is the Tanaka- Webster connection. CR manifolds of K-contact type
are Sasakian manifolds (see [23]).

If V is our Tanno connection on a Sasakian manifold (M, 6, g), then its torsion T is given by
T(X,)Y)=(JX,Y),Z.

Let g. be the canonical variation of g as defined in (2.1). The geodesics of g. are in general not
V-geodesics since its torsion is not skew-symmetric for any g.. For this reason, we also consider
the connection

- 1
%Y =VxY + EG(X)JY7
with adjoint
1
VY =VxY — EO(Y)JX -T(X,Y).

These connections are both compatible with g., and hence have skew-symmetric torsion. However,
Ve also preserves the decomposition TM = H @ V. It is hence also compatible with g., for any
other g5 > 0 as well. Furthermore, if 4 is the tangent vector of a geodesic of g., not only is this
parallel with respect to V€, but the same holds for its projection to H and V, denoted by 3 and
v, respectively.

If 7¢ and R° denote the torsion and the curvature, respectively, of @5, then

PE(X,Y) = (JX,Y)Z + %(H(X)JY _(Y)IX),

while from [18], we have

1
BE(X, Y)W = R(X, Y)W + =(JX,Y),JW.

€
Remark 2.6. In a Sasakian space, for every non-vanishing horizontal vector field X, TM is always
generated by [ X, H] and H. Therefore the sub-Riemannian structure on a Sasakian foliation is fat.
All sub-Riemannian geodesics are thus normal. See [34] for a detailed discussion of such structures.
Furthermore, from Corollary 6.1 in [33], for every xy € M, the distance function © — ro(x) is
locally semi-concave in M\ {zo}, and hence twice differentiable almost everywhere. Also, from
Corollary 32 in [9], x # xo is in Cutg(xo) if and only if ro fails to be semi-convex at x. Therefore,
Cutg(xo) has measure 0.
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3. PARALLEL AND MIRROR MAPS ON SASAKIAN MANIFOLDS WITH COMPARISON RESULTS

3.1. Hessian comparison theorem for Sasakian manifold. We will first state a Hessian com-
parison theorem on Sasakian manifolds found in [18, 20], which uses notation needed later in the
paper. Let R be the curvature tensor of the Tanno connection V. If Sec denotes the sectional
curvature relative to V, we introduce a 2-tensor Ky, ; such that for any w € H \ 0,

Ky g(w,w) = Hw||§ Sec(span{w, Jw}).

The quantity Ky, ; is sometimes called the pseudo-Hermitian sectional curvature of the Sasakian
manifold, which can be seen as the CR-analog of the holomorphic sectional curvature of a Kéhler
manifold [10]. By removing this sectional curvature from the sum in the Ricci curvature, we define

Ricy s (w,w) = Ricy(w,w) — Ky j(w, w), Ricy (w,w) = try (R(w, X)X, w)q.

For any € > 0, let 7. ,(y) = de(,y) and consider the subset

(3.1) Y. =M x M\ Cut. (M),
We define functions he,v. : X. — R, by
(3:2) he(@,y) = [Vurea@lla, — ve(z,y) = [Vvrea(v)v.

Note that h2+ev2 = 1. Next, for any k € R, let 55, (¢) denote the solution of the equation jj+ky = 0
with initial condition y(0) = 0 and 3(0) = 1. Write ¢ (¢) for its derivative, which satisfies the same
ODE with initial conditions y(0) = 1 and ¢(0) = 0. In other words,

% ifk>0, cos vkt if k>0,
si(t) =< ¢ if k=0, w(t) =1 1 if k=0,
sinh /—kt . — .
S if k<0, coshv/—kt if k<O.
We can use these to introduce comparison functions
d d 1
FRrie(r, k) = — log |sk(r)], Foas(r, k) = ——log 2 — 2¢x(r) — krsy(r)],
dr dr k
or, in more detail,
Vk cos Vkr Vk(sin vVkr—Vkr cos Vkr)
sin Vkr k> 0’ 2—2cos Vkr—+krsin Vkr k> 07
1 — 4 _
Frie(r,k) =< 7 k=0, Feas(r, k) =< 7 k=0,
V |Ek| cosh /| k|r V |kl (\/|k|r cosh \/|k|r—sinh \/|k|T)
Y k<0, - k < 0.
sinh \/|k|r 2—2cosh\/|k|r++/|k|rsinh \/|k|r

The following result is found in [18, 20] for the Hessian with respect to the Tanno connection V.

Theorem 3.1 (Hessian comparison theorem). Let (z,y) € 3. be given and write h = h.(z,y),
v=v:(z,y) and r = 1. 4 (y). Write ¥ = Ye 5.y : [0,7] = M for the length minimizing geodesic from
x toy. For constants k1 and ko to be defined, write

1
(3-3) Ky = Kl,a(xay) = k‘lhg(x,y)Q + va(x,y)Q, Ky = K2,6(37,y) = k’ghg(x,y)Q + 1“8(%9)2-

We then have the following bounds.
(a) If u="x(r), then 5V rea(y) < Loh - Furthermore, if Kyq g (2(t), v(t)) > k1, then
1
ﬁv?lu,JuTE,I(y) < Fas(r, K1).
(b) If Sec(span{¥(t),v}) > ko for any v € Hy) \ 0, and w € H, is a unit vector orthogonal
to Ay (t) and JAx(t), then

Vi,wrs,x(y) < Frie(r, K2).
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In particular, if we have global bounds
(3.4) Ky, s (w,w) > ky, Ricy i (w,w) > (n — 2)ks, we N, |w|, =1,
and if Ay = try V2X7X is the sub-Laplacian of V, then

Aprep(y) < Foas(r, K1) + (0 — 2) Frie(r, K2).

3.2. Parallel map, mirror map, and their limit on Sasakian manifolds. Let ¥ be defined
as the complement of Cut.(M) in M x M for any € > 0 as in (3.1). We write 7,72 : . - M
for the respective projections 71 (x,y) = = and m(z,y) = y. For € > 0, we can define a section
P, € T(nfT*M ® m5TM) such that for any (z,y) € 2., the map P.(z,y) : T,M — T,M denotes
parallel transport along 7. ., with respect to Ve. This map gives us a parallel transport that
preserve the metric, as well as % and V. Observe that for v = v, ,, and r = . 5 (y)

Pe(z,y)32(0) = d2(r), P (z,y)3v(0) = gy (7).

For ¢ = 0, we define the linear map Py(z,y) : T,M — T,M, (z,y) € ¥¢ such that Py(z,y)w —
X" (ro,z(y)) where X is the vector field along 7 4, solving

\Y% XY(t) +vo(z,y)JX“(t) =0, X"(0) = w.

Y0,2,y

In particular, for v = 9,4, and r = r¢ (y), we have
Po(z,y)7(0) =4(r),  Po(@,y)Ze =2y,  Polx,y)J = JPo(x,y),

and Py(z,y) maps H, onto H, isometrically.

For the construction of the mirror map, define X! = {(z,y) € %, : he(z,y) > 0} for e > 0.
Observe that Xy = X since hy is identically 1. For (z,y) € X’ define M.(z,y) : T,M — T, M such
that M, (z,y)w = P.(z,y)w (resp. —P:(z,y)w) if w is orthogonal (resp. parallel) to (Ye z,,(0))%.

Lemma 3.2. For any (z,y) € X, there is a neighborhood U > (x,y) and some €5 > 0, such that
U C¥L for 0 <e<eg and we have P. — Py and M. — My uniformly as € ] 0.

Proof. Tt is sufficient to complete the proof for M. Let (x,y) € ¥y be an arbitrary pair of points.
From Lemma 2.4, we know that for any & € M, there is a relatively compact neighborhood Uy of y
and a constant £; > 0 such that Uz C€ M\ Cut.(Z) for any 0 < e; and such that d. (&, - ) converges
uniformly. Let W be a relatively compact neighborhood of z. If we define
€9 = min €;.
iew

then U = {(Z,9) : £ € W,g € Uz} C 3¢ for any 0 < & < &5. Since ho(x,y) = 1, and by possibly
shrinking e5 and Uz, we can assume that U C X, for any 0 < & < e,.

For 0 < e < gy and (Z,9) € U, we define p. € TyM such that exp,(tpe) = Ve,z,5(t) = Ve, u(t) is
a g.-minimizing geodesic. We then note that

M, : "Ya,H (O) — _’.)/E,H(Ta,a:(y»a '.YE,H(O) — J'.Ysﬂ-t(rs,w (y))7 Lz — Zy}

If w € H; is orthogonal to span{y: 1/(0), J¥ #(0), Zz}, we have that M. (z,y) : w — X¥ (rez(y))
where X¥(t) is the result of Ve-parallel transport along .. Since 4. (t) = evZ(t), v = v.(Z, )
we have that

. 1
0=VEX" = V5X" + —0(3:)JX" = V5 X" +0X".

The result now follows. O
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3.3. Jacobi fields and Sasakian models. In what follows, we need to consider Jacobi fields
and approximate solutions to the Jacobi equations. For the rest of the paper, if Y is a vector field
along ~, we will simply write Y’ for the covariant derivative VEYY(t). We will also identify vectors

with their corresponding @E—parallel vector fields in the notation. If Y is a Jacobi field along a
unit speed geodesic -y, then its defining equation is given by

0=ViVIY — R°(%,Y)%
. 1. .. 1 . . . 1, . .
(35) =YY"= (I, Y)gZ = 20TV + Z0(Y) A = RO V)i = Z (T Vg T
With X horizontal and orthogonal to 43 and J-4, write

. a .. [
Y:c'y—&-EJVH—b(Z—ﬁ%{)—i—X.

Inserting this form into equation (3.5), we obtain
e d . 7 v . 1 . v 2. 7 .
O—ny—i—EJvH—i—b(Z— ﬁ’}’y) + X"~ haZ — 5 (% — b) Fim
v, . ;1 o 1 . .oa .
+ 70 = vJ X'+ g(b + eve)Jyy — ghaJVH -R ('yH, EJVH + X) Y24
If we consider these equations in the constant curvature case where

R(V”H? JVH)P)/H = 7h2k1J;Y7'l7 R(VHaX)fYH = 7h2k2Xa

and with K7 = h%k; 4+ v? and Ky = h2ks + iv2, our equations become

0=¢
.1
0=d+ —(b— ha) + Kia,
(3.6) o he
0=b— ha,

0=X"-vJX"+ (Ky—v*/4) X.

These are the model equations for Jacobi fields. We consider a vector field Y = Y 90-a1,u0.u1,K1,K2
of the form
V= 20— b (2= i) + X
h TH 12 TH )
solving the equation (3.6) with a(0) = ag, a(r) = a1, X(0) = up and X(r) = P.u;.
To simplify notation, we introduce the following conventions. If uwyg € H, is a vector, we will

use the same symbol for the corresponding Ve-parallel vector field along v =v: 2y If z€Cisa
complex number, we use the convention z - ug = Re(z)ug + Im(z) Juo.

Lemma 3.3. The vector field Y = YooarunuzKi Ky — w Yy —b (Z — %’yg) + X is given by

b(t)zh/ota(s)ds—;/ora(s)ds

alt) = o5 @e(t) + anplr — 1),
X = Z_z,(r (r)t) o 53))“1

where

p(t) = —Ki(r — sk, (r) —ehKir)sk, (t) + (1 — cx, (1) (1 — ¢k, (), zo(t) = €5, ().
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Proof. Solving equations (3.6) with our given initial conditions, since b(0) = b(r) = 0, it follows
that b=h fg a(s)ds — L [ a(s)ds. Hence, we are reduced to the equations
1 T
— a(s)ds = a+ Kia,
(3.7) rhe /0 () !
0=X"—vJX"+ (K, —v*/4) X.

We first consider the solution of these equations with ag = 0 and ug = 0. By direct computation, we
see that X = 22y, Furthermore, using that o si(s)ds = PCT’“(T) and that [; sx(s)ds = (1),

2y ()
we obtain that a(t) = alﬁ. Observing how the equation (3.7) behaves under time-reversal, the

result follows. O

Recall the geometric identities from Section 2.4. We define new comparison functions

L lan(r/2) = /2 ex(r/2)].

d d
GRrie(r, k) = 25 log |ck(7/2)], Ggas(r, k) = 25 log ]

or in more detail,

rk tan ‘/,ET

~VEtan YEL if k>0, 2tan Y5~ —r /R =0
. 6 3 —
Grie(r, k) = { 0 itk=0, Gsas(r, k) =+ k=0,
TR
[&] tanh YT i k< 0, Mt T g <o,

T \k|72tanh@
Lemma 3.4. Inserting Y = YooaruunKiKe ynto the index form I, we obtain
IS(Y7 i/) = (a% + ag)FSas(T7 Kl) - 2a/0a1 (FSas(r> Kl) - GSaS(T7 Kl))

o+ (o2 + Jur[2) Grie (7, K2) + (loll? + e 1* = 2ur, e ug)

Lt
5K, ()
- [ e (=) [Catp - (k- ) [ixpa
In particular, if ag = a1, up = w1 and we have curvature bounds
(R, Jm) T, i) g = W (k1 + k3),
(R, X)X g = 12 (ka + ks 1X7,
(R (520, X) A, )l < BPRs| X,
then
I.(Y,Y) < 203Gsas (1, K1) + 2|Ju1]|*Grie(r, K2).

Proof. Inserting Y into the index form, we obtain
LV 9) = (70,7 (0)- = (PO, V00— [ (7 9595 = Re(3. 7)),
= a1 - a(r) — ao - a(0) + (uo, X'(r)) — (u1, X'(0))
- [)T(R(Wﬂ,?)Y,&H)dt+(K1 —v2)/ora(t)2dt—K2 /O 1|1 dt.

We now compute that

o(r) =2 —2¢ck, (r) — Kirsg, (1) + €hK127"5K1 (r),
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P0) = ~Fa(r = s, (r) — hir) 0(0) = —5 (@16(0) = ag(),
£) = Kalor, (1) = rese (1) + ehKares, () i) = o= (@ (r) = ao(0),
X'(0) = G - Ziﬁiiu zvtm“l’ X'(r) = = gue+ G+ ;81‘1

By taking derivatives in €, we see that
o(r) _ Ki(sk,(r) —rek, (r) + ehKyreg, (r))
o(r)  2—2ck, (r) — Kirsg, (r) + ehK2rsg, (r)
Ki(sk, (1) = ek, (r))

S e, (1) = Karsge, (1) o E)
p(r) —¢(0) _ Kir(1 — g, (r) (L — hKy)
o(r) 2 —2¢p, (r) — Kirsg, (1) + ehK2rsg, (r)
Kir(l—cg,(r)
=9 20 (r) - Karsr (1) Gas(r, K1).

We furthermore see that

(ur, X'(r)) = (uo, X'(0))

CKo (7") 1
s, (r) | sy (7)

= (luoll§ + llusllg) Frie(r, K2) —

= (luoll® + ljua ) (for, =€ 2u0)y = (g, €™/ )

<U1, eirv/2u0>g

2
5K, (’I“)
1 )
= (ol + w2 Grie(r, K2) + —— (lfuol? + llur | = 21, €7 ug) )
55, (1)

2

The result follows. (]

3.4. Index form relative to the parallel transport map. Let . be defined as in Section 3.2.
For any (z,y) € ., we define

(3.8) I(z,y) = ZIE(Yi,YZ-)

where Y; are Jacobi fields along 7. o, such that Y7(0),...,Y,(0) is an orthonormal basis of H,
and Y;(d.(z,y)) = P-(z,y)Y;(0). We want a way to bound this function using the curvature of the
Tanno connection V.

Lemma 3.5. Assume that for some k1 and ks, the bounds in (3.4) hold. Let (x,y) € X, be fized.
Then for Ky and Ks as in (3.3),

Is(x»y) S 2GSaS(Ta Kl) + 2(77/ - 2)C"YRic(rv KZ)

Proof. Let v be the unique unit speed geodesic from z to y, and use r = d.(z,y), h = h.(z,y) =
Yy and v = v (z,y) = e |4v|ly. If h =0, we can choose Yi,...,Y, as an orthonormal basis

Of C €_parallel vector ﬁelds alon . These will not be Jacobi ﬁelds, but we will still have
la(m,y) < § ZL_I 15()727)1') 07

and the theorem holds true in this case. For the remainder of the proof we will assume that h > 0.
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First, we define Y1(t) = +9y = (Z - 3%%#). Then I.(Y1,Y1) = 0. The

1 Lo eV
RA+evD) |~ R(i+ev?)
v Ky,

remaining elements of the basis will be on the form Y = Y @0:a1,u0,u1. K1, K> aq in Lemma 3.3 with
K1 = h?k1 +v? and Ky = h?ks + 102, For Ya, we choose ag = a; = 1 and ug = uy = 0, so that

IE(Y27Y2) < GSas(T7 Kl)~

For the other terms, let ws, ..., w, be a choice of orthonormal basis of the complement to 4 and J+.
We then consider Y; on the previously mentioned from with ap = a3 = 0 and up = u; = w; and
obtain

Doy 1(Y},Y)) < 2Grie(r, Ka).
Both of these inequalities follow from bounds (3.4) which combined with Lemma 3.4 completes the
proof. O

Remark 3.6. We note the analogy of the Riemannian and Sasakian comparison functions in the
Hessian bounds and the bounds for I., in that we have relations

d d 1

Do) =), (2= 26(r) — hrey) = L (sk(r) — ren(r))

Observe also that, in contrast to Gric(r, k), the function Gsas(r, k) is always nonnegative for any

k.

3.5. Expansion of distance along geodesic. Consider M with the metric g. and let n(t) be a
ge-geodesic. Observe that we have geodesic equation

0= T5(6) = Vai(t) + 00(0) ().

If n(0) € H, then it follows that n(t) is the solution of V;7 = 0 and in particular will remain
tangent to H for all time. Furthermore, as this equation is independent of e, 7(¢) will be a g. for
any e. This includes the case € = 0 as 1(t) = exp,(t¥) with 1 being the unique covector in T;(O)M
vanishing on V and satisfying .4 = fotp = 1(0). We remark that a sub-Riemannian Brownian
motion can be constructed as a random walk of such geodesics, see [22] or [24] for details. We want
to understand how the sub-Riemannian metric will change with respect steps along such geodesics.

Let (z,y) be any pair of points in M x M and let v(¢) = exp(tp) be a length-minimizing geodesic
from z and y, parametrized by arc length. Write p; = p(Z],). Similar to earlier, we define
Py(y) : TuM — TyM by parallel transport corresponding to the operator

X = Vi X +pzJX,

but with this definition independent of whether or not (z,y) is in Cut(M). We use the same
symbol for the map Py(v) : TyM — Ty M, a +— P(y)*a. Define My(7) analogously.

Theorem 3.7. Let 1,11 € TyM be any pair of covectors satisfying (o, Zg)g = (Y1, Zs)g = 0.
For j =0,1, write
(3.9) foh; = ¢;7(0) + a; J7(0) + uj,

with u; being orthogonal to 4(0) and J%(0). Finally, let R be the curvature of the Tanno connection
V and define

b1+ ks = min Sec(span{i(t), J3(1)}),
ky = i ueHw(Ig}ﬁlqu:l Sec(span{5(t),u}),
(W, §(8)) g=(u,J¥(£)) g=0
k3 = max max
0<t<r uE?—L,Y(t),Htu:l
(w, (1)) g=(u, J¥(8)) g=0

(R(Y(#), w) JY(t), 7(£))g]-
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Define K =k —|—p2Z and Ko = ko —|—pQZ/4. We then have bounds

do(exp(tipo), exp(tFo(y)11)) — 1 — t(er — co)
2

< (0% + 08) P K1) — Panan (Fas(r, K2) = Gsaalr, K1)

2

2 5 9 t
_ Grie(r, K -
g ol len )G K2) + 5=

(ol + s ? = 2ur, 7*/?ug)) + O(%)
Proof. Without loss of generality, we may assume that (z,y) € Xo. If not, we may partition ~y
into pieces without conjugate points and finish by using the triangle inequality. This can always
be done to avoid the cut locus when there are no abnormal geodesics, see [7] for details.

For sufficiently small 2 > 0, (z,y) is not in the cut locus of g. for € < g5 by Lemma 2.4. Let ~.
be the unique g.-geodesic from x to y with P. = P.(z,y) denoting @E—parallel transport along this
curve. As before, write he = ||9z,%(0)||y and v. = 7 !||7.,v(0)]|,4. For sufficiently small values of ¢,
he is positive by Lemma 3.2. We introduce the covectors 1o ., 91, € T*M such that,

fetbj = ¢j¥(0) + a; J4:(0) + uj,

By uniform convergence of geodesics, exp, (ty); .) converge to expg(ty;).
We consider f.(t) = d.(exp(tto.e), exp(tP:ip1 c)) with re = f-(0) = de(z,y). We know that f.(t)
converges to fo(t) uniformly for any sufficiently small ¢t. We also know from Lemma 2.2 that

d
afs(o) = <Psu57/]1,sv;ys(re)>g - <ﬁ6,l/}1,87;y8(0)>9 = <1/)1,s - 11)0,5,%(0» =1 — Cp,
and furthermore
d? NN
Efs(o) = IE(Y>Y)7

where Y = Y is the g--Jacobi field with initial conditions Y (0) = agJ4:(0)+uo and final condition
Y (r.) = P-(a1J%(0) + u1). The result now follows from the Index Lemma and Lemma 3.4. O

4. APPLICATION: COUPLINGS ON SASAKIAN MANIFOLDS

We now want to consider a coupling of diffusions with generators %AH. Let By = Bi(x) be the
Brownian motion of the inner product space H,., x € M, defined on a probability space (2, %.,P).
We define a coupling of Z¢ (z, ) = (X:(x), Y7 (y)) by Xo(z) =z, Y§ () = v,

dXi(x) = [fodBy,  dYF = Po(Xy(x), Y7 (y))//5 0 dBy,

where /7f 1 TeM — Tx,(zyM denotes ﬁe—parallel transport along X;(z). This coupling process is
defined up to a time

7o =inf{t >0 : (X,,YF) € Cut. (M)},

when the process hits the cut-locus. We then note the following consequence of our previous
comparison result.

Proposition 4.1. Define of = 05 (x,y) = d-(Zf(x,y)) = de(Xi(2),YE(y)) and Z; = Zf(x,y).
Assume that the curvature bounds (3.4). Then for t < 1., we have inequality

dQ; < GSaS(Qev Kl(Zts))dt + (” - Q)GRie(Qea KQ(ZtE))dta

Proof. Recall that the rank of H is n. Let m : O(H) — M denote the orthonormal frame bundle
bundle, i.e. the O(n)-principal bundle where the fiber at € M counsists of all linear isometries
@ :R" = H,. Let &= E° C TO(H) denote the subbundle defined by derivatives of all V<-parallel



VARIATIONS OF THE SUB-RIEMANNIAN DISTANCE ON SASAKIAN MANIFOLDS 13

frames along curves in M. Then £ is a principal Ehresmann connection on w. For any e € R™, let
H, denote the vector field on O(?) uniquely determined by the properties

H(p) € &pa T He(p) = pe.

We write the lift ZF = (X, Y) of Z¢ to O(H) x O(H) with respect to the two copies of £. Write
IT: O(H) x O(H) — M x M for the projection on the product. Define H.; and H. o analogues
of H. but on respectively the first and the second component. If eq,...,e, denotes the standard
basis on R”, it follows that Z; is a solution of the SDE,

de = Z(Hei,l + HPsei) o dBZ
i=1
This gives us the following expression for It differential of of

n o ) 1 n o
doj =) (He,1 + Hp.e,2)(de o I(Xy, YO)AB + 5 Y (Heon + He.e, 2)*(de o TD(Xe, Yi)dt
i=1 i=1
Using Lemma 2.2, we can conclude that the martingale term vanishes, as for any (z,y) the
corresponding geodesic v = v, satisfies P. 5 ,32(0) = 43(r). These two observations also give us
the conclusion that for ¢ < 7.

1
dof (z,y) = §Ie(Xt(JU)’Yt(y))dt~
The result now follows from Lemma 3.5. O

Corollary 4.2. If the bounds (3.4) holds with k1 =0 and ks <0, then fort < T,

12

T D)
- 2

0 () = de (X (2), ¥{ () < \/d€<x,y>2e<n—2>lkzt ¥

where we interpret the expression above for ko =0 as of < \/d.(x,y)? + 12t.

Proof. Write h.; = ho(X(z), Y7 (y)). From Proposition 4.1 and using that 0 < h.; < 1, we know
that

2

6 \/hﬁ,t ko|of
dgfS—gdt+(n72)\/h§t\k2|tanh e ——
01 '

6 -2
< —Edt+n—\k2|g§dt.
0% 2

Hence,
d(e—(n—Q)‘k‘Qlt(Qi)Q) S 126—(n—2)|k2‘tdt.
The result follows. O
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