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Abstract

The Lp-boundedness for p > 2 of the covariant Riesz transform on differential forms is proved
for a class of non-compact weighted Riemannian manifolds under certain curvature and vol-
ume growth conditions, which in particular settles a conjecture of Baumgarth, Devyver and
Güneysu [6]. As an application, the Calderón-Zygmund inequality for p > 2 is derived on
weighted manifolds, which extends the recent work [7] on manifolds without weight.
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1 Introduction

Let (M, g) be a complete geodesically connected m-dimensional Riemannian manifold, ∇ the Levi-
Civita covariant derivative, and ∆ the Laplace-Beltrami operator. The operator ∆ is understood as
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a self-adjoint positive operator on L2(M). The Riesz transform on the space of smooth functions
on Euclidean space, defined by T(0) := ∇∆−1/2, was first introduced by Strichartz [27]. The Lp-
boundedness of T(0) and its extension to manifolds have been the subject of extensive research; see
[2–5, 9, 11–13, 22, 31] and the references therein.

In this paper, we investigate the Lp-boundedness of the covariant Riesz transform on the space
Ω(k) := Γ(ΛkT ∗M) of smooth differential k-forms for k ∈ {1, . . . ,m}:

T(k)
σ := ∇(∆(k) + σ)−1/2, σ ∈ (0,∞), (1.1)

where ∇ denotes the Levi-Civita covariant derivative, and ∆(k) the Hodge Laplacian on Ω(k).
For p ∈ (1, 2), the Lp-boundedness of T(k)

σ was established by F.-Y. Wang and A. Thalmaier
[31], following the approach of Coulhon and Duong [11] by verifying the doubling volume property,
Li–Yau heat kernel upper bounds, and heat kernel derivative estimates. This result was later improved
by Baumgarth, Devyver, and Güneysu [6], who relaxed the boundedness condition on the derivatives
of the curvature, and further in [8], where the curvature derivative condition was entirely removed.
However, as explained in [31], the argument developed in [11] does not apply to the case p > 2. The
Lp-boundedness of T(k)

σ in this regime remained an open problem for some time and was formulated
as a conjecture by Baumgarth, Devyver, and Güneysu [6].

Conjecture [6]. Assume that the Riemannian curvature tensor Riem satisfies

max {∥Riem ∥∞, ∥∇Riem ∥∞} ⩽ A

for some constant A. Then there exists a constant σ0 ∈ (0,∞) depending only on A and m, such that
for any σ ∈ [σ0,∞) and p ∈ (1,∞),

sup
1⩽k⩽m

∥∥∥T(k)
σ

∥∥∥
p→p ⩽ B

holds for some constant B ∈ (0,∞) depending only on A, σ and m, where ∥ · ∥p denotes the Lp-norm
on M with respect to the volume measure.

We note that when ∇ is replaced by the exterior differential d(k) or its L2-adjoint δ(k), the Lp-
boundedness of d(k)(∆(k)+σ)−1/2 and δ(k−1)(∆(k)+σ)−1/2 has been derived in [5,23], but the techniques
developed therein do not apply to the covariant Riesz transform T(k)

σ .
The main goal of this paper is to confirm the above conjecture by proving the Lp-boundedness of

T(k)
σ for p ∈ (2,∞), since the case 1 < p ⩽ 2 has already been settled in [8]. According to Güneysu

and Pigola [19], the Lp-boundedness of T(1)
σ and T(0)

σ implies that of Hess(∆ + σ)−1, since

Hess(∆ + σ)−1 = ∇(∆(1) + σ)−1/2 ◦ d(∆ + σ)−1/2.

The Lp-boundedness of Hess(∆ + σ)−1, known as the Calderón–Zygmund inequality, was recently
established for p > 2 by Cao, Cheng, and Thalmaier [7]. This provides positive evidence for the
conjecture when k = 1.

In this paper, under certain curvature conditions, we establish the Lp(µ)-boundedness of the co-
variant Riesz transform on the space Ω(k) over a weighted Riemannian manifold:

T(k)
µ,σ := ∇(∆(k)

µ + σ)−1/2, 1 ⩽ k ⩽ m,
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where µ(dx) := eh(x) vol(dx) for some h ∈ C2(M) and the volume measure vol. The weighted Hodge
Laplacian is defined as

∆
(k)
µ := δ(k+1)

µ d(k) + d(k−1)δ(k)
µ (1.2)

with δ(k+1)
µ : Ω(k+1) → Ω(k) being the L2(µ)-adjoint of d(k). In particular, when h = 0, we have

µ(dx) = vol(dx) and T(k)
µ,σ = T(k)

σ , thereby confirming the above conjecture. For k = 0 we write
d = d(0) and

∆µ = ∆
(0)
µ := δ(1)

µ d = ∆ − ∇h,

where ∆ is the Laplacian on M.
The remainder of the paper is organized as follows. In Section 2 we present our main results and

their consequences. The proofs are given in Section 3 and Section 4, respectively.

Acknowledgements. The authors are indebted to Batu Güneysu, Stefano Pigola and Giona
Veronelli for helpful comments on the topics of this paper.

2 Main results and consequences

We first introduce a general criterion on the Lp-boundedness (p > 2) of T(k)
µ,σ in terms of estimates

on heat kernels and their gradients. Then we verify this criterion by exploiting curvature condi-
tions, which in turn provides a positive answer to Conjecture [6]. As a consequence, the Calderón-
Zygmund inequality is presented for p > 2.

Let Pt be the diffusion semigroup on M generated by the weighted Laplacian −∆ + ∇h, and pt be
the heat kernel of Pt with respect to µ. We introduce below the contractive Dynkin class of functions,
which is also called generalized or extended Kato class, and has been systematically studied first by
P. Stollmann and J. Voigt in [28].

Definition 2.1. (Contractive Dynkin class) We say that a function f on M belongs to the class K̂ (in
short: f ∈ K̂) if

lim
α↓0

sup
x∈M

∫
M

∫ α

0
ps(x, y)| f (y)| ds µ(dy) < 1.

Note that K̂ contains the usual Kato class K , defined as the set of functions f such that

lim
α↓0

sup
x∈M

∫
M

∫ α

0
ps(x, y)| f (y)| ds dµ(y) = 0.

The Kato class plays an important role in the study of Schrödinger operators and their semigroups,
see Simon [26] and the reference therein. It is straight-forward that f ∈ K̂ if f is bounded.

To state the main result, we first introduce the weighted volume on M and the weighted curvature
operator on Ω(k). For x ∈ M and r > 0, let B(x, r) be the open geodesic ball centered at x of radius r,
and

µ(x, r) := µ
(
B(x, r)

)
=

∫
B(x,r)

eh(y) vol(dy).

The weighted curvature operator R(k)
h on Ω(k) is defined as

R(k)
h (η) := R(k)(η) − (Hess h)(k)(η),
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where for an orthonormal frame (ei)1⩽i⩽m ∈ O(M) with dual frame (θ j)1⩽ j⩽m,

R(k) := −
m∑

i, j=1

θ j ∧
(
ei ⌟R(e j, ei)

)
,

(Hess h)(k) :=
m∑

i, j=1

ei
(
e j(h)

)(
θ j ∧ (ei ⌟ ·)

)
,

X ⌟ η (X1, . . . , Xk−1) := η(X, X1, . . . , Xk−1), η ∈ Ω(k), X, X1, . . . , Xk−1 ∈ T M.

When k = 1, we have
R(1)

h = Rich := Ric−Hess h,

where Ric is the Ricci curvature of M. By the Weitzenböck formula, we have the decomposition

∆
(k)
µ = □µ +R(k)

h ,

with respect to the Bochner Laplacian □µ := ∇∗µ∇, where ∇∗µ denotes the L2(µ)-adjoint operator of ∇.
Moreover, let R(k) be the curvature tensor on Ω(k). For any η ∈ Ω(k) and v ∈ T M, define

(
R(k) · η

)
(v) :=

n∑
i=1

R(k)(v, ei)η(ei),

(∇ · R(k))(v)η :=
n∑

i=1

(∇eiR
(k))(ei, v)η,(

R(k)(∇h)
)
(v)η := R(k)(v, ∇h)η.

For any 1 ⩽ k ⩽ m, let
P(k)

t := e−t∆(k)
µ , t ⩾ 0

be the semigroup on Ω(k) generated by −∆(k)
µ with ∆(k)

µ defined in (1.2). Finally, denote by Ω(k)
b,1 the

class of differential forms η ∈ Ω(k) for which |η| + |∇η| is bounded.
We are going to prove Lp(µ) boundedness of T(k)

µ,σ for p > 2 under the following assumptions.

(A) There exist a constant A ∈ (0,∞) and a positive function Vk ∈ K̂ such that the following condi-
tions hold:

µ(x, αr) ⩽ Aµ(x, r)αm exp(A(α − 1)r), x ∈ M, α > 1, r > 0, (LD)

pt(x, x) ⩽
AeAt

µ(x,
√

t)
, x ∈ M, t > 0, (UE)

〈
R(k)

h (η), η
〉
⩾ −Vk|η|

2, η ∈ Ω(k), (Kato)

|∇P(k)
t η| ⩽ min

{
t−1/2eA+At(Pt|η|

2)1/2, eAt(Pt|∇η| + AtPt|η|
)}
, η ∈ Ω(k)

b,1, t > 0. (GE)

Theorem 2.2. Assume that (A) holds for k ∈ N. Then there exists a constant σ0 ∈ (0,∞) depending
only on A such that for any p ∈ (2,∞),

sup
σ∈[σ0,∞)

∥T(k)
µ,σ∥p→p ⩽ B (2.1)

holds for some constant B ∈ (0,∞) depending on p, m, A and Vk.
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For the convenience of applications, we present below explicit curvature conditions which ensure
hypothesis (A). To this end, for f ∈ C∞(M), let Γ2( f , f ) := −1

2∆µ|∇ f |2 + (∇∆µ f ,∇ f )g.

(C) There exist constants N ⩾ m and K > 0 such that

Γ2( f , f ) ⩾ −K|∇ f |2 +
1
N

(∆µ f )2, f ∈ C∞(M), (2.2)∣∣∣R(k)
h

∣∣∣ + ∣∣∣R(k)
·
∣∣∣ + ∣∣∣∇ · R(k) + R(k)(∇h) + ∇R(k)

h

∣∣∣ ⩽ K. (2.3)

The next theorem is then a consequence of Theorem 2.2.

Theorem 2.3. Assume that (C) holds for k ∈ N. Then there exists a constant σ0 ∈ (0,∞) depending
only on K and N such that for any p ∈ (2,∞),

sup
σ∈[σ0,∞)

∥∥∥T(k)
µ,σ

∥∥∥
p→p ⩽ B

holds for some constant B ∈ (0,∞) depending on p,K and N.
In particular, if (C) holds for k = 1, then there exists a constant σ0 ∈ (0,∞) depending only on

K and N, such that ∥Hess (∆µ + σ)−1∥Lp(µ) < ∞ for all σ ⩾ σ0 and p > 2. As a consequence, the
Calderón–Zygmund inequality holds for some constant C ∈ (0,∞):∥∥∥ Hess f

∥∥∥
Lp(µ) ⩽ C

(
∥ f ∥Lp(µ) + ∥∆µ f ∥Lp(µ)

)
, f ∈ C∞0 (M). (2.4)

Note that on a geodesically complete manifold with Riemann curvature tensor Riem satisfying
∥Riem ∥∞ < ∞, there exists a sequence of Hessian cut-off functions (see [19], p. 362), such that
inequality (2.4) extends from C∞0 (M) to f ∈ C∞(M) ∩ Lp(µ) with ∥∆µ f ∥∞ < ∞.

3 Proof of the Main Theorem

To prove our main result (Theorem 2.2), we shall need the following lemma, which is due to [11].

Lemma 3.1 ( [11]). If (LD) holds, then there exist a constant c ∈ (0,∞) and a function C : (0,∞)→
(0,∞) depending only on A and m, such that∫

B(x,
√

t)c
e−γρ

2(x,y)/s µ(dy) ⩽ Cγ µ(x,
√

s) ecs/γ−γt/s, s, t, γ > 0, x ∈ M, (3.1)

where B(x,
√

t)c :=
{
y ∈ M : ρ(x, y) ⩾

√
t
}
. In particular, t → 0 yields∫

M

e−cs/γ

Cγ µ(x,
√

s)
e−γρ

2(x,y)/s µ(dy) ⩽ 1, s, γ > 0, x ∈ M. (3.2)

3.1 Heat kernel estimates

By the usual abuse of notation, the corresponding self-adjoint realizations of ∆µ and ∆(k)
µ will again

be denoted by the same symbol. By local parabolic regularity, for all square-integrable k-forms
a ∈ L2(Ω(k), µ), the time-dependent k-form

(0,∞) × M ∋ (t, x) 7→ P(k)
t a(x) ∈ Ω(k)

x := ΛkT ∗x M
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has a smooth representative which extends smoothly to [0,∞) × M if a is smooth. In addition, there
exists a unique smooth heat kernel p(k)

t to Pk
t with respect to the measure µ, understood as a map

(0,∞) × M × M ∋ (t, x, y) 7→ p(k)
t (x, y) ∈ Hom(Ω(k)

y , Ω
(k)
x )

such that

P(k)
t a(x) =

∫
M

p(k)
t (x, y)a(y) µ(dy).

Let PVk
t be the heat semigroup associated to ∆µ+Vk and pVk

t (x, y) be the corresponding heat kernel.
If condition (Kato) in (A) holds, then

|p(k)
t (x, y)| ⩽ pVk

t (x, y).

Combining this inequality with [24, Lemma 2.2] for the upper bound estimate on pVk
t (x, y), we obtain

the following result; see [14, 29, 33, 34] for earlier results on Schödinger heat kernel estimates.

Lemma 3.2. Let M be a complete non-compact Riemannian manifold satisfying (LD), (UE) and
(Kato). There exists a function C : (0, 1/4) → (0,∞), depending only on A, m, and Vk, such that for
all x, y ∈ M, t > 0, and γ ∈ (0, 1/4),∣∣∣p(k)

t (x, y)
∣∣∣ ⩽ CγeCγt

µ(y,
√

t)
exp

(
−
γρ(x, y)2

t

)
, ∀x, y ∈ M, t > 0, 0 < γ < 1/4, (3.3)

where we write Cγ = C(γ) for notational simplicity. This estimate, combined with (3.2), yields

sup
t∈(0,1], x∈M

∫
M

∣∣∣p(k)
t (x, y)

∣∣∣ µ(dy) < ∞. (3.4)

We are now ready to present the following estimate.

Theorem 3.3. Let M be a complete non-compact Riemannian manifold satisfying the condition (A).
There exists C : (0, 1/4)→ (0,∞), depending only on A,m and Vk, such that∫

M

(
t|∇p(k)

t (z, y)|2 + |p(k)
t (z, y)|2

)
e2γρ2(z,y)/t µ(dz) ⩽

CγeCγt

µ(y,
√

t)
, y ∈ M, t > 0, 0 < γ < 1/4.

Proof. By [24, Lemma 2.2], if Vk ∈ K̂ , then there exist constants κ ∈ [0, 1) and c1 > 0, depending
only on Vk, such that ∫

M
Vk| f |2 dµ ⩽ κ ∥ |∇ f | ∥22 + c1∥ f ∥22 (3.5)

for all f ∈ W1,2(M). It means in particular that the operator ∆−Vk+c1 is strongly positive. Combining
this with the Gaussian upper bound (3.3) in Lemma 3.2, we find that the proof of [8, Theorem 2.6]
remains valid under the present assumptions. As a consequence,∫

M
t|∇p(k)

t (z, y)|2e2γρ2(z,y)/t µ(dz) ⩽
C̃γeC̃γt

µ(y,
√

t)
, y ∈ M, t > 0, γ ∈ (0, 1/4)

for some C̃ : (0, 1/4) → (0,∞) depending only on A,m and Vk. Combined with [8, Lemma 2.5], this
yields the desired estimate for some function C : (0, 1/4)→ (0,∞). □
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The following is a direct consequence of Theorem 3.3 and extends [6, Theorem 1.2] to the case
of weighted manifolds.

Corollary 3.4. Let M be a complete non-compact Riemannian manifold satisfying the condition (A).
There exists C : (0, 1/8)→ (0,∞) depending only on A,m and Vk, such that

|∇p(k)
t (·, y)(x)| ⩽

CγeCγt

√
t µ(y,

√
t)

exp
(
−
γρ2(x, y)

t

)
, ∀x, y ∈ M, t > 0, 0 < γ < 1/8. (3.6)

Proof. Let x, y ∈ M. It is easy to see that

∇p(k)
2t (·, y)(x) = ∇P(k)

t

(
p(k)

t (·, y)
)

(x).

Using condition (GE), we have

|∇P(k)
t η| ⩽

eA+At

√
t

(Pt|η|
2)1/2,

for η ∈ Ω(k) with Pt(|η|2) < ∞. We use this inequality with η(z) = p(k)
t (·, y)(z) to obtain

∣∣∣∇P(k)
t

(
p(k)

t (·, y)
) ∣∣∣(x) ⩽

eA+At

√
t

(∫
M

pt(x, z)
∣∣∣p(k)

t (z, y)
∣∣∣2 µ(dz)

)1/2

.

By Theorem 3.3, this implies that for any γ ∈ (0, 1/4),

|∇p(k)
2t (·, y)(x)| ⩽

eA+At

√
t

(∫
M
|p(k)

t (z, y)|2e
2γρ2(z,y)

t −
2γρ2(z,y)

t pt(x, z) µ(dz)
)1/2

⩽
CγeA+(A+Cγ)t√

tµ
(
y,
√

t
) sup

z∈M

{
e−

2γρ2(z,y)
t pt(x, z)

}1/2

. (3.7)

Since pt(x, x) satisfies the diagonal estimate (UE), from the proof of [24, Lemma 3.2], there exists a
function C̃ : (0, 1/4)→ (0,∞) depending only on A and m such that

pt(x, z) ⩽
C̃γeC̃γt

µ(x,
√

t)
exp

(
−

2γρ(x, z)2

t

)
, 0 < γ < 1/8, t > 0, x, y ∈ M. (3.8)

By (LD), there exists a decreasing function c : (0, 1)→ (0,∞) depending only on A and m such that

µ
(
y,
√

t
)
⩽ µ

(
x,
√

t
(
1 + t−1/2ρ(x, y)

))
⩽ Aµ

(
x,
√

t
)(

1 + t−1/2ρ(x, y)
)meAρ(x,y)

⩽ cεµ
(
x,
√

t
)

exp
(
ερ(x, y)2

t
+ cεt

)
, ε ∈ (0, 1), t > 0, x, y ∈ M.

Combining this with (3.8) and

2ρ(x, z)2 + 2ρ(y, z)2 ⩾ ρ(x, y)2,

we find Ĉ :
{
(γ, ε) : 0 < ε < γ < 1/8

}
→ (0,∞) depending only on A,m and Vk, such that

sup
z∈M

{
e−

2γρ2(z,y)
t pt(x, z)

}
⩽

Ĉγ,εeĈγ,εt

µ(y,
√

t)
exp

(
−

(γ − ε)ρ2(x, y)
t

)
, x, y ∈ M, t > 0, 0 < ε < γ < 1/8.
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Combining this with (3.7) yields

|∇p(k)
2t (·, y)(x)| ⩽

√
Ĉγ,εCγeA+(A+Cγ)t+Ĉγ,εt/2

√
tµ

(
y,
√

t
) exp

(
−

(γ − ε)ρ2(x, y)
2t

)
.

By this and (LD), we obtain the desired estimate for some C : (0, 1/8)→ (0,∞). □

As a consequence of the pointwise estimates in Corollary 3.4 and the local volume doubling
property (LD), we have the following result which extends [6, Corollary 1.3] to the case of a weighted
Lp-estimates of |∇p(k)

t |.

Theorem 3.5. Let M be a complete non-compact Riemannian manifold satisfying condition (A). Then
for any p ∈ [1,∞) there exists a function C : (0, 1/8) → (0,∞) depending only on p, A,m and Vk,
such that∫

M

∣∣∣∣√t∇p(k)
t (x, y)

∣∣∣∣p eγpρ2(x,y)/t µ(dx) ⩽
CγeCγt(
µ
(
y,
√

t
))p−1 , y ∈ M, t > 0, 0 < γ < 1/8.

Proof. According to inequality (3.2), we find a function h : (0,∞)→ (0,∞) depending only on A,m,
such that ∫

M
e−γρ

2(x,y)/tµ(dx) ⩽ hγ µ
(
y,
√

t
)

ehγt, t, γ > 0.

By Corollary 3.4, there exists C : (0, 1/8)→ (0,∞) depending on A,m and Vk such that∫
M

∣∣∣∣√t∇p(k)
t (x, y)

∣∣∣∣p e(1−ε)γpρ2(x,y)/t µ(dx) ⩽
Cp
γepCγt

µ(y,
√

t)p

∫
M

e−(pγ−p(1−ε)γ)ρ2(x,y)/t µ(dx).

Then by Lemma 3.1, we find C, c : (0, 1/8) × (0, 1)→ (0,∞) depending only on p, A,m and Vk, such
that ∫

M

∣∣∣∣√t∇p(k)
t (x, y)

∣∣∣∣p e(1−ε)γpρ2(x,y)/t µ(dx) ⩽
Cγ,εecγ,εt

µ(y,
√

t)p−1
, (γ, ε) ∈ (0, 1/8) × (0, 1), t > 0,

which completes the proof. □

We now introduce L2-Davies-Gaffney bounds under condition (A) which extend the L2-Davies-
Gaffney bound in [6, Theorem 1.9]. Recall that the distance between two non-empty subsets E, F of
M is defined as

ρ(E, F) := max
{

sup
x∈E

inf
y∈F
ρ(x, y), sup

y∈F
inf
x∈E
ρ(x, y)

}
.

Lemma 3.6. Assume that the conditions (LD), (UE) and (Kato) hold. Then there exist constants
c1, c2 > 0 depending only on A,m and Vk, such that for all non-empty relatively compact subsets
E, F ⊂ M,∥∥∥∥1F

√
t|∇P(k)

t α|
∥∥∥∥

2
⩽ c1(1 +

√
t) e−c2ρ(E,F)2/t

∥∥∥1E |α|
∥∥∥

2, t > 0, α ∈ Lp(Ω(k), µ) with supp (α) ⊂ E.
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Proof. All constants below depend only on A and Vk. By Lemma 3.2, the L2-Gaffney off-diagonal
estimates for P(k)

t f and∆(k)P(k)
t f are obtained as in [6, Theorem 1.9], i.e. there exist constants C1,C2 >

0 such that ∥∥∥∥1F |P
(k)
t (α)|

∥∥∥∥
2
+ t

∥∥∥∥1F |∆
(k)
µ P(k)

t (α)|
∥∥∥∥

2
⩽ C1e−C2ρ(E,F)2/t

∥∥∥1E |α|
∥∥∥

2, t > 0. (3.9)

Combined with (3.5), there exist constants κ ∈ (0, 1) and C > 0, such that for any ϕ ∈ C∞0 (M) with
F ⊂ supp (ϕ) and ϕ = 1 on F, we have∫

F
|
√

t∇P(k)
t α|

2(x) µ(dx) ⩽
∫

M
ϕ2

∣∣∣√t∇P(k)
t α

∣∣∣2(x) µ(dx)

⩽

∫
M
ϕ2t⟨∆(k)

µ P(k)
t α, P

(k)
t α⟩(x) µ(dx) +

∫
M

Vkϕ
2t
∣∣∣P(k)

t α
∣∣∣2(x) µ(dx)

+ 2
∫

M
ϕt⟨∇P(k)

t α, dϕ ⊗ P(k)
t α⟩(x) µ(dx)

⩽

∫
M

tϕ2⟨∆
(k)
µ P(k)

t α, P
(k)
t α⟩(x) µ(dx) + κt

∫
M
ϕ2

∣∣∣∇P(k)
t α

∣∣∣2(x) µ(dx)

+ κt
∫

M
|∇ϕ|2 ·

∣∣∣P(k)
t α

∣∣∣2 µ(dx) + 2κt
∫

M
ϕ |∇ϕ| ·

∣∣∣P(k)
t α| · |∇P(k)

t α
∣∣∣ µ(dx)

+C
∫

M
tϕ2|P(k)

t α|
2(x) µ(dx) + 2t

∫
M
ϕ |∇ϕ| ·

∣∣∣∇P(k)
t α

∣∣∣ · ∣∣∣P(k)
t α

∣∣∣ µ(dx).

As κ < 1 and

4t
∫

M
ϕ |∇ϕ| ·

∣∣∣∇P(k)
t α

∣∣∣ · ∣∣∣P(k)
t α

∣∣∣ µ(dx)

⩽
t(1 − κ)

2

∫
M
ϕ2

∣∣∣∇P(k)
t α

∣∣∣2(x) µ(dx) +
8t

1 − κ

∫
M

∣∣∣∇ϕ|2 · |P(k)
t α

∣∣∣2 µ(dx),

we arrive at∫
M
ϕ2

∣∣∣√t∇P(k)
t α

∣∣∣2(x) µ(dx) ⩽
∫

M
tϕ2⟨∆

(k)
µ P(k)

t α, P
(k)
t α⟩(x) µ(dx)

+
κ + 1

2

∫
M
ϕ2t

∣∣∣∇P(k)
t α

∣∣∣2(x) µ(dx)

+ t
(

8
1 − κ

+ κ

) ∫
M

∣∣∣∇ϕ|2 · |P(k)
t α

∣∣∣2 µ(dx) +C
∫

M
tϕ2

∣∣∣P(k)
t α

∣∣∣2(x) µ(dx).

The rest of the proof is identical to the proof of [6, Theorem 1.9]. The details are omitted here. □

3.2 Proof of Theorem 2.2

To begin our discussion, we need the following lemma taken from [2, Section 4].

Lemma 3.7 ( [2]). If (LD) holds, then there exist N0 ∈ N depending only on A and m, and a countable
subset {x j} j⩾1 ⊂ M, such that

(i) M = ∪ j⩾1B(x j, 1);

(ii)
{
B(x j, 1/2)

}
j⩾1 are disjoint;
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(iii) for every x ∈ M, there are at most N0 balls B(x j, 4) containing x;

(iv) for any c0 ⩾ 1, there exists a constant C > 0 depending only on c0, A and m, such that for any
j ⩾ 1 and x ∈ B(x j, c0),

µ
(
B(x, 2r) ∩ B(x j, c0)

)
⩽ Cµ

(
B(x, r) ∩ B(x j, c0)

)
, r ∈ (0,∞),

µ(B(x, r)) ⩽ Cµ
(
B(x, r) ∩ B(x j, c0)

)
, r ∈ (0, 2c0].

For p ∈ (2,∞) and σ ∈ (A,∞), we intend to find C ∈ (0,∞) depending only on p, σ, A,m and Vk

such that ∥∥∥ |T(k)
µ,σ(α)|

∥∥∥
p ⩽ C∥α∥p, α ∈ Ω(k). (3.10)

To this end, let w be a C∞ function on [0,∞) satisfying 0 ⩽ w ⩽ 1 and

w(t) =
{

1 on [0, 1/2],
0 on [1,∞),

and let T̃(k)
µ,σ be the operator defined by

T̃(k)
µ,σ(α) :=

∫ ∞

0
v(t)∇P(k)

t α dt (3.11)

where v(t) := w(t)e−σt/
√

t. We need the following lemma, which reduces (3.10) to a time and spatial
localized version.

Lemma 3.8. Suppose that Condition (A) holds. Let p ∈ (2,∞) and {x j} j⩾1 be as in Lemma 3.7. If
there exists a constant c > 0 depending only on p, σ, A,m and Vk such that∥∥∥∥ |T̃(k)

µ,σ(α)|
∥∥∥∥

Lp(B(x j,4))
⩽ c∥α∥Lp(B(x j,1)) (3.12)

for any α ∈ Lp(Ω(k), µ), then inequality (3.10) holds for some constant C > 0 depending also only on
p, σ, A,m and Vk.

Proof. In the sequel, ξ ≲ η for two positive variables ξ and η means that ξ ⩽ κη holds for some
constant κ > 0 depending only on p, σ, A,m and Vk.

Since w ≡ 1 on [0, 1/2], if σ > A, then (GE) implies that for any α ∈ Lp(Ω(k), µ),∥∥∥∥∥∥
∫ ∞

0
(1 − w(t)) |∇P(k)

t α|
e−σt

√
t

dt

∥∥∥∥∥∥
p
≲

∫ ∞

1/2
e(A−σ)t 1

√
t
dt ∥α∥p ≲ ∥α∥p.

(Note that the first inequality in condition (GE) extends to general α ∈ Lp(Ω(k), µ) by a standard
approximation argument in Lp(µ)). This and (3.11) imply that (3.10) follows from∥∥∥∥|T̃(k)

µ,σ(α)|
∥∥∥∥

p
≲ ∥α∥p, α ∈ Lp(Ω(k), µ). (3.13)

Let {x j} j⩾1 be as in Lemma 3.7 and {φ j} be a subordinated C∞ partition of the unity such that
0 ⩽ φ j ⩽ 1 and φ j is supported in B j := B(x j, 1). For each j, denote the characteristic function of the
ball 4B j := B(x j, 4) by χ j. For any α ∈ Lp(Ω(k), µ) and x ∈ M, we then may write

T̃(k)
µ,σα(x) ⩽

∑
j⩾1

χ jT̃(k)
µ,σ(αφ j)(x) +

∑
j⩾1

(1 − χ j)T̃(k)
µ,σ(αφ j)(x) =: I(x) + II(x). (3.14)
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By Lemma 3.7, we know ∑
j⩾1

∣∣∣(1 − χ j)(x)φ j(y)
∣∣∣ ⩽ N01{ρ(x,y)⩾3}.

First note by Lemma 3.1, along with the volume doubling property (LD), there exists C : (0,∞) →
(0,∞) depending only on A and m such that∫

{ρ(x,y)⩾3}

e−γρ
2(x,y)/t

µ(y,
√

t)
µ(dy) ⩽ Cγe

− 1
Cγ t , t ∈ (0, 1], γ > 0, x ∈ M. (3.15)

By this and Hölder’s inequality, we find h1, c : (0,∞) → (0,∞) depending only on p, A and m such
that

II(x) ⩽
∫ 1

0
v(t)

∫
M

∣∣∣∣∇x p(k)
t (x, y)

∣∣∣∣
∑

j∈Λ

∣∣∣(1 − χ j)(x)φ j(y)
∣∣∣ |α(y)| µ(dy)dt

⩽ N0

∫ 1

0

1
√

t

∫
{ρ(x,y)⩾3}

∣∣∣∣∇x p(k)
t (x, y)

∣∣∣∣ · |α(y)| µ(dy)dt

⩽ N0

∫ 1

0

1
√

t

∫
{ρ(x,y)⩾3}

∣∣∣∣∇x p(k)
t (x, y)

∣∣∣∣ eγρ
2(x,y)/ptµ(y,

√
t)

(p−1)/p
|α(y)|

e−γρ
2(x,y)/pt

µ(y,
√

t)(p−1)/p
µ(dy)dt

⩽ h1(γ)
∫ 1

0

(∫
M

∣∣∣∣√t∇x p(k)
t (x, y)

∣∣∣∣p eγρ
2(x,y)/t

(
µ(y,
√

t)
)p−1
|α(y)|pµ(dy)

)1/p e−cγ/t

t
dt.

By Theorem 3.5, there exists h2 : (0, 1/8)→ (0,∞) depending only on p, A,m and Vk such that∫
M

∣∣∣∣√t |∇x p(k)
t (x, y)|

∣∣∣∣p e
γρ2(x,y)

t µ(dx) ⩽
h2(γ)(

µ(y,
√

t)
)p−1 , 0 < γ < 1/8.

Taking for instance γ = 1/16, we find constants c0, c1, c2, c3 ∈ (0,∞) depending only on p, A,m and
Vk such that∫

M
|II(x)|pµ(dx)

⩽ c1

∫
M

∫ 1

0

(∫
M
|
√

t∇x p(k)
t (x, y)|peγρ

2(x,y)/tµ
(
y,
√

t
)p−1
|α(y)|pµ(dy)

)1/p e−c0/t

t
dt

p

µ(dx)

⩽ c2

∫ 1

0

(∫
M

(
µ
(
y,
√

t
))p−1

|α(y)|p
(∫

M

∣∣∣∣√t∇x p(k)
t (x, y)

∣∣∣∣p eγρ
2(x,y)/tµ(dx)

)
µ(dy)

)
dt

⩽ c3

∫
M
|α(y)|pµ(dy).

(3.16)

Next we turn to the estimate of I(x). According to Lemma 3.7, the balls {4B j} j∈Λ form a unity
overlap and hence ∑

j

∥ρχ j∥
p/(p−1)
p/(p−1) ≲ ∥ρ∥

p/(p−1)
p/(p−1), ρ ∈ C∞0 (M).

Combined with assumption (3.12), since |α|φ j ∈ C∞0 (B(x j, 1)), we conclude that∣∣∣∣∣∫
M
ρ(x)|I(x)| µ(dx)

∣∣∣∣∣ ⩽ ∫
M
|ρ(x)|

∣∣∣∣∣∑
j

χ jT̃(k)
µ,σ(αφ j)(x)

∣∣∣∣∣ µ(dx)
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≲
∑

j

∥∥∥ |α|φ j
∥∥∥

p ∥ρχ j∥p/(p−1) ≲ ∥α∥p∥ρ∥p/(p−1).

This together with (3.14) and (3.16) implies (3.10), and concludes the proof. □

In the sequel, we continue to write B j := B(x j, 1) for simplicity. By Lemma 3.8, it suffices to
verify (3.12). To this end, we use the local Lp boundedness criterion via maximal functions from [2].
More precisely, we define the local maximal function by

(Mloc f )(x) := sup
x∈B

r(B)⩽32

1
µ(B)

∫
B

f dµ, x ∈ M, (3.17)

for any locally integrable function f on M; the supremum is taken over all balls B in M, containing x
and of radius at most 32. From (LD), it follows that Mloc is bounded on Lp(µ) for all 1 < p ⩽ ∞. For
a measurable subset E ⊂ M, the maximal function relative to E is defined as

(ME f )(x) := sup
B ball in M, x∈B

1
µ(B ∩ E)

∫
B∩E

f dµ, x ∈ E, (3.18)

for any locally integrable function f on M. If in particular E is a ball of radius r, it is enough to
consider balls B with radii not exceeding 2r. It is also easy to see ME is weak type (1, 1) and Lp(µ)-
bounded for 1 < p ⩽ ∞ if E satisfies the relative doubling property, namely, if there exists a constant
CE (called relative doubling constant of E) such that for x ∈ E and r > 0,

µ(B(x, 2r) ∩ E) ⩽ CE µ(B(x, r) ∩ E). (3.19)

Note that by Lemma 3.7 (iv), for any j ∈ Λ, in particular the subsets 4B j satisfy the relative doubling
property (3.19) with a relative doubling constant independent of j.

The following lemma will be crucial in the proof of Theorem 2.2. For any x ∈ M, let B(x) be the
class of geodesic balls in M containing x.

Lemma 3.9. Let p ∈ (2,∞) and assume (LD). Then (3.12) holds for some constant c > 0 depending
only on p, σ, A,m and Vk, provided there exist an integer n and a constant C > 0 depending only on
p, σ, A,m and Vk such that the following two items hold:

(i) the operator

M #
4B j,T̃(k)

µ,σ, n
α(x) := sup

B∈B(x)

 1
µ(B ∩ 4B j)

∫
B∩4B j

∣∣∣∣T̃(k)
µ,σ(I − P(k)

r2 )nα(y)
∣∣∣∣2 µ(dy)

1/2

for x ∈ 4B j satisfies ∥∥∥M #
4B j,T̃(k)

µ,σ,n
α
∥∥∥

Lp(4B j,µ)
⩽ C∥α∥Lp(Ω(k)(B j),µ), j ⩾ 1.

(ii) for any ℓ ∈ {1, 2, . . . , n}, j ⩾ 1, and any α ∈ Lp(Ω(k)(B j), µ), there exists a sublinear operator S j

bounded from Lp(Ω(k)(B j), µ) to Lp(4B j, µ) with

∥S j∥Lp(Ω(k)(B j), µ)→Lp(4B j, µ)
⩽ C,
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such that

sup
B∈B(x)

 1
µ(B ∩ 4B j)

∫
B∩4B j

∣∣∣T̃(k)
µ,σ(P(k)

ℓr2α)
∣∣∣p dµ

1/p

⩽ C
(
M4B j(|T̃

(k)
µ,σα|

2) +
(
S j(α)

)2
)1/2

(x), j ⩾ 1, x ∈ 4B j.

(3.20)

Proof. We use [2, Theorem 2.4]: First note that we may take B j and 4B j for E1 and E2 there, re-
spectively, as the sets B j and 4B j possess the relative volume doubling property (3.19) with relative
doubling constants independent of j (see Lemma 3.7). As in [2] consider the operators {Ar}r>0 given
by the relation

I − Ar =
(
I − P(k)

r2

)n, r > 0,

for some integer n (to be chosen later). Following the proof of [2, Theorem 2.4], replacing f ∈
Lp(B j, µ) by α ∈ Lp(Ω(k)(B j), µ), we find a constant C′ > 0 depending only on p, σ, A,m and Vk such
that

∥M4B j(|T̃
(k)
µ,σα|

2)1/2∥Lp(4B j) ⩽ C′
(∥∥∥∥M ♯

4B j, T̃(k)
µ,σ, n
α
∥∥∥∥

Lp(4B j)
+ ∥S j(α)∥Lp(4B j) + ∥α ∥Lp(4B j)

)
.

Thus, assuming Lp-boundedness of both M #
4B j, T̃(k)

µ,σ, n
and S j, we may conclude that M4B j(|T̃

(k)
µ,σα|

2)1/2

is bounded in Lp(4B j, µ) and thus T̃(k)
µ,σ bounded from Lp(Ω(k)(B j), µ) to Lp(Ω(k)(4B j), µ). □

Hence it suffices to check (i) and (ii) of Lemma 3.9. We establish two technical lemmas which
verify (i) and (ii) respectively. To this end, observe that (LD) implies: for any r0 > 0 there exists
Cr0 > 0 depending only on A,m and r0 such that

µ(x, 2r) ⩽ Cr0µ(x, r), r ∈ (0, r0), x ∈ M. (3.21)

An immediate consequence of (LD) is that for all y ∈ M, 0 < r < 8 and s ⩾ 1 satisfying sr < 32,

µ(y, sr) ⩽ Csmµ(y, r), (3.22)

for some constants C depending only on A.

The following lemma is essential to the proof of part (i) of Lemma 3.9.

Lemma 3.10. Assume condition (A). Then there exists an integer n depending only on m and a
constant C > 0 depending on σ, A,m and Vk, such that

sup
B∈B(x)

 1
µ(B ∩ 4B j)

∫
B∩4B j

∣∣∣∣T̃(k)
µ,σ(I − P(k)

r2 )nα(y)
∣∣∣∣2 µ(dy)

1/2

⩽ C
(
Mloc(|α|2)(x)

)1/2
(3.23)

holds for any x ∈ 4B j, j ⩾ 1 and α ∈ L2(Ω(k)(4B j), µ) where Mloc is defined by (3.17).

Proof. All constants appearing below depend only on σ, A,m and Vk, and ξ ≲ η for positive variables
ξ and η means that ξ ⩽ κη holds for such a constant κ > 0.



14 Li-Juan Cheng, Anton Thalmaier and Feng-YuWang

Viewing the left-hand side of (3.23) as maximal function relative to 4B j, since the radius of 4B j

is 4, it is sufficient to consider balls B of radii not exceeding 8. By Lemma 3.7, there exists a constant
c0 > 0 depending only on A,m such that

µ(B) ⩽ c0µ(B ∩ 4B j), B = B(x0, r), x0 ∈ 4B j, r ∈ (0, 8), j ⩾ 1. (3.24)

Hence,

1
µ(B ∩ 4B j)

∫
B∩4B j

∣∣∣T̃(k)
µ,σ(I − P(k)

r2 )nα
∣∣∣2 dµ ⩽

c0

µ(B)

∫
B

∣∣∣T̃(k)
µ,σ(I − P(k)

r2 )nα
∣∣∣2 dµ,

j ⩾ 1, B = B(x0, r), x0 ∈ 4B j, r ∈ (0, 8).

Thus, we only need to show that

sup
B=B(x0 ,r)∈B(x)

r<8

1
µ(B)

∫
B

∣∣∣∣T̃(k)
µ,σ(I − P(k)

r2 )nα(y)
∣∣∣∣2 µ(dy) ≲Mloc(|α|2)(x), j ⩾ 1, x ∈ 4B j. (3.25)

For any r ∈ (0, 8), we may choose ir ∈ Z+ satisfying

2ir r ⩽ 8 < 2ir+1r. (3.26)

Denote by

Di := (2i+1B) \ (2iB) if i ⩾ 2, and

D1 = 4B. (3.27)

Using the fact that suppα ⊂ 4B j ⊂ 2iB when i > ir, we find that

α =

ir∑
i=1

α1Di =:
ir∑

i=1

αi

which then implies

∥∥∥∥ ∣∣∣T̃(k)
µ,σ(I − P(k)

r2 )nα
∣∣∣ ∥∥∥∥

L2(B)
⩽

ir∑
i=1

∥∥∥∥ ∣∣∣T̃(k)
µ,σ(I − P(k)

r2 )nαi
∣∣∣ ∥∥∥∥

L2(B)
. (3.28)

For i = 1 we use the L2-boundedness of T̃(k)
µ,σ

(
I − P(k)

r2

)n
to obtain∥∥∥∥ ∣∣∣T̃(k)

µ,σ(I − P(k)
r2 )nα1

∣∣∣ ∥∥∥∥
L2(B)

⩽ ∥α∥L2(4B) ⩽ µ(4B)1/2(Mloc(|α|2)(x))1/2 (3.29)

as desired. For i ⩾ 2, we infer from (3.11) that

T̃(k)
µ,σ

(
I − P(k)

r2

)n
αi =

∫ ∞

0
v(t)∇

(
P(k)

t (I − P(k)
r2 )nαi

)
dt

=

∫ ∞

0
v(t)

n∑
ℓ=0

(
n
ℓ

)
(−1)ℓ∇P(k)

t+ℓr2αi dt



Covariant Riesz transform for p > 2 15

=

∫ ∞

0

 n∑
ℓ=0

(
n
ℓ

)
(−1)ℓ1{t>ℓr2}v(t − ℓr2)

∇ P(k)
t αi dt

=

∫ ∞

0
gr(t)∇P(k)

t αi dt,

where

gr(t) :=
n∑
ℓ=0

(
n
ℓ

)
(−1)ℓ1{t>ℓr2}v(t − ℓr2).

For gr, according to the definition v(t) = w(t)e−σt/
√

t along with an elementary calculation (see the
proof of [2, Lemma 3.1]), we observe that

|gr(t)| ≲ 1√
t−ℓr2
, for 0 < ℓr2 < t ⩽ (1 + ℓ)r2 ⩽ (1 + n)r2,

|gr(t)| ≲ r2nt−n− 1
2 , for (1 + nr2) ∧ (1 + n)r2 < t ⩽ 1 + nr2,

gr(t) = 0, for t > 1 + nr2.

Combined with Lemma 3.6, this gives∥∥∥∥ ∣∣∣T̃(k)
µ,σ(I − P(k)

r2 )nαi
∣∣∣ ∥∥∥∥

L2(B)
≲

(∫ ∞

0
|gr(t)|

(
1 +
√

t
)

e−c24ir2/t dt
√

t

)
∥αi∥L2(Di)

for some constant c2 from (3.6), where by the fact that 0 < r < 8, we have∫ ∞

0

(
1 +
√

t
)
|gr(t)| e−c24ir2/t dt

√
t
⩽ Cn

∫ 1+nr2

0
|gr(t)| e−c24ir2/t dt

√
t
⩽ C′n4−in,

for some constant C′n > 0. Now, since r(2iB) ⩽ 8 when 1 ⩽ i ⩽ ir, an easy consequence of the local
doubling (3.22) is that

µ(2i+1B) ⩽ C2(i+1)mµ(B),

with a constant C independent of B and i. Therefore, asDi ⊂ 2i+1B,

∥αi∥L2(Di) ⩽ µ(2
i+1B)1/2

(
Mloc(|α|2)(x)

)1/2
⩽ C2im/2µ(B)1/2

(
Mloc(|α|2)(x)

)1/2
.

Using the definition of ir, r ⩽ 8, and then choosing 2n > m/2, we finally obtain∥∥∥∥ ∣∣∣T̃(k)
µ,σ(I − P(k)

r2 )nα
∣∣∣ ∥∥∥∥

L2(B)
⩽ C′

 ir∑
i=1

2i(m/2−2n)

 µ(B)1/2
(
Mloc(|α|2)(x)

)1/2
,

for some constant C′ > 0, so that (3.25) holds. Then the proof is finished. □

The following lemma is used to prove part (ii) of Lemma 3.9.

Lemma 3.11. In the situation of Theorem 2.2, let the integer ir be defined by (3.26), and let n ∈ N be
as in Lemma 3.10. Then there exist constants c,C > 0 depending only on p, σ, A,m and Vk, such that
for any i ⩾ 1, ℓ ∈ {1, . . . , n}, r ∈ (0, 8), B = B(x0, r) ∈ B(x), and for α ∈ L2(Ω(k), µ) supported in Di

as in (3.27), (
1
µ(B)

∫
B
|∇P(k)

ℓr2α|
p dµ

)1/p

⩽
CeCℓr2−c4i

r

(
1

µ(2i+1B)

∫
Di

|α|2 dµ
)1/2

, (3.30)
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for α ∈ L2(Ω(k), µ) supported in 2ir+2B,(
1
µ(B)

∫
B

∣∣∣∇P(k)
ℓr2

(
α
)∣∣∣p dµ

)1/p

⩽ CeCℓr2
ir+1∑
i=1

e−c4i√
µ(2i+1B)

(∫
Di

|∇α|2 dµ
)1/2

+

(∫
Di

|α|2 dµ
)1/2 . (3.31)

Proof. All constants appearing below depend only on p, A,m and Vk. We first observe from condition
(GE) that (∫

B

∣∣∣∣∇P(k)
t α

∣∣∣∣p dµ
)1/p

⩽
1
√

t
eA+At

(∫
B

(
Pt|α|

2
)p/2

(x) µ(dx)
)1/p

. (3.32)

We substitute t = ℓr2 in estimate (3.32) for ℓ ∈ {1, 2, . . . , n}. As r ∈ (0, 8), there exists a positive
constant C̃ depending on n and A such that(∫

B
|∇P(k)

ℓr2α|
p dµ

)1/p

⩽
C̃
r

(∫
B

(
Pℓr2 |α|2

)p/2
(x) µ(dx)

)1/p

.

By the off-diagonal heat kernel upper bound of pt(x, y), see (3.8), we have

pt(x, y) ⩽
Ceσ̃2t

µ(y,
√

t)
exp

(
−c0
ρ2(x, y)

t

)
, x, y ∈ M,

for some constants C, σ̃2 > 0 and c0 ∈ (0, 1/4). As a consequence, since 0 < r < 8, we obtain for
x ∈ B, a positive constant C > 0 such that

Pℓr2(|α|2)(x) ⩽ C
∫
Di

µ
(
y,
√
ℓr

)−1
exp

(
−c0
ρ2(x, y)
ℓr2 + σ̃2ℓr2

)
|α|2(y) µ(dy)

⩽ Ceσ̃2ℓr2−c04i/ℓ

∫
Di

µ
(
y,
√
ℓr

)−1
|α|2(y) µ(dy).

Moreover, for y ∈ Di, we have 2i+1B ⊂ B(y, 2i+2r), and then by (LD), for ℓ ∈ {1, 2, . . . , n},

1

µ
(
y,
√
ℓr

) ⩽ 2m(i+2)eC2i+2

µ(y, 2i+2r)
⩽

2m(i+2)eC2i+2

µ(2i+1B)
.

It follows that

Pℓr2(|α|2)(x) ⩽ Ceσ̃ℓr
2−c04i/ℓ

2m(i+2)eC2i+2

µ(2i+1B)

∫
Di

|α|2 dµ

 (3.33)

for all x ∈ B, and there exists α1 < c0/n such that for all ℓ ∈ {1, 2, · · · , n}.(
1
µ(B)

∫
B

(
Pℓr2(|α|2)

)p/2
dµ

)1/p

⩽ Ceσ̃ℓr
2−α14i

(
1

µ(2i+1B)

∫
Di

|α|2 dµ
)1/2

. (3.34)

Combining (3.32) and (3.34), we complete the proof of (3.30).
We next observe that condition (GE) yields(∫

B
|∇P(k)

t α|
p dµ

)1/p

⩽ eAt
(∫

B

(
Pt|∇α|

2
)p/2

(x) µ(dx)
)1/p

+ AteAt
(∫

B

(
Pt|α|

2
)p/2

(x) µ(dx)
)1/p

.

(3.35)
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If α is supported in 2ir+2B := ∪ir+1
i=1 Di, then from (3.33), there exists α1 > 0 such that

Pℓr2(|α|2)(x) ⩽ C
ir+1∑
i=1

eσ̃ℓr
2−α14i

µ(2i+1B)

∫
Di

|α|2 dµ

 ,
which implies (

1
µ(B)

∫
B

(
Pℓr2(|α|2)

)p/2
dµ

)1/p

⩽ C
ir+1∑
i=1

eσ̃ℓr
2

 e−2α14i

µ(2i+1B)

∫
Di

|α|2 dµ

1/2

.

By the same reason, we have(
1
µ(B)

∫
B

(
Pℓr2(|∇α|2)

)p/2
dµ

)1/p

⩽ C
ir+1∑
i=1

eσ̃ℓr
2

 e−2α14i

µ(2i+1B)

∫
Di

|∇α|2 dµ

1/2

.

Altogether, these estimates yield(
1
µ(B)

∫
B

∣∣∣∣∇P(k)
ℓr2α

∣∣∣∣p dµ
)1/p

⩽ C′
ir+1∑
i=1

e(A+σ̃)ℓr2


 e−2α14i

µ(2i+1B)

∫
Di

|α|2 dµ

1/2

+

 e−2α14i

µ(2i+1B)

∫
Di

|∇α|2 dµ

1/2
which completes the proof of (3.31). □

With the help of the Lemmas 3.9, 3.10 and 3.11, we are now in position to finish the proof of
Theorem 2.2.

Proof of Theorem 2.2. For simplicity, denote by C, c positive constants depending only on p, σ, A,m
and Vk, which may vary from one term to another.

By Lemma 3.9, we only need to show that under the given assumptions, items (i) and (ii) of
Lemma 3.9 hold true. We first verify item (i) of Lemma 3.9. Observe from Lemma 3.10, there exists
an integer n and a constant C > 0 such that for all j ⩾ 1, α ∈ L2(Ω(k)(B j), µ) and x ∈ 4B j,

sup
B∈B(x)

1
µ(B ∩ 4B j)

∫
B∩4B j

∣∣∣T̃(k)
µ,σ(I − P(k)

r2 )nα
∣∣∣2 dµ ⩽ CMloc(|α|2)(x).

Recall that Mloc is bounded on Lp(µ) for 1 < p ⩽ ∞; thus M #
4B j,T̃(k)

µ,σ,n
is bounded from Lp(Ω(k)(B j), µ)

to Lp(4B j, µ) uniformly in j, i.e., assertion (i) is proved.
Next, we prove (ii) of Lemma 3.9. Assume that α ∈ Ω(k)

0 (B j) and let h =
∫ ∞

0 v(t)P(k)
t α dt with v as

in (3.11). Since T̃(k)
µ,σ(α) = ∇ h and inequality (3.24) holds for B ∩ 4B j, we have 1

µ(B ∩ 4B j)

∫
B∩4B j

∣∣∣T̃(k)
µ,σP(k)

ℓr2α
∣∣∣p dµ

1/p

=

 1
µ(B ∩ 4B j)

∫
B∩4B j

∣∣∣∇P(k)
ℓr2h

∣∣∣p dµ
1/p

⩽ C
(

1
µ(B)

∫
B

∣∣∣∇P(k)
ℓr2h

∣∣∣p dµ
)1/p

.
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Let φ0 be a C∞ function supported in 2ir+2B with φ0(x) = 1 on 2ir+1B and |∇φ0| ⩽ 1/8 as 8 ⩽ 2ir+1r ⩽
16. We write

∇P(k)
ℓr2h = ∇P(k)

ℓr2g0 +

∞∑
i=ir+1

∇P(k)
ℓr2gi,

where g0 = hφ0 and gi = h(1 − φ0)1Di . Next, we distinguish the two cases i = 0 and i > ir where ir
is defined in (3.26). For the case i = 0, since g0 ∈ Ω

(k) is supported in 2ir+1B, by the inequality (3.31)
in Lemma 3.11 and the definition of φ0, we have(

1
µ(B)

∫
B

∣∣∣∇P(k)
ℓr2g0

∣∣∣p dµ
)1/p

⩽ C
ir+1∑
i=1

e−c4i

( 1
µ(2i+1B)

∫
Di

|∇g0|
2 dµ

)1/2

+

(
1

µ(2i+1B)

∫
Di

|g0|
2 dµ

)1/2
⩽ C

ir+1∑
i=1

e−c4i

( 1
µ(2i+1B)

∫
Di

|∇h|2 dµ
)1/2

+

(
1

µ(2i+1B)

∫
Di

|h|2 dµ
)1/2

⩽ C
ir+1∑
i=1

e−c4i
((

Mloc(|∇h|2)(x)
)1/2
+

(
Mloc(|h|2)(x)

)1/2
)
. (3.36)

For the second regime i > ir, we proceed with inequality (3.30) in Lemma 3.11 such that(
1
µ(B)

∫
B
|∇P(k)

ℓr2gi|
p dµ

)1/p

⩽
Ce−c4i

r

(
1

µ(2i+1B)

∫
Di

|h|2 dµ
)1/2

. (3.37)

On the other hand, since i > ir, it is easy to see that 4B j ⊂ 2i+1B, thus(
1

µ(2i+1B)

∫
Di

|h|2 dµ
)1/2

⩽

(
1

µ(2i+1B)

∫ 1

0
v(t)

∫
Di

|P(k)
t α|

2 dµ dt
)1/2

⩽ C
 1
µ(4B j)

∫
B j

|α|2 dµ
1/2

⩽ C
(
M4B j(|α|

2)(x)
)1/2
. (3.38)

Thus the contribution of the terms in the second regime i > ir is bounded by combining (3.37) and
(3.38), ∑

i>ir

(
1
µ(B)

∫
B
|∇P(k)

ℓr2gi|
p dµ

)1/p

⩽
∑
i>ir

Ce−c4i

r
(
M4B j(|α|

2)(x)
)1/2 (3.39)

and it remains to recall that 1/r ⩽ 2i+1/8 when i > ir.
We conclude from (3.36) and (3.39) that for any p > 2 and ℓ ∈ {1, 2, . . . , n}, there exists a constant

C independent of j such that 1
µ(B ∩ 4B j)

∫
B∩4B j

|T̃(k)
µ,σP(k)

ℓr2α|
p dµ

1/p

⩽ C
(
M4B j(|T̃

(k)
µ,σα|

2) + (S jα)2
)1/2

(x)
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for all α ∈ L2(Ω(k)(B j), µ), all balls B in M and all x ∈ B ∩ 4B j, where the radius r of B is less than 8,
and where

(S jα)2 :=Mloc
(
|T̃(k)
µ,σα|

2
1M\4B j

)
+Mloc

(
|h|2

)
(x) +M4B j

(
|α|2

)
. (3.40)

Our last step is to show that the operator S j defined in (3.40) is bounded from Lp(Ω(k)(B j), µ) to
Lp(4B j, µ) for any p ∈ (2,∞) with operator norm independent of j. By (3.40), we only need to show
that the operators (

Mloc(|T̃(k)
µ,σα|

2
1M\4B j)

)1/2,
(
Mloc(|h|2)

)1/2 and
(
M4B j(|α|

2)
)1/2

respectively are bounded from Lp(B j) to Lp(4B j). Indeed, for any α ∈ Lp(4B j), by Lemma 3.7 we
know that 4B j satisfies the doubling property (LD), which for p > 2 implies that

(
M4B j(|α|

2)
)1/2 is

bounded from Lp(B j) to Lp(4B j) by a constant depending only on the doubling property (LD). On
the other hand, using the local estimate of p(k)

t (x, y) ( [14]), we see that

|p(k)
t (x, y)| ⩽

C

µ(x,
√

t)
e−
γρ(x,y)2

t , t ∈ (0, 1], γ < 1/4,

which together with (3.4) and Cauchy’s inequality implies∥∥∥∥P(k)
t α

∥∥∥∥
p
⩽ C∥α∥p, t ∈ (0, 1].

This, together with (LD) and the Lp/2-boundedness of Mloc(·), further implies∥∥∥ (
Mloc(|h|2)

)1/2 ∥∥∥
p ⩽ C

∥∥∥∥ ∫ 1

0
v(t)P(k)

t α dt
∥∥∥∥

p
⩽ C

(∫ 1

0

w(t) e−σt

√
t

dt
)
∥α∥Lp(B j) ⩽ C∥α∥Lp(B j),

for p > 2 and σ > 0. Finally, the Lp-boundedness of(
Mloc(|T̃(k)

µ,σα|
2
1M\4B j)

)1/2

follows from the Lp/2-boundedness of Mloc(·) and an argument similar to the Lp boundedness of II
in (3.16) since α ∈ Ω(k)(B j) and

1M\4B jT̃
(k)
µ,σα = (1 − χ j)T̃(k)

µ,σ(αφ j).

This implies that the operator S j is bounded from Lp(B j) to Lp(4B j) with an upper bound independent
of j.

We infer that the requirements (i) and (ii) in Lemma 3.9 both hold true under the assumptions
(LD), (UE) and (GE). Thus, the operator T̃(k)

µ,σ is bounded from Lp(Ω(k)(B j), µ) to Lp(Ω(k)(4B j), µ)
for p > 2 with a constant independent of j. Therefore, by Lemma 3.8, the operator T(k)

µ,σ is strong type
(p, p) for p > 2. This concludes the proof of Theorem 2.2. □

4 Lp-boundedness under curvature conditions

4.1 Proof of Theorem 2.3

By Theorem 2.2, it suffices to verify conditions (LD), (UE) and (GE) by using (C). By the Laplacian
comparison theorem presented in [25] and Lemmas 2.1-2.2 in [16], (LD) follows from the curvature-
dimension condition (2.2). Moreover, according to [16], (UE) is a consequence of (2.2) as well. Thus,
it remains to prove (GE), which is Proposition 4.1 below.
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4.2 Derivative formulas

Let Xt(x) be diffusion process on M generated by L := −∆ + ∇h with a fixed initial value x ∈ M, and
let ut(x) be the horizontal lift of Xt(x) to O(M), such that

dXt(x) = ∇h(Xt(x)) dt +
√

2 ut(x) ◦ dBt, t ⩾ 0, X0(x) = x,

where Bt is an m-dimensional Brownian motion on Rm. Then the associated stochastic parallel dis-
placement is defined as

//t,x := ut(x) u0(x)−1 : TxM → TXt(x)M,

where as usual orthonormal frames u at a point x are read as isometries u : Rm → TxM. For fixed
k ∈ N, let E := ΛkT ∗M and Ẽ := T ∗M ⊗ ΛkT ∗M. We are now in position to introduce the derivative
formula for P(k)

t . To this end, let

R̃(k)
h = (Ric−Hess h)tr ⊗ 1E − 2R(k)

· + 1T ∗M ⊗R(k)
h ∈ End(Ẽ),

where (Ric−Hess h)tr is the transpose of the Bakry-Émery Ricci curvature tensor Ric−Hess h ∈
Γ(End T M). Let Qt ∈ End(Ex) and Q̃t ∈ End(Ẽx) denote the solutions to the ordinary differential
equations

d
dt

Qt = −Qt(R
(k)
h )//t,x , t ⩾ 0, Q0 = idEx ,

d
dt

Q̃t = −Q̃t(R̃
(k)
h )//t,x , t ⩾ 0, Q̃0 = idẼx

,

where

(R(k)
h )//t,x = //

−1
t,x ◦R(k)

h ◦ //t,x, and (R̃(k)
h )//t,x = //

−1
t,x ◦ R̃(k)

h ◦ //t,x.

Let Q. and Q̃. be the transposes of Q. and Q̃. respectively.
Moreover, we have the commutation relation (see [15, Proposition 2.15])

∇∆
(k)
µ = ∆̃

(k)
µ ∇ + H(k),

where ∆̃(k)
µ := □̃µ + R̃(k)

h with □̃µ the Bochner Laplacian on T ∗M ⊗ E with respect to the induced
connection on T ∗M ⊗ E and

H(k) := ∇ · R(k) + R(k)(∇h) + ∇R(k)
h ∈ Γ(Hom(E, T ∗M ⊗ E).

Let H(k),tr be the transpose of the tensor H(k). Finally let

P̃(k)
t := e−t∆̃(k)

µ , t ⩾ 0.

For η ∈ Ω(k), we define ∇η ∈ Γ(T ∗M ⊗ E) by letting

∇η(v) := ∇vη, v ∈ T M.

We have the following result.
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Proposition 4.1. Assume condition (C) holds for some k ∈ N+. Then for any bounded η ∈ Ω(k)
b,1, there

exists a constant A > 0 such that for any t > 0,

|∇P(k)
t η| ⩽ eAt min

{(
t−1/2 + At

) (
Pt|η|

2
)1/2
,
(
Pt|∇η| + AtPt|η|

)}
. (4.1)

Proof. Consider for s ∈ [0, t]:

Ns := Qs//
−1
s,xP(k)

t−sη(Xs(x)),

Ñs := Q̃s//
−1
s,x∇P(k)

t−sη (Xs(x)) .

The crucial observation [15, Theorem 3.7] is that

Z(k)
s := ⟨Ñs, ξs⟩ − ⟨Ns,U

(k)
s ⟩ (4.2)

is a local martingale where

U(k)
s :=

∫ s

0
Q−1

r Q̃rξ̇r dBr +

∫ s

0
Q−1

r H(k),tr
//r,x

Q̃rξr ds

and where ξs may be any adapted process with absolutely continuous paths, taking values in T ∗x M ⊗
E(k)

x . For simplicity, in the sequel, we always take ξs = ℓsξ for some fixed vector ξ ∈ T ∗x M ⊗ E(k)
x and

ℓs real-valued with absolutely continuous paths. This leads to the local martingale

Z(k)
s := ℓs⟨Q̃s//

−1
s, x∇P(k)

t−sη(Xs(x)), ξ⟩

−

〈
//−1

s, xP(k)
t−sη(Xs(x)),Qs

∫ s

0
ℓ̇rQ

−1
r Q̃rξ dBr +Qs

∫ s

0
ℓrQ

−1
r H(k),tr

//r,x
Q̃rξ dr

〉
. (4.3)

When exploiting the martingale property of (4.3), there are different strategies for the choice of
ℓs leading to different types of stochastic formulas for the covariant derivative ∇P(k)

t η.
(a) (First upper bound in (4.1)) If ℓ is a bounded adapted process with paths in the Cameron-

Martin space L2([0, t]; [0, 1]) such that ℓ(0) = 1 and ℓ(r) = 0 for r ⩾ τ ∧ t, where τ = τD(x) is
the first exit time of Xs(x) from some relatively compact neighborhood D of x, then trivially the
local martingale (4.3) is a true martingale and by taking expectations (see [15, Section 4]) the local
covariant Bismut formula holds,〈
∇P(k)

t η, ξ
〉

(x) (4.4)

= −E

[〈
//−1

t∧τ, xP(k)
t−t∧τη(Xt∧τ(x)),Qt∧τ

∫ t∧τ

0
ℓ̇sQ

−1
s Q̃sξ dBs +Qt∧τ

∫ t∧τ

0
ℓsQ

−1
s H(k),tr

//s,x
Q̃sξ ds

〉]
.

Under the condition (C), H(k), R(k)
h , and R̃(k) are all bounded, and one derives the estimate

|∇P(k)
t η|(x) ⩽ eAt(Pt|η|

2)1/2

(E∫ t∧τ

0
|ℓ̇s|

2 ds
)1/2

+ At

 .
To make this estimate more explicit, we choose a geodesic ball D of radius δx centered at x. It has
been shown in [30] that there exists a constant c( f ) := supD

{
−2 f L f + 3|∇ f |2

}
< ∞ such that

E

(∫ t∧τ

0
|ℓ̇s|

2 ds
)
⩽

c( f )
1 − e−c( f )t ,
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where f ∈ C2(D) such that f (x) = 1 and f |∂D = 0. Specifically we may take

f (p) = cos
(
πρ(x, p)

2δx

)
.

Then using the comparison theorem in [16, Theorem 1], it is easy to see that there exist positive
constants c1(K,N) and c2(N) such that

c( f ) ⩽
c1(K,N)
δx

+
c2(N)
δ2x
.

Letting δx tend to∞, we prove that∣∣∣∇P(k)
t η

∣∣∣ ⩽ eAt
(
t−1/2 + At

)
(Pt|η|

2)1/2. (4.5)

(b) (Second upper bound in (4.1)) We first prove the remaining claim of Proposition 4.1 for
compactly supported η, i.e., for η ∈ Ω(k)

0 . To this end, we establish an estimate for |∇P(k)
t η| which is

uniform in the time variable for small values of t. For η ∈ Ω(k)
0 , the Kolmogorov equation gives

P(k)
t η = η −

∫ t

0
P(k)

s ∆
(k)
µ η ds,

which by (4.5) implies

|∇P(k)
t η| ⩽ |∇η| +

∫ t

0
|∇P(k)

s ∆
(k)
µ η| ds

⩽ |∇η| + c
∫ t

0
eAss−1/2

(
Ps|∆

(k)
µ η|

2
)1/2

ds

≲ ∥∇η∥∞ +
√

teAt∥∆
(k)
µ η∥∞. (4.6)

Hence, sups∈[0,t] |∇P(k)
s η| < ∞. Also note that there exists A > 0 such that

sup
s∈[0,t]

∣∣∣∣Q̃s//
−1
s, x∇P(k)

t−sη(Xs(x))
∣∣∣∣ ⩽ eA+At

(
∥∇η∥∞ + ∥∆

(k)
µ η∥∞

)
< ∞

for all η ∈ Ω(k)
0 . As a consequence of these bounds, we conclude that the local martingale (4.3) is a

true martingale for the constant function ℓs ≡ 1 as well. Taking expectations at the endpoints 0 and t,
we derive the following global Bismut formula, i.e.,〈
∇P(k)

t η, ξ
〉

(x) = −E
〈
//−1

t,x∇η (Xt(x)) , Q̃tξ
〉
− E

[〈
//−1

t,xη(Xt(x)),Qt

∫ t

0
Q−1

s H(k),tr
//s,x

Q̃sξ ds
〉]
, (4.7)

holds for η ∈ Ω(k)
0 . Note that under condition (C), it follows from (4.7) that there exists a constant

A > 0 such that

|∇P(k)
t η| ⩽ eAt (Pt|∇η| + AtPt|η|) , η ∈ Ω

(k)
0 . (4.8)

It remains to show that estimate (4.8) extends from Ω(k)
0 to Ω(k)

b,1. This can be done by a standard
approximation argument. As M is geodesically complete, there exists a sequence (φn)n∈N of first
order cut-off functions (e.g. [18, Theorem III.3 a)]) with the properties
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(i) 0 ⩽ φn ⩽ 1 for all n ∈ N+;

(ii) for each compact K ⊂ M there is n0(K) ∈ N+ such that φn|K ≡ 1 for all n ⩾ n0(K);

(iii) ∥∇φn∥∞ → 0 as n→ ∞.

We replace η by ηn := φnη and then pass to the limit in the estimate as n→ ∞. From the local Bismut
formula (4.4) it is then easy to see that ∇P(k)

t ηn → ∇P(k)
t η as n → ∞. For the right-hand-side, we

trivially have Pt|∇ηn| + AtPt|ηn| → Pt|∇η| + AtPt|η|, as n→ ∞. □

Remark 4.2. Since the estimates (4.6) are uniform on compact time intervals, it also follows that
(4.3) is a true martingale for any η ∈ Ω(k)

b,1 and ℓ ∈ C1([0, t]), establishing the following global version
of Bismut’s formula:〈
∇P(k)

t η, ξ
〉

(x) = −E
[〈
//−1

t, xη(Xt(x)),Qt

∫ t

0
ℓ̇sQ

−1
s Q̃sξ dBs +Qt

∫ t

0
ℓsQ

−1
s H(k),tr

//s,x
Q̃sξ ds

〉]
, (4.9)

for a general deterministic ℓ ∈ C1([0, t]) with ℓt = 0 and ℓ0 = 1 as well. A standard choice for ℓs is
ℓs := (t − s)/t, so that ℓ̇s = −1/t.
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