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By methods of stochastic analysis on Riemannian manifolds, we develop an approach to determine an explicit constant

c(D) for an n-dimensional compact manifold D with smooth boundary such that λ
n
∥ϕ∥∞ ≤ ∥Hessϕ∥∞ ≤ c(D)λ ∥ϕ∥∞

holds for any Dirichlet eigenfunction ϕ of −∆ on D with eigenvalue λ. Our results provide the sharp Hessian estimate

∥Hessϕ∥∞ ≲ λ
n+3
4 . Corresponding Hessian estimates for Neumann eigenfunctions are derived in the second part of the

paper.

1 Introduction

Let D be an n-dimensional compact Riemannian manifold with smooth boundary ∂D. We write (ϕ, λ) ∈ Eig(∆)
if ϕ is a Dirichlet eigenfunction of −∆ on D with eigenvalue λ > 0, i.e., −∆ϕ = λϕ. We always assume
eigenfunctions ϕ to be normalized in L2(D) such that ∥ϕ∥L2 = 1. According to [16], there exist two positive
constants c1(D) and c2(D) such that

c1(D)
√
λ ∥ϕ∥∞ ⩽ ∥∇ϕ∥∞ ⩽ c2(D)

√
λ ∥ϕ∥∞, (ϕ, λ) ∈ Eig(∆), (1.1)

where we write ∥∇ϕ∥∞ := ∥ |∇ϕ| ∥∞ for simplicity. An analogous statement for Neumann eigenfunctions has
been derived by Hu, Shi and Xu [9]. Subsequently, by methods of stochastic analysis on Riemannian manifolds,
Arnaudon, Thalmaier and Wang [2] determined explicit constants c1(D) and c2(D) in (1.1) for Dirichlet and
Neumann eigenfunctions. From this, together with the uniform estimate of ϕ (see [8, 7, 12]),

∥ϕ∥∞ ≤ cDλ
n−1
4

for some positive constant cD, the optimal uniform bound of the gradient writes as

∥∇ϕ∥∞ ≲ λ
n+1
4 .

Results of this type have been used to study gradient estimates for unit spectral projection operators and to
give a new proof of Hörmander’s multiplier theorem, see [24, 25, 26].

Concerning higher order estimates of eigenfunctions, not much is known. Very recently, Steinerberger [17]
studied Laplacian eigenfunctions of −∆ with Dirichlet boundary conditions on bounded domains Ω ⊂ Rn with
smooth boundary and proved a sharp Hessian estimate for the eigenfunctions which reads as

∥Hessϕ∥∞ ≲ λ
n+3
4

where
∥Hessϕ∥∞ := sup {|Hessϕ(v, v)|(x) : x ∈ Rn, v ∈ Rn, |v| = 1} .
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To the best of our knowledge, higher order estimates of eigenfunctions for Euclidean domains first appeared in
[6] (see Lemma C.1 in the Appendix there which is easily adapted to cover the Hessian estimate in the Euclidean
case).

It is natural to ask under which geometric assumptions such estimates extend to compact manifolds (with
boundary). Following the lines of [2], for the Hessian of an eigenfunction ϕ, one may consider the question how
to derive explicit numerical constants C1(D) and C2(D) such that

C1(D)λ ∥ϕ∥∞ ⩽ ∥Hessϕ∥∞ ⩽ C2(D)λ ∥ϕ∥∞, (ϕ, λ) ∈ Eig(∆). (1.2)

Note that for eigenfunctions of the Laplacian, one trivially has

|Hessϕ| ≥ 1

n
|∆ϕ| = λ

n
|ϕ|,

and thus there is always the obvious lower bound

∥Hessϕ∥∞
∥ϕ∥∞

≥ λ

n
.

For this reason, we may concentrate in the sequel on upper bounds for ∥Hessϕ∥∞/∥ϕ∥∞.
In [2] a derivative formula for Dirichlet eigenfunctions has been given from where an upper bound for the

gradient of the eigenfunction could be derived directly. Let us briefly describe this method. Assume that Xt is a
Brownian motion on D \ ∂D with generator 1

2∆, and write Xt(x) to indicate the starting point X0 = x. Then
X.(x) is defined up to the first hitting time τD = inf{t > 0: Xt(x) ∈ ∂D} of the boundary. For x ∈ ∂D we use
the convention that X.(x) is defined with lifetime τD ≡ 0; in this case the subsequent statements usually hold
automatically.

Suppose that Qt : TxD → TXt(x)D is defined by

DQt = −1

2
Ric♯(Qt) dt, Q0 = id,

where D := //t d //
−1
t with //t := //0,t : TxD → TXt(x)D parallel transport along X(x) and Ric♯(v)(w) =

Ric(v, w) for v, w ∈ TD. Suppose that (ϕ, λ) ∈ Eig(∆). Then, for v ∈ TxD and any k ∈ C1
b ([0,∞);R), i.e., k

bounded with bounded derivative, the process

eλt/2
(
k(t) ⟨∇ϕ(Xt), Qt(v)⟩ − ϕ(Xt)

∫ t

0

⟨k̇(s)Qs(v), //sdBs⟩
)
, t ≤ τD

is a martingale. From this, by taking expectation, a formula involving ∇ϕ can be obtained which allows to derive
an upper bound for |∇ϕ| on D by estimating |∇ϕ| on the boundary ∂D and carefully choosing the function k.
Along this circle of ideas, our aim is to establish a similar strategy for the Hessian of an eigenfunction ϕ.

In view of the fact that Ptϕ = e−λt/2 ϕ where Pt is the semigroup generated by 1
2∆, we focus first on

martingales which are appropriate for attaining uniform Hessian estimates of eigenfunctions. Let us start with
some background on Bismut type formulas for second-order derivatives of heat semigroups. A second-order
differential formula for the heat semigroup Pt was first obtained by Elworthy and Li [5, 13] for a non-compact
manifold, however with restrictions on the curvature of the manifold. An intrinsic formula for HessPtf has been
given by Stroock [18] for a compact Riemannian manifold, and a localized version of such a formula was obtained
in [1, 3] adopting martingale arguments. For the Hessian of the Feynman-Kac semigroup of an operator ∆ + V
with a potential function V on manifolds, we refer the reader to [14, 15, 19].

For a complete Riemannian manifoldM without boundary, an appropriate version of a Bismut-type Hessian
formula gives the following estimate (see [3], Corollary 4.3, together with Lemma 2.2 below)

∥HessPtf∥∞ ≤
(
K1

√
t+

K2t

2
+

2

t

)
eK0t ∥f∥∞

where

K0 := sup {−Ric(v, v) : y ∈M, v ∈ TyM, |v| = 1} ;
K1 := sup {|R|(y) : y ∈M} ; (1.3)

K2 := sup
{
|(d∗R+∇Ric)♯(v, w)|(y) : y ∈M, v,w ∈ TyM, |v| = |w| = 1

}
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and

|R|(y) := sup


√√√√ n∑

i,j=1

R(ei, v, w, ej)2(y) : |v| ≤ 1, |w| ≤ 1


for an orthonormal base {ei}ni=1 of TyM .

Thus if f = ϕ and (ϕ, λ) ∈ Eig(∆), then

∥Hessϕ∥∞ ≤
(
K1

√
t+

K2t

2
+

2

t

)
e(K0+λ/2)t ∥ϕ∥∞

for any t > 0. Letting t = 1
K0+λ/2 then yields the estimate

∥Hessϕ∥∞
∥ϕ∥∞

≤
(
K1

√
2

2K0 + λ
+

K2

2K0 + λ
+ 2K0 + λ

)
e .

To carry over such results to (compact) manifolds D with boundary, the influence of the boundary has to
be studied. In this paper, we shall adopt a martingale approach to the Hessian of Dirichlet eigenfunctions. This
approach is based on the construction of a suitable martingale which builds a relation between Hessϕ and dϕ
and then to estimate C2(D) in (1.2) by searching for explicit constants C1, C2 and C3 such that

∥Hessϕ∥∞ ≤ C1∥Hessϕ∥∂D,∞ + C2∥∇ϕ∥∂D,∞ + C3∥∇ϕ∥∞ (1.4)

where ∥Hessϕ∥∂D,∞ := supx∈∂D |Hessϕ|(x) and ∥∇ϕ∥∂D,∞ := supx∈∂D |∇ϕ|(x). The final estimate for |Hessϕ|
is then received by combining the last inequality with estimate (1.1) in [2].

Let us start with the general principle behind the construction of the relevant martingale. Let k ∈
C1

b ([0,∞);R) and define an operator-valued process W k
t : TxD ⊗ TxD → TXt(x)D as solution to the following

covariant Itô equation

DW k
t (v, w) = R(//tdBt, Qt(k(t)v))Qt(w)−

1

2
(d∗R+∇Ric)♯(Qt(k(t)v), Qt(w)) dt−

1

2
Ric♯(W k

t (v, w)) dt,

with initial condition W k
0 (v, w) = 0, see Section 2 in [4]. In explicit terms this gives

W k
t (v, w) = Qt

∫ t

0

Q−1
s R(//sdBs, Qs(k(s)v))Qs(w)

− 1

2
Qt

∫ t

0

Q−1
s (d∗R+∇Ric)♯(Qs(k(s)v), Qs(w)) ds. (1.5)

Here the operator d∗R is defined by d∗R(v1, v2) := − tr∇.R(·, v1)v2 and thus satisfies

⟨d∗R(v1, v2), v3⟩ = ⟨(∇v3Ric
♯)(v1), v2⟩ − ⟨(∇v2Ric

♯)(v3), v1⟩

for all v1, v2, v3 ∈ TxD and x ∈ D. Then the process

Mt := eλt/2 Hessϕ
(
Qt(k(t)v), Qt(v)

)
+ eλt/2 dϕ(W k

t (v, v))

− eλt/2 dϕ(Qt(v))

∫ t

0

⟨Qs(k̇(s)v), //sdBs⟩ (1.6)

is a martingale on [0, τD] in the sense that (Mt∧τD )t≥0 is a globally defined martingale where τD = inf{t > 0 :
Xt(x) ∈ ∂D} denotes the first hitting time of X.(x) of the boundary ∂D. The martingale property of (1.6) now
allows to establish an inequality of the type (1.4) by equating the expectations at time 0 and at time t ∧ τD. This
approach then requires to estimate the boundary values of |dϕ| and |Hessϕ|, in order to obtain the wanted upper
bound for ∥Hessϕ∥∞. To this end, we establish the required estimates in Lemmas 2.4–2.5 by using information
on the second fundamental form II and the second derivative of N , where for X,Y ∈ Tx∂D and x ∈ ∂D, the
second fundamental form is defined by

II(X,Y ) = −⟨∇XN, Y ⟩.
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Finally, let

ℓ(t) := ℓk,σ(t) :=


cos

√
kt− σ√

k
sin

√
kt, k > 0,

1− σt, k = 0,

cosh
√
−kt− σ√

−k
sinh

√
−kt, k < 0.

(1.7)

We state now the first main result of the paper. To this end we denote by ρ∂D the distance function to the
boundary ∂D which is smooth in an open neighborhood of ∂D if the boundary of D is smooth.

Theorem 1.1. Let D be a compact Riemannian manifold with smooth boundary ∂D. Let K0,K1,K2, σ be non-
negative constants such that Ric ≥ −K0, |R| ≤ K1 and |d∗R+∇Ric| ≤ K2 onD, and that |II| ≤ σ. Assume that
the distance function ρ∂D = dist(x, ∂D) is smooth on the tubular neighborhood ∂r1D := {x ∈ D : ρ∂D(x) ≤ r1}
of ∂D. Let k, β, γ be constants such that |Sect| ≤ k on ∂r1D, and that

|∇(∆ρ∂D)| ≤ β, |∆2ρ∂D| ≤ γ on ∂r0D, (1.8)

where r0 = r1 ∧ ℓ−1(1/2). Then for any non-trivial (ϕ, λ) ∈ EigN (∆),

∥Hess ϕ∥∞
∥ϕ∥∞

≤ C(D)λ

where

C(D) ≤ 2(n− 1)σe

(
α

λ1
+

√
2

πλ1

)
+

K2α

16( 3
r0

+ α)2λ1

+
2
(
K1 +

9α
r0

+ 6
r20

+ 3β
)
α
√
e +K2c0

√
e + 6

r0
(α2 + 2β) + 12α

r20
+ 2γ

λ1

(
12
r0

+ 4α
) +

2α(1 +
√
e)

12
r0

+ 4α

+ 2α e
(
2 e

1
2nσr0 +1

)
max

{√
1

λ1
+

2K0

λ21
+

σ

λ21

(
n

r0
+ 2σ

)
, 4 e

1
2nσr0+

1
2

(
3

r0λ1
+

α

λ1

)}

+ 2c0e(e
1
2nσr0 +1)max

{
1 +

2K0

λ1
+

σ

λ1

(
n

r0
+ 2σ

)
,
4 enσr0+1

λ1

(
6

r0
+ 2α

)2
}

+ 2c0 e

(
K1

λ1
+ 3 e

1
2nσr0

(
3α

r0λ1
+

2

r20λ1
+

β

λ1

)
+ 1

)
, (1.9)

for α = 2(n− 1)max{σ, k} and c0 =
√

2
π + 1

4

√
π
2 .

Remark 1.2. If the manifold has constant sectional curvature and mean curvature on ∂r0D, i.e.,H = θ, Sect = k
on ∂r0D, then for ρ∂D(x) ≤ ℓ−1(0) ∧ r0,

∆ρ∂D =
ℓ′θ,(n−1)k

ℓθ,(n−1)k
(ρ∂D).

As a consequence, the upper bound of |∇(∆ρ∂D)| and |∆2ρ∂D| can be calculated explicitly, as

|∇(∆ρ∂D)|(x) ≤ 4((n− 1)k + σ2), |∆2ρ∂D|(x) ≤ 8max
{
σ,
√

(n− 1)k
}
((n− 1)k + σ2),

for ρ∂D(x) ≤ i0 ∧ ℓ−1(1/2). For the general case, from the second variation formula of ρ∂D (see (2.10) below)
we see that further information about |∇II|, |∇2II|, |R|, |∇R| and |∇2R| on ∂r0D is needed to derive an upper
bound of |∇(∆ρ∂D)| and |∆2ρ∂D|.

Turning now to Hessian estimates for Neumann eigenfunctions, let us denote by EigN (∆) the set of non-
trivial (ϕ, λ) for the Neumann eigenproblem, i.e., ϕ is non-constant, ∆ϕ = −λϕ and Nϕ|∂D = 0 for the unit
inward normal vector field N of ∂D. Proceeding along the previous ideas, the main difference is that we can
no longer consider the process only up to the first hitting the boundary ∂D. When constructing the suitable
martingales, the boundary behaviour of the process must be included. We shall use reflecting Brownian motion
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as base process to deal with this problem. Due to recent work on Bismut-type Hessian formula for the Neumann
semigroup [4], we have the following formula linking HessPtf and df intrinsically:

HessPtf(v, v) = E
[
−df(Q̃t(v))

∫ t

0

⟨Q̃s(k̇(s)v), //sdBs⟩+ df(W̃ k
t (v, v))

]
,

where Q̃ and W̃ k are defined in (3.1) and (3.2) in Section 3 below. By taking into account that Ptϕ = e−
1
2λt ϕ

and estimating Q̃. and W̃. carefully under suitable curvature conditions, we obtain the following theorem which
gives an upper estimate for Hessϕ of the type (1.2) with an explicit constant C2(D).

Theorem 1.3. LetD be an n-dimensional compact Riemannian manifold with boundary ∂D. LetK0,K1,K2 be
non-negative constants such that Ric ≥ −K0, |R| ≤ K1 and |d∗R+∇Ric| ≤ K2 on D,and let σ1, σ2, σ be non-
negative constants such that −σ1 ≤ II ≤ σ and |∇2N −R(N)| ≤ σ2 on the boundary ∂D. Assume the distance
function ρ∂D to the boundary ∂D is smooth on ∂r1D := {x ∈ D : ρ∂D(x) ≤ r1} and let k be constant such that
Sect ≤ k on ∂r1D. Then for any non-trivial (ϕ, λ) ∈ EigN (∆),

∥Hess ϕ∥∞
∥ϕ∥∞

≤ CN (D)λ

where

CN (D) =

1 +
K1 + 2K0 + 2σ1

(
n
r0

+ 2σ1

)
λ1

+
K2 + 2σ2

(
n
r0

+ 2σ1

)
λ1

√
2λ1 + 4K0 + 4σ1

(
n
r0

+ 2σ1

)
 e

3
2σ1nr1+1

+
σ2nr0
2λ1

√
2λ1 + 4K0 + 4σ1

(
n

r0
+ 2σ1

)
e

3
2σ1nr0+1

for r0 = r1 ∧ ℓ−1(0) and σ1 = max{σ1, 0}, where λ1 is the first Neumann eigenvalue of −∆.

The remainder of the paper is organized as follows. In Section 2 we first show for Dirichlet eigenfunctions

∥Hessϕ∥∞/∥ϕ∥∞ ≤ C(D)λ (1.10)

by verifying that the process (1.6) is a martingale, in combination with boundary estimates for |Hessϕ|. Section 3
then deals with Neumann eigenfunctions where we give a proof of Theorem 1.3 by using Bismut type Hessian
formulae for the Neumann semigroup along with an estimate of the local time.

2 Hessian estimates of Dirichlet eigenfunctions

This section is dedicated to the approach described in the Introduction. The proof of Theorem 1.1 is divided into
two steps by first showing Theorem 2.11 with some auxiliary function h, which will be constructed in Section 2.3.

2.1 Preliminary

We start by defining the fundamental martingale which will serve as basis for our method.

Theorem 2.1. On a compact Riemannian manifold D with boundary ∂D, let X.(x) be a Brownian motion
starting from x ∈ D and denote by τD = inf{t ≥ 0: Xt(x) ∈ ∂D} its first hitting time of ∂D. Define Qt and W

k
t

as above where k ∈ C1
b ([0,∞);R). Then, for (ϕ, λ) ∈ EigN (∆) and v ∈ TxD, the process

eλt/2
(
Hessϕ

(
Qt(k(t)v), Qt(v)

)
+ dϕ(W k

t (v, v))− dϕ(Qt(v))

∫ t

0

⟨Qs(k̇(s)v), //sdBs⟩
)

(2.1)

is a martingale on [0, τD].
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Proof . Due to the compactness of D it is sufficient to check that (2.1) is a local martingale on [0, τD). Fixing
a time T > 0, for v ∈ TxD, we let

Nt(v, v) = HessPT−tϕ(Qt(v), Qt(v)) + (dPT−tϕ)(Wt(v, v)), t ≤ T ∧ τD,

where

Wt(v, v) = Qt

∫ t

0

Q−1
r R

(
//rdBr, Qr(v)

)
Qr(v)−

1

2
Qt

∫ t

0

Q−1
r (d∗R+∇Ric)♯

(
Qr(v), Qr(v)

)
dr.

Then Nt(v, v) is a local martingale, see for instance the proof of [20, Lemma 2.7] in case that potential V ≡ 0.
Since (ϕ, λ) ∈ Eig(∆), we know that PT−tϕ(Xt) = e−λ(T−t)/2 ϕ(Xt) and thus

eλt/2
(
Hessϕ(Qt(v), Qt(v)) + (dϕ)(Wt(v, v))

)
is also a local martingale. Furthermore, consider

Nk
t (v, v) := eλt/2 Hessϕ(Qt(k(t)v), Qt(v)) + (eλt/2 dϕ)(W k

t (v, v)).

According to the definition ofW k
t (v, v), resp.Wt(v, v), and in view of the fact that Nt(v, v) is a local martingale,

it is easy to see that

eλt/2 Hessϕ(Qt(k(t)v), Qt(v)) + (eλt/2 dϕ)(W k
t (v, v))−

∫ t

0

eλs/2 Hessϕ(Qs(k̇(s)v), Qs(v)) ds

is a local martingale as well. From the formula

eλt/2 dϕ(Qt(v)) = dϕ(v) +

∫ t

0

eλs/2(Hessϕ)(//sdBs, Qs(v))

it follows that ∫ t

0

eλs/2(Hessϕ)(Qs(k̇(s)v), Qs(v)) ds− eλt/2 dϕ(Qt(v))

∫ t

0

⟨Qs(k̇(s)v), //sdBs⟩ (2.2)

is a local martingale. We conclude that

(eλt/2 Hessϕ)(Qt(k(t)v), Qt(v)) + (eλt/2 dϕ)(W k
t (v, v))− eλt/2 dϕ(Qt(v))

∫ t

0

⟨Qs(k̇(s)v), //sdBs⟩

is a local martingale.

We shall use the following estimates to proceed with the Hessian formula for ϕ.

Lemma 2.2. Assume that Ric ≥ −K0, |R| ≤ K1 and |d∗R+∇Ric| ≤ K2 on D for non-negative constants
K0,K1 and K2. Let k ∈ C1

b ([0,∞);R). For t ≥ 0 and δ > 0, it holds

|Qt| ≤ eK0t/2 and (2.3)

E
[∣∣W k

t (v, k̇(t)v)
∣∣1{t≤τD}

]
≤

(
K1

(∫ t

0

k(s)2 ds

)1/2

+
K2

2

∫ t

0

|k(s)| ds

)
eK0t |k̇(t)|, (2.4)

where K0,K1 and K2 are defined as in (1.3).

Proof . The first inequality follows from the lower Ricci curvature bound condition and the definition of Qt.
For 0 ≤ s ≤ t, the damped parallel transport Qs,t = QtQ

−1
s : TXs

D → TXt
D satisfies

DQt,s = −1

2
Ric♯(Qt,s) dt, Qs,s = id.

Thus the lower bound of Ricci curvature −K0 yields

|Qs,t| ≤ eK0(t−s)/2 .
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According to the definition of W k
t (see (1.5)), we have

E
(
|W k

t (v, v)|1{t≤τD}
)
≤ E

[
1{t≤τD}

∣∣Qt

∫ t

0

Q−1
s R(//sdBs, Qs(k(s)v))Qs(v)

∣∣]
+

1

2
E
[
1{t≤τD}

∣∣Qt

∫ t

0

Q−1
s (d∗R+∇Ric)(Qs(k(s)v), Qs(v)) ds

∣∣]
≤ e

K0t
2 E

[
1{t≤τD}

∣∣ e−K0t
2 Qt

∫ t

0

Q−1
s R(//sdBs, Qs(k(s)v))Qs(v)

∣∣2]1/2
+
K2

2
E
[
1{t≤τD}

∣∣ e 1
2K0t

∫ t

0

e
1
2K0s |k(s)| ds

∣∣] . (2.5)

Moreover,

d
∣∣∣ e− 1

2K0tQt

∫ t

0

Q−1
s R(//sdBs, Qs(k(s)v))Qs(v)

∣∣∣2
= 2 e−K0t

〈
R(//tdBt, Qt(k(t)v))Qt(v), Qt

∫ t

0

Q−1
s R(//sdBs, Qs(k(s)v))Qs(v)

〉
+ e−K0t

∣∣R♯(Qt(k(t)v), Qt(v))
∣∣2
HS
dt

− e−K0t Ric

(
Qt

∫ t

0

Q−1
s R(//sdBs, Qs(k(s)v))Qs(v), Qt

∫ t

0

Q−1
s R(//sdBs, Qs(k(s)v))Qs(v)

)
dt

−K0 e
−K0t

∣∣Qt

∫ t

0

Q−1
s R(//sdBs, Qs(k(s)v))Qs(v)

∣∣2 dt
m
≤ e−K0t

∣∣R♯(Qt(k(t)v), Qt(v))
∣∣2
HS
dt ≤ K2

1 e
−K0t |Qt|4k(t)2 dt ≤ K2

1 e
K0t k(t)2 dt, t ≤ τD.

Combining this with (2.5), we have

E
(
|W k

t (v, v)|1{t≤τD}
)
≤ K1 e

1
2K0t

(∫ t

0

eK0s k(s)2 ds

)1/2

+
K2

2
eK0t

∫ t

0

|k(s)| ds.

This completes the proof.

By the results above, the following Hessian formula for eigenfunctions ϕ is obtained.

Theorem 2.3. Let D be a compact Riemannian manifold with boundary ∂D. Let X.(x) be a Brownian motion
starting from x ∈ D and τD be its first hitting time of ∂D. Suppose that k is a non-negative function in
C1

b([0,∞);R) such that k(0) = 1. Then for (ϕ, λ) ∈ Eig(∆), t ≥ 0 and v ∈ TxD,

(Hessϕ)(v, v) = Ex
[
e(t∧τD)λ/2(Hess ϕ)(Qt∧τD (k(t ∧ τD)v), Qt∧τD (v)) + e(t∧τD)λ/2(dϕ)(W k

t∧τD (v, v))
]

− Ex

[
e(t∧τD)λ/2 dϕ(Qt∧τD (v))

∫ t∧τD

0

⟨Qs(k̇(s)v), //sdBs⟩
]
. (2.6)

Proof . The claim follows by taking expectation of the martingale (2.1) at time 0 and t ∧ τD. Recall that
|Qt| ≤ eK0t/2. For x ∈ ∂D formula (2.6) is obviously tautological since τD ≡ 0.

To derive Hessian estimates of ϕ from Theorem 2.3 requires estimates of Hessϕ on the boundary ∂D. To this
end, we first note the following observation. Since ϕ = 0 on the boundary ∂D, we have ∇ϕ = N(ϕ)N on ∂D. We
extend the normal vector field N to a tubular neighborhood of ∂D as N = ∇ρ∂D where ρ∂D(x) = dist(x, ∂D)
denotes the smooth distance function close to the boundary (see Remark 2.5 below for the details).

Lemma 2.4. For x ∈ ∂D let H(x) be the mean curvature of the boundary. Then

N2(ϕ)(x) = −H(x)N(ϕ)(x), x ∈ ∂D.
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Remark 2.5. Assuming that the boundary ∂D is smooth, let N be the unit inward normal vector field N on
∂D. Furthermore, let

Φ: [0, r0[× ∂D → D, (r, x) 7→ expx(rN), (2.7)

be the geodesic from x ∈ ∂D orthogonal to ∂D and parametrized by its arc length r. As the differential of Φ at
any point (0, x) has full rank, we find ε0 > 0 such that Φ is a diffeomorphism from [0, ε0[× ∂D onto the open
neighborhood {x ∈ D : ρ∂D(x) < ε0} of ∂D in D. This allows to extend N to a tubular (collar) neighborhood
of ∂D as Φ∗

∂
∂r . By construction then ∇NN = 0. If X is a vector field on ∂D tangential to ∂D, we extend it to

the neighborhood of ∂D as being independent of the real variable in the product [0, ε0[× ∂D. By construction,
close to the boundary, the distance function ρ∂D(x) = dist(x, ∂D) is smooth and satisfies N = ∇ρ∂D.

Proof of Lemma 2.4. On the boundary ∂D we have

0 = λϕ = ∆ϕ =

n∑
i=1

⟨∇Xi
∇ϕ,Xi⟩ = ⟨∇N∇ϕ,N⟩+

n∑
i=2

⟨∇Xi
∇ϕ,Xi⟩

= ⟨∇N∇ϕ,N⟩+
n∑

i=2

⟨∇Xi
(N(ϕ)N), Xi⟩

= N⟨∇ϕ,N⟩+
n∑

i=2

XiN(ϕ)⟨N,Xi⟩+N(ϕ)

n∑
i=2

⟨∇XiN,Xi⟩

= N2(ϕ) +N(ϕ)

n∑
i=2

Π(Xi, Xi) = N2(ϕ) +N(ϕ) trΠ

where for x ∈ ∂D, {Xi}1≤i≤n denotes an orthonormal basis of TxD with X1 = N . As (trΠ)(x) = H(x), x ∈ ∂D,
the proof is completed.

The following lemma is taken from [2, Lemma 2.4 and Proposition 2.5] and allows to estimate the values

of |∇ϕ| on the boundary. Here we use α+ +
√

2
πt as upper bound for the right-hand-side in [2, Eq. (2.29)].

Lemma 2.6. Let α0 ∈ R such that

∆ρ∂D ≤ α0 (2.8)

outside Cut(∂D). Then for any t > 0,

∥∇ϕ∥∂D,∞ = ∥N(ϕ)∥∂D,∞ ≤ ∥ϕ∥∞ eλt/2
(
α+
0 +

√
2√
πt

)
.

In particular,

∥∇ϕ∥∂D,∞ ≤ ∥ϕ∥∞ e1/2
(
α+
0 +

√
2λ√
π

)
. (2.9)

Remark 2.7. With constants K0, θ > 0 such that Ric ≥ −K0 on D and H ≥ −θ on the boundary ∂D, where
H(x) is the mean curvature of D at x ∈ D, let

α0 = max
{
θ,
√

(n− 1)K0

}
.

Then estimate (2.8) holds true for this α0.

Next, we introduce some results on local time estimate of reflecting Brownian motion, which is also a tool
in the boundary estimate of |Hessϕ|. Let us recall some basic notations on it. The reflecting Brownian motion
on D with generator 1

2∆ satisfies the SDE

dXt = //t ◦ dBx
t +

1

2
N(Xt) dlt, X0 = x,

where Bx
t is a standard Brownian motion on the Euclidean space TxD ∼= Rn and lt is the local time supported

on ∂D (see [23] for details). Now we turn to the problem of estimating E[eαlt/2] for α > 0 by exploiting a specific
class of functions h.
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Lemma 2.8. Suppose that h ∈ C∞(D) such that h ≥ 1 and N log h ≥ 1. For α > 0 let

Kh,α = sup
{
−∆ log h+ α|∇ log h|2

}
.

Then

E[eαlt/2] ≤ ∥h∥α∞ exp
(α
2
Kh,αt

)
.

Proof . By Itô’s formula we have

dh−α(Xt) = ⟨∇h−α(Xt), //t dBt⟩+
1

2
∆h−α(Xt) dt+

1

2
Nh−α(Xt) dlt

≤ ⟨∇h−α(Xt), //t dBt⟩ − αh−α(Xt)

(
−1

2
Kh,α dt+

1

2
N log h(Xt) dlt

)
.

Hence,

Mt := h−α(Xt) exp

(
−α
2
Kh,αt+

α

2

∫ t

0

N log h(Xs) dls

)
is a local supermartingale. Therefore, by Fatou’s lemma and taking into account that h ≥ 1, we get

E
[
h−α(Xt) exp

(
−α
2
Kh,αt+

α

2

∫ t

0

N log h(Xs) dls

)]
≤ h−α(x) ≤ 1.

Since N log h(x) ≥ 1 we conclude that

E
[
exp

(α
2
lt

)]
≤ E

[
exp

(
α

2

∫ t

0

N log h(Xs) dls

)]
≤ ∥h∥α∞ exp

(α
2
Kh,αt

)
.

At the end of this subsection, we collect some Hessian comparison results for ρ∂D. Let p be the orthogonal
projection of x on ∂D, and let γ(s) = expp(sN), s ∈ [0, ρ∂D(x)] be the geodesic from p to x. Let {J(s)}s∈[0,ρ∂D(x)]

be the Jacobi field along γ such that J(ρ∂D(x)) = v for v ∈ TxD, and J̇(0) = −II♯(J(0)) ∈ Tp∂D, where

⟨II♯(J(0)), w⟩ = II(J(0), w) for w ∈ Tp∂D. From the variation formula of ρ∂D, we know that

Hess ρ∂D(v, v) = −II(J(0), J(0)) +

∫ ρ∂D(x)

0

(
|J̇(s)|2 − ⟨R(γ̇(s), J(s))γ̇(s), J(s)⟩

)
ds. (2.10)

The following result is essentially due to Kasue [10, 11] (see also Theorem A.1 in [21]).

Lemma 2.9 (Hessian Comparison). Let σ and k be non-negative constants such that |II| ≤ σ and |Sect| ≤ k
on ∂r0D, where ρ∂D is smooth ∂r0D. Then

ℓ′σ,k
ℓσ,k

(ρ∂D(x)) ≤ Hess ρ∂D(v, v) ≤
ℓ′−σ,−k

ℓ−σ,−k
(ρ∂D(x)), ρ∂D ≤ r0 ∧ ℓ−1

σ,k(0).

Moreover, for ρ∂D(x) ≤ r0 ∧ ℓ−1
σ,k(

1
2 ),

|Hess ρ∂D| ≤ 2max{σ,
√
k}.

Proof . The proof of the first inequality can be found in [23, Theorem 1.2.2]. Based on this, we have for k, σ ≥ 0,

Hess ρ∂D(v, v) ≤ max{σ,
√
k}.

On the other hand, for ρ∂D(x) ≤ r0 ∧ ℓ−1
k,σ(

1
2 ),

Hess ρ∂D(v, v) ≥
ℓ′k,σ(ρ∂D(x))

ℓk,σ(ρ∂D(x))
≥ 2ℓk,σ(ρ∂D(x)) ≥ −2max{σ,

√
k}.

This completes the proof of the second inequality.



10 L.-J. Cheng, A. Thalmaier and F.-Y. Wang

2.2 Hessian estimate of Dirichlet eigenfunctions

Lemmas 2.4, 2.6 and 2.8 allow to derive an estimate of |Hessϕ| on the boundary ∂D.

Lemma 2.10. Let K0, σ be non-negative constants such that Ric ≥ −K0, |II| ≤ σ. Suppose that the distance
function ρ∂D is smooth on ∂r0D := {x : ρ∂D(x) ≤ r0} for some constant r0 > 0. Then for x ∈ ∂D,∥∥Hess(ϕ)

∥∥
∂D,∞ ≤ (n− 1)σ ∥N(ϕ)∥∂D,∞

+ ∥h∥σ∞ e
1
2 (K0+σKh,σ)t

(
C1

1√
t
+ (C2 + C1λ)

√
t

)
∥ϕ∥∞

+ ∥h∥σ∞ e
1
2 (K0+σKh,σ)t

(
1√
t
+ (C3 + λ)

√
t

)
∥∇ϕ∥∞

+ ∥h∥σ∞ e
1
2 (K0+σKh,σ)t

√
tC4∥Hessϕ∥∞

where h ∈ C∞(D) such that h ≥ 1 and N log h ≥ 1 and

Kh,σ = sup{−∆ log h+ σ|∇ log h|2},

and the constants C1, C2, C3, C4 are defined as

C1 =
∥∥∆ρ∂D∥∥∂r0

D
,

C2 =
∥∥∆(ψ(ρ∂D))∆ρ∂D + 2|ψ′(ρ∂D)| · |∇(∆ρ∂D)|+ |∆2ρ∂D|

∥∥
∂r0

D
,

C3 =
∥∥ |ψ′′(ρ∂D)|+ 3|ψ′(ρ∂D)∆ρ∂D|+ 3|∇(∆ρ∂D)|

∥∥
∂r0D

,

C4 =
∥∥2|ψ′(ρ∂D)|+ 2(n− 1)|Hess ρ∂D|

∥∥
∂r0

D
.

where ψ ∈ C2(R+, [0, 1]) satisfies ψ(0) = 1, ψ′(0) = 0 and ψ(r) = 0 for r > r0.

Proof . Given x ∈ ∂D, let {Xi}1≤i≤n be an orthonormal basis of TxD with X1 = N . Then

|Hess(ϕ)(Xi, Xj)| = |∇dϕ(Xi, Xj)| = |⟨∇Xi
∇ϕ,Xj⟩|

= |Xi⟨∇ϕ,Xj⟩ − ⟨∇ϕ,∇Xi
Xj⟩|.

By assumption we have |II| ≤ σ. If Xi, Xj ∈ Tx∂D, i.e. i, j ̸= 1, then ⟨∇ϕ,Xj⟩|∂D = 0 and

|Hess(ϕ)(Xi, Xj)| = | −N(ϕ)⟨N,∇XiXj⟩| ≤ σ|N(ϕ)|. (2.11)

If Xi = Xj = N , i.e. i = j = 1, then ∇NN |∂D = 0 and

|Hess(ϕ)(N,N)| = |N2(ϕ)| ≤ |HN(ϕ)| ≤ (n− 1)σ|N(ϕ)|. (2.12)

If Xj ∈ Tx∂D and Xi = N (i.e. j ̸= 1 and i = 1), then

|Hess(ϕ)(Xj , N)|(x) = |NXj(ϕ)|(x). (2.13)

In order to get control on (2.13), we shall use a probabilistic argument based on the Brownian motion on D
reflected at the boundary. Before going into the details, we recall our conventions on the extension of vector
fields from ∂D to a tubular neighborhood of the boundary, see Remark 2.5.

Let N be the extension of the normal vector field to a tubular neighborhood ∂r0D := {x : ρ∂D(x) ≤ r0} of
∂D and define

φ(x) = ψ(ρ∂D(x))div(ϕN), x ∈ ∂r0D, (2.14)

where ψ ∈ C2(R+, [0, 1]) satisfies ψ(0) = 1, ψ′(0) = 0 and ψ(r) = 0 for r > r0. Using the formula div(ϕN) =
N(ϕ) + ϕ div(N), along with Lemma 2.4, we observe for x ∈ ∂D,

N(φ)(x) = ψ′(0)div(ϕN) +N(div(ϕN)) = 0.

Thus φ satisfies the Neumann boundary conditions on D.
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Let now Xt be the reflecting Brownian motion on D and PN
t f(x) = Ex[f(Xt)] for f ∈ Bb(D) the

corresponding Neumann semigroup. According to the Kolmogorov equation, we have

φ(x) = PN
t (φ)(x)− 1

2

∫ t

0

PN
s (∆φ)(x) ds.

Taking derivative on both sides of the equation yields

Xi(φ)(x) = Xi(P
N
t φ)(x)−

1

2

∫ t

0

Xi(P
N
s ∆φ)(x) ds

where Xi is tangential to ∂D. We first observe that for x ∈ ∂D,

Xi(φ)(x) = Xi(ψ(ρ∂D))(x)div(ϕN)(x) + ψ(ρ∂D(x))Xi(div(ϕN))(x) = Xi(div(ϕN))(x)

= XiN(ϕ)(x) +Xi(ϕ)(x)div(N)(x) + ϕ(x)Xi(div(N))(x)

= XiN(ϕ)(x).

To deal with the upper bound, we use the Bismut formula established in [23, Theorem 3.2.1] for the compact
manifold D, which gives

|∇PN
t f | ≤

1√
t
e

1
2K0t Ex[eσlt ]

1
2 ∥f∥∞,

where lt is the local time supported on ∂D. By Lemma 2.8 of the previous subsection, we have

Ex[eσlt ] ≤ ∥h∥2σ∞ exp (σKh,2σt) ,

where h ∈ C∞(D) such that h ≥ 1 and N log h ≥ 1 and

Kh,2σ = sup{−∆ log h+ 2σ|∇ log h|2}.

We then conclude that

|XiN(ϕ)|(x) ≤ ∥h∥σ∞ e
1
2 (K0+σKh,2σ)t

[
1√
t
∥φ∥B(x,r0) +

√
t ∥∆φ∥B(x,r0)

]
. (2.15)

According to the definition of φ in (2.14), we have

∥φ∥∞ ≤ ∥∇ϕ∥∞ + ∥div(N)∥∂r0
D∥ϕ∥∞

By commutation rules, we calculate

∆φ = ∆((ψ(ρ∂D))div(ϕN))

= ∆(ψ(ρ∂D))div(ϕN) + 2ψ′(ρ∂D)N(div(ϕN)) + ψ(ρ∂D))∆(div(ϕN))

= ∆(ψ(ρ∂D))(ϕdiv(N) +N(ϕ)) + 2ψ′(ρ∂D)
(
ϕN(div(N)) +N(ϕ)div(N) +N2(ϕ)

)
+ ψ(ρ∂D))∆(div(ϕN)) (2.16)

and

∆(div(ϕN)) = div((2− Ric♯)(ϕN))

= div(∆(ϕ)N) + div(ϕ2N) + 2div(∇∇ϕN)− ϕdiv(Ric♯(N))− Ric(N,∇ϕ)
= −λdiv(ϕN) + ϕdiv((2− Ric♯)N) + ⟨2N,∇ϕ⟩+ 2div(∇∇ϕN)− Ric(N,∇ϕ), (2.17)

where 2 = tr∇2 and Ric♯ : TD → TD such that ⟨Ric♯(v), w⟩ = Ric(v, w) for v, w ∈ TxD, x ∈ D. Let {ei}1≤i≤n

be orthonormal basis of TD about x satisfying ∇ei(x) = 0. We then have

∇∇ϕN =

n∑
i=1

(ei(ϕ))∇eiN,
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and as a consequence

div(∇∇ϕN) =

n∑
i=1

(
⟨∇ei(ϕ),∇eiN⟩+ ei(ϕ)div(∇eiN)

)
= ⟨Hess(ϕ),∇N⟩+ ⟨∇ϕ,

n∑
i=1

div(∇eiN)ei⟩

= ⟨Hess(ϕ),∇N⟩+ ⟨∇ϕ,∇(div(N))⟩.

Combining this with (2.17) yields

∆(div(ϕN)) = ϕ(−λdiv(N) + ∆(div(N)))− λN(ϕ) + 2⟨Hess(ϕ),∇N⟩+ 2⟨∇ϕ,∇(div(N))⟩
+ ⟨2N,∇ϕ⟩ − Ric(N,∇ϕ).

From the fact that N = ∇ρ∂D and the Weitzenböck formula, we observe that

div(N) = ∆ρ∂D, ⟨∇.N, ·⟩ = Hess ρ∂D and ⟨2N,∇ϕ⟩ − Ric(N,∇ϕ) = ⟨∇∆ρ∂D,∇ϕ⟩. (2.18)

Combining the equations (2.16), (2.17) and (2.18), we conclude

∆φ = ∆(ψ(ρ∂D))(∆ρ∂D)ϕ+∆(ψ(ρ∂D))N(ϕ) + 2ψ′(ρ∂D)
(
ϕN(∆ρ∂D) +N(ϕ)∆ρ∂D +N2(ϕ)

)
+ ψ(ρ∂D)ϕ(−λ∆ρ∂D +∆2ρ∂D)− λψ(ρ∂D)N(ϕ) + 2ψ(ρ∂D)⟨Hess(ϕ),∇N⟩+ 3ψ(ρ∂D)⟨∇∆ρ∂D,∇ϕ⟩

=
(
∆(ψ(ρ∂D))(∆ρ∂D) + 2ψ′(ρ∂D)N(∆ρ∂D) + ψ(ρ∂D)(∆2ρ∂D − λ∆ρ∂D)

)
ϕ

+
(
∆(ψ(ρ∂D)) + 2ψ′(ρ∂D)∆ρ∂D − λψ(ρ∂D)

)
N(ϕ) + 3ψ(ρ∂D)⟨∇∆ρ∂D,∇ϕ⟩

+ 2ψ′(ρ∂D)N2(ϕ) + 2ψ(ρ∂D)⟨Hess(ϕ),∇N⟩.

which together with (2.15) implies that

|XiN(ϕ)|(x)

≤ ∥h∥σ∞ e
1
2 (K0+2σKh,σ)t

(
C1

1√
t
+ (C2 + C1λ)

√
t

)
∥ϕ∥∞

+ ∥h∥σ∞ e
1
2 (K0+σKh,2σ)t

(
1√
t
+ (C3 + λ)

√
t

)
∥∇ϕ∥∞

+ ∥h∥σ∞ e
1
2 (K0+σKh,2σ)t

√
t C4∥Hessϕ∥∞

where

C1 = ∥∆ρ∂D∥∂r0
D,

C2 = ∥∆(ψ(ρ∂D))∆ρ∂D + 2|ψ′(ρ∂D)| · |∇(∆ρ∂D)|+ |∆2ρ∂D|∥∂r0
D,

C3 = ∥ |ψ′′(ρ∂D)|+ 3|ψ′(ρ∂D)∆ρ∂D|+ 3|∇(∆ρ∂D)| ∥∂r0
D,

C4 = ∥2|ψ′(ρ∂D)|+ 2(n− 1)|Hess ρ∂D| ∥∂r0D
.

The proof is completed by combining the above estimate with (2.11) and (2.12).

Combining the estimates in Lemmas 2.6 and 2.10 with Theorem 2.3, we are now in a position to prove our
main result.

Theorem 2.11. Let D be a compact Riemannian manifold with boundary ∂D. Let K0,K1, K2 and σ be
non-negative constants such that Ric ≥ −K0, |R| ≤ K1 and |d∗R+∇Ric| ≤ K2 on D, and that |II| ≤ σ on
the boundary ∂D. Assume that the distance function ρ∂D is smooth on the tubular neighborhood ∂r0D =
{x : ρ∂D(x) ≤ r0} of ∂D for some constant r0 > 0, and let α, β, γ ∈ R be such that

|Hess ρ∂D| ≤ α

n− 1
, |∇(∆ρ∂D)| ≤ β, |∆2ρ∂D| ≤ γ on ∂r0D. (2.19)



Hessian estimate for Dirichlet and Neumann eigenfunctions 13

Letting h ∈ C∞(D) with minD h = 1 and N log h|∂D ≥ 1, then

∥Hessϕ∥
∥ϕ∥∞

≤ 2(n− 1)σe

(
α+

√
2λ

π

)
+

K2α

16( 3
r0

+ α)2

+
2
(
K1 +

9α
r0

+ 6
r20

+ 3β
)
α
√
e +K2c0

√
e + 6

r0
(α2 + 2β) + 12α

r20
+ 2γ + 2α(1 +

√
e)λ

12
r0

+ 4α

+ 2α e (2∥h∥σ∞ + 1)max

{√
λ+ 2K0 + σKh,2σ, 4

√
e∥h∥σ∞

(
3

r0
+ α

)}
+ 2c0e (∥h∥σ∞ + 1)max

{
λ+ 2K0 + σKh,2σ, 4 e ∥h∥2σ∞

(
6

r0
+ 2α

)2
}

+ 2c0 e

(
K1 + ∥h∥σ∞

(
9α

r0
+

6

r20
+ 3β + λ

))
, (2.20)

for c0 =
√

2
π + 1

4

√
π
2 .

Proof . According to formula (2.6) we have

|Hessϕ(v, v)| = E
[
eλ(t∧τD)/2 Hessϕ

(
Qt∧τD (k(t ∧ τD)v), Qt∧τD (v)

)]
+ E

[
eλ(t∧τD)/2 dϕ(W k

t∧τD (v, v))
]

− E
[
eλ(t∧τD)/2 dϕ(Qt∧τD (v))

∫ t∧τD

0

⟨Qs(k̇(s)v), //sdBs⟩
]
.

Taking k(s) = (t− s)/t for s ∈ [0, t] and v ∈ TxD, |v| = 1, in the equation yields

|Hessϕ(v, v)| ≤ E
[
1{τD≤t} e

(λ
2 +K0)τD

t− τD
t

∥Hess(ϕ)∥∂D,∞

]
+ ∥dϕ∥∞

(
K1

√
t+

K2

2
t

)
e

(
1
2λ+K0

)
t

+ ∥dϕ∥∞
e

(
1
2λ+K0

)
t

√
t

.

By Lemma 2.10, we have

|Hessϕ(v, v)| ≤ E

[
1{τD≤t} e

(λ
2 +K0)τD

t− τD
t

(
n− 1)σ ∥Nϕ∥∂D,∞

+ ∥h∥σ∞ e
1
2 (K0+σKh,2σ)(t−τD)

(
C1

1√
t− τD

+ (C2 + λC1)
√
t− τD

)
∥ϕ∥∞

+ ∥h∥σ∞ e
1
2 (K0+σKh,2σ)(t−τD)

(
1√

t− τD
+ (C3 + λ)

√
t− τD

)
∥dϕ∥∞

+ ∥h∥σ∞ e
1
2 (K0+σKh,2σ)(t−τD)

√
t− τD C4∥Hessϕ∥∞

}]

+ ∥dϕ∥∞
(
K1

√
t+

K2

2
t

)
e

(
1
2λ+K0

)
t

+ ∥dϕ∥∞
e

(
1
2λ+K0

)
t

√
t

, (2.21)

where C1, C2, C3 and C4 are defined as in Lemma 2.10. Combining this with the fact that

t− τD
t

1√
t− τD

=

√
t− τD
t

≤ 1√
t
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and then substituting back into (2.21) and using (2.9) to estimate ∥Nϕ∥∂D,∞, we obtain

|Hessϕ(v, v)| ≤ (n− 1)σ e

(
λ
2 +K0

)
t √e

(
α+

√
2λ

π

)
∥ϕ∥∞

+ ∥h∥σ∞ e

(
λ
2 +K0+

σKh,2σ
2

)
t

(
C1√
t
+ (C2 + C1λ)

√
t

)
∥ϕ∥∞

+ ∥h∥σ∞ e

(
λ
2 +K0+

σKh,2σ
2

)
t

(
1√
t
+ (C3 + λ)

√
t

)
∥dϕ∥∞

+ C4∥h∥σ∞ e

(
λ
2 +K0+

σKh,2σ
2

)
t
√
t ∥Hessϕ∥∞

+

(
1√
t
+K1

√
t+

K2

2
t

)
e

(
1
2λ+K0

)
t ∥dϕ∥∞. (2.22)

Now let

t = t0 :=
1

max
{
λ+ 2K0 + σKh,2σ, 4 e ∥h∥2σ∞C2

4

} .
Then

C4 ∥h∥σ∞ e(
λ
2 +K0+

σKh,2σ
2 )t0

√
t0 ∥Hessϕ∥∞ ≤ 1

2
∥Hessϕ∥∞

and inequality (2.22) implies

∥Hessϕ∥∞ ≤ 2(n− 1)σe

(
α+

√
2λ

π

)
∥ϕ∥∞

+ 2C1∥h∥σ∞
√
emax

{√
λ+ 2K0 + σKh,2σ, 2

√
e∥h∥σ∞C4

}
∥ϕ∥∞ +

(C2 + C1λ)

C4
∥ϕ∥∞

+ 2
√
e(∥h∥σ∞ + 1)max

{√
λ+ 2K0 + σKh,2σ, 2

√
e∥h∥σ∞C4

}
∥dϕ∥∞

+
2
(
K1 + ∥h∥σ∞(C3 + λ)

)√
e

max
{√

λ+ 2K0 + σKh,2σ, 2
√
e∥h∥σ∞C4

}∥dϕ∥∞
+

K2
√
e

max {λ+ 2K0 + σKh,2σ, 4 e ∥h∥2σ∞C2
4}

∥dϕ∥∞. (2.23)

As ∆ρ∂D ≤ α and Ric ≥ −K0, the constant A in [2, Eq. (1.7) in Theorem 1.1] is bounded by α+
√

2
π (λ+K0).

Thus we conclude from [2, Eq. (1.7)] that

∥dϕ∥∞
∥ϕ∥∞

≤
√
e

α+

√
2

π
(λ+K0) +

λ+K0

4
(
α+

√
2
π (λ+K0)

)


≤
√
e

(
α+

(√
2

π
+

1

4

√
π

2

)√
λ+K0

)
.
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Combining this with (2.23) implies that

∥Hessϕ∥∞ ≤ 2(n− 1)σe

(
α+

√
2λ

π

)
∥ϕ∥∞

+ 2C1∥h∥σ∞
√
emax

{√
λ+ 2K0 + σKh,2σ, 2

√
e∥h∥σ∞C4

}
∥ϕ∥∞ +

(C2 + C1λ)

C4
∥ϕ∥∞

+ 2
√
e(∥h∥σ∞ + 1)max

{√
λ+ 2K0 + σKh,2σ, 2

√
e∥h∥σ∞C4

}
α
√
e ∥ϕ∥∞

+
2(K1 + ∥h∥σ∞(C3 + λ))α e

max
{√

λ+ 2K0 + σKh,2σ, 2
√
e∥h∥σ∞C4

} ∥ϕ∥∞

+
K2α e

max {λ+ 2K0 + σKh,2σ, 4 e ∥h∥2σ∞C2
4}

∥ϕ∥∞

+ 2e(∥h∥σ∞ + 1)max
{√

λ+ 2K0 + σKh,2σ, 2
√
e∥h∥σ∞C4

}(√ 2

π
+

1

4

√
π

2

)√
λ+K0∥ϕ∥∞

+
2(K1 + ∥h∥σ∞(C3 + λ))e

max
{√

λ+ 2K0 + σKh,2σ, 2
√
e∥h∥σ∞C4

} (√ 2

π
+

1

4

√
π

2

)√
λ+K0 ∥ϕ∥∞

+
K2e

max {λ+ 2K0 + σKh,2σ, 4 e ∥h∥2σ∞C2
4}

(√
2

π
+

1

4

√
π

2

)√
λ+K0 ∥ϕ∥∞. (2.24)

Using condition (2.19), the constants C1, C2, C3 and C4 then become

C1 = α,

C2 = ∥ψ′∥∞(α2 + 2β) + ∥ψ′′∥∞α+ γ,

C3 = 3∥ψ′∥∞α+ ∥ψ′′∥∞ + 3β,

C4 = 2∥ψ′∥∞ + 2α.

To simplify the upper bounds, we observe that

2
(
K1 + ∥h∥σ∞(C3 + λ)

)
α e

max
{√

λ+ 2K0 + σKh,2σ, 2
√
e∥h∥σ∞C4

} ≤ (K1 + C3 + λ)α
√
e

C4
;

K2α e

max {λ+ 2K0 + σKh,2σ, 4 e ∥h∥2σ∞C2
4}

≤ K2α

4C2
4

;

2
(
K1 + ∥h∥σ∞(C3 + λ)

)
e

max
{√

λ+ 2K0 + σKh,2σ, 2
√
e∥h∥σ∞C4

}√λ+K0 ≤ 2
(
K1 + ∥h∥σ∞(C3 + λ)

)
e;

K2e

max {λ+ 2K0 + σKh,2σ, 4 e ∥h∥2σ∞C2
4}
√
λ+K0 ≤ K2e

max
{√

λ+ 2K0 + σKh,2σ, 2
√
e∥h∥σ∞C4

} ≤ K2
√
e

2C4
.

Let c0 =
√

2
π + 1

4

√
π
2 . Then

∥Hessϕ∥∞
∥ϕ∥∞

≤ 2(n− 1)σe

(
α+

√
2λ

π

)
+ 2α

(
∥h∥σ∞(

√
e + e) + e

)
max

{√
λ+ 2K0 + σKh,2σ, 2

√
e∥h∥σ∞C4

}
+

2(K1 + C3 + λ)α
√
e +K2c0

√
e + 2(C2 + αλ)

2C4
+
K2α

4C2
4

+ 2c0e(∥h∥σ∞ + 1)max
{
λ+ 2K0 + σKh,2σ, 4 e ∥h∥2σ∞C2

4

}
+ 2c0 e(K1 + ∥h∥σ∞(C3 + λ)). (2.25)

Now let

ψ(r) =


(

r0−r
r0

)3
, 0 ≤ r ≤ r0;

0, r > r0,
. (2.26)

Then ψ′ ≤ 3
r0

and ψ′′ ≤ 6
r20
. With these estimates, the constants C1, C2, C3 and C4 are explicit.
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2.3 Proof of Theorem 1.1

In this subsection we describe F.-Y. Wang’s construction of functions h satisfying the requirements of Lemma 2.8
(see [22, p. 1436] or [23, Theorem 3.2.9] for the details). His construction is performed under the following
condition.

Condition (A) There exist a non-negative constant σ such that II ≤ σ and a positive constant r1 such that
the distance function ρ∂D to the boundary ∂D is smooth on ∂r1D := {x ∈ D : ρ∂D(x) ≤ r1}. Moreover, Sect ≤ k
on ∂r1D for some positive constant k.

Under Condition (A), based on the Hessian comparison theorem, one then constructs a function h satisfying
the necessary properties of Lemma 2.8 (see [22, p. 1436] or [23, Theorem 3.2.9] for the notation and the precise
result), along with explicit upper bounds for ∥h∥∞ and the constant Kh,α. Modifying his construction one may
take

log h(x) =
1

Λ0

∫ ρ∂D(x)

0

(ℓ(s)− ℓ(r0))
1−n

ds

∫ r0

s∧r0

(ℓ(u)− ℓ(r0))
n−1

du (2.27)

where ℓ = ℓσ,ℓ is defined in (1.7), r0 := r1 ∧ ℓ−1(0) and

Λ0 := (1− ℓ(r0))
1−n

∫ r0

0

(ℓ(s)− ℓ(r0))
n−1

ds.

Then from the proof of [21, Theorem 1.1], we get:

Kh,α ≤ Kα :=
n

r0
+ α and ∥h∥∞ ≤ e

1
2nr0 . (2.28)

By means of the constructed h as above, we are now in position to complete the proof of Theorem 1.1.

Proof of Theorem 1.1. By estimate (2.25), we know that

∥Hessϕ∥∞
∥ϕ∥∞

≤ Cλ(D)λ,

where

Cλ(D) = 2(n− 1)σe

(
α

λ
+

√
2

πλ

)

+ 2α e (2∥h∥σ∞ + 1)max

{√
1

λ
+

2K0 + σKh,2σ

λ2
,
2
√
e∥h∥σ∞C4

λ

}

+
2(K1 + C3 + λ)α

√
e +K2c0

√
e + 2(C2 + αλ)

2C4λ
+

K2α

4C2
4λ

+
2c0e

λ
(∥h∥σ∞ + 1)max

{
λ+ 2K0 + σKh,2σ, 4 e ∥h∥2σ∞C2

4

}
+ 2c0 e

(
K1

λ
+ ∥h∥σ∞

(
C3

λ
+ 1

))
.

Obviously, the constant Cλ(D) is decreasing in λ, and hence Cλ(D) ≤ Cλ1
(D) where λ1 is the first Dirichlet

eigenvalue of −∆ which gives

∥Hessϕ∥∞
∥ϕ∥∞

≤ Cλ1
(D)λ.

Using h defined in (2.27) and substituting the estimates (2.28), we replace Kh,2σ and ∥h∥∞ by

n

r0
+ 2σ and enr0/2,

respectively. Finally, by Lemma 2.9, the upper bound α in (2.19) can be chosen as 2(n− 1)max{σ,
√
k}. This

completes the proof of Theorem 1.1.
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3 Hessian estimates on Neumann eigenfunctions of Laplacian

We use a stochastic approach as well to prove Theorem 1.3. Let us first recall the Hessian formulas for the
Neumann semigroups, established recently in [4]. The reflecting Brownian motion on D with generator 1

2∆
satisfies the SDE

dXt = //t ◦ dBx
t +

1

2
N(Xt) dlt, X0 = x,

where Bx
t is a standard Brownian motion on the Euclidean space TxD ∼= Rn. We write again Xt = Xt(x) to

indicate the starting point x ∈ D (which may be on the boundary ∂D). Here //t : TxD → TXt(x)D denotes
the ∇-parallel transport along Xt(x) and lt the local time of Xt(x) supported on ∂D, see [23]. Note that the
reflecting Brownian motion Xt(x) is defined for all t ≥ 0.

Suppose that Q̃t : TxD → TXt(x)D satisfies

DQ̃t = −1

2
Ric♯(Q̃t) dt+

1

2
(∇N)♯(Q̃t) dlt, Q̃0 = id. (3.1)

For k ∈ C1
b ([0,∞);R) define an operator-valued process W̃ k

t : TxD ⊗ TxD → TXt(x)D as solution to the following
covariant Itô equation

DW̃ k
t (v, w) = R(//t dBt, Q̃t(k(t)v))Q̃t(w)

− 1

2
(d∗R+∇Ric)♯(Q̃t(k(t)v), Q̃t(w)) dt

− 1

2
(∇2N −R(N))♯(Q̃t(k(t)v), Q̃t(w)) dlt

− 1

2
Ric♯(W̃ k

t (v, w)) dt+
1

2
(∇N)♯(W̃ k

t (v, w)) dlt, (3.2)

with initial condition W̃ k
0 (v, w) = 0. Actually, W̃ k

t (v, w) can be written in explicit form as

W̃ k
t (v, w) = Q̃t

∫ t

0

Q̃−1
s R(//s dBs, Q̃s(k(s)v))Q̃s(w)

− 1

2
Q̃t

∫ t

0

Q̃−1
s (d∗R+∇Ric)♯(Q̃s(k(s)v), Q̃s(w)) ds

− 1

2
Q̃t

∫ t

0

Q̃−1
s (∇2N −R(N))♯(Q̃s(k(s)v), Q̃s(w)) dls.

Theorem 3.1 ([4]). Let D be a compact Riemannian manifold with boundary ∂D. Let X(x) be the reflecting
Brownian motion on D with starting point x (possibly on the boundary) and denote by Ptf(x) = E[f(Xt(x))]
the corresponding Neumann semigroup acting on f ∈ Bb(D). Then, for v ∈ TxD, t ≥ 0 and k ∈ C1

b ([0,∞);R),

HessPtf(v, v) = E
[
−df(Q̃t(v))

∫ t

0

⟨Q̃s(k̇(s)v), //sdBs⟩+ df(W̃ k
t (v, v))

]
.

By estimating W̃ k and Q̃ in explicit terms, pointwise bounds for the Hessian of Neumann eigenfunctions
can be obtained.

Corollary 3.2. We keep the assumptions of Theorem 3.1. Let K0,K1,K2 and σ1, σ2 be non-negative constants
such that Ric ≥ −K0, |R| ≤ K1 and |d∗R+∇Ric| ≤ K2 on D, and II ≥ −σ1, |∇2N +R(N)| < σ2 on the
boundary ∂D. Then, for (ϕ, λ) ∈ EigN (D),

|Hessϕ|(x) ≤ e(
1
2λ+K0)t E[eσ1lt ]

(
1√
t
+K1

√
t+

K2

2
t

)
∥dϕ∥∞

+
σ2
2

e(K0+
λ
2 )t E

[
e

1
2σ1lt

∫ t

0

e
1
2σ1ls dls

]
∥dϕ∥∞.
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Proof . By [4, Theorem 4.1] the Hessian of the semigroup can be estimated as

|HessPtf | ≤
(
K1

√
t+

K2

2
t+

1√
t

)
E
[
eσ1lt

]
eK0t ∥∇f∥∞

+
σ2
2
E
[
e

1
2σ1lt

∫ t

0

e
1
2σ1ls dls

]
eK0t ∥∇f∥∞.

We complete the proof by observing that Ptϕ = e−λt/2 ϕ.

Combining Theorem 3.2 and Lemma 2.8, we are now in a position to prove Theorem 1.3.

Theorem 3.3. Let D be an n-dimensional compact Riemannian manifold with boundary ∂D. Let
K0,K1,K2, σ1, σ2 be non-negative constants such that Ric ≥ −K0, |R| ≤ K1 and |d∗R+∇Ric| ≤ K2 on D,
and that II ≥ −σ1 and |∇2N −R(N)| ≤ σ2 on the boundary ∂D. For h ∈ C∞(D) with minD h = 1 and
N log h|∂D ≥ 1, let Kh,α := supD{−∆ log h+ α|∇ log h|2} with α a non-negative constant. Then for any non-
trivial (ϕ, λ) ∈ EigN (∆),

∥Hess ϕ∥∞
∥ϕ∥∞

≤ CN,λ(D)λ

where

CN,λ(D) = e

(
1 +

K1 + 2K0 + 2σ1Kh,2σ1

λ
+

K2 + 2σ2Kh,2σ1

λ
√

2λ+ 4K0 + 4σ1Kh,2σ1

)
∥h∥3σ1

∞

+
σ2 e

λ

√
2λ+ 4K0 + 4σ1Kh,2σ1∥h∥3σ1

∞ ln ∥h∥∞.

Proof . By Lemma 2.8, we have

E[eσ1lt ] ≤ E[eσ1lt ] ≤ ∥h∥2σ1
∞ exp (σ1Kh,2σ1

t) ,

and

E[eσ1lt ] ≤ ∥h∥2σ1
∞ exp (σ1Kh,2σ1

t) .

Moreover, we observe that

E
[
e

1
2σ1lt

∫ t

0

e
1
2σ1ls dls

]
≤ 2(E[e(σ1+ε)lt ]− 1)

σ1 + ε

≤ 2

σ1 + ε

(
∥h∥2(σ1+ε)

∞ exp
(
(σ1 + ε)Kh,2(σ1+ε)t

)
− 1
)

≤ 2

σ1 + ε

(
∥h∥2(σ1+ε)

∞ exp
(
(σ1 + ε)Kh,(σ1+ε)t

)
− 1
)

≤ 2

σ1 + ε

(
∥h∥2(σ1+ε)

∞ − 1
)
+

2

σ1 + ε
∥h∥2(σ1+ε)

∞
[
exp

(
(σ1 + ε)Kh,2(σ1+ε)t

)
− 1
]

≤ 4∥h∥2(σ1+ε)
∞ ln ∥h∥∞ + 2∥h∥2(σ1+ε)

∞ exp
(
(σ1 + ε)Kh,2(σ1+ε)t

)
Kh,2(σ1+ε)t.

Letting ε tend to 0, we arrive at

E
[
e

1
2σ1lt

∫ t

0

e
1
2σ1ls dls

]
≤ 4∥h∥2σ1

∞ ln ∥h∥∞ + 2∥h∥2σ1
∞ exp (σ1Kh,2σ1

t)Kh,2σ1
t.

Therefore, combining this with Theorem 3.2, we obtain

∥Hessϕ∥∞
∥dϕ∥∞

≤ e(
1
2λ+K0)t

(
1√
t
+K1

√
t+

K2

2
t

)
∥h∥2σ1

∞ exp (σ1Kh,2σ1
t)

+ σ2 e
( 1
2λ+K0)t [2 ln ∥h∥∞ +Kh,σ1

t] ∥h∥2σ1
∞ exp (σ1Kh,2σ1

t)

≤ e(
1
2λ+K0)t

(
1√
t
+K1

√
t+

K2

2
t

)
∥h∥2σ1

∞ exp (σ1Kh,2σ1
t)

+ σ2 e
( 1
2λ+K0)t [2 ln ∥h∥∞ +Kh,σ1t] ∥h∥2σ1

∞ exp (σ1Kh,2σ1t) .
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Letting t = (λ+ 2K0 + 2σ1Kh,2σ1
)
−1

, we get

∥Hessϕ∥∞
∥dϕ∥∞

≤

(
K1√

λ+ 2K0 + 2σ1Kh,2σ1

+
√
λ+ 2K0 + 2σ1Kh,2σ1

+
K2 + 2σ2Kh,σ1

2(λ+ 2K0 + 2σ1Kh,2σ1
)
+ 2σ2 ln ∥h∥∞

)
∥h∥2σ1

∞
√
e.

On the other hand, it is already shown in [2] that

∥dϕ∥∞
∥ϕ∥∞

≤ 1√
t
E[eσ1lt ]1/2 e

1
2 (K0+λ)t ≤ 1√

t
∥h∥σ1

∞ exp

(
1

2
(λ+ σ1Kh,2σ1 +K0)t

)
.

Let t = (λ+K0 + σ1Kh,2σ1
)
−1

. Then we get

∥dϕ∥∞
∥ϕ∥∞

≤
√
λ+K0 + σ1Kh,2σ1

∥h∥σ1
∞
√
e.

We conclude that

∥Hessϕ∥∞
∥ϕ∥∞

≤

(
λ+K1 + 2K0 + 2σ1Kh,2σ1

+
K2 + 2σ2Kh,σ1

2
√
λ+ 2K0 + 2σ1Kh,2σ1

+ 2σ2 ln ∥h∥∞
√
λ+K0 + σ1Kh,2σ1

)
∥h∥3σ1

∞ e .

Proof of Theorem 1.3. We note that Condition (A) is satisfied under our assumptions. Thus, the Hessian
estimate of Neumann eigenfunctions in Theorem 3.3 remains valid by substituting h as defined in (2.27). In
particular, replacing Kh,α and ∥h∥∞ by

Kα :=
n

r0
+ α and enr0/2

respectively, the conclusion of Theorem 1.3 is obtained with CN (D) := CN,λ1(D) and observing that CD,λ(D)
is decreasing in λ where λ1 is the first Neumann eigenvalue of −∆.
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multiplier theorem, Forum Math. 21, no. 3 (2009): 455–476.


