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By methods of stochastic analysis on Riemannian manifolds, we develop an approach to determine an explicit constant
¢(D) for an n-dimensional compact manifold D with smooth boundary such that 2 [|¢[|cc < || Hess ¢[|co < ¢(D)A |||/
holds for any Dirichlet eigenfunction ¢ of —A on D with eigenvalue A. Our results provide the sharp Hessian estimate
|| Hess |0 < AT . Corresponding Hessian estimates for Neumann eigenfunctions are derived in the second part of the
paper.

1 Introduction

Let D be an n-dimensional compact Riemannian manifold with smooth boundary 9D. We write (¢, A) € Eig(A)
if ¢ is a Dirichlet eigenfunction of —A on D with eigenvalue A >0, i.e., —A¢p = A\¢. We always assume
eigenfunctions ¢ to be normalized in L?(D) such that ||@||z2 = 1. According to [16], there exist two positive
constants ¢1(D) and ¢3(D) such that

A(D)WVA[6]loe < [Vl < c2(D)VA[[d]los, (6, A) € Eig(A), (1.1)

where we write |Vo| oo := || |V@| || for simplicity. An analogous statement for Neumann eigenfunctions has
been derived by Hu, Shi and Xu [9]. Subsequently, by methods of stochastic analysis on Riemannian manifolds,
Arnaudon, Thalmaier and Wang [2] determined explicit constants ¢;(D) and co(D) in (1.1) for Dirichlet and
Neumann eigenfunctions. From this, together with the uniform estimate of ¢ (see [8, 7, 12]),

n—1
||¢||<X> <cpAT

for some positive constant cp, the optimal uniform bound of the gradient writes as

n+1

IVolloo S A5

Results of this type have been used to study gradient estimates for unit spectral projection operators and to
give a new proof of Hérmander’s multiplier theorem, see [24, 25, 26].

Concerning higher order estimates of eigenfunctions, not much is known. Very recently, Steinerberger [17]
studied Laplacian eigenfunctions of —A with Dirichlet boundary conditions on bounded domains 2 C R™ with
smooth boundary and proved a sharp Hessian estimate for the eigenfunctions which reads as

n+3

| Hess ¢lloc S A

where
|| Hess ¢||oo := sup {| Hess ¢(v,v)|(z) : . € R", v € R", |v] =1}.

© The Author 2024. Published by Oxford University Press. All rights reserved. For permissions,
please e-mail: journals.permissions@oxfordjournals.org.
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To the best of our knowledge, higher order estimates of eigenfunctions for Euclidean domains first appeared in
[6] (see Lemma C.1 in the Appendix there which is easily adapted to cover the Hessian estimate in the Euclidean
case).

It is natural to ask under which geometric assumptions such estimates extend to compact manifolds (with
boundary). Following the lines of [2], for the Hessian of an eigenfunction ¢, one may consider the question how
to derive explicit numerical constants C1(D) and Cy(D) such that

Ci(D)A [[9]loe < [[Hess ¢lloc < Co(D)A [[fllocs (¢, A) € Eig(A). (1.2)
Note that for eigenfunctions of the Laplacian, one trivially has
1 A
|Hess ¢ > — |Ag| = — |4,
n n

and thus there is always the obvious lower bound

| Hess flloo A
16]loo

3|

For this reason, we may concentrate in the sequel on upper bounds for || Hess ¢ oo /|||l 0o-

In [2] a derivative formula for Dirichlet eigenfunctions has been given from where an upper bound for the
gradient of the eigenfunction could be derived directly. Let us briefly describe this method. Assume that X; is a
Brownian motion on D \ 9D with generator %A, and write X;(x) to indicate the starting point Xg = x. Then
X.(x) is defined up to the first hitting time 7p = inf{¢t > 0: X;(z) € 9D} of the boundary. For x € 0D we use
the convention that X.(z) is defined with lifetime 7p = 0; in this case the subsequent statements usually hold
automatically.

Suppose that Q;: T D — T'x,(5) D is defined by

1
DQt = *iRlcﬁ(Ql‘) dta QO = 1d7

where D := //;d//7" with //;:= /[os: TuD — Tx,(z)D parallel transport along X(x) and Ric*(v)(w) =
Ric(v,w) for v,w € TD. Suppose that (¢, \) € Eig(A). Then, for v € T, D and any k € CL([0,00);R), i.e., k
bounded with bounded derivative, the process

oA/2 (k:(t) (Vo(Xe), Qe(v)) — ¢(Xt)/0 (k(5)Qs(v), //sst>> . t<mp

is a martingale. From this, by taking expectation, a formula involving V¢ can be obtained which allows to derive
an upper bound for |V¢| on D by estimating |V¢| on the boundary 0D and carefully choosing the function k.
Along this circle of ideas, our aim is to establish a similar strategy for the Hessian of an eigenfunction ¢.

In view of the fact that P, = e */2¢ where P, is the semigroup generated by %A, we focus first on
martingales which are appropriate for attaining uniform Hessian estimates of eigenfunctions. Let us start with
some background on Bismut type formulas for second-order derivatives of heat semigroups. A second-order
differential formula for the heat semigroup P; was first obtained by Elworthy and Li [5, 13] for a non-compact
manifold, however with restrictions on the curvature of the manifold. An intrinsic formula for Hess P; f has been
given by Stroock [18] for a compact Riemannian manifold, and a localized version of such a formula was obtained
in [1, 3] adopting martingale arguments. For the Hessian of the Feynman-Kac semigroup of an operator A + V
with a potential function V' on manifolds, we refer the reader to [14, 15, 19].

For a complete Riemannian manifold M without boundary, an appropriate version of a Bismut-type Hessian
formula gives the following estimate (see [3], Corollary 4.3, together with Lemma 2.2 below)

Kot 2
| Foss Py o < (K1ﬂ+ Kot t) | £l

where

Ky :=sup {—Ric(v,v): y € M, v e T,M, |v|=1};
Ky = sup{|R|(y): y € M}; (1.3)
Ky = sup{|(d*R+VRic)ﬁ(v,w)Ky): yeM, vyweT,M, |v|=|w =1}
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and

n

R|(y) :==supq | > Rles,v,w,e;)2(y) : o] <1, ]w| <1

ij=1

for an orthonormal base {e;}! ; of T, M.
Thus if f = ¢ and (¢, \) € Eig(A), then

Kot 2
|| Hess ¢]| 0o < (Kl\/Z—F 72 + t> e(Kot+A/2)t |6 oc

for any t > 0. Letting t = then yields the estimate

1
K[)Jr)\/Q

|| Hess ¢|| oo [ 2 Ky
N2 Plle (g + +2Ko+ ) e.
[6le — U "V 2Ko+ X " 2Ky + A 0

To carry over such results to (compact) manifolds D with boundary, the influence of the boundary has to
be studied. In this paper, we shall adopt a martingale approach to the Hessian of Dirichlet eigenfunctions. This
approach is based on the construction of a suitable martingale which builds a relation between Hess ¢ and d¢
and then to estimate Cy(D) in (1.2) by searching for explicit constants Cy, Co and C3 such that

[| Hess ¢l < C1]| Hess ¢llap,oe + C2l|[V ¢llap,oc + C3|V ¢lloc (1.4)

where || Hess ¢[|op,00 := Sup,egp | Hess ¢|(x) and ||V @||op 00 1= sup,esp |V ¢|(x). The final estimate for | Hess ¢|
is then received by combining the last inequality with estimate (1.1) in [2].

Let us start with the general principle behind the construction of the relevant martingale. Let k €
C;([0,00); R) and define an operator-valued process Wy': T, D ® T, D — Tx, () D as solution to the following
covariant It6 equation

DWF (v, w) = R(//1dBs, Q¢ (k(t)v))Qq(w) — %(d*R + VRic)* (Q:(k(t)v), Qs (w)) dt — %Ric”(Wtk(v,w)) dt,

with initial condition W§ (v, w) = 0, see Section 2 in [4]. In explicit terms this gives
t
WE,w) =@ [ Q7 RU/dB Qu(k(5)0) s 0)
0

- 500 [ QR+ VRIOF(Qu(k(3)0). Qu(w) ds. (15)

Here the operator d*R is defined by d*R(v1, v2) := —tr V. R(+,v1)ve and thus satisfies
(d*R(v1,v2),v3) = (Vi Rich)(v1), v2) — ((Vu,Ric?)(v3), v1)
for all v1,v,v3 € T, D and x € D. Then the process
M, := ™/ Hess ¢(Qt(k(t)v), Qt(v)) +eM/? do(Wk(v,v))

M2 dg(Qu(w)) / (Qu(k(s)v). //+dBy) (16)

0

is a martingale on [0, 7p] in the sense that (Miarp)i>0 is a globally defined martingale where 7p = inf{¢t > 0 :
X (x) € D} denotes the first hitting time of X.(z) of the boundary 0D. The martingale property of (1.6) now
allows to establish an inequality of the type (1.4) by equating the expectations at time 0 and at time ¢ A 7. This
approach then requires to estimate the boundary values of |d¢| and | Hess ¢/, in order to obtain the wanted upper
bound for || Hess ¢||«. To this end, we establish the required estimates in Lemmas 2.4-2.5 by using information
on the second fundamental form II and the second derivative of N, where for X,Y € T,0D and x € 0D, the
second fundamental form is defined by

II(X,Y) = —(VxN, Y).
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Finally, let

cos Vkt — sm\ft k>0,
0t) =l o(t) = ¢ 1—ot, k=0, (1.7)
cosh v —kt — smh v—kt, k<O.

We state now the first main result of the paper. To this end we denote by psp the distance function to the
boundary 0D which is smooth in an open neighborhood of 9D if the boundary of D is smooth.

Theorem 1.1. Let D be a compact Riemannian manifold with smooth boundary 0D. Let Ky, K1, K5, o be non-
negative constants such that Ric > — Ky, |R| < K; and |d*R + VRic| < Ks on D, and that |II| < o. Assume that
the distance function pgp = dist(z, dD) is smooth on the tubular neighborhood 9,, D := {x € D : psp(z) <r1}
of dD. Let k, 8,7 be constants such that |Sect| < k on 9,., D, and that

[V(Apop)| < B, |A%pap| <~ on d,,D, (1.8)
where rg = r1 A £71(1/2). Then for any non-trivial (¢, ) € Eigy (A),

|| Hess 6] oo < (DA
e =@

« 2 KQO(
C(D)<2(n-1 — Tt —_
( ) - (n )0’6 <)\1 + 7T>\1> + 16(é +Oé)2)\1

2<K1+ + 3 +35)0¢\f+Kgco\f—|— (2+26)+1f—3°‘+27 20(1 + /)
A (12+4a) %4—404

Inor 1 2K0 a 1ooro+ L 3 «
+20&e<262 0+1)max{\/)\1+>\%+)\2 < +20>,4e2 0t3 (7‘0)\1+)\1>}
1 2K0 n 4en0r0+1 6 2
) 3noTo 4 1 <0 N 2 e[ Y 9
+ 2coe(e? + )max{ + N + N <To + J), N - + 2«
K, 3« 2 I}
92 1 e —no‘ro 1 1.9
+ Coe<)\1 * <7‘0)\1+T‘%>\1+)\1)+ > ( )
for « = 2(n — 1) max{o, k} and ¢y = \/g—l— V3 O

Remark 1.2. If the manifold has constant sectional curvature and mean curvature on 9,,D, i.e., H = 0, Sect = k
on 0, D, then for pyp(x) < £71(0) Ao,

where

+

%( —1)k

Apap = PaD)-

Lo, (n—1)k

As a consequence, the upper bound of |V(Apsp)| and |A?pgp| can be calculated explicitly, as

IV (Apap)|(z) < 4((n— Dk +0?), |A%pop|(z) < 8max {o,/(n— 1)k}((n — 1k +0?),

for pap(z) <iog AL71(1/2). For the general case, from the second variation formula of psp (see (2.10) below)
we see that further information about |VII|, |V2II|, |R|, |VR| and |V2R| on 9,,D is needed to derive an upper
bound of |V(Apap)| and [A2psp]. O

Turning now to Hessian estimates for Neumann eigenfunctions, let us denote by Eig, (A) the set of non-
trivial (¢, A) for the Neumann eigenproblem, i.e., ¢ is non-constant, A¢ = —A¢ and N¢|sgp = 0 for the unit
inward normal vector field N of dD. Proceeding along the previous ideas, the main difference is that we can
no longer consider the process only up to the first hitting the boundary 0D. When constructing the suitable
martingales, the boundary behaviour of the process must be included. We shall use reflecting Brownian motion
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as base process to deal with this problem. Due to recent work on Bismut-type Hessian formula for the Neumann
semigroup [4], we have the following formula linking Hess P, f and df intrinsically:

HessPtf(v,v)=E[—df((2t(v))/o<Qs(k(8)v),//sst>+df(Wtk(v,v)) ;

where Q and W’f are defined in (3.1) and (3.2) in Section 3 below. By taking into account that P;¢ = e 2 M g
and estimating ). and W. carefully under suitable curvature conditions, we obtain the following theorem which
gives an upper estimate for Hess ¢ of the type (1.2) with an explicit constant Co(D).

Theorem 1.3. Let D be an n-dimensional compact Riemannian manifold with boundary 0D. Let Kg, K1, K5 be
non-negative constants such that Ric > —Kj, |R| < K; and |d*R + VRic| < K5 on D,and let o1, 03,0 be non-
negative constants such that —o; <II < o and |[V2N — R(N)| < 0 on the boundary dD. Assume the distance
function pyp to the boundary 9D is smooth on 9., D := {z € D : pspp(x) < r1} and let k be constant such that
Sect < k on 9y, D. Then for any non-trivial (¢, \) € Eigy(A),

Hess ¢||
Hess Ol _ (o )y
18]
where
K1 + 2K, + 201 (2 +201) Kz +202 (2 +201) 3
CN(D) = 1 + \ + 65017”‘1-1‘1
1 )\1\/2)\1 + 4Ky + 404 (%4‘20’1)
+ 200 9N 4+ 4K + doy [ — + 20, ) edormrott
2)\1 To
for ro = r1 AL71(0) and o1 = max{o;,0}, where \; is the first Neumann eigenvalue of —A. O

The remainder of the paper is organized as follows. In Section 2 we first show for Dirichlet eigenfunctions
[ Hess ¢f|oo /(| 4]0 < C(D)A (1.10)

by verifying that the process (1.6) is a martingale, in combination with boundary estimates for | Hess ¢|. Section 3
then deals with Neumann eigenfunctions where we give a proof of Theorem 1.3 by using Bismut type Hessian
formulae for the Neumann semigroup along with an estimate of the local time.

2 Hessian estimates of Dirichlet eigenfunctions
This section is dedicated to the approach described in the Introduction. The proof of Theorem 1.1 is divided into

two steps by first showing Theorem 2.11 with some auxiliary function h, which will be constructed in Section 2.3.

2.1 Preliminary

We start by defining the fundamental martingale which will serve as basis for our method.

Theorem 2.1. On a compact Riemannian manifold D with boundary 9D, let X.(z) be a Brownian motion
starting from z € D and denote by 7p = inf{t > 0: X;(z) € dD} its first hitting time of dD. Define Q; and W}
as above where k € C} ([0, 00); R). Then, for (¢, ) € Eigy(A) and v € T,,D, the process

o <Hess¢(Qt(k“>”)’ Qu(v)) + do(W (v,v)) = dé(Qu(v) / (Qu((s)v), //sst>> (2.1)

is a martingale on [0, 7p]. O
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Proof. Due to the compactness of D it is sufficient to check that (2.1) is a local martingale on [0, 7p). Fixing
a time T > 0, for v € T,, D, we let

Ni¢(v,v) = Hess Pr_:(Q:(v), Q¢ (v)) + (APr—_:d)(Wi(v,v)), t<T ATp,

where

Wi(v,0) = Qi /0 Q;lR(//TdBT,QT(U))QT(v)—%Qt /O Q7 (d" R + VRio) (Q, (v), Q. (v) dr.

Then N;(v,v) is a local martingale, see for instance the proof of [20, Lemma 2.7] in case that potential V = 0.
Since (¢, \) € Eig(A), we know that Pr_;¢(X;) = e MT=9/2 ¢(X,) and thus

M2 (Hess (Qu(v), Qu(v)) + (de) (Wi(v,v)))
is also a local martingale. Furthermore, consider
Nf (v, 0) i= e*/? Hess ¢(Qu (k(t)), Qe (v)) + (X d) (W (v, v)).

According to the definition of W[ (v,v), resp. Wi (v, v), and in view of the fact that N;(v,v) is a local martingale,
it is easy to see that

M2 Hess ¢(Qi(k(t)v), Qi (v)) + (M/* dg) (W] (v, v)) — / e**/% Hess ¢(Q (k(s)v), Qs(v)) ds
0
is a local martingale as well. From the formula
t
N2 d0(Qi(w) = o) + [ N Hess ) (/B Qu(v)
0

it follows that

/OeAS/Z(HeSS@(Qs(k(S)v),Qs(v))ds—e””d(/ﬁ(Qt(v))/O (Qs(k(s)v), //dBs) (2.2)

is a local martingale. We conclude that

(X2 Hess 0) (Qu(k(t)v), Q(v)) + (X2 d) (W (v, 0)) — /2 d¢(Qt(v))/O (Qs(k(s)), //sdBs)

is a local martingale. n

We shall use the following estimates to proceed with the Hessian formula for ¢.

Lemma 2.2. Assume that Ric > —Kj, |R| < K; and |d*R + VRic| < K3 on D for non-negative constants
Ko, K7 and Ks. Let k € CL([0,00);R). For t > 0 and 6 > 0, it holds

Q| < ef0t/2  and (2.3)
] ¢ V2 et )
E [[WF (0, k(t)0) | Tjucrp] < (K ( / k(s>2ds) + 5 / [k (s)] ds) e |k(t)], (2.4)
0 0
where Ko, K1 and K are defined as in (1.3). O

Proof. The first inequality follows from the lower Ricci curvature bound condition and the definition of Q.
For 0 < s < t, the damped parallel transport Qs = Q:Q;': Tx,D — Tx, D satisfies

1
DQ; ., = fiRicﬁ(Qt,s) dt, Qs =id.
Thus the lower bound of Ricci curvature — K yields

‘Qs,t| < eKo(t—S)/Q.
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According to the definition of W/ (see (1.5)), we have
t
B (W) 1) < B [t [ @2 RULAB. Q000000
0

+ %E [1{t<TD}|Qt/O Q.1 (d* R+ VRic)(Qs(k(s)v), Qs(v)) ds@

Kot

Kot ¢ 2 1/2
<e= E |:]I{t§TD}| ei% Qt/ Q;lR(//Sstv QS(k(S)v))QQ(U” :|
0

K t
+ 72E |:]l{t<‘rp}| G%Kot/
2 - 0

3508 |i(s)] ds|] : (2:5)
Moreover,
1 ¢ 2
et / Q5 RU// s Bay Qu(k(5)0))Qs 1)

— 27K (R(//udB1, Qulk(t)0) Qi (v), Qu /0 Qr " RU By, Qo K(s)0))Qs(0))
0K | R(Qu(k(1)0), Qu(0) g dt

_e_Kot ic t t o s sy Ws S)v s\U), ¢ t ot s sy s s)v s\v
R (Q/OQS R(//sdB Q(k()))Q()Q/OQS R(//sdB Q(k()))@())dt

- Koo |Qu | QU R(/dBL.Qu(s))Qu o)
< o Kot |R¥(Qu(K(t)v), Qt(v))|12{S dt < K2e Kot |Q, [ k(t)? dt < K? ot k(t)2dt, t < 1p.

Combining this with (2.5), we have

t 1/2 t
E (W) (0,0) [ 1{1rp)) < Kyeb500 ( / eKows)?ds) et [ jh(s)l s,
0 0

This completes the proof. u

By the results above, the following Hessian formula for eigenfunctions ¢ is obtained.

Theorem 2.3. Let D be a compact Riemannian manifold with boundary dD. Let X.(x) be a Brownian motion
starting from x € D and 7p be its first hitting time of OD. Suppose that k is a non-negative function in
CL([0,00); R) such that k(0) = 1. Then for (¢, \) € Eig(A), t > 0 and v € T, D,

(Hess §)(v,v) = E* [0V (Hess 6)(Qunry (K(E A 7D)0), Quney (0)) + 72N 2(dG) (W, (0, 0)]
tATD

—E° {e““ﬂ”“ dé(Qinrp (v) / (Qs(k(s)), //sdBs)| - (2:6)
0
O
Proof. The claim follows by taking expectation of the martingale (2.1) at time 0 and ¢ A 7p. Recall that

|Q¢| < ef0t/2. For x € D formula (2.6) is obviously tautological since 7p = 0. u

To derive Hessian estimates of ¢ from Theorem 2.3 requires estimates of Hess ¢ on the boundary dD. To this
end, we first note the following observation. Since ¢ = 0 on the boundary 9D, we have V¢ = N(¢)N on 0D. We
extend the normal vector field N to a tubular neighborhood of 9D as N = Vpsp where pgp(x) = dist(x, dD)
denotes the smooth distance function close to the boundary (see Remark 2.5 below for the details).

Lemma 2.4. For x € 9D let H(x) be the mean curvature of the boundary. Then

N*(¢)(z) = ~H(2)N(9)(z), = € ID.
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Remark 2.5. Assuming that the boundary 9D is smooth, let N be the unit inward normal vector field N on
0D. Furthermore, let

®:[0,r9] x OD — D, (r,z) — exp,(rN), (2.7)

be the geodesic from x € dD orthogonal to 0D and parametrized by its arc length r. As the differential of ® at
any point (0,z) has full rank, we find £y > 0 such that ® is a diffeomorphism from [0, e[ X D onto the open
neighborhood {x € D: psp(z) < ep} of D in D. This allows to extend N to a tubular (collar) neighborhood
of 0D as Q*%. By construction then Vy N = 0. If X is a vector field on D tangential to 0D, we extend it to
the neighborhood of 9D as being independent of the real variable in the product [0,e9[ x dD. By construction,
close to the boundary, the distance function pgp(x) = dist(z, dD) is smooth and satisfies N = Vpyp. O

Proof of Lemma 2.4. On the boundary 0D we have

0=Xp=A¢ = (Vx,V$,X;) = (VNVo,N) + > (Vx, Ve, X))

=1 =2

= (VNVe,N) + _wai (N(¢)N), X;)

n

= N(Vé,N) + Z X;N(¢){(N, X;) + N(¢) Z<vxiN, X;)

= N2(¢) + N(¢) D _TI(X;, X;) = N*(¢) + N(¢) trTI

=2

where for € 9D, {X; }1<i<, denotes an orthonormal basis of T,;D with X; = N. As (trII)(z) = H(z), « € 0D,
the proof is completed. u

The following lemma is taken from [2, Lemma 2.4 and Proposition 2.5] and allows to estimate the values

of |V¢| on the boundary. Here we use a* + \/% as upper bound for the right-hand-side in [2, Eq. (2.29)].
Lemma 2.6. Let ag € R such that

Apap < ag (2.8)
outside Cut(9D). Then for any t > 0,

[Vollop.co = IN(D)lop.co < ||l €M/? (ag n \/\/ﬂ%) .

In particular,

V6l < 6l et (a5 + 2. (29)
O

Remark 2.7. With constants Ky, > 0 such that Ric > —Ky on D and H > —6 on the boundary 0D, where
H(x) is the mean curvature of D at « € D, let

aozmax{ﬂ,\/m}.

Then estimate (2.8) holds true for this «p. O

Next, we introduce some results on local time estimate of reflecting Brownian motion, which is also a tool
in the boundary estimate of | Hess ¢|. Let us recall some basic notations on it. The reflecting Brownian motion
on D with generator %A satisfies the SDE

1
dXy = /[vo dBf + SN(Xy)dle, Xo=uz,
where BY is a standard Brownian motion on the Euclidean space T, D = R™ and [; is the local time supported

on dD (see [23] for details). Now we turn to the problem of estimating E[e®!*/?] for o > 0 by exploiting a specific
class of functions h.
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Lemma 2.8. Suppose that h € C°°(D) such that h > 1 and Nlogh > 1. For a > 0 let
Kpo= sup{ — Alogh + a|V10gh|2}.
Then
E[e!*/2) < [h]|% exp (§ Knat)
Proof. By Itd’s formula we have
1 1
dh™%(X;) = (Vh™Xy), //+ dBy) + gAhfa(Xt) dt + §Nh7a(Xt) dly
1 1
S <Vh_a(Xt), //t dBt> — Olh_a(Xt) <_2Kh,a dt + §N10g h(Xt) dlt> .

Hence,

t
My := h™%(X;) exp <_§Kh,at + %/ Nlog h(X5) dls)
0

is a local supermartingale. Therefore, by Fatou’s lemma and taking into account that h > 1, we get

t
E |:h_a(Xt) exp <—§Kh,at + %/ N log h(Xs) dl5>] <h™%(z) < 1.
0

Since Nlogh(z) > 1 we conclude that

t
E {exp (%zt)} <E {exp (‘;‘/ Nlogh(X,) dlsﬂ < |12 exp (%Kmt). n
0

At the end of this subsection, we collect some Hessian comparison results for pgp. Let p be the orthogonal
projection of z on 9D, and let (s) = exp,(sN), s € [0, pap(z)] be the geodesic from p to x. Let {J(8) }se(0,ppp (2)]

be the Jacobi field along v such that J(pgp(z)) =v for v € T,D, and J(0) = —IT*(J(0)) € T,dD, where
(I (J(0)), w) = T1(J(0),w) for w € T,dD. From the variation formula of psp, we know that

pop(®)
fess (0 0) = ~1(0).J0) + [ () = (R TR T6)) ds. (210

The following result is essentially due to Kasue [10, 11] (see also Theorem A.1 in [21]).

Lemma 2.9 (Hessian Comparison). Let o and k be non-negative constants such that |II| < o and |Sect| < k
on Or, D, where psp is smooth 9,,D. Then

/

—o,

!
o,k

(pap(x)) < Hess pap(v,v) < (pon(x)),  pap < 1o AL, 1 (0).

gcr,k 670,716

Moreover, for pop(z) < 1o AL (3),

| Hess pop| < 2max{o, Vk}.
O
Proof. The proof of the first inequality can be found in [23, Theorem 1.2.2]. Based on this, we have for k,o > 0,
Hess pop (v, v) < max{o, Vk}.
2

On the other hand, for psp(z) < rg A Z,:j,(l),

0, o (pop(x))

Hess pop (v, v) > Tealpon(®) > 20k o (pop(z)) > —2max{o, Vk}.

This completes the proof of the second inequality. u
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2.2 Hessian estimate of Dirichlet eigenfunctions

Lemmas 2.4, 2.6 and 2.8 allow to derive an estimate of | Hess ¢| on the boundary dD.

Lemma 2.10. Let Kj, 0 be non-negative constants such that Ric > —Kj, |II| < 0. Suppose that the distance
function pgp is smooth on 9,,D := {z : pap(z) < ro} for some constant 1y > 0. Then for 2 € 9D,

H Hess(qb)HaD,oo <(n—1)a|N(¢)llop,co

1 1
+ [[A]|S, ez Koo kna)t (01\/5 +(Ch + clwi) 16/l

1
I, X000 (o (o AVE) [Vl
Vit
o+ [R5 o3 ot )t VEC, | Hess 6o
where h € C*°(D) such that h > 1 and Nlogh > 1 and
K., = sup{—Alogh + o|Vlogh|*},
and the constants C7, Cy, C3, Cy are defined as
Cr =[[Avanly, b
Ca = [ AW (pon)) Apop + 214 (pop)| - IV (Apon) | +18%pen |, s
Cs = || [¥"(po)| + 31¢" (pap) Apap| + 3[V (Apan)l |5 p»
Ci = ||2[¢(pap)| + 2(n — 1)| Hess pop| H%D-
where 1 € C?(R™, [0, 1]) satisfies ¢(0) = 1, '(0) = 0 and (r) = 0 for r > ro. O
Proof. Given z € 9D, let {X;}1<;<, be an orthonormal basis of T,,D with X; = N. Then

| Hess(¢)(Xi, X;)| = [Vdo(Xi, X;)| = [(Vx, Ve, X;)|

By assumption we have |II| < o. If X;, X; € T,0D, i.e. i,j # 1, then (V¢, X;)|op = 0 and
| Hess(¢)(Xi, X;)[ = | = N(¢)(N, Vx, X;)| < a|N(9)]. (2.11)
If X; = X; =N, ie i=j=1,then VyN|sp =0 and
| Hess(¢)(N, N)| = [N*(¢)| < [HN(¢)| < (n — 1)a|N(¢)]- (2.12)
If X; € T,0D and X; = N (i.e. j # 1 and i = 1), then
| Hess(¢) (X, N)|(z) = |NX;(¢)[(x). (2.13)

In order to get control on (2.13), we shall use a probabilistic argument based on the Brownian motion on D
reflected at the boundary. Before going into the details, we recall our conventions on the extension of vector
fields from 0D to a tubular neighborhood of the boundary, see Remark 2.5.

Let N be the extension of the normal vector field to a tubular neighborhood 9,,D := {z : pap(x) < ro} of
0D and define

o(x) = Y(pap(z))div(pN), x € 0D, (2.14)

where ¢ € C?(R™,[0,1]) satisfies ¥(0) = 1, ¢'(0) = 0 and 9 (r) = 0 for 7 > rg. Using the formula div(¢N) =
N(¢) + ¢ div(N), along with Lemma 2.4, we observe for x € 9D,

N(p)(@) = ¥/(0)div($N) + N(div(6N)) = 0.

Thus ¢ satisfies the Neumann boundary conditions on D.
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Let now X; be the reflecting Brownian motion on D and PN f(z) = E*[f(X;)] for f € By(D) the
corresponding Neumann semigroup. According to the Kolmogorov equation, we have

o) = PN - 5 [ P ap@)ds

0

Taking derivative on both sides of the equation yields

1t
X)) = XN p)a) — 5 [ X(PY A ) ds
0
where X is tangential to dD. We first observe that for x € 9D,

Xi()(x) = Xi(¢(pop))(2)div(¢N) () + ¢ (pap () Xi(div(¢N))(x) = Xi(div(oN))(z)
= XiN(¢)(x) + Xi(¢)(2)div(N)(z) + ¢(z) X (div(N))(z)
= XiN(¢)().

To deal with the upper bound, we use the Bismut formula established in [23, Theorem 3.2.1] for the compact
manifold D, which gives

1 1 zr ol
VBT fl < 7 ex ™ B e 2| oo,

where [; is the local time supported on 0D. By Lemma 2.8 of the previous subsection, we have
E?[e”"] < |[Al|3 exp (0 Kn20t)
where h € C°°(D) such that h > 1 and Nlogh > 1 and
Kp.2o = sup{—Alogh + 20|V log h|*}.

We then conclude that

1
g ”50”3(90,7"0) + \/Z ||A90HB(3:,T0) . (215)

X;N 2) < [|Rl7 o3 (KotoKn 20)t
| XiN()|(z) < [|n]I% 7

According to the definition of ¢ in (2.14), we have

[Plloo < NV lloo + [|div(N)la,, Dl #llo0

By commutation rules, we calculate

A

(¥ (pap))div(¢N))
U(pap))div(¢N) + 2¢(pop )N (div(¢N)) + ¥ (pop)) A(div(¢N))
)

$(pon))(Gdiv(N) + N(6)) + 20/ (pap) (6N (div(V)) + N(@)div(N) + N*(@))
$(pon)) Aldiv(6N)) (2.16)

Ap

(
A(
A(
+
and

A(div(¢N)) = div((O — Ric?)(¢N))
= div(A(¢)N) + div(¢ON) + 2div(Vy s N) — ¢div(Ric*(N)) — Ric(N, V)
= —\div(¢N) 4 ¢div((D — Ric*)N) 4 (ON, V) + 2div(VyyN) — Ric(N, Vo), (2.17)

where O = tr V2 and Ric*: TD — TD such that (Ric*(v), w) = Ric(v, w) for v,w € T, D, x € D. Let {e;}1<i<n
be orthonormal basis of T'D about x satisfying Ve;(z) = 0. We then have

VyelN = Z(ei(cb))v N
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and as a consequence

div(VyeN) = Z ((Vei(9), Ve, N) + e;(¢)div(Ve, N))
= (Hess(¢), VN) + (Vo, zn:div(veiN)ei>
= (Hess(¢), VN) + (Vo V_(div(N))>.

Combining this with (2.17) yields

A(div(¢N)) = p(=Adiv(N) + A(div(N))) — AN(¢) + 2(Hess(¢), VN) + 2(V, V(div(N)))
+ (ON,V¢) — Ric(N, V).

From the fact that N = Vpsp and the Weitzenbock formula, we observe that
div(N) = Apsp, (V.N,-) =Hesspgp and (ON,V¢)— Ric(N,Ve) = (VApap, V). (2.18)
Combining the equations (2.16), (2.17) and (2.18), we conclude

Ag = AW(po0))(Bpap) + A(pap))N (@) + 20" (pap) (6N (Apan) + N(6)Apan + N*(9))

+9(pap)d(—AApap + A%pap) — M (pan)N(¢) + 2¢(pop) (Hess(), VN) + 3¢(pap) (VApap, Vo)
= (A(®(pa))(Apap) + 2¢'(pan)N(Apap) + Y (pan)(A%pap — AMpap)) ¢

+ (A(W(pan)) + 2¢' (pon) Apap — Mb(pap)) N (¢) + 3¢ (pap)(VApap, V)

+ 20/ (pap)N*(¢) + 2¢(pap) (Hess(¢), VN).

which together with (2.15) implies that
| XiN ()| (z)

1 1
< [Ih]g, e or2okno)n (clﬁ (Gt clxw%) e

1 1
gz e (L (0ot AE) [0

+||h]|Z, 63 FotoKr2a)t \/f Oy || Hess ¢ oo

where
C1 = [|Apapllo,, b,
Ca = |A(W(pan))Apap + 2|4 (pap)| - [V (Apan)| + |A%panlla,, b,
Cs = || [¥" (pap)| + 3|¥' (pap) Apap| + 3|V (Apap)| lla,, p
Ca = 12[¢(pop)| + 2(n — 1)| Hess pap| [|a,, p-
The proof is completed by combining the above estimate with (2.11) and (2.12). u

Combining the estimates in Lemmas 2.6 and 2.10 with Theorem 2.3, we are now in a position to prove our
main result.

Theorem 2.11. Let D be a compact Riemannian manifold with boundary 0D. Let K, K1, Ko and o be
non-negative constants such that Ric > —Kjy, |R| < K; and |d*R + VRic| < K3 on D, and that |II| <o on
the boundary 0D. Assume that the distance function psp is smooth on the tubular neighborhood 0,,D =
{z: pap(x) < ro} of OD for some constant ro > 0, and let a, 5,7 € R be such that

|Hess pop| < ——,  |V(Apap)| < B, [A%pop| <~ on d,,D. (2.19)

«
n—1
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Letting h € C*°(D) with minp h =1 and Nlogh|sp > 1, then

|| Hess || 2 Ko
TSSO o — 1 A I
AR W iy A TTE S

2(K1—s—%+%—&-SB)a\/é+Kgco\/é+%(a2+2ﬁ)+1f—3"+2w+2a(1+\/6)/\

+ 12
E+40{

3
+2ae (2]|h]|7, + 1) max{\/A +2Ko + 0 Kp 20, 4Ve| A2, (r + a> }
0
6 2
+ 2coe ([|A[|% + 1) max {A +2Ko + 0K 20, 4e||h]|2 ( + 2a> }
To
9 | 6
+200e(f<1+||h||go <“+2+3g+x>>, 2.20)
To o

forcoz\/g—i-%\/g. O

Proof. According to formula (2.6) we have

|Hess ¢(v,v)| = E [ e MIATD)/2 Hegg qS(QMTD (k(t ATD)v), Qinrp (v))}

4 E |:e)\(t/\TD)/2 d(b(WtkA'rD (1}, U))j|
tATD .
SB[ 0@ ) [ (Qulbs)). )|
Taking k(s) = (t — s)/t for s € [0,¢] and v € T, D, |v| = 1, in the equation yields
2 o t=T
e 6(0,0)] < B [ 10y o 275070 =2 Hoss(0) o

K
+ [[do)] (KME + 2’%) (3150t

e(%)\—&-Ko)t
||l 7
By Lemma 2.10, we have
t .
| Hess p(v,v)| < E| 1 <4 o(3+Ko)Tp tTD <n —1)o|IN¢|lop,co

+ ||B||Z o3 Ko+eknao)t=ro) (01 (Co+ ACOVT= m) 1llso

1
= |
+(Cs+ M)Vt — TD> |de] oo

+ [|R]| 7, eF Koo Kn20)(t—7p) (

1
N
+ k)5, e3 Uo+eKnan)t=m0) \fr= 0 0| Hesw“wH

K
+ [|d9|| (Kl\/E‘F 2225) e(%’\"’Ko)t

e(%AJrKo)t

\/'E )
where C1, Cy,C3 and Cy are defined as in Lemma 2.10. Combining this with the fact that

t—TD 1 \/t—’TD 1

= <

t Vi—-mp @t Vi

+ [1dé] (2.21)
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and then substituting back into (2.21) and using (2.9) to estimate || N¢|sp,00, We obtain

[ Hess g(v,v)| < (n— Doe3+70) /g (a ! ﬁ) 16l

aKg)zd . g
) ( ﬁ+<c2+clx>ﬁ) .

oK 20 1

g, {F o) ( +(Cs +A>\/i> 1d) oo
Vit

oKp 2o

1 a2, (3R | Hess e

1 Ky (l,\-s-K )t
— + Khvt+ —t 2 " d .
# (G mvi B2 o 4]

+ g, e (3ot

Now let

1

t=1tg:= :
0 max{)\+2Ko+UKh,2m 4e||hH(2>gCZ}

Then

oKy 25

2 1
Ci [[1]} g e300 /gy || Hess 0| < 3 || Hess 6

and inequality (2.22) implies

| Hess ¢[|oc < 2(n — 1)oe (04 +4/ 27:\> 18]

+ 201 |hl|g Ve max { AT 2K + o Knzo, 2Vl % C f 6o +

Cy

+ 2VR(hl1%, + 1) max { /X 2Ko + 0Kz, 2VEIRIZC1 ) [d6]ac
2(Ky + |AIZ. (Cs + X)) Ve
max{\/)\ + 2Ky + 0K}, 20, 2\@||h||g004}

KQ\/é
. S—T VT
max {\ + 2K + 0K}, 20, 4¢||h||29C7}

1dblo

As Apyp < o and Ric > —Kj, the constant A in [2, Eq. (1.7) in Theorem 1.1] is bounded by « +
Thus we conclude from [2, Eq. (1.7)] that

149 o oL+ /200+ Ko) +
[16]]o0 ™

(Co + C1N)

[[6lloo

(2.22)

(2.23)

2(X+ Ko).



Hessian estimate for Dirichlet and Neumann eigenfunctions 15

Combining this with (2.23) implies that

IIHesscf)ooS?(nl)Je( +\/2>> [6]loo

+ 204 )2 vEmax { /N 2Ky + 0 Kiag, 26l Co b 6]l +

MWH

+ 2VE(IBZ, + 1) max { /AF 2Ry + 0Kz, 2VEIRIZCr b av/e gl
2(K: + b} (Cs + M)ace
max{\/)\ + 2K0 + O—Kh7207 2\/é||h|‘g004}

N Kaae 16
max {\ + 2Ky + 0 Kp, 20, 4€||h||29C%} =

2 1
+ 2e(||hl|%, + 1)max{\/)\ T 2Ky + 0Kp o0, 2¢é||hugoc4} <ﬁ+ 4\/§> VAt Ko 8]l

2(Ky1 + [|h|Z(Cs 4+ A))e \/’ \/»
’ A+ Ko [|6]]oo
max { /A + 2Ko + 0 K20, 2v/6|[1][2.Ci} VA+ Ko ¢

[6]lc

Kse 2 1 /m
—t+t /5 A+ K, o 2.24
T ax {7 1 2Ky + 0Kp.ay, 4c |RZICZ) (\/;+ 4\/;> VA+Eo |9 (2.24)
Using condition (2.19), the constants C, Cs, C3 and C4 then become
Cl = Q,

= [[¢'lloo(@® +28) + 9" [l + 7,
C3 =3¢/ lor + [[¢" [0 + 38,
Cy =290 + 200

To simplify the upper bounds, we observe that

2(Ky1 + ||h]|%(Cs + N))ace _ (K1 +Cy+ Nave
max{\/)\+2Ko+0Kh72m 2\/é||h||g004} - Cy ’
Kgae KQOZ.

<
max {\ + 2Ky + 0Kp 20, 4e||h||22C3} — 4C%’

2(K1 + [|hI5(Cs + X))e
At Ko < 2(K; + |R]|%(Cs + A))e;
max { /A +2Ko + 0 Kp 2, 2\/é||h||go(j4}\/70— (K1 + [|hl|%(C5 + X))e

ng ng KQ\/é
VA+ Ky < < :
max (A + 2K + 0Kz0, de [REZCF) " max {3+ 2Ko + 0 Ko, 2Ve[h|5,Cay — 20h

Let ¢y = \/%—&— %\/g Then

| Hess gl \/ﬂ
el <2(n—1)oe (04 + 77)

+ 20 (Bl (V& + ) + ¢) max { /A + 2Ko + 0 K20, 2VE|H1%Ca }
2(K1 + 03 + )\)OL\/E+ KQCO\/6+ 2(02 + Oé)\) + KQO[

2C, 4C2
+ 2coe(||h]|Z, + 1) max {\ + 2Ko + 0Kp 25, 4e||h]|22CF }
+ 2¢pe(Ky + ||R]|2,(Cs + N)). (2.25)
Now let s
W(r) = (%55) . osrswe (2.26)
0, r > ro,

Then 7' < % and 9" < r%. With these estimates, the constants C1, Co, C3 and C4 are explicit. [ ]
0



16 L.-J. Cheng, A. Thalmaier and F.-Y. Wang

2.3 Proof of Theorem 1.1

In this subsection we describe F.-Y. Wang’s construction of functions & satisfying the requirements of Lemma 2.8
(see [22, p. 1436] or [23, Theorem 3.2.9] for the details). His construction is performed under the following
condition.

Condition (A) There exist a non-negative constant o such that II < o and a positive constant r; such that
the distance function psp to the boundary 9D is smooth on 9,, D := {x € D : pap(z) < r1}. Moreover, Sect < k
on O, D for some positive constant k.

Under Condition (A), based on the Hessian comparison theorem, one then constructs a function h satisfying
the necessary properties of Lemma 2.8 (see [22, p. 1436] or [23, Theorem 3.2.9] for the notation and the precise
result), along with explicit upper bounds for ||h||o and the constant K}, o. Modifying his construction one may
take

pap () To
log h(z) = ! /0 (U(s) — L(rg))' ™ ds / (U(u) — £(ro))" " du (2.27)

AO AT

where ¢ = £, is defined in (1.7), 7o := 71 A £71(0) and

T0
Ao = (1— 6(7@0))1*”/ (U(s) — L(ro))" " ds.
0
Then from the proof of [21, Theorem 1.1], we get:
Kno <Koi=—+a and |h]s <e™. (2.28)
To

By means of the constructed h as above, we are now in position to complete the proof of Theorem 1.1.

Proof of Theorem 1.1. By estimate (2.25), we know that

||H”€;|S|<l5||oo < CA(D)A,

where

OA(D) = 2(n — 1)oe (‘;‘ + FQA)

+2ae (2[R + 1) max{\/i L 2Ko +A§Kh’zoy Qﬁllf;m@}
N 2(K1 + C3 + Nav/e + Kacgv/e +2(Cy + ))  Kaa
204\ 402\
2cpe

3 (In)|% + 1) max { X + 2Ko + 0K} 2., 4e||h]|22CF}

+2cpe (Iil + 1A%, (%’ - 1)) .

Obviously, the constant C(D) is decreasing in A, and hence Cy(D) < Cy, (D) where )\ is the first Dirichlet
eigenvalue of —A which gives

|| Hess ¢|| oo
9o

Using h defined in (2.27) and substituting the estimates (2.28), we replace K} 2, and ||k« by

< Cy, (D).

n
~ +20 and "0/,
To

respectively. Finally, by Lemma 2.9, the upper bound « in (2.19) can be chosen as 2(n — 1) max{c, vk}. This
completes the proof of Theorem 1.1. u
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3 Hessian estimates on Neumann eigenfunctions of Laplacian

We use a stochastic approach as well to prove Theorem 1.3. Let us first recall the Hessian formulas for the
Neumann semigroups, established recently in [4]. The reflecting Brownian motion on D with generator %A
satisfies the SDE

1
dXt = //t o dB;E + §N(Xt) dlt, XO =,

where BY is a standard Brownian motion on the Euclidean space T, D = R™. We write again X; = X;(z) to
indicate the starting point x € D (which may be on the boundary dD). Here //; : T, D — Tx,(;)D denotes
the V-parallel transport along X;(z) and I; the local time of X;(x) supported on 9D, see [23]. Note that the
reflecting Brownian motion X;(z) is defined for all ¢ > 0.

Suppose that Q;: T, D — Tx,(x)D satisfies

DQ; = *%Ricﬁ(ét) dt + %(VN)ﬁ(Qt) dly, Qo = id. (3.1)

For k € C}([0,00);R) define an operator-valued process Wk:T,D®T,D — Tx,(x)D as solution to the following
covariant Ito6 equation

DW}(v,w) = R(//+ dBy, Q¢ (k(t)v)) Qs (w)
- %(d*R + VRic) (Qu(k(t)v), Qi(w)) dt
(VAN - R(N))ﬁ(@(k(tm Qulw)) i

1 -
— RV (v, w)) dt + 5 L (N (0, ) dly, (3.2)
with initial condition W (v, w) = 0. Actually, W} (v, w) can be written in explicit form as

WE(,w) = @, / Q;lR(//s 0By, Qu(k(5)0))Qs(w)

N R + VRic)*(Qs (k(s)v), Qs (w)) ds

LVEN — RIN)¥(Qs(k(s)v), Qs(w)) dl.

l\D\»—* I\D\H
\\

Theorem 3.1 ([4]). Let D be a compact Riemannian manifold with boundary dD. Let X (z) be the reflecting
Brownian motion on D with starting point x (possibly on the boundary) and denote by P, f(x) = E[f(X:(x))]
the corresponding Neumann semigroup acting on f € By(D). Then, for v € T,,D, t > 0 and k € C}([0,00); R),

Hess P, f(v,v) = E [—df(Qt(v))/O (Qs(k(s)v), //sdBs) + df(Wf (v,v))

O

By estimating W* and Q in explicit terms, pointwise bounds for the Hessian of Neumann eigenfunctions
can be obtained.

Corollary 3.2. We keep the assumptions of Theorem 3.1. Let Ky, K1, K5 and o1, 02 be non-negative constants
such that Ric > —Kjp, |R| < K; and |[d*R+ VRic| < K3 on D, and 11 > —0q, |[V2N + R(N)| < 02 on the
boundary dD. Then, for (¢, \) € Eigy (D),

1
| Hess ¢|(z) < e(ZA KO Eer1lr] (ﬁ S t) |d]|oe

t
+ Z g [e%m/ e31ls dls] (e
0
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Proof. By [4, Theorem 4.1] the Hessian of the semigroup can be estimated as

K 1
‘HeSSPt.ﬂ < <K1\/£+ 7215 + ) E [eaﬂt] eKot ||Vf||oo

Vi
t
+SE {eémlt /0 ezl dls} [V f oo

We complete the proof by observing that Py = e~ /2 ¢. n
Combining Theorem 3.2 and Lemma 2.8, we are now in a position to prove Theorem 1.3.

Theorem 3.3. Let D be an n-dimensional compact Riemannian manifold with boundary 9D. Let
Ky, K1, K5,01,02 be non-negative constants such that Ric > —Kj, |R| < K; and |d*R + VRic|] < K5 on D,
and that 11> —o; and |V2N — R(N)| < o2 on the boundary dD. For h € C*°(D) with minph =1 and
Nloghlap > 1, let Kj o :=supp{—Alogh + a|Vlogh|?} with a a non-negative constant. Then for any non-
trivial (¢, A) € Eigy(A),

[ Hess ¢llo

< Cya(D)A
[¢1loo
where
K 2K, 201K}, 94 K. 209K}, 95
Cna(D) =e [ 14 2L E 200 £ 201 Rhze, it TG
A M2+ 4Ky + 401K 20,
o9 e
+L\/Q)\_HLKO+401Kh7201|\h||§g11n||h||oo-

A

Proof. By Lemma 2.8, we have
Ele”"] < E[e™"] < [|h[|2* exp (01Kh20,1) .
and
Efe”"] < ||h[|23" exp (01Kn20,1) -
Moreover, we observe that

E e%allt /t e%alls dl Z(E[e(01+g)lt] - 1)
0 ° o1 +e¢

IN

2
B2+ K £)-1)
< = (I exp (01 + ) K sy 4t)
2
< 2 (P exp (01 + ) Koy 41) 1)
2 2(o1+e€ 2 2(o1+4¢
S oire (”h”oé el — 1) + mllh\loé 1) [exp (01 + &) Kn (o, +0)t) — 1]

< AR)EE ) i R oo + 20PN exp (01 + €) Kn ooy +0)t) Kooyt
Letting € tend to 0, we arrive at
t
E [eém / e271ls dls] < 4)|R)127 I || Ao + 2||B)127" exp (01 Kn 20, t) Kp 2o, 1.
0
Therefore, combining this with Theorem 3.2, we obtain

| Hess ¢ || o (L 2+Ko)t ( 1 Ky ) 2
— <e'2 ot [ — 4 KVt + ==t ) ||h]|2 exp (01 K}p,26,t)
4] Vi 2 ') I
+ 0 6BV 210 g+ K1) B e (01K 2,1
1 K
< o (D gV B2 I e (012

+ 05 TR 210 [ oo + Ko, 8] |12 exp (01 K 20, 1)
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Letting ¢t = (A + 2Ky + 201Kh7201)_1, we get

Hess ¢} oo K
| Hess o] S( 1 + AF 2K + 201K,

[[do|o VA+2Ko + 201K} 20,

K2 + 20’2Kh,z71
2()\ + 2K0 + 20’1Kh7201)

+ 203 In ||h|oo> 1R]I2 V.

On the other hand, it is already shown in [2] that

[l _ 1
ol = V2

Let t = (A + Ko + alKhyggl)fl. Then we get

1 1
E[edllt]1/2 e%(Ko—F)\)t < %Hh”gol exp <2(A+O'1Kh,201 + Ko)t) )

[do o

S € VAT Ko+ o Ko, [ Ve

We conclude that

|| Hess ¢|loo
[6lloo

n Ky + 203K}, o,
2\/)\ + 2K0 + 201Kh,201

< ()\ + K1 + 2K0 + 201Kh,201

+ 202 In ||Allso /A + Ko + U1Kh,2a1> 132 e

Proof of Theorem 1.3. We note that Condition (A) is satisfied under our assumptions. Thus, the Hessian
estimate of Neumann eigenfunctions in Theorem 3.3 remains valid by substituting i as defined in (2.27). In
particular, replacing K}, , and ||A||o by

n
K,:= — +a and e"/2
o

respectively, the conclusion of Theorem 1.3 is obtained with Cn (D) := Cn x, (D) and observing that Cp (D)

is decreasing in A where A; is the first Neumann eigenvalue of —A. ]
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