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Contraction de SU(1,1) vers le groupe de Heisenberg

Benjamin Cahen

Résumé

On montre que les représentations de la série discrete de SU(1,1) se con-
tractent au sens de Mickelsson et Niederle [MN] vers les représentations uni-
taires irréductibles du groupe de Heisenberg en utilisant le calcul de Berezin
sur les orbites coadjointes associées a ces représentations. Une version in-
finitésimale de ce résultat est obtenu en étudiant le comportement par con-
traction de fonctions hamiltoniennes sur ces orbites coadjointes.

Abstract

We show that the discrete series representations of SU(1,1) can be con-
tracted in the sense of Mickelsson and Niederle [MN] to the unitary irre-
ducible representations of the Heisenberg group by use of Berezin calculus
on the coadjoint orbits associated to these representations. An analogous
result at the Lie algebras level is obtained by considering Hamiltonian func-
tions on these coadjoint orbits.

Mots clés : Groupes de Lie, représentations, série discrete, orbites coadjointes,
contractions, calcul de Berezin.
Mathematics Subject Classification : 22E46, 53D50, 81S10.

1. Introduction

Les contractions de groupes et d’algebres de Lie ont été introduites par E. Inonu
et E.P. Wigner [IW]. Soient G et H deux groupes de Lie réels connexes de méme
dimension et d’algebres de Lie respectives g et hh. Une contraction de g vers b est

une famille (C;),¢jo,1[ d’isomorphismes de h dans g telle que

lim ColC-(X), Cr (Y)]g = [X, Y]y,
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pour tous X et Y éléments de b [D]. Sil’on suppose que (C),¢jo,1] est une famille
bornée de ’espace des applications linéaires de hh dans g, on peut vérifier qu’il existe
un voisinage U de 0 dans § tel que, pour tout r €]0,1], ¢, = expgoC, o exp;j{1
définisse un difféomorphisme de U dans ¢, (U) et que

lim % (e, () e (y) ™) =2y~
pour tous x et y assez proches de I'identité de H. La famille (c;),¢jo,1 est alors
appelée contraction de G vers H [MN], [R].

Les contractions permettent de relier les représentations de deux groupes de
Lie. Ainsi, J. Mickelsson et J. Niederle ont montré dans [MN] que les représentations
de masse non nulle du groupe de déplacements R"™! x SO(n+1) et les représenta-
tions de masse carrée positive du groupe de Poincaré généralisé R"*1 x SOy(n, 1)
peuvent étre obtenues par contraction (c’est-a-dire comme limites en un sens qui
est précisé dans [MN]) de représentations de la série principale de SOg(n + 1, 1).
Plus généralement, A.H. Dooley et J.W. Rice ont montré dans [DR2] que les
représentations de la série principale d’un groupe de Lie connexe semi-simple
non compact se contractent vers les représentations génériques de son groupe de
déplacements de Cartan. Dans le méme ordre d’idées mais avec un type de contrac-
tion différent de ceux des exemples précédents, F. Ricci a étudié une contraction
des représentations unitaires irréductibles de SU(2) vers les représentations uni-
taires irréductibles non dégénérées du groupe de Heisenberg [R].

En dehors de leur intérét propre, les contractions de représentations ont
des applications diverses en analyse harmonique : obtention de formules de type
Mehler-Heine pour les fonctions spéciales [DR2], [R], transport de résultats sur les
multiplicateurs de Fourier d’un groupe de Lie & un autre [RR].

A.H. Dooley a proposé dans [D] d’étudier les contractions de représentations
de groupes de Lie dans le cadre de la méthode des orbites. On peut observer en effet
dans divers exemples que, lors de la contraction d’une famille de représentations
unitaires irréductibles vers une représentation unitaire irréductible, les orbites
coadjointes associées aux représentations de cette famille se déforment vers 'orbite
coadjointe associée & la représentation contractée. Une application des idées de [D]
a ’étude d’une contraction des représentations de la série discrete de SU(1,1) vers
des représentations unitaires irréductibles de R? x SOg(1,1) a été donnée dans
[CiD] et [Re].

Pour relier directement le comportement par contraction des représentations
a celui des orbites coadjointes, P. Cotton et A.H. Dooley ont proposé dans [CD]
d’utiliser la notion de calcul symbolique adapté [Cal]. Soient G un groupe de
Lie connexe d’algebre de Lie g et m une représentation unitaire irréductible de G
associée par la méthode des orbites a une orbite coadjointe O de G. Notons, pour
X élément de g, X la fonction définie sur l'orbite O par

X(€)=<&6&X > (EeO0cg).

L’orbite O étant munie de sa 2-forme symplectique de Kirillov, X est I'hamiltonien
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du champ de vecteurs invariant sur O défini par X € g. Un calcul symbolique
sur O est une correspondance linéaire bijective f — W (f) entre une classe de
fonctions sur O (appelées symboles) et une classe d’opérateurs sur I'espace H de
la représentation 7. Un calcul symbolique W sur O est dit adapté lorsque les
fonctions X (X € g) sont des symboles et qu’il existe un sous-espace dense D de
‘H tel que, pour tous X dans g, ¢ dans D,

W(iX)p=dr(X)ep.

En pratique, lorsque que l'orbite O est symplectomorphe & R?” muni de sa 2-
forme symplectique usuelle (n = 1/2dim O), la transformation de Weyl [F] donne
fréquemment un calcul symbolique adapté sur O [Ca2], [W]. Lorsque 'orbite O
est une variété kaehlérienne, le calcul de Berezin défini par une méthode d’états
cohérents conduit en général également & un calcul symbolique adapté sur O (voir
[Cal] et ses références).

L’exemple étudié au moyen de calculs symboliques dans [CD] est celui de la
contraction des représentations de la série principale de SL(2,R) vers les représen-
tations génériques de R% x SO(2). Les orbites coadjointes associées & ces représenta-
tions sont des cylindres et les calculs symboliques adaptés considérés sont dérivés
de la transformation de Weyl sur R?. Cotton et Dooley montrent alors que le
calcul symbolique introduit sur une orbite coadjointe associée a une représentation
générique de R? x SO(2) est limite (en un sens précisé dans [CD]) de calculs
symboliques sur les orbites coadjointes associées aux représentations de la série
principale de SL(2,R) ce qui permet d’obtenir, dans ce cas particulier, une version
infinitésimale des résultats de [DR1]. Des résultats analogues ont été obtenus dans
[Ca3] oli une contraction des représentations de la série principale de SOg(n+1,1)
vers les représentations massives du groupe de Poincaré généralisé R" 1 x SO (n, 1)
a été étudiée a l'aide de calculs symboliques adaptés construits sur les orbites
coadjointes associées en combinant transformation de Weyl et calcul de Berezin.

Dans [Cad], on a étudié la contraction des représentations unitaires irréducti-
bles de SU(2) vers les représentations unitaires irréductibles non dégénérées du
groupe de Heisenberg introduite dans [R] en utilisant le calcul de Berezin sur
les orbites coadjointes associées. Dans cet exemple, & la différence des exemples
précédents, les opérateurs des représentations considérées sont des opérateurs du
calcul symbolique i.e. correspondent dans le calcul de Berezin a des fonctions,
appelées star-exponentielles dans [ACG], sur les orbites coadjointes associées a ces
représentations. Les résultats relatifs a la contraction des représentations peuvent
se lire sur le comportement des star-exponentielles et on a ainsi pu donner en
particulier une preuve trés simple du principal résultat de [R].

Le but du présent travail est d’introduire et d’étudier de fagon analogue une
contraction des représentations de la série discrete de SU(1, 1) vers les représenta-
tions unitaires irréductibles non dégénérées du groupe de Heisenberg. Les représen-
tations de la série discréte de SU(1,1) et les représentations unitaires irréductibles
non dégénérées du groupe de Heisenberg peuvent étre réalisées comme représenta-
tions induites holomorphes, les orbites coadjointes correspondantes admettent des
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structures kaehlériennes invariantes et on dispose sur ces orbites du calcul de
Berezin qui définit un calcul symbolique adapté. Nos principaux résultats (proposi-
tions 6.1 et 7.2) permettent de déduire la contraction considérée des représentations
de la série discrete de SU(1, 1) vers les représentations unitaires irréductibles non
dégénérées du groupe de Heisenberg de la convergence des symboles de Berezin
des opérateurs de ces représentations. En particulier, on montre que la contraction
de représentations étudiée s’effectue au sens de [MN] et que les coefficients des
représentations unitaires irréductibles de H sont limites de suites de coefficients
de représentations unitaires irréductibles de SU(1,1) ce qui constitue I’analogue
du principal résultat de [R]. On étudie également de facon similaire la contrac-
tion des différentielles des représentations de la série discrete de SU(1,1) vers les
différentielles des représentations unitaires irréductibles du groupe de Heisenberg
a partir du comportement des fonctions hamiltoniennes X (X € g).

Le plan de cet article est le suivant. Dans le paragraphe 2 on décrit rapidement
la construction, par quantification géométrique d’orbites coadjointes, de la série
discrete de SU(1,1), on introduit le calcul de Berezin sur ces orbites coadjointes
et on donne l'expression des star-exponentielles. Dans le paragraphe 3, on procede
de méme pour les représentations unitaires irréductibles non dégénérées de H.
On peut remarquer que les fonctions quantifiables (au sens de la quantification
géométrique, voir [Wo]) sont dans les cas considérés ici des symboles du calcul de
Berezin et que le calcul symbolique issu de la quantification géométrique coincide
avec celui défini par le calcul de Berezin sur la classe des fonctions quantifiables
[CGRI1]. Dans le paragraphe 4, on précise la contraction de SU(1,1) vers H utilisée
et, dans le paragraphe 5, on traduit en termes de fonctions hamiltoniennes X
(X € g), la déformation des orbites coadjointes observée lors de cette contraction.
On établit dans le paragraphe 6 un résultat reliant le comportement d’une suite
d’opérateurs agissant sur les espaces des représentations de la série discrete a
celui de la suite des symboles de Berezin de ces opérateurs. On en déduit dans
les paragraphes 7 et 8 les résultats cités précédemment relatifs a la contraction
des représentations de la série discrete de SU(1,1) et de leurs différentielles. On
termine en étudiant (paragraphe 8) la contraction de suites d’opérateurs dont les
symboles de Berezin sont des fonctions quantifiables.

2. La série discrete de SU(1,1)

Dans ce paragraphe, on donne une construction des représentations de la série
discrete de SU(1, 1) par quantification géométrique de certaines orbites coadjointes
de ce groupe suivant la méthode des orbites de Kostant et Kirillov (voir par ex-
emple [K]). La vérification des résultats exposés, aisée, est laissée au lecteur. La
plupart de ces résultats peuvent par ailleurs se retrouver dans [ACG] et [CGR2].
Dans le paragraphe 3 suivant, on procédera de méme pour les représentations
unitaires irréductibles du groupe de Heisenberg.
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2.1. (Généralités) Dans toute la suite, G désigne le groupe SU(1, 1) des matrices

g(mﬂ)—(g g)

olt v et 3 sont des nombres complexes tels que |a|? — |3]? = 1.
L’algebre de Lie g = su (1,1) de G admet pour base

o L0 =i o Lf(01 o L0
=5 \éi o) > 27 2\10) > B9\ 0 i)

Notons (uj,us,u3) la base de g* duale de la base (uy,us,us) et g - & Paction
coadjointe de g € G sur £ € g*.

Soit R un réel non nul. L’orbite de Ruj sous 'action coadjointe de G est
lorsque R > 0 (respectivement R < 0) la nappe (z3 > 0) (respectivement (z3 < 0))
de I'hyperboloide formé des points £ = x1 u] + x2 u5 + 3 uj tels que

—23 — a3 + 23 = R

2.2. (Orbites coadjointes associées a la série discréte) Si m est un entier posi-
tif supérieur ou égal a 2, notons O, l'orbite coadjointe de &, = (n/2)us € g*.
Le stabilisateur de &, pour 'action coadjointe est le tore T formé des matrices
g (e, 0) (0 € R) dont I'algebre de Lie est R us.

Le groupe G = SU(1, 1) se complexifie en SL(2,C). Notons P la polarisation
complexe positive au point &, engendrée par u; +ius et us. Le sous-groupe connexe
P de SL(2,C) dont I'algebre de Lie est P est formé des matrices

(¢ 2%)

otta € C\(0) et c e C. L'ensemble G.P est alors 'ouvert de SL(2,C) formé des
matrices
a b
(¢ 1)
telles que || < |d|.
On note D le disque unité ouvert du plan complexe. On pose pour z € C

o-(3 1)

w1 7)

et pour z € D

Les identifications
D~GP/P~G/T~0,
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données par les applications
z—0(z2)P — 09(2)T — o9(2) - &,
conduisent a la carte ¢, : D — O,, de 'orbite O,, donnée par

n(z+z z—z ., l4+2zz |
’S — Uy ; — U9 — U3z ).
2 \1-2zz i(l1 —22) 1—2z

Yn(2) =

Le groupe G agit sur D par transformations homographiques :

_az+p
g(aa/()))Z*Bz_’_a

et cette action correspond dans les identifications précédentes a 'action naturelle
de G sur G.P/P et a action coadjointe de G sur O,,.
Remarquons que la 2-forme de Kirillov de O,, définie par

2,(6) (X(6),Y(£)) =< &, [X, Y] >

pour X et Y dans g et £ dans O,,, s’écrit dans la carte donnée par v, :

mn
Wn = 2dz/\d?.

(1-2%2)

2.3. (Représentations de la série discréte) On va retrouver ici, par quantification
géométrique G-invariante de la variété symplectique (D,w), la représentation de
la série discréte de G associée a l'orbite O,,. Le caractere x de T défini par
dx® =i &, |ru, se prolonge en un caractere x, de P défini par

a 0 g
Xn e 1/a ) ’

On considere alors le fibré holomorphe L, = G.P x,, C — G.P/P ~ D que I'on
munit de la connexion V" et de la structure hermitienne h,, définies comme suit.
Le fibré L,, étant trivialisé au moyen de la section sy donnée par

on pose
Vi (f-s0) = (X(f)(2) + an(X)(2) f(2)) s0(2)

pour f fonction et X champ de vecteurs de classe C*° sur D, a,, désignant la
1-forme sur I définie par

nz

Qp = — —
1—2z

On pose également pour z € D, u € Cet v € C:

hn(2)(use(2),v580(2)) = (1 — 2Z)"uv.
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La connexion V" admet pour courbure —iw, et laisse invariante la structure hermi-
tienne h,,. Le triplet (L, V", hy,) constitue alors une pré-quantification de (D, w,,).
La polarisation P engendre la polarisation géométrique F de 'orbite O,, définie
par

Fge, =< (Adg.X)(9-&), XeP>

qui correspond dans la carte donnée par 1, a la polarisation géométrique de D
engendrée par le champ de vecteurs (1 — 2Z)0z. Les sections F-polarisées du fibré
L,, sont donc les sections holomorphes de L,. L’action naturelle de G sur ces
sections :

(9-5)(z)=g-s(97"-2)
donne une représentation unitaire irréductible de G dans ’espace de Hilbert des
sections holomorphes s de L,, telles que

Isl* = /Dhn(Z)(S(Z)vs(Z))wn(Z) < +oo.

Les sections holomorphes de L,, s’écrivent s = f.sg ou f est une fonction holomor-
phe sur D. La représentation précédente de G est alors équivalente a la représentation
my, de G réalisée par

(70 (9(e, 8)) £)(2) = (@ = B2)™" flgla, B)7" - 2)

dans l'espace de Hilbert H,, des fonctions f holomorphes sur D telles que
1 = [ 1P dna() < +o0

ou dun(z) = "T_l(l — 22)"2dx dy, dx dy désignant la mesure de Lebesgue sur
C ~ R2. Une base orthonormée de H,, est formée par les polynomes Iy (z) =

\/Crip_12” ot p €N (la notation C% désignant le coefficient binomial #)

I(n—p)!

2.4. (Calcul de Berezin [CGR1]) Soit t € D. Il existe un unique élément e} de H,,,
appelé état cohérent, tel que, pour tout f dans H,,

<fief >n=f(1).
< , >, désignant le produit hermitien de H,. On obtient aisément:

el (z)=(1—t2)"".
Le symbole de Berezin d’un opérateur A de H,, est la fonction s,, (A) définie sur
D par

n n
< Ael, el >,
<ep,el >,

sn (4)(2)
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et le symbole double de Berezin d’un opérateur A de H,, est la fonction :

< Ael el >y
<el, el >,
qui est définie sur D? puisque < €7, , €? >, 0 pour tous z et 2’ dans D, holomor-
phe en la variable z et antiholomorphe en la variable 2z’ et donc déterminée par sa
restriction Sy, (A4)(2,2) = sp(A)(z) & la diagonale de D?.
Si A est un opérateur de H,,, f € H,, et z € D, on a la formule suivante qui
permet de retrouver 'opérateur A a partir de son symbole double [CGR1] :

Af(z) = / () Su(A) (2, 2') < € €8 > dan ().

On en déduit la formule suivante qui sera utilisée plus loin. Pour f, g dans H,, on
a

<Af,g>n= /D2 () g(2) Sn(A)(2,2) < €%, e >, dpun(2) dun(2').

2.5. (Star-exponentielle) On va donner ici 'expression des symboles de Berezin
des opérateurs de la représentation m, et de sa différentielle dm,,.
On obtient immédiatement, si g = g (o, 8) € G :

Sulma(9))(2, ') = (@ =727 — Bz + )" (1 — 22"

puis
Sm(Tm (9))(2) = (@ —azzZ— B2+ B2) " (1 —22)".

D’autre part, la différentielle de la représentation m,, est donnée par

dry (u1) f(2) = gzz f(2) + %i(zZ 11) f(2)

o () f(2) = 2 f(2) 4 5 (2 = 1) F'(2)
dmy (us) f(2) = 51 J(2) +iz f'(2)

pour f € H,. On en déduit que

n z+7
Snldmp (u1))(z,2) = i5 T—

n z—72
Sn(dmn (u2))(z2) = 5 T—=

n 1427

Sy (dmy (u3))(z,2') = o

Par suite, pour tout X dans g, on a

s (dma (X))(2) = i X ($(2))
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ce qui exprime que le calcul de Berezin définit un calcul symbolique adapté selon
la terminologie de [Ca3].

2.6. (Fonctions quantifiables) Les fonctions quantifiables au sens de la quantifica-
tion géométrique [CGR1], [Wo| sont par définition les fonctions ¢ de classe C*°
sur D dont le champ de vecteurs hamiltonien X, est tel que [X,, X] € F pour
tout X € F. Comme la polarisation F est engendrée par (1 — 2Z)0z, les fonctions
quantifiables sont ici les fonctions ¢ sur D du type

p(z) = (1 —22) " (u(z) +v(2)2)

ou u et v sont des fonctions holomorphes sur D. La quantification géométrique
associe a une telle fonction ¢ 'opérateur W"(y) de H,, défini par

W'(p) =iV, +ep=iX,+u

ou X, désigne le champ de vecteurs hamiltonien de ¢. On vérifie que le symbole
de Berezin s, (W™ (¢)) de I'opérateur W™ (¢) est la fonction . Autrement dit, le
calcul symbolique issu de la quantification géométrique coincide avec le calcul de
Berezin sur la classe des fonctions quantifiables [CGR1].

2.7. (Série discrete “antiholomorphe”) Soit m un entier inférieur ou égal a —2.
On note comme plus haut O, Porbite sous 'action coadjointe de G de I’élément
&, = (n/2)uj de g*. On considere la polarisation P~ au point &, engendrée par
uy — ius et uz, P~ le sous-groupe connexe de SL(2,C) d’algebre de Lie P~ et x,
le caractere de P~ défini par

a b R
Xn {0 1/a e

Comme au paragraphe 2.2 les applications
z—=0 (2)P7 =05 (2)T = 0 (2) - &n

tr

oll, pour z € D, on a posé o~ (2) = o(2)!" et o5 (2) = 0o(2)!" (tr désignant la

transposition), donnent les identifications
D~GP /P ~G/T~0,

ainsi que la carte ¢, : D — O,, de 'orbite O,, définie par

n(z+7z z—z . 142z
¢n(z)_2(1—zzu1 z’(l—zz)u2+1—zzu3>'

L’action coadjointe de G sur O,, correspond dans cette carte a l'action de G sur
D donnée par

_624—3
g(a7ﬁ)'z_ ﬂz—i—a
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et la 2-forme de Kirillov s’écrit

—ni

Wp =

On forme comme au paragraphe 2.3 le fibré L,, = G.P~ x,,, C que I'on trivialise
au moyen de la section s, : z — [07(2),1] et que 'on munit de la structure her-
mitienne h,, et de la connexion V" définies par des formules analogues a celles du
paragraphe 2.3 obtenues en y remplagant n par —n (et so par s, ). La polarisation
géométrique de O,, induite par P~ correspond a la polarisation géométrique de
D engendrée par le champ de vecteurs (1 — 2Z)d5 et action de G sur les sec-
tions polarisées du fibré L,, (qui sont les sections holomorphes de L,,) conduit &
la représentation 7, de G réalisée dans l'espace de Hilbert H_,, (que 'on notera
H,) par B
Ta(9(a ) = 7-(9(@, B)).

Les états cohérents définis par
e (z)=(01—-t2)"

permettent de définir comme au paragraphe 2.4 le calcul de Berezin qui donne
un calcul symbolique adapté. D’autre part, les fonctions quantifiables sont comme
au paragraphe 2.6 du type ¢(z) = (1 — 22) ! (u(z) + v(2)Z) ol u et v sont des
fonctions holomorphes sur D et la quantification géométrique associe & une telle
fonction ¢ 'opérateur

W(p) =iVi, +¢=1iX, +u.

On vérifie que le symbole (simple) de Berezin de 'opérateur W" (i) est la fonction
®.

3. Les représentations unitaires irréductibles du
groupe de Heisenberg

3.1. Soient H le groupe de Heisenberg de dimension 3, ) 'algebre de Lie de H et
(v1,v2,v3) une base de h dans laquelle les relations de commutation sont

[v1,v2) = w3 , [vi,v3] = [v2,03] =0.

On notera [a, b, ] Pélément exp (avy + bvs + cvs) de H (a,b, c étant 3 réels). La
multiplication de H est donnée par

1
[a,b,c].[a" b, ] = [a+a’,b+b’7c—|—c'+§(ab'—a’b)].

Soit (v}, v3,v3) la base de h* duale de (v1, va,v3). L’action coadjointe de H sur h*
est

[a,b,c] - (1 0] + 2205 + x305) = (21 + bxg) v} + (2 —aws) vy + T3 03
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et par suite 'orbite coadjointe d’un élément & de h* tel que v} (§) = X est le plan
(x3 = A) lorsque A # 0 et est réduite a {£} lorsque A = 0.

On suppose dans toute la suite A # 0 et on note x§ le caractere du centre de
H défini par

XX ([0,0,¢]) = &'

D’apres le théoréme de Stone-von Neumann [F], il existe une représentation uni-
taire et irréductible de H, unique a équivalence unitaire pres, dont la restriction
au centre de H est x?\. On va rappeler ici rapidement comment la méthode des
orbites permet de construire cette représentation comme représentation induite
holomorphe.

3.2. Soit O l'orbite coadjointe de £y = Avi € h*. Notons ¢ le réel qui vaut 1 si
A>0et —1si A< 0. Soient P. C h® la polarisation complexe positive au point
& engendrée par v +ic vy et vg et P. le sous groupe connexe de H® d’algebre de
Lie P.. On remarque que tout élément g de HC s’écrit de facon unique

g=expa(vy —icvy) exp(B(v1+icva)+yvs)

ou «, (3,7 appartiennent a C.
On en déduit que I'espace homogene H®/P. s’identifie & C au moyen de
I’application qui a z élément de C associe la classe de
z .
ox(z) =exp | =~ (—evy +ive)) .
A() p(m( L 2))
D’autre part, on peut identifier 'orbite Oy a C a I’aide de 'application
¥y z — (Rez) vy +e(Imz)vy + Avs.

L’action naturelle de H® sur H®/P. induit alors une action holomorphe de H®
sur C donnée par

exp (avy +bvy+cvg) - z=z+(b—cai)A

pour a,b,c € C et z € C, qui prolonge I'action coadjointe de H sur Oy ~ C.
La 2-forme de Kirillov de 'orbite O, s’écrit dans la carte donnée par ¥y :
i

= —dz ANdz.
Y z ANdz

WX
3.3. Soit x le prolongement de X(>)\ a P. défini par

X (exp(B(vy +icvg) +yv3)) =

pour 3,7 € C. On forme alors le fibré holomorphe Ly = H® x y, C au-dessus de
O\ ~ C que Pon trivialise au moyen de la section holomorphe s? : z — [0 (2), 1].
On munit Ly de la connexion V* donnée par

VX (fs") = (X(f)(2) + ax(X)(2) f(2)) s°(2)
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ot ay = —(2/2|\|)dz et de la structure hermitienne V*-invariante hy définie par
ha(2)(s°(2), % (2)) = exp(—22/2|Al).

Les sections du fibré L) polarisées pour la polarisation géométrique de D induite
par P. sont les sections holomorphes de L. L’action naturelle de H sur ces sections
permet d’obtenir une représentation unitaire irréductible de H dans l’espace de
Hilbert des sections holomorphes s telles que

Is|2 = /C ha(2)(5(2), 5(2)) wa(2) < +oo.

En utilisant la trivialisation précédente de L), on va donner une réalisation p) de
cette représentation dans ’espace de Hilbert H) des fonctions entieres f : C — C
telles que

1 L
113 = 5y PR €7 dady < 4oc

ou dx dy désigne la mesure de Lebesgue sur R? ~ C.
On obtient

pa([a, b, ]) f(z) = exp(ic A + i(eb +ai)(2z 4+ (=b+eai))) f(z+ A(=b+cai)).

Une base hilbertienne de H est formée par les fonctions f7(z) = (1//(2|A])F k!) 2*
ou k € N.

3.4. Soit t € C. L’évaluation f — f(t) étant une forme linéaire continue sur
I'espace de Hilbert Hy (voir [F] par exemple), il existe un “état cohérent” e} € H,
tel que

< fep >a=f(t)

pour tout f dans Hy. On obtient :
et (z) = exp ((1/2|\]) 21).

Si A est un opérateur de H ), on peut alors définir, comme au paragraphe précédent,
le symbole de Berezin sy (A) de A et le symbole double de Berezin Sy (A) qui sont
des fonctions définies respectivement sur C et sur C2.

On dispose également des formules intégrales analogues a celles du 2.3. per-
mettant d’exprimer, si f et g appartiennent & Hy, A (f) et < A(f), g > & partir
de Sy (A). En particulier, on a

Sx (pa ([a,b,c]))(z,2") = exp (ic/\—i— % (eb+ia)z+ % (—eb+ai)z — % (a® +b2))
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pour a, b, ¢, dans R et z, 2’ dans C. D’autre part, la différentielle dpy de la représen-
tation py étant donnée par

(dpr (00) N)(2) = 52 F(2) + A 1/(2)

(dpr (v2) )(2) = 522 F(2) = A £(2)

(dpx (vs) f)(2) =i X f(2)

on obtient
b~
Sx (dpx (v1))(2,2) =i = J; :
=/
S (dpa (v2)) (2, 2') = e ===

Sx (dpx (v3))(2,2") =i A

d’ou 'on déduit : N
sx (dpx (X)) (2) = iX (¥a (2))

pour X € h, z e C.

Le calcul de Berezin induit donc ici un calcul symbolique adapté au-dessus de
I'orbite Oy ~ C tout comme la transformation de Weyl définit un calcul symbolique
adapté au-dessus de Oy ~ R2 lorsque 'on réalise la représentation de H associée
a Porbite Oy comme induite unitaire en utilisant des polarisations réelles [W].
Le lien entre les calculs de Berezin et de Weyl (et donc Ientrelacement entre ces
réalisations) est étudié dans [ACGZ] dans le cas d’un groupe de Heisenberg de
dimension quelconque.

3.5. Les fonctions quantifiables sont ici les fonctions du type p(z)u(z) + v(2)z ol
u et v sont des fonctions entiéres. La quantification géométrique associe a une telle
fonction ¢ I'opérateur W () de H, défini par

W (p) = iVﬁ}w + 02|\, + u.

Le symbole de Berezin de W*(y) est alors la fonction ¢.

4. Contraction de SU(1,1) vers le groupe de Heisen-
berg

Soit 7 un réel strictement positif. On note C,. I'application linéaire de h dans g
définie par

Cr(v1)=ru , Cr(vd)=ruy , Cp(vs)=r>us
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et ¢, I'application de H dans G définie par
¢ (expy X) = expg Cr (X).

pour tout X élément de h. La différentielle de ¢, en l'identité de H est C,. et on
a, pour X et Y éléments de b :

lim C [ (X)), Cr (V)] = [X, Y]y,

ce qui exprime que la famille (C}),~¢ est une contraction de g vers b [D].

On en déduit, en utilisant notamment le fait que l'application exponen-
tielle réalise un difféomorphisme d’un voisinage de 0 dans g dans un voisinage
de l'identité dans G, la proposition suivante :

Proposition 4.1. 1) Il existe un voisinage ouvert V de lidentité de G tel que,
pour tout r > 0, ¢, est un difféomorphisme de ¢, * (V?) dans V2.

2) Pour tout x dans H, il existe ro > 0 tel que, pour tout r < rg, ¢, (x) € V.

3) Pour tout r > 0, ¢, ([0,0,0]) = ¢(1,0).

4) Soient x,y dans H. Il existe 1 > 0 tel que, pour toutr < ry1, ¢, * (¢, (z) ¢ (y)™1)
est bien défini et on a :

lim cr_l (cr () er (y)_l) =ay~t.

r—0

On dit alors, suivant [MN], Définition 1, que la famille (¢, ),>0 est une con-
traction de G vers H, la famille (C}),~¢ étant la contraction de g vers b associée.
On donne & présent un résultat technique qu’on utilisera plus loin.

Proposition 4.2. Soient g, = g(an, Bn) une suite d’éléments de G, [a,b,c| un
élément de H et (r (n)) une suite de réels strictement positifs tendant vers 0 lorsque
n tend vers +00. Il y a équivalence entre

(1) la suite g, tend vers l'identité de G et la suite (0;(11) (gn)) tend vers [a,b,c]
dans H

et

(2) lim (r(n)"'p,) = % (b—ai) et lim r(n)"?(a, —1)= ! (a® +b%) — zg .

n—-+4oo n—-+oo 8

Preuve. Notons U un voisinage ouvert de 0 dans g et U’ un voisinage ouvert de
I'identité dans G tels que I’exponentielle réalise un difféomorphisme de U dans U’
dont on note log le difféomorphisme inverse. Supposons que (1) soit vérifié. Pour n
assez grand, g, appartient & U’ et c;(;) (gn) = expy C’;(il) (log gr) est un élément
de H bien défini que 'on notera [ay,, by, ¢,;]. Comme

In = Cr(n) ([an, bn, cn]) = expg (1(n) an ur + (1) by uz + r(n)? ¢, usz)
on obtient, par un calcul simple,

r(n)? ¢, sinh R(n)
2R(n) ’

(b, —iay)

gn=9 (cosh R(n) —i W >
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ol R(n) est tel que R(n)? = 1 r(n)?(a% +b2 —r(n)?c2), d’ott 'on déduit aisément
(2).

Réciproquement, partant de (2), on a immédiatement que g,, tend vers I'identi-
té de G. On vérifie alors que C’T_(:l) (log g,,) tend vers a vy + by + cvz a laide d'un
développement limité de log g,, par rapport a r(n), d’ou (1).

Remarque 4.3. Si (r(n)) est une suite de réels strictement positifs tendant vers
0 et [a,b,c] = expy (av1 + bvy + cvs) est un élément de H, la suite (g,) de G
définie par

gn = expg Cr(n) (av1 +bva + cv3) = ¢,y ([a,b,]) .

satisfait aux conditions du lemme précédent.

5. Contraction d’orbites coadjointes

Soit n un entier supérieur ou égal & 2. On a vu que l'orbite O,, de I’élément (n/2)u}
de g* sous l'action coadjointe de G est I’ensemble des points ziuj + xou3 + zzuj
de g* tels que x3 > 0 et

n 2

—x% —x%—i—x% = (7) .

2
Par suite, pour r > 0, I'image de O,, par la transposée C} de I'application C, est
I’ensemble des points 10} + z2v5 + x3v5 de h* tels que 23 > 0 et

2 2
rn
r? (—af —a3) + 2} = <2>

Fixons A > 0 et supposons que r soit une fonction r(n) de n telle que lirf (nr(n)?)
n—-1+0o0o

= 2)\. Lorqu’on fait tendre m vers 4+oo dans I’équation précédente, on obtient
x3 = \? ce qui permet de dire suivant [D] que les ellipsoides C:(n) (O,,) approxi-
ment la réunion des orbites Oy et O_, [D]. On va alors utiliser les paramétrages
des orbites O,, et O, obtenues aux paragraphes précédents pour traduire cela
d’une maniere plus précise ce qui permettra plus loin d’établir un lien entre le
comportement des orbites par contraction et celui des représentations associées.
On obtient aisément :

Proposition 5.1. Soient A > 0 et (r(n)),>0 une suite de réels strictement positifs
tels que lirf (nr(n)?) = 2.
n—-rroo

1) On a, pour tout z € C,

Jim Cr (wn (szn)) = (2)
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ce qui s’écrit également

dim Crn(X) (wn (ﬁ%)) =X ((2))

pour tout z € C et tout X € bh.
2) Inversement, si la suite de points &, = V() (zn, € D) de O, est telle que la
suite C ) (&) converge vers le point £ = 15 (z) dans b*, alors z, est équivalent a

z/v2An lorsque n tend vers +oo.

De maniere analogue, on a

Proposition 5.2. Soient A < 0 et (1(n))n<o une suite de réels strictement positifs
tels que lim (nr(n)?) = 2.
n——00

1) Pour tout z € C,

. . z o
o Gt (W (/2m| )) B

lim Cr/(;\)_(;() <¢n (m)) =X (a(—2))

pour tout z € C et tout X € h.
2) Inversement si la suite de points &, = ¥, (z,) (2, € D) de O, est telle que la
suite C:(n) (&) converge vers le point £ = 1y (—z) dans h*, alors z, est équivalent

a z/+/2|An| lorsque n tend vers —oc.

ou encore

6. Contraction de calculs de Berezin

Soit A un réel strictement positif. Pour tout entier n supérieur ou égal a 2, on
note B, l'isomorphisme unitaire de H) dans H,, tel que B, f;‘ = f, pour p entier
positif.

Proposition 6.1. Soit, pour tout n entier > 2, un opérateur A, de H,, et soit
A un opérateur de Hy. On suppose que la suite (|| A, ||op)est bornée et que, pour
tous z et 2’ dans C,

nEI—ir-loo Sn(An) (m , m) = Sy (A)(z, 7).

On a
1) Pour tous entiers positifs p et ¢, lim < A, f}, fi' >n=< Af;‘, f;‘ >-
n—-+4o0o
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2) On suppose de plus que la série 3 <o sup,>o | < An fi', fo >n |2 est conver-
gente. Alors, pour tout f dans H),

lim ||B,*A,B, f—Af|x=0.

n—-+00

Preuve. 1) On écrit la dernieére formule du paragraphe 2.4 dans le cas ou f = f'
et g = f;' et on fait dans I'intégrale du second membre le changement de variables

(2,2") = (2/vV2Xn, 2’ /v/2Xn). On obtient :

2
1 n—1
< Anfy s fg >n= ( ) / I, (2,2") dx dy dz’ dy’
P (2Am)? n D(0,v2xn)” (2:%)

ou I,(z,2") désigne

m ! 2 n n 2Z 27 \"?
P <\/2/\n> fa <\/2>\ > < An €y v <(1 o 2)\n)> '

On remarque que

n ! B " 2P nn+1)- n+p—1) W
f(m) Vot arye = m\/ '

tend vers f;(z') lorsque n tend vers +oc. Dot :

lim I,(z,2) = f’\( Nz < Aed,ed >y e~ 17722 o= 1217 /2X
Pour appliquer le théoreme de la convergence dominée a l'intégrale ci-dessus, on
remarque que, pour |z| < v2An et |2'| < V2An :
< HA € //\/mnn || Z/\/mHn
Clle //\/m”n e Z/\/mHn

o7 —n/2 % —n/2
1— 1- ==
¢ ( 2)\n> ( 2)\n)

n

n n
| <A ez’/\/2>\n’ ez/\/2)\n >n|

IN

IN

ou C' est une constante, ce qui donne

, . 27\ 272 2z \27?
I.(z, < C'IP || 1 2=
e < R (1-22) (1o 50

< C/|Zl|p|Z‘q6_|2|2/8>\6_‘ZI‘2/8)\

C’ désignant une constante. En effet, on peut remarquer que, si n > 8,

_ n_o _ n
2z \ 2 zz \* 2
11— — <[l1-—= < o—12I7/8X
( 2)\n> - ( 2)\n> =°
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pour |z| < V2An.

On peut alors conclure :
1
3 n n _ : !/ / /
nl—1>r—ir-1<>o <Anfy fl>a = oy /([:2 nEr-iI-loo I,(z, 2" )dxdydz'dy
= <Af)f)>x5.

2) Par linéarité et densité, il suffit de montrer le résultat pour f = fz;\ ou p est un
entier positif. Comme

B;lAanf;‘: E <Anf;7 fl? >n qu
920
on a

1By AnBn f = AFMR =D | < An fp £ >0 — < ALY £} >
q>0

Posons pour simplifier u,(q) =< A, f}', fi >n et u(q) =< Af;‘7 fq)‘ >. On va
montrer qu’il existe une série convergente ZqZO w(q) telle que pour tous n et g,
lun(q) — u(q)|* < w(q), ce qui compte tenu de 1) permettra de conclure. Posons
également v(q) = sup,>o| < A, f', f7 >n | La série Zqzov(q)2 converge et
d’autre part, pour tous n et q :

| 2

IN

un (@) * + [u(@)]* + 2|un(q)||u)]
v(q)? + u(q)|* + 2v(q)|u(q)] .

La série qui a pour terme général le second membre de cette derniere inégalité
converge, ce qui termine.

[un(q) —u(q)

IN

7. Contraction de la série discrete de SU(1,1)

Soient A un réel strictement positif et (r(n)),>2 une suite de réels strictement
positifs tels que lirf (nr(n)?) = 2X\. On va montrer ici que les représentations
n—-+oo

(Tn)n>2 de G se contractent vers la représentation py de H au sens de [MN].

Proposition 7.1. Soient (g,) une suite de G convergeant vers lidentité de G et
h un élément de H tels que lim ¢ ', (gn) = h. Pour z et 2’ dans C, on a
n—-+oo T(n)
!

z z
1. Sn n n T
”ﬂnfoo (T (9r)) <\/2/\n V2An

En particulier, pour z € C,

) = 5y (pa (1)) (2 2).

nkrfw Sn (7 (gn)) (\/217) = s (pa (h))(2)-
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Preuve. Cela découle des expressions des symboles doubles de Berezin des opéra-
teurs m,(g9) (g € G) et p(h) (h € H) des paragraphes 2 et 3 et de la proposition
4.2.

On va déduire des propositions 6.1 et 7.1 le résultat suivant:

Proposition 7.2. Soient (g,) une suite de G convergeant vers l'identité de G et
h un élément de H tels que lim ¢ (gn) = h.
n——4oo r(n)

1) Pour tous entiers positifs p et q, on a :

lim <m0 (gn) £y fq >n=<px(h) b fa >x

n

2) Pour tout élément f de Hy, on a

i (B3 (9n) Ba) £~ pa () Il = 0.

Preuve. Le point 1) résulte immédiatement de la proposition 7.1 et du point 1)
de la proposition 6.1 appliqué aux opérateurs A, = (g, ). Pour déduire le point
2) du point 2) de la proposition 6.1, nous allons montrer que, si p est un entier
positif donné, il existe une série convergente » >0 v(q) telle que, pour tous n > 0
et ¢ >0,

| < 7n (gn) 3 £3 >0 [P < 0(g).

Posons g, = g(ay, Bn). On a :

(Talgn) f3)(2) = \JCh i (=Buz+an) " @z — Ba)"
p
=\ O£+p—l(_BnZ + O‘n)_n_p Z Ogai(_ﬂn)p_kzk
k=0

(—1)P 7 CF uk(2)

[
M’E

0

IN

ou 'on a posé pour 0 < k < p:

—kgp—k k(_73 —n—p
uk(2) \V Cnp1@n B 72" (=B,2 + am)
— !
/ —k gp—k  —n— 1 B k+1
Cvl’Zerflanﬁg o pZCnJr}H»lfl <—a> z
n

1>0

Par suite

C! B
n I —k gp—k . —n—p_—ntpti-—1 n
< ug, fl-‘rk >n= On+p—lan6£ Qp, P i .
Ck-‘rl (079
n+k+1—-1
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et

. _ 1 Criprin)?
| <t Sl >n [P = Oyl PO |8, PR B, =P

k+1
Cn-‘rk:-‘rl—l

Compte tenu de I’hypotheése sur la suite (g,,), il existe des constantes positives
c1,co et c3 telles que, pour tout n > 0,

|an|2(k—p—n) < e, |ﬁn|2(p_k) <c2 nk7p7 |ﬂnan71|2l < C3l nl.

Il existe également une constante c4 telle que C’ﬁ 4p-1 S Ca nP.
D’autre part :

(Chipi)? (=1 (4p+l—1! (n4+p+1—1) (I+k)

C:ﬂgﬂq m+p—1!" (n+p—-1)! (n+l+k-11 12
e (14 R)!

o

< nPntp+l-Din+pt+i-1)

En utilisant la formule de Stirling on peut trouver une constante c; telle que, pour
tout entier [ > 1,

I+ k) )
( ;F'Q) < s edll L,

Au total, on obtient
| < gy flp >n P < con P+ p 41— 1)P R Fegledl

Choisissons alors un réel € > 0 tel que ecze® < 1. Il existe un entier positif N tel
que, pour tout [ > N et tout n > N,

1 -1
Lypti-l
l nl

et par suite

+1-1\""/1 pt+i-1\'
n 2 < 1 p L 131
| <up, flip > |7 < c6< A [T ) e
1—1\""
S Cg (1+p+]\/,> (56363)l

ce qui termine.

Supposons a présent que A soit un réel strictement négatif. On rappelle que
I’espace H ) de la représentation py coincide avec I’espace H_» de la représentation
p—x- Notons 7 lopérateur (unitaire) de H, défini par 7(f)(z) = f(—z) et par pj la
représentation de H dans H ) équivalente & py définie par py(h) = Topy(h)oT (h €
H). En utilisant la proposition 7.2 et le fait que m,(g(, 8)) = 7_,(g(@, 3)) pour
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g(a, B) € G, on montre que les représentations (7, ),<—2 de G se contractent vers
la représentation py de H. Plus précisément :

Proposition 7.3. Soient A < 0 et (r(n))n<—2 une suite de réels strictement
positifs tels que lim (nr(n)?) = 2\. Soient (g,) une suite de G convergeant vers
n——oo
Uidentité de G et h un élément de H tels que lim ¢ (g,) = h.
2 M)
1) Pour z et 2’ dans C, on a

/

z z
lim S, (7, (g9n _—, —
n—+-o0 (T (9n)) <\/ 220 V2\n

2) Pour tous entiers positifs p et q, on a :

) — 55 (pr (M)(—2.—2) = S1 (B (W) (2. 2).

Hm <y (gn) i S0 >n=<pr(h) fo, [ >x -

n——oo

3) Pour tout f dans Hy, on a

lim H(B:TlL Tn (gn) B—n) f - ﬁ/\ (h) f”)\ =0.

n——oo

On termine en traduisant en termes de fonctions spéciales le point 1) de la
proposition 7.2 ce qui donne comme dans [DR1] et [R] une formule de type Mehler-
Heine. On utilise ici les notations de [KV] relatives aux polynémes de Jacobi et de
Laguerre.

Proposition 7.4. Soient p et q deux entiers positifs tels que ¢ < p et x un réel.

On a

2
lim PP~ =""P=4) (cosh —x) = LZ*q(xQ).

n—too 4 \/’ﬁ

Preuve. Soit u un réel et g = g(cosh u, sinhu) € G. En passant en coordonnées po-
laires et en effectuant un développement en série dans l'intégrale donnant
<7 (9) fy, fi >n on obtient si ¢ <p:

P
n n _ Cﬂ+P*1 0 - —n—p/ i0 : p
<mn(9) [y fd >n=1| Ag— (e*” sinh u+cosh u) (e"” cosh u+sinhu)Pe

n+q—1

P
Cn+p71 —n/2

o 7n/27q77n/27p(cosh 2u)

CP
= | ==L (inh u)P~9(cosh w) "4 pP=a =P =9 (cosh 2u)

avec les notations de [KV], chapitre 6.

fiqeﬁ

2
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D’autre part, en utilisant [KV], p. 453, on vérifie que, si h = [0,z,0] € H,

(2))2¢!
(2A)Pp!

IO
<pa(h) £, [ >a= ()P (Aa) e ML q(ifQ)\)

On obtient alors le résultat annoncé en appliquant la proposition 7.2 1) a la suite

gn = g(cosh(y/N/2n x),sinh(y/N\/2nx)) et & h = [0, z,0].

8. Contraction des différentielles

Soient A un réel strictement positif et (r(n)),>2 une suite de réels strictement
positifs tels que lirf (nr(n)?) = 2\. On a immédiatement
n—-+0oo

Proposition 8.1. Pour X dans b, z et 2/ dans C, on a

i S0 (Coy (D) (o 2 ) = S doa (X)),

En particulier, pour z dans C,

s (@, Coon (X)) (2= ) =51 (02 (X))

Remarquons que la proposition précédente est la traduction en termes de symboles
de Berezin de la proposition 5.1. On peut alors énoncer un résultat analogue a la
proposition 7.2 au niveau infinitésimal :

Proposition 8.2. Pour X € b et P polynome,

lim ||B," dmy, (Crn) (X)) Bn P — dpx(X) P|[x = 0.

n—-—+o0o

Preuve. On commence par établir par une méthode similaire & celle de la preuve
du point 1) de la proposition 6.1 que pour tous p et g entiers positifs et pour tout
X dans b,

Hm < dmy (Criny (X)) f3, £ >n=<dpx (X) £}, [} >x -

n—-+4oo
On obtient alors le résultat annoncé en remarquant que, pour p entier positif et

X élément de b donnés, || B, dmy, (Cr(n) (X)) Bn f; — dpa(X) |13 peut s’écrire

Y| < dmn(Copny (X)) £ fi >0 = < dpa(X) £, £ >3 7
q=>0
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la somme du second membre étant en fait finie compte tenu des expressions de
dm, et dpy données dans les paragraphes 2.5 et 3.4.

Le résultat précédent peut aussi se retrouver a partir de la proposition sui-
vante relative a la contraction de fonctions quantifiables.

Proposition 8.3. Soient ¢, (2) = (1—22) "1 (un(2)+vn(2)Z) une suite de fonctions
quantifiables sur D (voir 2.6) et ¢(z) = u(z) +v(2)Z une fonction quantifiable sur
C (voir 3.5). On suppose que, pour tout compact K de C, la suite ¢,(z/v2An)
converge uniformément sur K wvers la fonction p(z).

1) Pour tous p et q entiers positifs, on a

Jim < Wpn) fyr s [ >n=<W(p) f3, f) >x .

2) Si on suppose de plus qu’il existe un entier ng tel que pour tout n, u, et v, sont
des polynomes de degré inférieur ou égal a ng, alors, pour tout polynéme P,

111}_1 HBgl W(‘)On)BnP_W(QO)P”/\ =0.

Preuve. 1) Posons u,(2) = > ;5 uR2®, v, (2) = > k>0 oz u(z) = > k>0 ugz®
et v(2) = k50 vz*. En considérant les intégrales

/|z|_R“”( ) () + (o

pour R €]0,1[, on voit que 'hypothese sur la suite (¢,,) implique que
lirf (1/vV2 ) u} = uy, et lirf (1/V2 )Pl = .

D’autre part, d’apres les expressions de W (p,,) et W(p) données plus haut,
on a, si ¢ <p, <Wl(pn) fy, fi >n=0cet, siq>p,

) —wv(z)) dz

C«:D
n n o n+p—1 P\ n D 5
< W((pn) fp ) fq >n= Cg+q_1 ((1 + ﬁ)uq—p + EU p)
qui tend, lorsque n tend vers +oo, vers
(2X\)4¢q!
» (Ug—p + 2ApVg—pt1) =< W(p) p>\7 f

Le point 2) découle de

1B, W(pn) B P=W () PR =D [ <W(ea) [y, [ >0 = < W) 3 f2 >x
q>0

car la somme du second membre est finie.

Remarque 8.4. Soit A un réel strictement négatif. On obtient aisément les résul-

tats analogues aux propositions 8.1, 8.2 et 8.3 précédentes, décrivant la contraction
de la suite de représentations (dm,,)n,<—_2 vers la représentation dp).



42 Benjamin Cahen

Références

[ACG] Arnal D., Cahen M. and Gutt S., Representations of compact Lie groups
and quantization by deformation, Acad. R. Belg. Bull. Sc. 5e série, LXXIV, 4-5
(1988) 123-141.

[ACGZ] Arnal D., Cahen M., Gutt S. and Zahir H., A Moyal type star product
on Hermitian symmetric spaces, Acad. R. Belg. Bull. Sc. 6° série, II, 1-3 (1991)
91-103.

[Cal] Cahen B., Deformation Program for Principal Series Representation, Lett.
Math. Phys. 36 (1996) 65-75.

[Ca2] Cahen B., Quantification d’une orbite massive d’'un groupe de Poincaré
généralisé, C.R. Acad. Sci. Paris t. 325, série I (1997) 803-806.

[Ca3] Cahen B., Quantification d’orbites coadjointes et théorie des contractions,
Journ. Lie Theory 11 (2001) 257-272.

[Cad] Cahen B., Contraction de SU(2) vers le groupe de Heisenberg et calcul de
Berezin, Beitr. Algebra Geom. 44, 2 (2003) 581-603.

[CD] Cotton P. and Dooley A.H., Contraction of an Adapted Functional Calculus,
Journ. Lie Theory 7, 2 (1997) 147-164.

[CiD] Cishahayo C. and De Bigvre S., On the contraction of the discrete series of
SU(1,1), Ann. Inst. Fourier, Grenoble 43, 2 (1993) 551-567.

[CGR1] Cahen M., Gutt S. and Rawnsley J., Quantization on Kéhler manifolds
I : Geometric interpretation of Berezin quantization, J. Geom. Phys. 7, 1 (1990)
45-62.

[CGR2] Cahen M. Gutt S. and Rawnsley J., Quantization on Ké&hler manifolds
111, Lett. Math. Phys. 30 (1994) 291-305.

[D] Dooley A.H., Contractions of Lie groups and applications to analysis, in “Top-
ics in Modern Harmonic Analysis” Rome, Ist. di Alta Mat (1983) 483-515.

[DR1] Dooley A.H. and Rice J.W., On contractions of semisimple Lie groups,
Trans. Amer. Math Soc. 289, 1 (1985) 185-202.

[DR2] Dooley A.H. and Rice J.W., Contractions of rotation groups and their rep-
resentations, Math. Proc. Camb. Phil. Soc. 94 (1983) 509-517.

[F] Folland B., Harmonic Analysis in Phase Space, Princeton Univ. Press, 1989.

[IW] Inonu E. and Wigner E.P., On the contraction of groups and their represen-
tations, Proc. Nat. Acad. Sci. USA 39 (1953) 510-524.

[KV] Vilenkin N.Ja. and Klimyk A.V., Representations of Lie groups and special



Contraction de SU(1,1) vers le groupe de Heisenberg 43

functions, volume 1, Kluwer acad. Publishers, 1991.

[MN] Mickelsson J. and Niederle J., Contractions of Representations of de Sitter
Groups, Commun. math. Phys. 27 (1972) 167-180.

[Re] Renaud J., The contraction of the SU(1,1) discrete series of representations
by means of coherent states, Journ. Math. Phys. 37,7 (1996) 3168-3179.

[R] Ricci F., A Contraction of SU(2) to the Heisenberg Group, Mh. Math. 101
(1986) 211-225.

[RR] Ricci F. and Rubin R.L., Transferring Fourier Multipliers from SU(2) to the
Heisenberg Group, Amer. Journ. Math. 108 (1986) 571-588.

[K] Kostant B., Quantization and unitary representations, in Lecture Notes in
Math. 170, Springer Berlin (1970) 87-208.

[W] Wildberger N.J., Convexity and unitary representations of a nilpotent Lie
group, Invent. Math. 89 (1989) 281-292.

[Wo] Woodhouse N.M.J., Geometric Quantization, Clarendon Press Oxford (1992).

Université de Metz,

Département de mathématiques,

Ile du Saulcy 57045 Metz cedex 01, France.
E-mail: cahen@poncelet.sciences.univ-metz.fr.



