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Contraction de SU(1,1) vers le groupe de Heisenberg

Benjamin Cahen

Résumé

On montre que les représentations de la série discrète de SU(1, 1) se con-

tractent au sens de Mickelsson et Niederle [MN] vers les représentations uni-

taires irréductibles du groupe de Heisenberg en utilisant le calcul de Berezin

sur les orbites coadjointes associées à ces représentations. Une version in-

finitésimale de ce résultat est obtenu en étudiant le comportement par con-

traction de fonctions hamiltoniennes sur ces orbites coadjointes.

Abstract

We show that the discrete series representations of SU(1, 1) can be con-

tracted in the sense of Mickelsson and Niederle [MN] to the unitary irre-

ducible representations of the Heisenberg group by use of Berezin calculus

on the coadjoint orbits associated to these representations. An analogous

result at the Lie algebras level is obtained by considering Hamiltonian func-

tions on these coadjoint orbits.

Mots clés : Groupes de Lie, représentations, série discrète, orbites coadjointes,
contractions, calcul de Berezin.
Mathematics Subject Classification : 22E46, 53D50, 81S10.

1. Introduction

Les contractions de groupes et d’algèbres de Lie ont été introduites par E. Inonu
et E.P. Wigner [IW]. Soient G et H deux groupes de Lie réels connexes de même
dimension et d’algèbres de Lie respectives g et h. Une contraction de g vers h est
une famille (Cr)r∈]0,1[ d’isomorphismes de h dans g telle que

lim
r→0

C−1
r [Cr (X) , Cr (Y )]g = [X,Y ]h ,
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pour tous X et Y éléments de h [D]. Si l’on suppose que (Cr)r∈]0,1[ est une famille
bornée de l’espace des applications linéaires de h dans g, on peut vérifier qu’il existe
un voisinage U de 0 dans h tel que, pour tout r ∈]0, 1[, cr = expG ◦Cr ◦ exp−1

H

définisse un difféomorphisme de U dans cr(U) et que

lim
r→0

c−1
r (cr (x) cr (y)−1) = x y−1

pour tous x et y assez proches de l’identité de H. La famille (cr)r∈]0,1[ est alors
appelée contraction de G vers H [MN], [R].

Les contractions permettent de relier les représentations de deux groupes de
Lie. Ainsi, J. Mickelsson et J. Niederle ont montré dans [MN] que les représentations
de masse non nulle du groupe de déplacements Rn+1×SO(n+1) et les représenta-
tions de masse carrée positive du groupe de Poincaré généralisé Rn+1 × SO0(n, 1)
peuvent être obtenues par contraction (c’est-à-dire comme limites en un sens qui
est précisé dans [MN]) de représentations de la série principale de SO0(n+ 1 , 1).
Plus généralement, A.H. Dooley et J.W. Rice ont montré dans [DR2] que les
représentations de la série principale d’un groupe de Lie connexe semi-simple
non compact se contractent vers les représentations génériques de son groupe de
déplacements de Cartan. Dans le même ordre d’idées mais avec un type de contrac-
tion différent de ceux des exemples précédents, F. Ricci a étudié une contraction
des représentations unitaires irréductibles de SU(2) vers les représentations uni-
taires irréductibles non dégénérées du groupe de Heisenberg [R].

En dehors de leur intérêt propre, les contractions de représentations ont
des applications diverses en analyse harmonique : obtention de formules de type
Mehler-Heine pour les fonctions spéciales [DR2], [R], transport de résultats sur les
multiplicateurs de Fourier d’un groupe de Lie à un autre [RR].

A.H. Dooley a proposé dans [D] d’étudier les contractions de représentations
de groupes de Lie dans le cadre de la méthode des orbites. On peut observer en effet
dans divers exemples que, lors de la contraction d’une famille de représentations
unitaires irréductibles vers une représentation unitaire irréductible, les orbites
coadjointes associées aux représentations de cette famille se déforment vers l’orbite
coadjointe associée à la représentation contractée. Une application des idées de [D]
à l’étude d’une contraction des représentations de la série discrète de SU(1, 1) vers
des représentations unitaires irréductibles de R2 × SO0(1, 1) a été donnée dans
[CiD] et [Re].

Pour relier directement le comportement par contraction des représentations
à celui des orbites coadjointes, P. Cotton et A.H. Dooley ont proposé dans [CD]
d’utiliser la notion de calcul symbolique adapté [Ca1]. Soient G un groupe de
Lie connexe d’algèbre de Lie g et π une représentation unitaire irréductible de G
associée par la méthode des orbites à une orbite coadjointe O de G. Notons, pour
X élément de g, X̃ la fonction définie sur l’orbite O par

X̃(ξ) =< ξ,X > (ξ ∈ O ⊂ g∗) .

L’orbite O étant munie de sa 2-forme symplectique de Kirillov, X̃ est l’hamiltonien
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du champ de vecteurs invariant sur O défini par X ∈ g. Un calcul symbolique
sur O est une correspondance linéaire bijective f → W (f) entre une classe de
fonctions sur O (appelées symboles) et une classe d’opérateurs sur l’espace H de
la représentation π. Un calcul symbolique W sur O est dit adapté lorsque les
fonctions X̃ (X ∈ g) sont des symboles et qu’il existe un sous-espace dense D de
H tel que, pour tous X dans g, ϕ dans D,

W (i X̃)ϕ = dπ (X)ϕ .

En pratique, lorsque que l’orbite O est symplectomorphe à R2n muni de sa 2-
forme symplectique usuelle (n = 1/2 dim O), la transformation de Weyl [F] donne
fréquemment un calcul symbolique adapté sur O [Ca2], [W]. Lorsque l’orbite O
est une variété kaehlérienne, le calcul de Berezin défini par une méthode d’états
cohérents conduit en général également à un calcul symbolique adapté sur O (voir
[Ca1] et ses références).

L’exemple étudié au moyen de calculs symboliques dans [CD] est celui de la
contraction des représentations de la série principale de SL(2,R) vers les représen-
tations génériques de R2×SO(2). Les orbites coadjointes associées à ces représenta-
tions sont des cylindres et les calculs symboliques adaptés considérés sont dérivés
de la transformation de Weyl sur R2. Cotton et Dooley montrent alors que le
calcul symbolique introduit sur une orbite coadjointe associée à une représentation
générique de R2 × SO(2) est limite (en un sens précisé dans [CD]) de calculs
symboliques sur les orbites coadjointes associées aux représentations de la série
principale de SL(2,R) ce qui permet d’obtenir, dans ce cas particulier, une version
infinitésimale des résultats de [DR1]. Des résultats analogues ont été obtenus dans
[Ca3] où une contraction des représentations de la série principale de SO0(n+1, 1)
vers les représentations massives du groupe de Poincaré généralisé Rn+1×SO0(n, 1)
a été étudiée à l’aide de calculs symboliques adaptés construits sur les orbites
coadjointes associées en combinant transformation de Weyl et calcul de Berezin.

Dans [Ca4], on a étudié la contraction des représentations unitaires irréducti-
bles de SU(2) vers les représentations unitaires irréductibles non dégénérées du
groupe de Heisenberg introduite dans [R] en utilisant le calcul de Berezin sur
les orbites coadjointes associées. Dans cet exemple, à la différence des exemples
précédents, les opérateurs des représentations considérées sont des opérateurs du
calcul symbolique i.e. correspondent dans le calcul de Berezin à des fonctions,
appelées star-exponentielles dans [ACG], sur les orbites coadjointes associées à ces
représentations. Les résultats relatifs à la contraction des représentations peuvent
se lire sur le comportement des star-exponentielles et on a ainsi pu donner en
particulier une preuve très simple du principal résultat de [R].

Le but du présent travail est d’introduire et d’étudier de façon analogue une
contraction des représentations de la série discrète de SU(1, 1) vers les représenta-
tions unitaires irréductibles non dégénérées du groupe de Heisenberg. Les représen-
tations de la série discrète de SU(1, 1) et les représentations unitaires irréductibles
non dégénérées du groupe de Heisenberg peuvent être réalisées comme représenta-
tions induites holomorphes, les orbites coadjointes correspondantes admettent des
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structures kaehlériennes invariantes et on dispose sur ces orbites du calcul de
Berezin qui définit un calcul symbolique adapté. Nos principaux résultats (proposi-
tions 6.1 et 7.2) permettent de déduire la contraction considérée des représentations
de la série discrète de SU(1, 1) vers les représentations unitaires irréductibles non
dégénérées du groupe de Heisenberg de la convergence des symboles de Berezin
des opérateurs de ces représentations. En particulier, on montre que la contraction
de représentations étudiée s’effectue au sens de [MN] et que les coefficients des
représentations unitaires irréductibles de H sont limites de suites de coefficients
de représentations unitaires irréductibles de SU(1, 1) ce qui constitue l’analogue
du principal résultat de [R]. On étudie également de façon similaire la contrac-
tion des différentielles des représentations de la série discrète de SU(1, 1) vers les
différentielles des représentations unitaires irréductibles du groupe de Heisenberg
à partir du comportement des fonctions hamiltoniennes X̃ (X ∈ g).

Le plan de cet article est le suivant. Dans le paragraphe 2 on décrit rapidement
la construction, par quantification géométrique d’orbites coadjointes, de la série
discrète de SU(1, 1), on introduit le calcul de Berezin sur ces orbites coadjointes
et on donne l’expression des star-exponentielles. Dans le paragraphe 3, on procède
de même pour les représentations unitaires irréductibles non dégénérées de H.
On peut remarquer que les fonctions quantifiables (au sens de la quantification
géométrique, voir [Wo]) sont dans les cas considérés ici des symboles du calcul de
Berezin et que le calcul symbolique issu de la quantification géométrique cöıncide
avec celui défini par le calcul de Berezin sur la classe des fonctions quantifiables
[CGR1]. Dans le paragraphe 4, on précise la contraction de SU(1, 1) vers H utilisée
et, dans le paragraphe 5, on traduit en termes de fonctions hamiltoniennes X̃
(X ∈ g), la déformation des orbites coadjointes observée lors de cette contraction.
On établit dans le paragraphe 6 un résultat reliant le comportement d’une suite
d’opérateurs agissant sur les espaces des représentations de la série discrète à
celui de la suite des symboles de Berezin de ces opérateurs. On en déduit dans
les paragraphes 7 et 8 les résultats cités précédemment relatifs à la contraction
des représentations de la série discrète de SU(1, 1) et de leurs différentielles. On
termine en étudiant (paragraphe 8) la contraction de suites d’opérateurs dont les
symboles de Berezin sont des fonctions quantifiables.

2. La série discrète de SU(1,1)

Dans ce paragraphe, on donne une construction des représentations de la série
discrète de SU(1, 1) par quantification géométrique de certaines orbites coadjointes
de ce groupe suivant la méthode des orbites de Kostant et Kirillov (voir par ex-
emple [K]). La vérification des résultats exposés, aisée, est laissée au lecteur. La
plupart de ces résultats peuvent par ailleurs se retrouver dans [ACG] et [CGR2].
Dans le paragraphe 3 suivant, on procédera de même pour les représentations
unitaires irréductibles du groupe de Heisenberg.
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2.1. (Généralités) Dans toute la suite, G désigne le groupe SU(1, 1) des matrices

g (α, β) =
(
α β

β α

)
où α et β sont des nombres complexes tels que |α|2 − |β|2 = 1.

L’algèbre de Lie g = su (1, 1) de G admet pour base

u1 =
1
2

(
0 −i
i 0

)
, u2 =

1
2

(
0 1
1 0

)
, u3 =

1
2

(
−i 0
0 i

)
.

Notons (u∗1, u
∗
2, u

∗
3) la base de g∗ duale de la base (u1, u2, u3) et g · ξ l’action

coadjointe de g ∈ G sur ξ ∈ g∗.
Soit R un réel non nul. L’orbite de Ru∗3 sous l’action coadjointe de G est

lorsque R > 0 (respectivement R < 0) la nappe (x3 > 0) (respectivement (x3 < 0))
de l’hyperbolöıde formé des points ξ = x1 u

∗
1 + x2 u

∗
2 + x3 u

∗
3 tels que

−x2
1 − x2

2 + x2
3 = R2.

2.2. (Orbites coadjointes associées à la série discrète) Si n est un entier posi-
tif supérieur ou égal à 2, notons On l’orbite coadjointe de ξn = (n / 2)u3 ∈ g∗.
Le stabilisateur de ξn pour l’action coadjointe est le tore T formé des matrices
g (eiθ , 0) (θ ∈ R) dont l’algèbre de Lie est Ru3.

Le groupe G = SU(1, 1) se complexifie en SL(2,C). Notons P la polarisation
complexe positive au point ξn engendrée par u1+iu2 et u3. Le sous-groupe connexe
P de SL(2,C) dont l’algèbre de Lie est P est formé des matrices(

a 0
c 1/a

)
où a ∈ C \ (0) et c ∈ C . L’ensemble G.P est alors l’ouvert de SL(2,C) formé des
matrices (

a b
c d

)
telles que |b| < |d|.

On note D le disque unité ouvert du plan complexe. On pose pour z ∈ C

σ(z) =
(

1 z
0 1

)
et pour z ∈ D

σ0(z) =
1√

1− zz

(
1 z
z 1

)
.

Les identifications
D ' G.P /P ' G/T ' On
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données par les applications

z → σ(z)P → σ0(z)T → σ0(z) · ξn

conduisent à la carte ψn : D → On de l’orbite On donnée par

ψn(z) =
n

2

(
z + z

1− zz
u∗1 +

z − z

i(1− zz)
u∗2 +

1 + zz

1− zz
u∗3

)
.

Le groupe G agit sur D par transformations homographiques :

g(α, β) · z =
αz + β

βz + α

et cette action correspond dans les identifications précédentes à l’action naturelle
de G sur G.P/P et à l’action coadjointe de G sur On.

Remarquons que la 2-forme de Kirillov de On définie par

Ωn(ξ) (X(ξ), Y (ξ)) =< ξ , [X,Y ] >

pour X et Y dans g et ξ dans On, s’écrit dans la carte donnée par ψn :

ωn =
in

(1− zz)2
dz ∧ dz.

2.3. (Représentations de la série discrète) On va retrouver ici, par quantification
géométrique G-invariante de la variété symplectique (D, ω), la représentation de
la série discrète de G associée à l’orbite On. Le caractère χ0

n de T défini par
dχ0

n = i ξn |R u3 se prolonge en un caractère χn de P défini par

χn

(
a 0
c 1/a

)
= a−n .

On considère alors le fibré holomorphe Ln = G.P ×χn
C → G.P/P ' D que l’on

munit de la connexion ∇n et de la structure hermitienne hn définies comme suit.
Le fibré Ln étant trivialisé au moyen de la section s0 donnée par

s0(z) = [σ(z), 1]

on pose
∇n

X(f.s0) = (X(f)(z) + αn(X)(z)f(z)) s0(z)

pour f fonction et X champ de vecteurs de classe C∞ sur D, αn désignant la
1-forme sur D définie par

αn = − nz

1− zz
dz.

On pose également pour z ∈ D, u ∈ C et v ∈ C :

hn(z)(u s0(z), v s0(z)) = (1− zz)nuv.
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La connexion∇n admet pour courbure −iωn et laisse invariante la structure hermi-
tienne hn. Le triplet (Ln,∇n, hn) constitue alors une pré-quantification de (D, ωn).
La polarisation P engendre la polarisation géométrique F de l’orbite On définie
par

Fg·ξn
=< (Adg.X)(g · ξn), X ∈ P >

qui correspond dans la carte donnée par ψn à la polarisation géométrique de D
engendrée par le champ de vecteurs (1− zz)∂z. Les sections F-polarisées du fibré
Ln sont donc les sections holomorphes de Ln. L’action naturelle de G sur ces
sections :

(g · s)(z) = g · s(g−1 · z)

donne une représentation unitaire irréductible de G dans l’espace de Hilbert des
sections holomorphes s de Ln telles que

‖s‖2 =
∫

D
hn(z)(s(z), s(z))ωn(z) < +∞.

Les sections holomorphes de Ln s’écrivent s = f.s0 où f est une fonction holomor-
phe sur D. La représentation précédente deG est alors équivalente à la représentation
πn de G réalisée par

(πn (g(α, β)) f)(z) = (α− β z)−n f(g(α, β)−1 · z)

dans l’espace de Hilbert Hn des fonctions f holomorphes sur D telles que

‖f‖2n =
∫

D
|f(z)|2 dµn(z) < +∞

où dµn(z) = n−1
π (1 − zz)n−2 dx dy, dx dy désignant la mesure de Lebesgue sur

C ' R2. Une base orthonormée de Hn est formée par les polynômes fn
p (z) =√

Cp
n+p−1 z

p où p ∈ N (la notation Cp
n désignant le coefficient binômial n!

p!(n−p)! ).

2.4. (Calcul de Berezin [CGR1]) Soit t ∈ D. Il existe un unique élément en
t de Hn,

appelé état cohérent, tel que, pour tout f dans Hn,

< f , en
t >n= f (t) .

< , >n désignant le produit hermitien de Hn. On obtient aisément:

en
t (z) = (1− t z)−n .

Le symbole de Berezin d’un opérateur A de Hn est la fonction sn (A) définie sur
D par

sn (A)(z) =
< Aen

z , e
n
z >n

< en
z , e

n
z >n

.
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et le symbole double de Berezin d’un opérateur A de Hn est la fonction :

Sn(A)(z, z′) =
< Aen

z′ , en
z >n

< en
z′ , en

z >n

qui est définie sur D2 puisque < en
z′ , en

z >n 6= 0 pour tous z et z′ dans D, holomor-
phe en la variable z et antiholomorphe en la variable z′ et donc déterminée par sa
restriction Sn(A)(z, z) = sn(A)(z) à la diagonale de D2.

Si A est un opérateur de Hn , f ∈ Hn et z ∈ D, on a la formule suivante qui
permet de retrouver l’opérateur A à partir de son symbole double [CGR1] :

Af (z) =
∫

D
f(z′)Sn(A)(z, z′) < en

z′ , en
z >n dµn (z′) .

On en déduit la formule suivante qui sera utilisée plus loin. Pour f, g dans Hn, on
a

< Af, g >n=
∫

D2
f(z′) g(z)Sn(A)(z, z′) < en

z′ , en
z >n dµn(z) dµn(z′) .

2.5. (Star-exponentielle) On va donner ici l’expression des symboles de Berezin
des opérateurs de la représentation πn et de sa différentielle dπn.

On obtient immédiatement, si g = g (α, β) ∈ G :

Sn(πn(g))(z, z′) = (α− α z z′ − β z + βz′)−n (1− zz′)n

puis
sm(πm (g))(z) = (α− α z z − β z + βz)−n (1− zz)n.

D’autre part, la différentielle de la représentation πn est donnée par

dπn (u1) f(z) =
n

2
i z f(z) +

1
2
i (z2 + 1) f ′(z)

dπn (u2) f(z) =
n

2
z f(z) +

1
2

(z2 − 1) f ′(z)

dπn (u3) f(z) =
n

2
i f(z) + i z f ′(z)

pour f ∈ Hn. On en déduit que

Sn(dπn (u1))(z, z′) = i
n

2
z + z′

1− zz′

Sn(dπn (u2))(z, z′) =
n

2
z − z′

1− zz′

Sn(dπn (u3))(z, z′) = i
n

2
1 + zz′

1− zz′

Par suite, pour tout X dans g, on a

sn (dπn (X))(z) = i X̃ (ψn(z))
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ce qui exprime que le calcul de Berezin définit un calcul symbolique adapté selon
la terminologie de [Ca3].

2.6. (Fonctions quantifiables) Les fonctions quantifiables au sens de la quantifica-
tion géométrique [CGR1], [Wo] sont par définition les fonctions ϕ de classe C∞

sur D dont le champ de vecteurs hamiltonien Xϕ est tel que [Xϕ, X] ∈ F pour
tout X ∈ F . Comme la polarisation F est engendrée par (1− zz)∂z, les fonctions
quantifiables sont ici les fonctions ϕ sur D du type

ϕ(z) = (1− zz)−1(u(z) + v(z)z)

où u et v sont des fonctions holomorphes sur D. La quantification géométrique
associe à une telle fonction ϕ l’opérateur Wn(ϕ) de Hn défini par

Wn(ϕ) = i∇n
Xϕ

+ ϕ = iXϕ + u

où Xϕ désigne le champ de vecteurs hamiltonien de ϕ. On vérifie que le symbole
de Berezin sn(Wn(ϕ)) de l’opérateur Wn(ϕ) est la fonction ϕ. Autrement dit, le
calcul symbolique issu de la quantification géométrique cöıncide avec le calcul de
Berezin sur la classe des fonctions quantifiables [CGR1].

2.7. (Série discrète “antiholomorphe”) Soit n un entier inférieur ou égal à −2.
On note comme plus haut On l’orbite sous l’action coadjointe de G de l’élément
ξn = (n/2)u∗3 de g∗. On considère la polarisation P− au point ξn engendrée par
u1 − iu2 et u3, P− le sous-groupe connexe de SL(2,C) d’algèbre de Lie P− et χn

le caractère de P− défini par

χn

(
a b
0 1/a

)
= a−n .

Comme au paragraphe 2.2 les applications

z → σ−(z)P− → σ−0 (z)T → σ−0 (z) · ξn

où, pour z ∈ D, on a posé σ−(z) = σ(z)tr et σ−0 (z) = σ0(z)tr (tr désignant la
transposition), donnent les identifications

D ' G.P− /P− ' G/T ' On

ainsi que la carte ψn : D → On de l’orbite On définie par

ψn(z) =
n

2

(
z + z

1− zz
u∗1 −

z − z

i(1− zz)
u∗2 +

1 + zz

1− zz
u∗3

)
.

L’action coadjointe de G sur On correspond dans cette carte à l’action de G sur
D donnée par

g(α, β) · z =
αz + β

βz + α
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et la 2-forme de Kirillov s’écrit

ωn =
−ni

(1− zz)2
dz ∧ dz.

On forme comme au paragraphe 2.3 le fibré Ln = G.P− ×χn C que l’on trivialise
au moyen de la section s−0 : z → [σ−(z), 1] et que l’on munit de la structure her-
mitienne hn et de la connexion ∇n définies par des formules analogues à celles du
paragraphe 2.3 obtenues en y remplaçant n par −n (et s0 par s−0 ). La polarisation
géométrique de On induite par P− correspond à la polarisation géométrique de
D engendrée par le champ de vecteurs (1 − zz)∂z et l’action de G sur les sec-
tions polarisées du fibré Ln (qui sont les sections holomorphes de Ln) conduit à
la représentation πn de G réalisée dans l’espace de Hilbert H−n (que l’on notera
Hn) par

πn(g(α, β)) = π−n(g(α, β)).

Les états cohérents définis par

en
t (z) = (1− t z)n

permettent de définir comme au paragraphe 2.4 le calcul de Berezin qui donne
un calcul symbolique adapté. D’autre part, les fonctions quantifiables sont comme
au paragraphe 2.6 du type ϕ(z) = (1 − zz)−1(u(z) + v(z)z) où u et v sont des
fonctions holomorphes sur D et la quantification géométrique associe à une telle
fonction ϕ l’opérateur

Wn(ϕ) = i∇n
Xϕ

+ ϕ = iXϕ + u.

On vérifie que le symbole (simple) de Berezin de l’opérateur Wn(ϕ) est la fonction
ϕ.

3. Les représentations unitaires irréductibles du
groupe de Heisenberg

3.1. Soient H le groupe de Heisenberg de dimension 3, h l’algèbre de Lie de H et
(v1, v2, v3) une base de h dans laquelle les relations de commutation sont

[v1, v2] = v3 , [v1, v3] = [v2, v3] = 0 .

On notera [a, b, c] l’élément exp (a v1 + b v2 + c v3) de H (a, b, c étant 3 réels). La
multiplication de H est donnée par

[a, b, c] . [a′, b′, c′] = [a+ a′ , b+ b′ , c+ c′ +
1
2

(ab′ − a′b)] .

Soit (v∗1 , v
∗
2 , v

∗
3) la base de h∗ duale de (v1, v2, v3). L’action coadjointe de H sur h∗

est

[a, b, c] · (x1 v
∗
1 + x2 v

∗
2 + x3 v

∗
3) = (x1 + b x3) v∗1 + (x2 − a x3) v∗2 + x3 v

∗
3
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et par suite l’orbite coadjointe d’un élément ξ de h∗ tel que v∗3 (ξ) = λ est le plan
(x3 = λ) lorsque λ 6= 0 et est réduite à {ξ} lorsque λ = 0.

On suppose dans toute la suite λ 6= 0 et on note χ0
λ le caractère du centre de

H défini par
χ0

λ ([0, 0, c]) = eicλ .

D’après le théorème de Stone-von Neumann [F], il existe une représentation uni-
taire et irréductible de H, unique à équivalence unitaire près, dont la restriction
au centre de H est χ0

λ. On va rappeler ici rapidement comment la méthode des
orbites permet de construire cette représentation comme représentation induite
holomorphe.

3.2. Soit Oλ l’orbite coadjointe de ξλ = λ v∗3 ∈ h∗. Notons ε le réel qui vaut 1 si
λ > 0 et −1 si λ < 0. Soient Pε ⊂ hC la polarisation complexe positive au point
ξλ engendrée par v1 + i ε v2 et v3 et Pε le sous groupe connexe de HC d’algèbre de
Lie Pε. On remarque que tout élément g de HC s’écrit de façon unique

g = expα (v1 − i ε v2) exp (β (v1 + i ε v2) + γ v3)

où α, β, γ appartiennent à C.
On en déduit que l’espace homogène HC/Pε s’identifie à C au moyen de

l’application qui à z élément de C associe la classe de

σλ(z) = exp
( z

2iλ
(−ε v1 + i v2)

)
.

D’autre part, on peut identifier l’orbite Oλ à C à l’aide de l’application

ψλ : z → (Rez) v∗1 + ε (Imz) v∗2 + λ v∗3 .

L’action naturelle de HC sur HC/Pε induit alors une action holomorphe de HC

sur C donnée par

exp (a v1 + b v2 + c v3) · z = z + (b− ε a i)λ

pour a, b, c ∈ C et z ∈ C, qui prolonge l’action coadjointe de H sur Oλ ' C.
La 2-forme de Kirillov de l’orbite Oλ s’écrit dans la carte donnée par ψλ :

ωλ =
i

2|λ|
dz ∧ dz.

3.3. Soit χλ le prolongement de χ0
λ à Pε défini par

χλ (exp(β(v1 + i ε v2) + γ v3)) = eiγλ

pour β, γ ∈ C. On forme alors le fibré holomorphe Lλ = HC × χλ C au-dessus de
Oλ ' C que l’on trivialise au moyen de la section holomorphe s0 : z → [σλ(z), 1].
On munit Lλ de la connexion ∇λ donnée par

∇λ
X(f.s0) = (X(f)(z) + αλ(X)(z)f(z)) s0(z)



30 Benjamin Cahen

où αλ = −(z/2|λ|)dz et de la structure hermitienne ∇λ-invariante hλ définie par

hλ(z)(s0(z), s0(z)) = exp(−zz/2|λ|).

Les sections du fibré Lλ polarisées pour la polarisation géométrique de D induite
par Pε sont les sections holomorphes de Lλ. L’action naturelle deH sur ces sections
permet d’obtenir une représentation unitaire irréductible de H dans l’espace de
Hilbert des sections holomorphes s telles que

‖s‖2 =
∫

C
hλ(z)(s(z), s(z))ωλ(z) < +∞.

En utilisant la trivialisation précédente de Lλ, on va donner une réalisation ρλ de
cette représentation dans l’espace de Hilbert Hλ des fonctions entières f : C → C
telles que

‖f‖2λ =
1

2π|λ|

∫
C
|f(z)|2 e−|z|

2/2|λ| dx dy < +∞

où dx dy désigne la mesure de Lebesgue sur R2 ' C.
On obtient

ρλ([a, b, c]) f(z) = exp(ic λ+
1
4
(εb+ ai)(2z + (−b+ ε ai)λ) f(z + λ(−b+ ε ai)) .

Une base hilbertienne deHλ est formée par les fonctions fλ
k (z) = (1/

√
(2|λ|)k k !) zk

où k ∈ N.

3.4. Soit t ∈ C. L’évaluation f → f(t) étant une forme linéaire continue sur
l’espace de Hilbert Hλ (voir [F] par exemple), il existe un “état cohérent” eλ

t ∈ Hλ

tel que
< f, eλ

t >λ= f(t)

pour tout f dans Hλ. On obtient :

eλ
t (z) = exp ((1/2|λ|) z t) .

Si A est un opérateur deHλ, on peut alors définir, comme au paragraphe précédent,
le symbole de Berezin sλ (A) de A et le symbole double de Berezin Sλ (A) qui sont
des fonctions définies respectivement sur C et sur C2.

On dispose également des formules intégrales analogues à celles du 2.3. per-
mettant d’exprimer, si f et g appartiennent à Hλ , A (f) et < A (f) , g >λ à partir
de Sλ (A). En particulier, on a

Sλ (ρλ ([a, b, c]))(z, z′) = exp
(
ic λ+

1
2

(ε b+ i a) z +
1
2

(−ε b+ a i) z′ − |λ|
4

(a2 + b2)
)



Contraction de SU(1,1) vers le groupe de Heisenberg 31

pour a, b, c, dans R et z, z′ dans C. D’autre part, la différentielle dρλ de la représen-
tation ρλ étant donnée par

(dρλ (v1) f)(z) =
1
2
i z f(z) + λ ε i f ′(z)

(dρλ (v2) f)(z) =
1
2
ε z f(z)− λ f ′(z)

(dρλ (v3) f)(z) = i λ f(z)

on obtient

Sλ (dρλ (v1))(z, z′) = i
z + z′

2

Sλ (dρλ (v2))(z, z′) = ε
z − z′

2
Sλ (dρλ (v3))(z, z′) = i λ

d’où l’on déduit :
sλ (dρλ (X))(z) = iX̃ (ψλ (z))

pour X ∈ h , z ∈ C.
Le calcul de Berezin induit donc ici un calcul symbolique adapté au-dessus de

l’orbiteOλ ' C tout comme la transformation de Weyl définit un calcul symbolique
adapté au-dessus de Oλ ' R2 lorsque l’on réalise la représentation de H associée
à l’orbite Oλ comme induite unitaire en utilisant des polarisations réelles [W].
Le lien entre les calculs de Berezin et de Weyl (et donc l’entrelacement entre ces
réalisations) est étudié dans [ACGZ] dans le cas d’un groupe de Heisenberg de
dimension quelconque.

3.5. Les fonctions quantifiables sont ici les fonctions du type ϕ(z)u(z) + v(z)z où
u et v sont des fonctions entières. La quantification géométrique associe à une telle
fonction ϕ l’opérateur Wλ(ϕ) de Hλ défini par

Wλ(ϕ) = i∇λ
Xϕ

+ ϕ2|λ|∂z + u.

Le symbole de Berezin de Wλ(ϕ) est alors la fonction ϕ.

4. Contraction de SU(1, 1) vers le groupe de Heisen-
berg

Soit r un réel strictement positif. On note Cr l’application linéaire de h dans g
définie par

Cr (v1) = r u1 , Cr (v2) = r u2 , Cr (v3) = r2 u3
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et cr l’application de H dans G définie par

cr (expH X) = expG Cr (X) .

pour tout X élément de h. La différentielle de cr en l’identité de H est Cr et on
a, pour X et Y éléments de h :

lim
r→0

C−1
r [Cr (X) , Cr (Y )]g = [X,Y ]h ,

ce qui exprime que la famille (Cr)r>0 est une contraction de g vers h [D].
On en déduit, en utilisant notamment le fait que l’application exponen-

tielle réalise un difféomorphisme d’un voisinage de 0 dans g dans un voisinage
de l’identité dans G, la proposition suivante :
Proposition 4.1. 1) Il existe un voisinage ouvert V de l’identité de G tel que,
pour tout r > 0 , cr est un difféomorphisme de c−1

r (V 2) dans V 2.
2) Pour tout x dans H, il existe r0 > 0 tel que, pour tout r < r0 , cr (x) ∈ V .
3) Pour tout r > 0 , cr ([0, 0, 0]) = g (1, 0).
4) Soient x, y dans H. Il existe r1 > 0 tel que, pour tout r < r1, c−1

r (cr (x) cr (y)−1)
est bien défini et on a :

lim
r→0

c−1
r (cr (x) cr (y)−1) = xy−1 .

On dit alors, suivant [MN], Définition 1, que la famille (cr)r>0 est une con-
traction de G vers H, la famille (Cr)r>0 étant la contraction de g vers h associée.
On donne à présent un résultat technique qu’on utilisera plus loin.

Proposition 4.2. Soient gn = g(αn, βn) une suite d’éléments de G , [a, b, c] un
élément de H et (r (n)) une suite de réels strictement positifs tendant vers 0 lorsque
n tend vers +∞. Il y a équivalence entre
(1) la suite gn tend vers l’identité de G et la suite (c−1

r(n) (gn)) tend vers [a, b, c]
dans H
et
(2) lim

n→+∞
(r (n)−1 βn) =

1
2

(b− a i) et lim
n→+∞

r (n)−2 (αn − 1) =
1
8

(a2 + b2)− i
c

2
.

Preuve. Notons U un voisinage ouvert de 0 dans g et U ′ un voisinage ouvert de
l’identité dans G tels que l’exponentielle réalise un difféomorphisme de U dans U ′

dont on note log le difféomorphisme inverse. Supposons que (1) soit vérifié. Pour n
assez grand, gn appartient à U ′ et c−1

r(n) (gn) = expH C−1
r(n) (log gn) est un élément

de H bien défini que l’on notera [an, bn, cn]. Comme

gn = cr(n) ([an, bn, cn]) = expG (r(n) an u1 + r(n) bn u2 + r(n)2 cn u3)

on obtient, par un calcul simple,

gn = g

(
coshR(n)− i

r(n)2 cn sinhR(n)
2R(n)

, (bn − i an)
r(n) sinhR(n)

2R(n)

)
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où R(n) est tel que R(n)2 = 1
4 r(n)2(a2

n + b2n− r(n)2 c2n), d’où l’on déduit aisément
(2).

Réciproquement, partant de (2), on a immédiatement que gn tend vers l’identi-
té de G. On vérifie alors que C−1

r(n) (log gn) tend vers a v1 + b v2 + c v3 à l’aide d’un
développement limité de log gn par rapport à r(n), d’où (1).

Remarque 4.3. Si (r(n)) est une suite de réels strictement positifs tendant vers
0 et [a, b, c] = expH (a v1 + b v2 + c v3) est un élément de H, la suite (gn) de G
définie par

gn = expG Cr(n) (a v1 + b v2 + c v3) = cr(n) ([a, b, c]) .

satisfait aux conditions du lemme précédent.

5. Contraction d’orbites coadjointes

Soit n un entier supérieur ou égal à 2. On a vu que l’orbite On de l’élément (n/2)u∗3
de g∗ sous l’action coadjointe de G est l’ensemble des points x1u

∗
1 + x2u

∗
2 + x3u

∗
3

de g∗ tels que x3 > 0 et

−x2
1 − x2

2 + x2
3 =

(n
2

)2

.

Par suite, pour r > 0, l’image de On par la transposée C∗r de l’application Cr est
l’ensemble des points x1v

∗
1 + x2v

∗
2 + x3v

∗
3 de h∗ tels que x3 > 0 et

r2 (−x2
1 − x2

2) + x2
3 =

(
r2n

2

)2

.

Fixons λ > 0 et supposons que r soit une fonction r(n) de n telle que lim
n→+∞

(n r(n)2)

= 2λ . Lorqu’on fait tendre n vers +∞ dans l’équation précédente, on obtient
x2

3 = λ2 ce qui permet de dire suivant [D] que les ellipsoides C∗r(n) (On) approxi-
ment la réunion des orbites Oλ et O−λ [D]. On va alors utiliser les paramétrages
des orbites On et Oλ obtenues aux paragraphes précédents pour traduire cela
d’une manière plus précise ce qui permettra plus loin d’établir un lien entre le
comportement des orbites par contraction et celui des représentations associées.
On obtient aisément :

Proposition 5.1. Soient λ > 0 et (r(n))n>0 une suite de réels strictement positifs
tels que lim

n→+∞
(nr(n)2) = 2λ.

1) On a, pour tout z ∈ C,

lim
n→+∞

C∗r(n)

(
ψn

(
z√
2λn

))
= ψλ (z)
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ce qui s’écrit également

lim
n→+∞

˜Cr(n)(X)
(
ψn

(
z√
2λn

))
= X̃ (ψλ(z))

pour tout z ∈ C et tout X ∈ h.

2) Inversement, si la suite de points ξn = ψn(zn) (zn ∈ D) de On est telle que la
suite C∗r(n)(ξn) converge vers le point ξ = ψλ(z) dans h∗, alors zn est équivalent à

z/
√

2λn lorsque n tend vers +∞.

De manière analogue, on a

Proposition 5.2. Soient λ < 0 et (r(n))n<0 une suite de réels strictement positifs
tels que lim

n→−∞
(nr(n)2) = 2λ.

1) Pour tout z ∈ C,

lim
n→−∞

C∗r(n)

(
ψn

(
z√

2|λn|

))
= ψλ (−z)

ou encore

lim
n→−∞

˜Cr(n)(X)

(
ψn

(
z√

2|λn|

))
= X̃ (ψλ(−z))

pour tout z ∈ C et tout X ∈ h.

2) Inversement si la suite de points ξn = ψn(zn) (zn ∈ D) de On est telle que la
suite C∗r(n)(ξn) converge vers le point ξ = ψλ(−z) dans h∗, alors zn est équivalent

à z/
√

2|λn| lorsque n tend vers −∞.

6. Contraction de calculs de Berezin

Soit λ un réel strictement positif. Pour tout entier n supérieur ou égal à 2, on
note Bn l’isomorphisme unitaire de Hλ dans Hn tel que Bn f

λ
p = fn

p pour p entier
positif.

Proposition 6.1. Soit, pour tout n entier ≥ 2, un opérateur An de Hn et soit
A un opérateur de Hλ. On suppose que la suite (‖An‖op)est bornée et que, pour
tous z et z′ dans C,

lim
n→+∞

Sn(An)
(

z√
2λn

,
z′√
2λn

)
= Sλ (A)(z, z′).

On a

1) Pour tous entiers positifs p et q, lim
n→+∞

< Anf
n
p , f

n
q >n=< Afλ

p , f
λ
q >λ.
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2) On suppose de plus que la série
∑

q≥0 supn≥2 | < An f
n
p , f

n
q >n |2 est conver-

gente. Alors, pour tout f dans Hλ,

lim
n→+∞

‖B−1
n AnBn f −Af‖λ = 0.

Preuve. 1) On écrit la dernière formule du paragraphe 2.4 dans le cas où f = fn
p

et g = fn
q et on fait dans l’intégrale du second membre le changement de variables

(z, z′) → (z/
√

2λn , z′/
√

2λn). On obtient :

< Anf
n
p , f

n
q >n=

1
(2λπ)2

(
n− 1
n

)2 ∫
D(0,

√
2λn)

2
In (z, z′) dx dy dx′ dy′

où In(z, z′) désigne

fm
p

(
z′√
2λn

)
fn

q

(
z√
2λn

)
< An e

n
z′/

√
2λn

, en
z/
√

2λn
>n

(
(1− zz

2λn
)(1− z′z′

2λn
)
)n−2

.

On remarque que

fn
p

(
z′√
2λn

)
=
√
Cp

n+p−1

z′p

(
√

2λn)p
=

1√
(2λ)pp!

√
n(n+ 1) · · · (n+ p− 1)

np
z′p

tend vers fλ
p (z′) lorsque n tend vers +∞. D’où :

lim
n→+∞

In (z, z′) = fλ
p (z′) fλ

q (z) < Aeλ
z′ , eλ

z >λ e−|z|
2/2λ e−|z

′|2/2λ .

Pour appliquer le théorème de la convergence dominée à l’intégrale ci-dessus, on
remarque que, pour |z| ≤

√
2λn et |z′| ≤

√
2λn :

| < An en
z′/

√
2λn

, en
z/
√

2λn
>n| ≤ ‖An e

n
z′/

√
2λn

‖n.‖en
z/
√

2λn
‖n

≤ C‖en
z′/

√
2λn

‖n.‖en
z/
√

2λn
‖n

≤ C

(
1− z′z′

2λn

)−n/2(
1− zz

2λn

)−n/2

où C est une constante, ce qui donne

|In(z, z′)| ≤ C ′|z′|p |z|q
(

1− z′z′

2λn

)n
2−2 (

1− zz

2λn

)n
2−2

≤ C ′|z′|p |z|qe−|z|
2/8λe−|z

′|2/8λ

C ′ désignant une constante. En effet, on peut remarquer que, si n ≥ 8,(
1− zz

2λn

)n
2−2

≤
(

1− zz

2λn

)n
4

≤ e−|z|
2/8λ
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pour |z| <
√

2λn.
On peut alors conclure :

lim
n→+∞

< An f
n
p , f

n
q >n =

1
(2λπ)2

∫
C2

lim
n→+∞

In(z, z′)dxdydx′dy′

= < Afλ
p fλ

q >λ .

2) Par linéarité et densité, il suffit de montrer le résultat pour f = fλ
p où p est un

entier positif. Comme

B−1
n AnBn f

λ
p =

∑
q≥0

< An f
n
p , f

n
q >n fλ

q

on a

‖B−1
n AnBn f

λ
p −Afλ

p ‖2λ =
∑
q≥0

| < An f
n
p , f

n
q >n − < Afλ

p , f
λ
q >λ |2.

Posons pour simplifier un(q) =< An f
n
p , f

n
q >n et u(q) =< Afλ

p , f
λ
q >λ. On va

montrer qu’il existe une série convergente
∑

q≥0 w(q) telle que pour tous n et q,
|un(q) − u(q)|2 ≤ w(q), ce qui compte tenu de 1) permettra de conclure. Posons
également v(q) = supn≥2 | < An f

n
p , f

n
q >n |. La série

∑
q≥0 v(q)

2 converge et
d’autre part, pour tous n et q :

|un(q)− u(q)|2 ≤ |un(q)|2 + |u(q)|2 + 2|un(q)||u(q)|
≤ v(q)2 + |u(q)|2 + 2v(q)|u(q)| .

La série qui a pour terme général le second membre de cette dernière inégalité
converge, ce qui termine.

7. Contraction de la série discrète de SU(1, 1)

Soient λ un réel strictement positif et (r(n))n≥2 une suite de réels strictement
positifs tels que lim

n→+∞
(n r(n)2) = 2λ. On va montrer ici que les représentations

(πn)n≥2 de G se contractent vers la représentation ρλ de H au sens de [MN].

Proposition 7.1. Soient (gn) une suite de G convergeant vers l’identité de G et
h un élément de H tels que lim

n→+∞
c−1
r(n) (gn) = h. Pour z et z′ dans C, on a

lim
n→+∞

Sn(πn(gn))
(

z√
2λn

,
z′√
2λn

)
= Sλ (ρλ (h))(z, z′).

En particulier, pour z ∈ C,

lim
n→+∞

sn (πn (gn))
(

z√
2λn

)
= sλ (ρλ (h))(z).
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Preuve. Cela découle des expressions des symboles doubles de Berezin des opéra-
teurs πn(g) (g ∈ G) et ρ(h) (h ∈ H) des paragraphes 2 et 3 et de la proposition
4.2.

On va déduire des propositions 6.1 et 7.1 le résultat suivant:

Proposition 7.2. Soient (gn) une suite de G convergeant vers l’identité de G et
h un élément de H tels que lim

n→+∞
c−1
r(n) (gn) = h.

1) Pour tous entiers positifs p et q, on a :

lim
n→+∞

< πn (gn) fn
p , f

n
q >n=< ρλ (h) fλ

p , f
λ
q >λ .

2) Pour tout élément f de Hλ, on a

lim
n→+∞

‖(B−1
n πn (gn)Bn) f − ρλ (h) f‖λ = 0 .

Preuve. Le point 1) résulte immédiatement de la proposition 7.1 et du point 1)
de la proposition 6.1 appliqué aux opérateurs An = π(gn). Pour déduire le point
2) du point 2) de la proposition 6.1, nous allons montrer que, si p est un entier
positif donné, il existe une série convergente

∑
q≥0 v(q) telle que, pour tous n ≥ 0

et q ≥ 0,
| < πn (gn) fn

p , f
n
q >n |2 ≤ v(q).

Posons gn = g(αn, βn). On a :

(πn(gn)fn
p )(z) =

√
Cp

n+p−1(−βnz + αn)
−n−p

(αnz − βn)p

=
√
Cp

n+p−1(−βnz + αn)
−n−p

p∑
k=0

Ck
pα

k
n(−βn)p−k

zk

=
p∑

k=0

(−1)p−k
Ck

p uk(z)

où l’on a posé pour 0 ≤ k ≤ p :

uk(z) =
√
Cp

n+p−1α
k
nβ

p−k
n zk(−βnz + αn)

−n−p

=
√
Cp

n+p−1α
k
nβ

p−k
n αn

−n−p
∑
l≥0

Cl
n+p+l−1

(
−βn

αn

)l

zk+l.

Par suite

< uk, f
n
l+k >n=

√
Cp

n+p−1α
k
nβ

p−k
n αn

−n−p
Cl

n+p+l−1√
Ck+l

n+k+l−1

(
−βn

αn

)l

.
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et

| < uk, f
n
l+k >n |2 = Cp

n+p−1|αn|2(k−p−n)|βn|2(p−k)|βnαn
−1|2l

(Cl
n+p+l−1)

2

Ck+l
n+k+l−1

.

Compte tenu de l’hypothèse sur la suite (gn), il existe des constantes positives
c1, c2 et c3 telles que, pour tout n ≥ 0,

|αn|2(k−p−n) ≤ c1, |βn|2(p−k) ≤ c2 n
k−p, |βnαn

−1|2l ≤ c3
l n−l.

Il existe également une constante c4 telle que Cp
n+p−1 ≤ c4 n

p.
D’autre part :

(Cl
n+p+l−1)

2

Ck+l
n+k+l−1

(n− 1)!
(n+ p− 1)!

.
(n+ p+ l − 1)!

(n+ p− 1)!
.
(n+ p+ l − 1)!
(n+ l + k − 1)!

.
(l + k)!
l!2

≤ n−p.(n+ p+ l − 1)l.(n+ p+ l − 1)p−k.
(l + k)!
l!2

.

En utilisant la formule de Stirling on peut trouver une constante c5 telle que, pour
tout entier l ≥ 1,

(l + k)!
l!2

≤ c5 e
3ll−l.

Au total, on obtient

| < uk, f
n
l+k >n |2 ≤ c6 n

−p+k−l(n+ p+ l − 1)p−k+lc3
le3ll−l.

Choisissons alors un réel ε > 0 tel que εc3e3 < 1. Il existe un entier positif N tel
que, pour tout l ≥ N et tout n ≥ N ,

1
l

+
p+ l − 1

nl
≤ ε

et par suite

| < uk, f
n
l+k >n |2 ≤ c6

(
1 +

p+ l − 1
n

)p−k (1
l

+
p+ l − 1

nl

)l

c3
le3l

≤ c6

(
1 +

p+ l − 1
N

)p−k

(εc3e3)l

ce qui termine.

Supposons à présent que λ soit un réel strictement négatif. On rappelle que
l’espace Hλ de la représentation ρλ cöıncide avec l’espace H−λ de la représentation
ρ−λ. Notons τ l’opérateur (unitaire) de Hλ défini par τ(f)(z) = f(−z) et par ρ̃λ la
représentation de H dans Hλ équivalente à ρλ définie par ρ̃λ(h) = τ ◦ρλ(h)◦τ (h ∈
H). En utilisant la proposition 7.2 et le fait que πn(g(α, β)) = π−n(g(α, β)) pour
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g(α, β) ∈ G, on montre que les représentations (πn)n≤−2 de G se contractent vers
la représentation ρ̃λ de H. Plus précisément :

Proposition 7.3. Soient λ < 0 et (r(n))n≤−2 une suite de réels strictement
positifs tels que lim

n→−∞
(n r(n)2) = 2λ. Soient (gn) une suite de G convergeant vers

l’identité de G et h un élément de H tels que lim
n→−∞

c−1
r(n) (gn) = h.

1) Pour z et z′ dans C, on a

lim
n→+∞

Sn(πn(gn))
(

z√
2λn

,
z′√
2λn

)
= Sλ (ρλ (h))(−z,−z′) = Sλ (ρ̃λ (h))(z, z′).

2) Pour tous entiers positifs p et q, on a :

lim
n→−∞

< πn (gn) fn
p , f

n
q >n=< ρ̃λ (h) fλ

p , f
λ
q >λ .

3) Pour tout f dans Hλ, on a

lim
n→−∞

‖(B−1
−n πn (gn)B−n) f − ρ̃λ (h) f‖λ = 0 .

On termine en traduisant en termes de fonctions spéciales le point 1) de la
proposition 7.2 ce qui donne comme dans [DR1] et [R] une formule de type Mehler-
Heine. On utilise ici les notations de [KV] relatives aux polynômes de Jacobi et de
Laguerre.

Proposition 7.4. Soient p et q deux entiers positifs tels que q ≤ p et x un réel.
On a

lim
n→+∞

P (p−q,−n−p−q)
q (cosh

2x√
n

) = Lp−q
q (x2).

Preuve. Soit u un réel et g = g(coshu, sinhu) ∈ G. En passant en coordonnées po-
laires et en effectuant un développement en série dans l’intégrale donnant
< πn (g) fn

p , f
n
q >n on obtient si q ≤ p :

< πn (g) fn
p , f

n
q >n=

√
Cp

n+p−1

Cq
n+q−1

∫ 2π

0

(eiθ sinhu+coshu)−n−p(eiθ coshu+sinhu)pe−iqθ dθ

2π

=

√
Cp

n+p−1

Cq
n+q−1

P−n/2
−n/2−q,−n/2−p(cosh 2u)

=

√
Cp

n+p−1

Cq
n+q−1

(sinhu)p−q(coshu)−n−p−qP (p−q,−n−p−q)
q (cosh 2u)

avec les notations de [KV], chapitre 6.
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D’autre part, en utilisant [KV], p. 453, on vérifie que, si h = [0, x, 0] ∈ H,

< ρλ (h) fλ
p , f

λ
q >λ=

√
(2λ)qq!
(2λ)pp!

(−1)p+q(λx)p−q
e−x2λ/4Lp−q

q (
1
2
x2λ).

On obtient alors le résultat annoncé en appliquant la proposition 7.2 1) à la suite
gn = g(cosh(

√
λ/2nx), sinh(

√
λ/2nx)) et à h = [0, x, 0].

8. Contraction des différentielles

Soient λ un réel strictement positif et (r(n))n≥2 une suite de réels strictement
positifs tels que lim

n→+∞
(n r(n)2) = 2λ. On a immédiatement

Proposition 8.1. Pour X dans h, z et z′ dans C, on a

lim
n→+∞

Sn(dπn(Cr(n)(X)))
(

z√
2λn

,
z′√
2λn

)
= Sλ (dρλ (X))(z, z′).

En particulier, pour z dans C,

lim
n→+∞

sn (dπn (Cr(n)(X)))
(

z√
2λn

)
= sλ (ρλ (X))(z).

Remarquons que la proposition précédente est la traduction en termes de symboles
de Berezin de la proposition 5.1. On peut alors énoncer un résultat analogue à la
proposition 7.2 au niveau infinitésimal :

Proposition 8.2. Pour X ∈ h et P polynôme,

lim
n→+∞

‖B−1
n dπn (Cr(n)(X))Bn P − dρλ(X)P‖λ = 0 .

Preuve. On commence par établir par une méthode similaire à celle de la preuve
du point 1) de la proposition 6.1 que pour tous p et q entiers positifs et pour tout
X dans h,

lim
n→+∞

< dπn (Cr(n)(X)) fn
p , f

n
q >n=< dρλ (X) fλ

p , f
λ
q >λ .

On obtient alors le résultat annoncé en remarquant que, pour p entier positif et
X élément de h donnés, ‖B−1

n dπn(Cr(n)(X))Bnf
λ
p − dρλ(X)fλ

p ‖2λ peut s’écrire∑
q≥0

| < dπn(Cr(n)(X)) fn
p , f

n
q >n − < dρλ(X) fλ

p , f
λ
q >λ |2
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la somme du second membre étant en fait finie compte tenu des expressions de
dπn et dρλ données dans les paragraphes 2.5 et 3.4.

Le résultat précédent peut aussi se retrouver à partir de la proposition sui-
vante relative à la contraction de fonctions quantifiables.

Proposition 8.3. Soient ϕn(z) = (1−zz)−1(un(z)+vn(z)z) une suite de fonctions
quantifiables sur D (voir 2.6) et ϕ(z) = u(z) + v(z)z une fonction quantifiable sur
C (voir 3.5). On suppose que, pour tout compact K de C, la suite ϕn(z/

√
2λn)

converge uniformément sur K vers la fonction ϕ(z).
1) Pour tous p et q entiers positifs, on a

lim
n→+∞

< W (ϕn) fn
p , f

n
q >n=< W (ϕ) fλ

p , f
λ
q >λ .

2) Si on suppose de plus qu’il existe un entier n0 tel que pour tout n, un et vn sont
des polynômes de degré inférieur ou égal à n0, alors, pour tout polynôme P ,

lim
n→+∞

‖B−1
n W (ϕn)Bn P −W (ϕ)P‖λ = 0 .

Preuve. 1) Posons un(z) =
∑

k≥0 u
n
kz

k, vn(z) =
∑

k≥0 v
n
k z

k, u(z) =
∑

k≥0 ukz
k

et v(z) =
∑

k≥0 vkz
k. En considérant les intégrales∫

|z|=R

un(
z√
2λn

)− u(z) + z(vn(
z√
2λn

)− v(z)) dz

pour R ∈]0, 1[, on voit que l’hypothèse sur la suite (ϕn) implique que
lim

n→+∞
(1/

√
2λn)kun

k = uk et lim
n→+∞

(1/
√

2λn)k+1vn
k = vk.

D’autre part, d’après les expressions de W (ϕn) et W (ϕ) données plus haut,
on a, si q < p, < W (ϕn) fn

p , f
n
q >n= 0 et, si q ≥ p,

< W (ϕn) fn
p , f

n
q >n=

√
Cp

n+p−1

Cq
n+q−1

((1 +
p

n
)un

q−p +
p

n
vn

q−p)

qui tend, lorsque n tend vers +∞, vers√
(2λ)qq!
(2λ)pp!

(uq−p + 2λpvq−p+1) =< W (ϕ) fλ
p , f

λ
q >λ .

Le point 2) découle de

‖B−1
n W (ϕn)Bn P−W (ϕ)P‖2λ =

∑
q≥0

| < W (ϕn) fn
p , f

n
q >n − < W (ϕ) fλ

p , f
λ
q >λ |2

car la somme du second membre est finie.

Remarque 8.4. Soit λ un réel strictement négatif. On obtient aisément les résul-
tats analogues aux propositions 8.1, 8.2 et 8.3 précédentes, décrivant la contraction
de la suite de représentations (dπn)n≤−2 vers la représentation dρ̃λ.
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[Ca3] Cahen B., Quantification d’orbites coadjointes et théorie des contractions,
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