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The Bonnet Plancherel formula for monomial
representations for classes of completely solvable
Lie groups

Amira Ghorbel

Abstract

We compute the Bonnet Plancherel formula associated to a monomial repre-
sentation of a nilpotent Lie group. We give also the corresponding formula for
finite multiplicity monomial representation for a class of completely solvable
Lie groups.

0. Introduction

Let G be a connected Lie group having a smooth dual. Given a unitary represen-
tation 7 of G acting in a Hilbert space H,, we denote by HS° the Fréchet space of
smooth vectors for m, and H_ > the space of continuous anti-linear functionals on
H>°. Let o be any positive distribution on G of finite order. Bonnet’s Plancherel
formula ([Bon.]) tells us that for ¢ € D(G)

alp) = / tr(m () Uy () (1)

G

where for v almost everywhere, Uy : HX® — H_ >, 7 € G, is a certain uniquely
determined nuclear operator (see [Bon.] Theorem 4-1).

We recall that Penney’s and Bonnet’s Plancherel formulas have been described
for nilpotent groups and exponential groups in ([Pen], [Fu.1,3,4], [F.Y.], [Gr,1,2],
[Li.2,3], [B.L.2]). Furthermore, Fujiwara has given an explicit expression by duality
of Bonnet’s operators in the case of monomial representations of nilpotent Lie
groups.

In the first part of this paper we take a closed connected subgroup H = exp(h) of
a nilpotent connected simply connected Lie group G = exp(g), a unitary character
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x = xs of H (where f € g* is such that (f,[h,h]) = 0) and we consider the positive
distribution

(Sip ) = /H o(h)xs(W)dh, ¢ € D(G).

To describe the measure v given in (1), we use the result of [B.L. 1] where it has

been shown that there exists a certain affine subspace V of (f + h*) such that
®

Ind$xy ~ / med¢ (d¢ denotes the Lebesgue measure on V). There exists a

%
Borel cross-section ¥ of G-orbits in GG - V and it turns out that the measure v of
Bonnet’s formula is supported on X. We show in (6) that for o € X the operator
U, is an integral of rank one operators:

Us = /Fg Qs,0dNs ()

where I';; is defined in paragraph (1.1.b), the operators Qs , and the measure dA,
in 1.3.

In the exponential case, the determination of Bonnet’s operators U, is difficult.
One of the reasons is that there exists no easy way to determine explicitly the C'*°
vectors of a representation.

Several authors have studied in the past the disintegration of induced representa-
tions for exponential solvable Lie groups. In ([D.R.]) Duflo and Rais computed the
Plancherel formula for L?(G) of an exponential solvable Lie group. Bonnet’s oper-
ators have been explicitly described for a normal monomial representation induced
from a normal subgroup of an exponential solvable Lie group in [G.H.L.S.].

In the second part of this paper we take the semi-direct product G = N H; where
N = exp(n) is nilpotent and normal in G, and H = exp(h) is abelian and acts
semi-simply on N with real eigenvalues. Let x = xs be a unitary character of H
(where f € g*). We consider the representation 7y = I ndg Xy and we assume that
77 has finite multiplicity. The first precise formulas in this case have been given
by Currey in ([Cu.2]). To describe the measure v given in (1) we use the main
results of this reference, where it has been shown that the set of generic H-orbits
in the disintegration of 7y admits a natural smooth algebraic cross-section 3. We
derive a cross-section I' of G— orbits in G.(f + %), and the measure v of Bonnet’s
formula will be explicitly described as a measure on I'. We take o € (f + X) and
for i € G-oN(f+3) we define an operator (3] on the space of the smooth vectors
H® of m,. We show in (13) that the operators U, = U, in Bonnet’s formula are
determined as a finite sum of rank one operators: P 5.
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1. The Bonnet Plancherel formula for nilpotent Lie
group

1.1 Notations and definitions
1.1.a Quotient measures

Let G be a connected simply connected nilpotent Lie group with Lie algebra g and

let K = exp(€) be a closed subgroup of g. We choose a Jordan-Holder basis Z =

{Z1,--+,Z,} of g. Let B={Xy,---,X,} be a Malcev-basis relative to ¢, i.e. g =
®

Z RX,; @ ¢ and for any j = 1,--- ,r, the subspace g; = span{X;,---, X, ¢} is
1<i<r
a subalgebra. The mapping Ep : R” — G/K : Eg(t1,--- ,t,) = Eg(t1,--- ,t,)K,
where E(t1, -+ ,t,) = exp(t1X1)---exp(t,X,), is then a diffeomorphism. We
obtain a G—invariant measure dg on the quotient space G/K by setting

/ Eg)dg = [ EE(T)T, € € C(G/K),
G/K R”

where C.(G/K) denotes the space of the continuous fonctions with compact sup-
port on G/K.

It is not difficult to see the following:

1.1.a.1 Proposition Let g be a nilpotent Lie algebra of dimension n. Let € be a
subalgebra of g, B1 and By be two Malcev-basis of g relative to €. Then £?§210E131 18
a polynomial mapping from R™ to R™ (where r is the codimension of € in g) whose
total degree is bounded by a constant M which depends only on the dimension of

g.

1.1.b Induced representation

Let G be a nilpotent connected simply connected Lie group with Lie algebra g. Let
h be a subalgebra of g; f € g* such that (f,[h,h]) = 0 and let x; be the unitary
character of H = exp(h) associated to f. Let 7 = Ind%x . It has been shown in
[B.L.1] that there exists a certain affine subspace V of I'y = f + b+ C g*, such
that

D
7= Ind§; ~ / rodpi(6) (2)
Vv

where dp denotes Lebesgue measure on V and where 7 is the irreducible repre-
sentation associated to ¢ (¢ € V).

One has:
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Lemma ([Bour|, [Fuj. 3])
= /G.V/G vodv(Q)

where v is a certain measure on QN V.

Let X be a borel cross-section of the G-orbits in G-V. We can consider the measure
v as a measure on Y and write u = [ vgodv(o).

Hence for a continuous function F' with compact support on V we get

/V F(o)u(o) = | /G (v (v(o).

We identify G- NV with the space G,/G(c), where G, = {g € G; g-0 € V} and
G(o) ={g9g € G, g-o = o} and we consider the measure A\, on I', = G,/G(0)
which corresponds to the measure v¢.,, we write:

| r@ine = [ [ (s 0)dAs(s)i(o). 3)

Let now S(G/H, f) be the space of all C*°-function £ on G, such that &(gh) =
xf(h™1)&(g) for all g € G,h € H and such that the function T' — &(Eg(T))
is a Schwartz-function on R". Let S(G) denote the Schwartz-space of G, i.e. the
space of all complex valued functions ¢ on G, such that ¢ o exp is an ordinary
Schwartz-function on the vector space g.

Denote for p € S(G) P s(¢)(g9) = [} ¢(gh)xs(h)dh and let Sy be the
tempered distribution on G defined by the projection Py (¢) of ¢ on S(G/H, f),
ie:

(S pr0) = /H o(h)x s (W)dh = Py pip(e).

Let for ¢ € V B(¢) denote the Vergne polarization at ¢ for the basis Z. It has
been shown in [B.L.1] that there exists for ¢ € V an invariant measure db on
B(¢)/B(¢) N H such that for the mapping

T,:S(G/H, [) = S(G/B(9),¢)  (p€V)

given by

Ty(&)(g) = &(bg)xs(b)db, &€ S(G/H, f),g€G,

/B(¢)/B(¢)ﬂH
and for £ € S(G/H, f) we have:

/v (To(€). T (€)) 20, do> = €. (4)
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We recall also that from [B.L.2] Sy s is disintegrated as an integral / Spdu(d),
v
where Sy denotes the tempered distribution on S(G) defined by :

Sodd = [ Tu(Pu ) b o)
H/HNB(9)

1.2 Main results
This section is based on the paragraph 7.5 in [L.M.].

Let g be a nilpotent Lie algebra. Let B be an algebraic subset of finite dimensional
real vector space W, the pair (g, B) is a rationnally variable nilpotent Lie algebra
(or r.v.n.) if the following holds true:

For every b € B, a Lie bracket [,], on g is given such that (g, [,]») forms a nilpotent
Lie algebra. Moreover there exists a fixed basis Z = {Z;,---,Z,} of g, so that

the structure constants (afj(b)), given by [Z;, Z;], = Z afj (b)Zy, are rational
k=1

functions in b, satisfying afj (b) =0 for i < j,k < j (so that Z is a Jordan-Hdlder-
basis for (g, [,]s) (see [L.M]).

A mapping on B is called polynomial if it is the restriction of a polynomial mapping
on W to B and it is called rational if it is the restriction of a rational mapping on
W to B, such that the denominators of the corresponding rational functions do
not vanish on B.

For every b € B we choose m elements V7 (b), - - , Vi, (b), in g* depending rationally
on b. Let V(b) = span(Vi(b), -+, Vi(b)) and ¢® : R™ — V(b) defined by ¢*(X) =

inVi(b), where X = (21, ,x,) € R™.
i=1

Let us denote for (X,b) € R™ x B and for a polarization b at ¢*(X) in g, the
induced representation Tgv(x) s by 7(x,p),6- Given any Malcev basis B of gy, relative
to b, we can realize the representation in a canonical way on L?(R") and for every
element u in the enveloping U(gs) of g5, the operator dmgs(x)(u) becomes a
partial differential operator with polynomial coefficients on R".

In the following theorem we generalize the theorem 7.7 of [L.M.] by replacing the
generic points in g* by the generic points of the forms ¢*(X), X € R™:

1.2.1 Theorem There exists a Zariski-open subset O in R™ x B such that:

i) For every (X,b) € O there exists a polarization b(X,b) = b(¢*(X)) at ¢*(X)
and a Malcev basis B(X, ¢*(X)) of g relative to b(¢*(X)) depending rationally on
(X, 0).
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i) For every partial differential operator D on R with polynomial coefficients
there exists a rational mapping

A0 = Ug), AXb)= > a(X,b)Z'

[T|<na

such that mx p),p(A(X,0)) = D.

Proof. We use the notations and the proof of [L.M.].
Let b € B and X € R™; we can construct the indices j;(X,b) = ji(¢*(X)) =
Gi((X),0); ks (X, 0) = ki (¢°(X)) = ki(¢*(X),b) as well as j; (X,b) and ki (X, b)
corresponding to (g, [,]s) as in [L.M]. We put
J1:=maz{j1(X,b) : X € R™;b € B},
k1 := max{ki1(X,b) : X € R™;b € B},
and put B! := {(X,b) € R™ x B : ji(¢*(X),b) = j1 and k1 (¢*(X),b) = k1 }. Then
B = {(X,b) : ¢"(X)([Z)y, Zk,]b) # 0}
is a Zariski-open in R™ x B. Next, for (X,b) € B!, we put (p1(¢*(X),b),[,]s) :=
{Y €g: ¢b(X)([ZJ13Y]b) = O}v and
- d)b(X)([ZjNZi]b)
(bb(X)([Zjlekl]b)
Then Z}(X,b),i # kq, form a Jordan-Holder-basis of (p1(6°(X),b),[,]s)-

We identify (p;1(¢®(X)),b) with p; := RY, where ¢ = dim(p;(¢?(X)),b), we obtain

a new r.v.n.(py, B'). Now for b' = (X,b) € B, we get m linear forms: (V1 (b1))™,

in RY given by: V1(b') = V1(X,b) =

((Vi(b), Z1 (X, b)), -+, (Vi(b), Zip, _1 (X, 0)), (Vi(b), Zgp, 11 (X, ), -+, (Vi(D), Z, (X, b))

We put V1(b') = span (VL (b1), -+ , V4, (b)), and ¢" 1 R™ — V(b)) ¢¥ (V) =
D uVieh.
=1

Applying the same procedure now to (pi,B') instead of (g,B'), and iterating
this process, which stops after a finite number d of steps, we construct indices
4i(X,b) and k;(X,b) for i = 1,--- ,d, and finally stop at some r.v.n (pg, B%) where
B¢ c R™ x B! is Zariski-open. We put O = B.

Moreover, it has been shown in [L.M.] that for (X,b%"!) € O the subalgebra
pa(e?” " (X),b41) = b(¢¥" (X)) is the Vergne polarization for ¢*" (X) associated
to the basis Z and there exist rational mappings Y¥; : R™ — g, 1 <1 <d, such
that {Y7(X), - ,Y4(X)} forms a Malcev basis of g relative to b(¢bd71(X)).

ZHX,b) == Z; Zyy 1 7 k1.
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One continues as in the proof of theorem 7.7 in [L.M.]. |

1.2.2 Proposition Let g be a nilpotent Lie algebra. Let ) and b be two subalgebras
of g. There exists a Malcev-basis U of g relative to b, which contains a Malcev-basis
of b relative to hN b.

Proof. We proceed by induction on dim(g).
Let go be an ideal of g with codimension one containing b.

i) If h C go, the induction hypothesis gives us a Malcev basis Uy of g relative to
b which contains a Malcev-basis of h relative to h N b. Hence we put U = {Up, X},
where X € g\ go.

i) If h ¢ go, we can choose X € b such that g = go®RX. The induction hypothesis
gives us a Malcev-basis Uy of go relative to b, which contains a Malcev-basis of
b N go relative to h N'b. Hence we put U = {Uy, X }. |

1.3 The Bonnet Plancherel Formula

The aim of this section is to describe explicitly the Bonnet Plancherel Formula
associated to the disintegration (2). Let G, H, f,V,X be as in (1.1.b).

For 0 € ¥, g € G, we define the operator: ¢, , : H® — C by

(oo €) = / €hg)x; (B d.
H/B(g-c)NH

It has already been shown in [Fuj.1] that the integral on the right is well defined
(here it suffices to use that for g € G, x4.0(h) = xy(h) for all h € H), the operator
dg,0 1s continuous and for all h € H, 7,(h)qg0 = x5 (R)4g.0-

Let ¢ be in S(G). For o € V, the operator 7, () is a kernel-operator, whose kernel
K (p) is given by

Koo (y) = / o(aby ) xo(b)db, .y € G.

(o)

Furthermore, for any Malcev-basis Y = {Y1,---,Yy} of g relative to b(c), the

function
d

d
(5,8) = Kr, (o) (] [ exp(s:Yi), [T exp(t:¥))
i=1

i=1

is a Schwartz-function on R? x R? (see [C.G.]).
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Let us recall some results from [L.M.].
Let Z1,---,Z, € g be a basis of g, and put

L:=) 7 €U(g),
j=1

where U(g) is the envelopping algebra of g. Let N € N. Since (1 — L)V is hypoel-
liptic for every N € N*| there exists a local fundamental solution Ex € D'(U) of
(1 — L)Y on a neighbourhood U of e € G, i.e.

(1-L)YNEy =6, in U.

Since (1 — L)Y is hypoelliptic, we have that Ex is C* on G \ {e} and for d € N,
if N is big enough Ey is in C%(G). Hence Ey is in L'(G) N L?*(G) and is even of
class C% in L1(G).

We recall that the N’th Sobolev L'-norm on G is defined by

Ifliva= D 1Z2%* fll+ Y IIf * 20,

lal<N lal<N

where Z% = Z{" % -+« Z% and |a| = a1 + -+ o, for o = (g, -+, o) € N™

1.3.1 Proposition There exists N € N such that for almost all o € ¥ and all
g € G, the distribution g, , is an element of H; Y and

Lo e uhldidi < Coyllel @ € SO,
G/B(c) JH/HNB(g0)

for some constant Cy g.

Proof. Let 0 € ¥ and g € G, such that go € V. Let By =< Yy,---,Y; >
be a Malcev-basis of g relative to b(go) such that B} =< Y;,,---.Y; > isa
Malcev-basis of § relative to h N b(go) (according to 1.2.2). Then we have

(@g,0:6) = E(exp(t1Yy,) - - exp(t,Y;, )g)e < F2i=1 Y=gty . dt,
R7

= / (€0 Epy)(tr, -+ tr)(xp 0 Epy)(tr, -+ tp)dty - - - dit

where £,(¢") = £(d'9).

Let P, be a function on G/B(0) such that S +— P,(E% (S5)) is a polynomial on
R of degree < 27 such that

1
oo = | e dT < o0
! / - |Fo (B, (T)9)
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Then we get

(49,0, €)1 < oo [l (P - €) glloo-
Let now By = Ba(go) be the Malcev-basis of g relative to b(go) obtained by
theorem (1.2.1) applied to the affine subspace V and the one point set 5.

Let Qo (S) = Py (Ep,(S)9) = Po(Ep,o(Ep, ' 0 Ej,)(S)g), S € R, whose coeffi-
cients depend on g, 0 and whose degree is bounded by an integer M; independent
of g,o (by 1.1.a.1).

Moreover we can see that for some constant c/gg big enough the polynomial c’gUF =
o (14 ]|IT||>)M:, T € R?, dominates the function Q, on R?. Hence

1Qo&slloo < cho | FEg © Enylloo < cho | D(FEq 0 Byl

for some fixed partial differential operator with constant coefficients on R%. Now
by theorem (1.2.1) we have that for almost all ¢ € V there exists a(o) € U(g) such
that : dn,(a(0)) = Do multiplication by F. Moreover the degree of dm,(a(0)) is
bounded by a constant N independent of . Thus for almost all ¢ € ¥ and all
geqG

{dg.0, &) < G lIElIn

for some big enough constant c//.

For the second statement, we remark that, since K _(,) is a Schwartz-function on
G x G modulo B(o) x B(o) by Howe’s result (see [C.G.]), the function

G Sur ’71)(“) = K‘ﬂ'o(tp)(u7v)a v e Gv

is in S(G/B(0), x¢) and so by the arguments for the first statement

/ / K r, (o) (hg,v)|dindi = / ( / |Kﬂa(¢)(hg,v)|d1}> di
G/B(c) JH/HNB(go) H/HNB(go) G/B(o)

1 / .
= S | Py (hg)ne(hg)|do | dh
/H/HmB(ga) | P (hg)l ( G/B(o) !

1 / . .
: /H/HOB(gﬂ | P, (hg)| </G/B(0) 7o te (90))’7v(h9)|dv> dh

for some element a’(go) in the enveloping algebra of g, whose degree is bounded
by a constant N which does not depend on go according to (1.2.1). Since

/ o (@ (90) )10 () i = | / o (go) * p(hgbv)xo (b)db|di
G/B(o) B(o)

G/B(o)

< /G la/(g0) % (hgv)|dv = /G 10/ (90) * 9(v)|dv < coolllln.1,



54 Amira Ghorbel

(for some constant ¢y, depending on a’(go)) for all h € H, it follows that

/ / \K ., () (v, hg)|dhdv = / \K 1, (oo (hg, v)|dhdb
G/B(c) JH/HNB(go) G/B(c) JH/HNB(go)

1 .
ScawwMa/ L i< Coullllna
7 H/HNB(go) |P0'(hg)| I

(for some new constant Cy, ). |

This gives us the one dimensional operators:

Qoo =Py an o HY = HIN, Quo(€) = (€, 05.0)00.0;  EEHY.

In particular for ¢ € S(G), 7, (¢) 0 Qg0 = Pr,(0)q,.0.q,.. (se€ [G.H.L.S.]).

For ¢ € X, we define the operator U, : HY — H_ % as the integral of these
operators:

%ZAQWMM) (6)

We have the following:

1.3.2 Proposition For almost all 0 € ¥ we have: U, : HY — H N s trace
class.

Proof. Let o € 3,5 € G,. We recall that the rank one operator @, , has a trace
which is given by:

tr(Q&o’) = tI‘(A;N o Qs,o o A;N> = <7TU(EN)q5,Ua 7TO'(E/‘N)q‘%o’)v

where AN = 7, (Ex) (see [G.H.L.S.]).

On the other hand for ¢ € H° we have:

(Mo (EN)s,001) = (Gs,0, To (EN)Y) = To (EX )¢ (hs)xs(h)dh
H/B(s-o)NH

= / / Ko, (g (hs, w)(u)dux s (h)dh
H/B(s-oc)NH JG/B(o)

/ / Ko (5 (u, hs)p()dux s (h)dh.
H/B(s-oc)NH JG/B(0)
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As N is increasing, the function Ey becomes smoother and smoother and the
kernel function

(ua h) = Km,(EN) (ua hS)

is decreasing more and more rapidly at infinity, and so for N big enough, this
function is in L'(G/B(c),0) @ L*(H/B(s - o) N H, f) for almost all ¢ € V (see
1.3.1). Hence, using Fubini, we can deduce that

(o (BN ). ) / / Kr, () (s 1) X (R) A ()
G/B(o) JH/B(s-oc)NH

= <n8,0'7 Z/}> (*)
where 7, ,(u) = / Kﬂ”(EN)(u,hs)Xf(h_l)dh isin L?(G/B(s-0),s- o).
H/B(s-o)NH
Hence
tr(Qs,o’) = <T]s,<7a 775,0)

= Ja/B(e) 1.0 (95,0 (9)dg |
= fG/B(a) fH/B(s.g)mH Kr, (5 (g, s)x s (W'=1)dh!
JiB(s-oynir Ko (Bx) (95 hs)x s (h=1)dhdg |
= Ja/8(0) J1/B(soynn Sy EN(gbs™ R ™)Xo (b)dbx ¢ (W1l
S 8eornnt Jp(o) En(gbs ™ h=1) X0 (b)dbx s (h=1)dhdg |
= Je/(s0) Jr/B(sornir Jp(s.o) BN (9OR ™ )Xs0 (b)dbx £ (B~ )dh'
Ju(s-0ynm J(s.0) EN (gbh=1)Xs.0 (b)dbx ; (h=1)dhdyg.

Now for ¢ € C.(G), it has been shown in [B.L.2] that

/ / q(bh ™)X 5.0 (b)dbx s (h~Y)dh =
H/B(s-o)NH J B(s-0)

/ / GO ) xao ®)xs (A V)dhdh ()
B(s-o)/B(s-c)NH JH

We obtain:
t1(Qs,0) = (To.o(Prr, £ (EN)), Tooo (Pr, s (EN)) 7o = [T (Prr s (Bx)|I3e..,
On the other hand one has by (3)

/ / T (Pra (Bn)) 2. Ao (8)di (o) = / (T (Per.f (Ex)), Ty (Pra.p(E)) e, deb =
X JI, v
|(Pra.s (Ex))|2e. by (4).
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Hence for almost all 0 €

Vs s = / 60(Qyg.0 ) AN (§) < 00

I's

and the integral
Uo’ :/ Qg,od)\a(g)
s

converges in the space of the trace-class operators. |

1.3.4. Theorem There exists N € N, such that for every ¢ € S(G) and for
almost all o € X, we have that the operator w, () o Uy : HY — HY is trace class
and

< Su.f,0>= /Z tr(my () o Uy )dv(o).

Proof. Let 0 € ¥,s € G, and ¢ € S(G). An argument similar to (*) permits

us to write 7, (¢)gs 0 (u) = @s.o(u) = / Kr_ (o) (u, hs)xs(h)dh, for all
H/B(s-oc)NH

u € G.

Then

(o (D)oo os) = / o (h)x 7 (h) i
H/B(s-oc)NH

= / / Ko, (o) (hs, B's)x s (W' ~1)dh' x ¢ (h)dh
H/B(s-o)NH JH/B(s-c)NH

-/ / Koy o) (s W)X (') .
H/B(s-o)NH JH/B(s-c)NH

We recall that 7, (p)oU, = wa(ga)O/ Py, g0 00 (3) = / Pr (0)ds.0105.0 @A (3)-
T, T
Hence we deduce that

tr(my (9)oU,) = / / / K. o) (s W)X (R~ Ydl divd o ().
' JH/B(s-c)NH JH/B(s-oc)NH

( * %)
Now we recall that, from [B.L.2] one has

/ (Sg, @)du(p)
%

/ / / Ty o (Pi. () (W)x £ (h)dhdA (3)dv (o)
2 JI', JH/HNB(s0)
(by (3) and (5)).

<SH7f? 50)
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On the other hand
[/ Teo(Pir, 7 () (W) x5 (R)dhd (3)
I'y JH/HNB(s0)

-/ / Pat 1 () (W) .0 ()b (h)dind (3)
H/HNB(s-o) J B(s-c)/B(s-o)NH

[/ / [ by (Wb o ) (W) 3
I'y JH/HNB(s-0) JB(s-0)/B(s-0)nNH JH

/ / / / (b~ ) £ (B YAl . (b) b () ddA (3):
I', JH/HNB(s-0) JB(s-0)/B(s:oc)NH JH

Then by (), (* * *)

/ / Too (a5 () ()X (W) dhd o (3)
H/HNB(s-0)

- / / / / @(hbh' ™M) X 5.0 (D)dbx s (R~ )dR dhd ), (3)
H/HNB(s-o) JH/B(s-0c)NH J B(s-0)

/ / / Km‘g(g,)(h,h/)xf(hhlfl)dh'dhd)\g(é)
I', JH/HNB(s-o) JH/B(s-c)NH

= tr(me(p) o Uy).

Whence
(Stsr0) = / (70 () 0 Uy (o).

2. The Bonnet Plancherel formula for a class of
completely solvable Lie group

In this part we take, as mentioned in the introduction, the semi-direct product
G = NH; where N = exp(n) is nilpotent and normal in G, and H = exp(h) is
abelian and acts semi-simply on N with real eigenvalues. Let x = x s be a unitary

character of H (where f € g*). We consider the representation 74 = I nd%x ¢ and
we assume that 7¢ has finite multiplicity.

Let us recall some results given in the paper [Cu.2].

2.1 Generalities and main results
2.1.1 (C°° vectors

Let G be an exponential solvable Lie group and K a closed subgroup of G. Fix a
choice of right Haar measures dg, dk on G and K. We write Ag, Ak for the modular
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functions of G, K (respectively). If x is a unitary character of K, the induced
representation m, = Ind%y acts in the space C°(G,K,x) = {f € C®(G) :
f(kg) = x(k)f(g) Yk € K,g € G; f compactly supported mod K}, by the formula

T (9)f(x) = f(zg)a(g)'?.

Here ¢ = qx,¢ : G — R is a smooth function on G satisfying g(e) =1, q(kg) =
Ar.c(k)a(g).

The space K \ G carries a relatively invariant measure dy with modulus ¢—! which

satisfies:
/ f(vg)dvz/ f(v)alg™Hdy
K\G K\G

where f € C.(K \ G).

The Hilbert space Hr, = L*(G, K, x) is the completion of C2°(G, K, x) under the
norm || fllz = (fe\ g [F (1) Pdr)"/2.

Now let m be a unitary representation of G on a Hilbert space H,, we denote by
H° the Fréchet space of smooth vectors of 7. Its anti-dual space is denoted by
H . It is well known that 7(D(G))H, > C H® where D(G) = C°(G).

2.1.2 Algebraic structure

Let g = n+ b where n is nilpotent, [g, g] C n and where § is an abelian subalgebra
of g such that ad(h) consists of semi-simple endomorphisms with real eigenvalues.

In [Cu.2] it has been shown that if 7; is of finite multiplicity then the Lie algebra
g has a basis B = {Clv"' aCaavlv“' aVllela'“ 7XU7Y17“' aYu,Alv"' 7AuvBla
.-+, By} such that

n=vect < Cy, - ,Co, V1, -+, V,, X9, -+ , Xy, Y1, , Yy >

and h = vect < Ay,---, Ay, B1,- -+, B, >. Furthermore we have:

i) [Xpn, Y] =0if and only if h # ' and [X}, Yy is central in n for 1 < h < w.

ii) For every h,h' [Xp, Xp/] = [Yh, Ya] =0.

iii) cent(g) = vect < C1, -+ ,Cq >, and cent(n) = vect < Cq,-+- ,Cq, Vi,--+ ,V,, >.
iv) [Ap, Xn] = = Xu; [An, Yol = Ya;  [An, Xiw] = [An, Y] =0 for h # h'.

V) [Bk,Xh] = ak,hXh; ak,h S R; [Bk,Yh} = O; [Ah,Vk] = 0; [Bk,Vk] = Vk and
[Bk7Vk/] =0 for k& 7é kl

(see Theorem 1.8 in [Cu.2]), we have simplified here the notations of Currey).
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2.1.3 Plancherel formula

Let 7 be the monomial representation: 7 = 7; = Ind% . To decompose T means
to describe the spectrum of 7, the multiplicities and the equivalence class of the
Plancherel measure in terms of the coadjoint orbit picture.

In the case of a completely solvable Lie group, it has been shown in [Li.1] that
®

the spectral decomposition formula is given by 7 = / modv(0) where v
(f+o+)/H

is a pushforward of a finite measure on (f + h*) which is equivalent to Lebesgue

measure.

In the case with which we are concerned where G = NH and 74 has finite mul-
tiplicity, it has been shown in [Cu.2] that the set of generic H—orbits in the
decomposition of 7y admits a natural algebraic cross-section ¥ and the measure v
is given as an explicit measure on 3.

Furthermore we can choose fln =0 .
The cross-section in f + h+ is f + 3 and is given as follows:

Fixing a choice of signs § = (¢,6) = (€1, -+ ,€u,61, -+ ,0,) € {1,-1}4d =u+v,
one has ¥ = Uae{l,—l}d g where ¥y = {l € QNbt; (Vi) =€, 1<k<wuand
W(V;))=0;, 1<i<v} HereQ = QyNQ, where g is the set of G—orbits having
maximal dimension in g* and €y consists with H—orbits of maximal dimension.
The irreducible representations which correspond to G—orbits G-I, I € QN(f+bht),
are sufficient to decompose Tf-

There exists a dense open subset Dy of R* x R* such that
So={> GCh+ > GVi+ Y ey + Y mXis (&) €De}  (7)
h=1 i=1 k=1 k=1

(see [Cu.2], we have made a small change of notations).

Let F be a function on f 4 h*. One has

[ ra= X[ R GOy SV aYi+d Xy ded
I+ Ra xR h=1 i=1 k=1 k=1

96{17_1}d

Now for | € X, an H—covariant generalized vector for m; is defined formally by;

for v € H}®
a0 = [ T Ead s tan. (8)
(see 2.1 in [Cu.2]).

2.1.3.1. Theorem [Cu.2] The integral (8) is absolutely convergent for every
Y € H® and B is continuous on HY¥ for a certain integer N (see [Cu.2] proof of
theorem 2.2).
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The distribution-theoretic Plancherel formula which is equivalent to the disinte-
gration of 7; is

(r@arar) = [ @) o)|ROl
s
where R(1) = ((2m)"I([ X1, Yi)I([X2,Y2]) -+ - ([ X4, Ya])) ™! with n = dim(n) and
a, is the generalized cyclic vector for 7: a,(§) = £(e) for £ € H® (cf. [Cu.2]
Theorem 3.2).

Of course the reference [Cu.2] contains more information than is conveyed here.

2.2 The Bonnet Plancherel formula

The aim of this section is to describe explicitly the Bonnet Plancherel Formula
associated to the disintegration of 7;. Let G, H, f (and so on) be as above. We
recall that the distribution Sy y,, defined on D(G) by: (S x;,¢) = [;; (h)xs(h)

Agz (h)dh, is positive.

By the theorem of P. Bonnet [Bon.], there exist positive nuclear operators Uy,
H — H;°°, such that

@Mszéwwwmmm»wemm.

We shall show that the operators U, are finite sum of rank one operators. The
first step is a determination of a cross-section for G-orbits in G.(f + X).

Letl=f+lpe f+X. By(213)thereex15t59—(e 5) = (61,"- eu,él +,0,) €

{—1,1}% such that ly € $g: lo = thCh + Z(s Vi + ZekYk + Zuka, the
h=1 i=1 k=1 k=1
G—orbit of [ consists of elements I’ of the form:

I'= Z EnCh +Z Siw; Vi + Z yrYy + Z R X + Z Pr(w, xk, yp)Aj + Z b; B}
h= = =1 1 —1

Whereiwi €]0,+o0[ 1< §71/, xk,yk,l; € R and }k are polynomials in xy, yx
and rationals in w;, 1<k <u.

It has been shown in [Cu.2] that

O =GIn(f+3) =f+ J {Zghch+z(sv JrZekYkJrZekekuka}
ee{—1,1}» h=1
(9)
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We give a cross-section for G— orbits in G.(f + X) as the set

I = {f+Z§hOh+Z(§V*+ZYk+ZMka7 fh,#k)ERaXRu

k=1 k=1
and 6 = (81, ,0,) € {—1,1}”}
= U 1.
se{—-1,1}»
We see that our cross-section I' for G— orbits in G.(f + X) is contained in f + X.

Furthermore we decompose the Lebesgue measure on f + X into integral of mea-
sures on Oy, € I': Given a function F on (f + X) we write:

| roa-[ | 0)diio (8)dv (o) (10)

4z Gom(f+2

= ¥ / f+Z§hCh+Zé V*—|—ZekYk —|—Zek,uka dédp.
se{1,—1}v /RIXRY ee{l —1}u k=1 k=1

On the other hand recall that for all w € D(G) we have by [Cu.2]:
(ry(@)ar, ) = / (1)1, )| B

f+=

where R(l ™ T Xk, Ya)))
k=1

Remarks

i) From the construction of vectors Xy, Yy one can verify that I([X}, Yi]) # 0 for
all I € Q.

ii) Since for all 1 < k < w, [Xy,Yy] € cent(n) then for every o € T' by (9) we
have R(o) = R(l) VYle G-onN(f+X). Thus we can write R(l) = R(f,4,€) as a
function uniquely depending on f,6 = (61,---,d,) and &€ = (&1, ,&a)-

Let us write (¢ s.c,u) for the 1rredu01ble representatlon assoc1ated to the element

I =1(&06,e,p) = f+Z§hCh+Z5 V*—G-ZekYk +Zuka in g*. We deduce
h=1 i=1 k=1 k=1
that:

(rr(w)ar, ar) =

‘/]R R Z <7r(£,5,e,u)(w)ﬁ(ﬁ,é,e,/t)vﬂ(&,é,e,/L)HR(f? 67 £)|d£d:u’ (11)
< Ru

se{1,—1}v “R* e€{l,—1}u

Let nowazf—i—ZﬁhC;{-i-Z(siVi*-F Zyk*+ZMkXZ el c(f+%).

h=1 i=1 k=1 k=1
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For every l € G- o N (f + X) there exists by (9) an € € {—1,1}* such that:

a 14 u u
l=f+ thC;’i + Z(m/;* + ZekYk* + Zek,ukX,’;.
h=1 i=1 k=1 k=1

Put for 1 <k <wu: ag(o)= (o,[Xg, Ys]). Since [ X, Y] € cent(n), we have that
ax(0) = ag(l). Then by the obvious remark (i) one has ax(o) # 0.

Let g; = H exp(yrYs) H exp(zkXk) H exp(vp Vi) € N, where x), = i;(%,
k=1 k=1 h=1

er—1

_ - 1-— €k
Yk = gy ks and vy = —6, . Z mah,kﬂk'
k=1

2.2.1 Lemma. We have that:

l=g -0
Proof. We recall that
92U60t< Cl;"' 7Ca7V17"' 7VD7X17"' 7XuaY1a"' 7YuaA17"' aAuvBlv'“ 7Bl/ >

According to the expressions of o, [ and since the vectors Cj, and V; are central in
n we have g; - 0(Cy) =1(Ch), 1<Vh<a,and g;-o(V;)=1V;), 1<Vi<w.

Fix s € {1,---,v}, we have by (2.1.2.v) and the fact that f;, =0

v u

g -0(Bs) = O'(Ad(H exp(—vp V) H exp(—zx X)) (Bs))

h=1 k=1

= a(Ad(H exp(—v, Vi) (Bs + Z T 1 X1))

h=1 k=1

= U(Bs + Us‘/s + Z xkas,ka)
k=1

= 0(Bs) + 0svs + Z TrOls ko
k=1

u u
=0(Bs) = Y TnQapte + Y Trlakhli
k=1 k=1

= 0(B;) = U(Bs) = f(Bs).
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For 1 < i < w, we have by (2.1.2.v), (2.1.2.iv), (2.1.2.ii) and by the fact that
fi. =0:

gi-0(A) = o(Ad([] exp(—zrXk))(Ai + 4:Y7))
k=1
= o(Ai +yYi — 2 X — 29[ X3, Vi)
o(As) +yi — wip; — x3y504(0)

_ 67;—1 61'—1 (61—1)2

R L LR )
_ _ Hi L N2 _ 9.
= o(4;)+ (o) (2¢; — 2+ 14 (&) — 2¢;)
= O'(Ai) =1 AZ),

i

o(Ad(] ] exp(—zrXk))(X: — w:[Y:, Xi]))

g-o(Xi) =
k=1
= o(Xi +u[Xi,Yi])
= O'(Xi) + (61‘ — l)ﬂi
= €
= U(X;)
and
gi-o(Yy) = oYi—x[X;,Yi])
= o)~ (et 1)
I¥:).
Thus g; -0 = 1. |

We turn now to Bonnet’s operators. First we define for every l € G-o N (f + X)
an operator §] : H3® — C by

Bi(w) = /H Do) 4% a2 X (h)ydh (12)

and a function v, by 1y, (g') = 1(g; '¢'), ¢’ € G. We can see that 1), is an element
of H7°. Indeed, the covariance condition is satisfied.

Let B(I) be the Vergne polarization associated to I and to our Jordan-Hélder basis
of g. For ¢’ € G,b € B(l) we have 1y, (bg") = ¥(g; *bg') = ¥(g; 'bg1g; ' g'). Since
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I = g, - o, we have that then B(l) = g;B(o)g; * and &' = g; 'bg; € B(o). Hence

Yo (bg') = Y(¥'g ')
= Xe(M)(g'y) (@ eHY)
= Xo(b)y (9
= xi1(b)ibg, (g")-

Evidently 1,4, is C* function. We obtain 5/(¢)) = B;(vg,) where 5 is as in (8).
Then using (2.1.3.1) we have that (12) converges for all ¢ € HS° and ] € H, .

Let o €T, € G-oN(f+3)and € = (€1, -+ ,€,) € {—1,1}" such that e, = I(Y%).
Since ! depends only on € we put 8] = 8. and we define the operator U, : HY® —
H_°° by:

U, = Z Py . (13)
ec{—1,1}»

Here Pg: 5 : HY® — H;*° is a rank one operator defined by Pg: s (1) = (¥, 3{)5,.

We have the following:

2.2.2 Theorem Let G = exp(g) be the semi direct product; where N = exp(n)
is milpotent and normal in G, and H = exp(h) is abelian and acts semi-simply on
N with real eigenvalues. Let f be a linear functional of g such that f([h,b]) = {0}
and x ¢ the corresponding unitary character of H. Let 7y = Ind%xf and assume
that 75 has finite multiplicity. Let ¥ C g* be the cross-section for the H—orbit in
QN bt given in [Cu.2]. Then there exists: a cross-section T for the G—orbit in
G- (f+%), ameasure v on T, such that for every w € D(G) we have:

(Tr(w)or, ar) = / tr(my(w) o Uy )dv (o)

T

where Uy, 0 € T, is defined in (13).

Proof. Let w € D(G). We have 7,(w) o U, = Z Pr, (w)op: ;- Hence
ec{-1,1}v

tI‘(ﬂ'g(W) o Uo’) = Z <7Ta(w)5év BQ

ee{-1,1}v
On the other hand, for all ¢ € HS°, we have:

(o (W) B¢, ) = (86 1o (W)) = Bi((mo (w*)1)g,); where I = g; - 0.
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Since for all z € G

(o W)ge(®) = Tolw (o )
- /G " () (7o (y)0) (g ) dy

- /G W ()l Lzy)a(y) V2 dy

= | a2y
- ﬂ-l(w*)wgz (fE),
it follows that (7, (w*)¢)y, = m(wW*)Yy,.
Thus
(T (W)B) gis Vg )1, = (Mo (W)BLYIH, = (B To(W)Y)n,
= (Be; m(w*)¥g)m,
= <7Tl(w)ﬁl;¢gz>71r
Hence m(w)B; = (70 (w)Be)g, and (w4 (w)BL, B) = (7o (w)Be) gy, Bi) = (me(w)Be, Be)-

We deduce that
tr(my(w) o Uy,) = Z (e (W) Be, Be)-

ee{—1,1}»
The formulas (10) and (11) permit us to conclude, the measure v is given on each
L5 by: [R(f,0,&)|dEdp. u
2.3 Exemple ([Cu.2])
Let g = vect < B, A, X,Y, Z > with non vanishing brackets

A, X]=-X, [AY]=Y, [X,Y]|=2Z, [B,X]=X, [B,Z]="Z

Here h =vect < A,B > and n=vect < X,Y,Z > .

For [ € g* we write | = (\,y,p,@,0) where A = [(Z);y = I(Y);p = I(X); 0 =
I(A);0 = 1(B). Qo ={l € g*, A # 0} and Q; = {l € g*,v # 0} and the set Q of
generic linear functionals is 2 = Q¢ N Q.

The cross-section for H—orbits in b~ N Q is given in [Cu.2] as:
Y ={(66u0,0); peR; (0) 6{*131}2}:UE9'

Now the cross-section for G— orbits in G - ¥ is: I' = Usc_1,1)['s where
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[={(6,1,100); pek, §e{-1,1}}.

Let o € T'; there exits 6 € {—1,1} such that o = (4,1, u1,0,0). The theorem (2.2.2)
says that the Bonnet Plancherel measure is given on each I's by (27)~3dpu.

Forle G-o 3 e=1(Y) such that | = (d,€,€eu,0,0). Put g; such that | = g; - o,
here we have: V = Z; and since [B, X] = X then for e = —1

-2 2 -2
g1 = exp(—LY Jexp(5 X exp(—5Z.)

The operator j; is given in [Cu.2]:

Biw) = | Plexp(sB)exp(tA))e’e = dsdt.
R2

Thus the formula for the operator [ is:

= s (=9
510) = ) = [ Do TexplsBep(eA)e’e T dsdt = (b,
R2
Then Bonnet’s operator U, is given by

Us = Z Pg; 3, where Py g/(¢) = (¥, B) ..

616{71,1}
Furthermore for e =1, ] = (35, then
Us =Py 50, + Poipr-

Now for w € D(G) we have: m,(w) o U, = Pﬂ(a,l,w(w)ﬁ’,l,ﬁ’,l + Pﬂ(é,l’“)(w)glﬁl.
Then:

tr(ﬂa o Uo’) = <7T(571,[L)(w)/8/717ﬁ/71> + <7T(5,1,,LL) (w) o ﬁlaﬂl)

By theorem (2.2.2) we have the Bonnet Plancherel formula:

(r(@)ar,az) = @1 3 / (8.1, (€)Uo.1.0 )t

6e{—-1,1}
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