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The Bonnet Plancherel formula for monomial

representations for classes of completely solvable

Lie groups

Amira Ghorbel

Abstract

We compute the Bonnet Plancherel formula associated to a monomial repre-

sentation of a nilpotent Lie group. We give also the corresponding formula for

finite multiplicity monomial representation for a class of completely solvable

Lie groups.

0. Introduction

Let G be a connected Lie group having a smooth dual. Given a unitary represen-
tation π of G acting in a Hilbert space Hπ, we denote by H∞

π the Fréchet space of
smooth vectors for π, and H−∞

π the space of continuous anti-linear functionals on
H∞

π . Let α be any positive distribution on G of finite order. Bonnet’s Plancherel
formula ([Bon.]) tells us that for ϕ ∈ D(G)

α(ϕ) =
∫

Ĝ

tr(π(ϕ)Uπ)dν(π) (1)

where for ν almost everywhere, Uπ : H∞
π → H−∞

π , π ∈ Ĝ, is a certain uniquely
determined nuclear operator (see [Bon.] Theorem 4-1).

We recall that Penney’s and Bonnet’s Plancherel formulas have been described
for nilpotent groups and exponential groups in ([Pen], [Fu.1,3,4], [F.Y.], [Gr,1,2],
[Li.2,3], [B.L.2]). Furthermore, Fujiwara has given an explicit expression by duality
of Bonnet’s operators in the case of monomial representations of nilpotent Lie
groups.

In the first part of this paper we take a closed connected subgroup H = exp(h) of
a nilpotent connected simply connected Lie group G = exp(g), a unitary character
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χ = χf of H (where f ∈ g∗ is such that 〈f, [h, h]〉 = 0) and we consider the positive
distribution

〈SH,f , ϕ〉 =
∫

H

ϕ(h)χf (h)dh, ϕ ∈ D(G).

To describe the measure ν given in (1), we use the result of [B.L. 1] where it has
been shown that there exists a certain affine subspace V of (f + h⊥) such that

IndG
Hχf '

∫ ⊕

V
πφdφ (dφ denotes the Lebesgue measure on V). There exists a

Borel cross-section Σ of G-orbits in G · V and it turns out that the measure ν of
Bonnet’s formula is supported on Σ. We show in (6) that for σ ∈ Σ the operator
Uσ is an integral of rank one operators:

Uσ =
∫

Γσ

Qs,σdλσ(ṡ)

where Γσ is defined in paragraph (1.1.b), the operators Qs,σ and the measure dλσ

in 1.3.

In the exponential case, the determination of Bonnet’s operators Uπ is difficult.
One of the reasons is that there exists no easy way to determine explicitly the C∞

vectors of a representation.

Several authors have studied in the past the disintegration of induced representa-
tions for exponential solvable Lie groups. In ([D.R.]) Duflo and Rais computed the
Plancherel formula for L2(G) of an exponential solvable Lie group. Bonnet’s oper-
ators have been explicitly described for a normal monomial representation induced
from a normal subgroup of an exponential solvable Lie group in [G.H.L.S.].

In the second part of this paper we take the semi-direct product G = NH; where
N = exp(n) is nilpotent and normal in G, and H = exp(h) is abelian and acts
semi-simply on N with real eigenvalues. Let χ = χf be a unitary character of H
(where f ∈ g∗). We consider the representation τf = IndG

Hχf and we assume that
τf has finite multiplicity. The first precise formulas in this case have been given
by Currey in ([Cu.2]). To describe the measure ν given in (1) we use the main
results of this reference, where it has been shown that the set of generic H-orbits
in the disintegration of τf admits a natural smooth algebraic cross-section Σ. We
derive a cross-section Γ of G− orbits in G.(f + Σ), and the measure ν of Bonnet’s
formula will be explicitly described as a measure on Γ. We take σ ∈ (f + Σ) and
for l ∈ G ·σ ∩ (f + Σ) we define an operator β′l on the space of the smooth vectors
H∞

σ of πσ. We show in (13) that the operators Uπσ = Uσ in Bonnet’s formula are
determined as a finite sum of rank one operators: Pβ′l,β

′
l
.
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1. The Bonnet Plancherel formula for nilpotent Lie
group

1.1 Notations and definitions

1.1.a Quotient measures

Let G be a connected simply connected nilpotent Lie group with Lie algebra g and
let K = exp(k) be a closed subgroup of g. We choose a Jordan-Hölder basis Z =
{Z1, · · · , Zn} of g. Let B = {X1, · · · , Xr} be a Malcev-basis relative to k, i.e. g =
⊕∑

1≤i≤r

RXi ⊕ k and for any j = 1, · · · , r, the subspace gj = span{Xj , · · · , Xr, k} is

a subalgebra. The mapping EB : Rr → G/K : EB(t1, · · · , tr) = E′
B(t1, · · · , tr)K,

where E′
B(t1, · · · , tr) = exp(t1X1) · · · exp(trXr), is then a diffeomorphism. We

obtain a G−invariant measure dġ on the quotient space G/K by setting∫
G/K

ξ(g)dġ =
∫

Rr

ξ(EB(T ))dT, ξ ∈ Cc(G/K),

where Cc(G/K) denotes the space of the continuous fonctions with compact sup-
port on G/K.

It is not difficult to see the following:

1.1.a.1 Proposition Let g be a nilpotent Lie algebra of dimension n. Let k be a
subalgebra of g, B1 and B2 be two Malcev-basis of g relative to k. Then E−1

B2
◦EB1 is

a polynomial mapping from Rr to Rr (where r is the codimension of k in g) whose
total degree is bounded by a constant M which depends only on the dimension of
g.

1.1.b Induced representation

Let G be a nilpotent connected simply connected Lie group with Lie algebra g. Let
h be a subalgebra of g; f ∈ g∗ such that 〈f, [h, h]〉 = 0 and let χf be the unitary
character of H = exp(h) associated to f . Let τ = IndG

Hχf . It has been shown in
[B.L.1] that there exists a certain affine subspace V of Γf = f + h⊥ ⊂ g∗, such
that

τ = IndG
Hχf '

∫ ⊕

V
πφdµ(φ) (2)

where dµ denotes Lebesgue measure on V and where πφ is the irreducible repre-
sentation associated to φ (φ ∈ V).

One has:
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Lemma ([Bour], [Fuj. 3])

µ =
∫

G·V/G

νΩdν(Ω)

where νΩ is a certain measure on Ω ∩ V.

Let Σ be a borel cross-section of the G-orbits in G·V. We can consider the measure
ν as a measure on Σ and write µ =

∫
Σ
νGσdν(σ).

Hence for a continuous function F with compact support on V we get∫
V
F (φ)dµ(φ) =

∫
Σ

∫
G·σ∩V

F (l)dνG·σ(l)dν(σ).

We identify G ·σ∩V with the space Gσ/G(σ), where Gσ = {g ∈ G; g ·σ ∈ V} and
G(σ) = {g ∈ G, g · σ = σ} and we consider the measure λσ on Γσ = Gσ/G(σ)
which corresponds to the measure νG·σ, we write:∫

V
F (φ)dµ(φ) =

∫
Σ

∫
Γσ

F (s · σ)dλσ(s)dν(σ). (3)

Let now S(G/H, f) be the space of all C∞-function ξ on G, such that ξ(gh) =
χf (h−1)ξ(g) for all g ∈ G, h ∈ H and such that the function T 7→ ξ(EB(T ))
is a Schwartz-function on Rr. Let S(G) denote the Schwartz-space of G, i.e. the
space of all complex valued functions ϕ on G, such that ϕ ◦ exp is an ordinary
Schwartz-function on the vector space g.

Denote for ϕ ∈ S(G) PH,f (ϕ)(g) =
∫

H
ϕ(gh)χf (h)dh and let SH,f be the

tempered distribution on G defined by the projection PH,f (ϕ) of ϕ on S(G/H, f),
i.e:

〈SH,f , ϕ〉 =
∫

H

ϕ(h)χf (h)dh = PH,fϕ(e).

Let for φ ∈ V B(φ) denote the Vergne polarization at φ for the basis Z. It has
been shown in [B.L.1] that there exists for φ ∈ V an invariant measure dḃ on
B(φ)/B(φ) ∩H such that for the mapping

Tφ : S(G/H, f) → S(G/B(φ), φ) (φ ∈ V)

given by

Tφ(ξ)(g) =
∫

B(φ)/B(φ)∩H

ξ(bg)χφ(b)dḃ, ξ ∈ S(G/H, f), g ∈ G,

and for ξ ∈ S(G/H, f) we have:∫
V
〈Tφ(ξ), Tφ(ξ)〉Hφ

dφ = ‖ξ‖2
Hτ
. (4)
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We recall also that from [B.L.2] SH,f is disintegrated as an integral
∫
V
Sφdµ(φ),

where Sφ denotes the tempered distribution on S(G) defined by :

〈Sφ, ϕ〉 =
∫

H/H∩B(φ)

Tφ(PH,f (ϕ))(h)χf (h)dḣ. (5)

1.2 Main results

This section is based on the paragraph 7.5 in [L.M.].

Let g be a nilpotent Lie algebra. Let B be an algebraic subset of finite dimensional
real vector space W , the pair (g,B) is a rationnally variable nilpotent Lie algebra
(or r.v.n.) if the following holds true:

For every b ∈ B, a Lie bracket [, ]b on g is given such that (g, [, ]b) forms a nilpotent
Lie algebra. Moreover there exists a fixed basis Z = {Z1, · · · , Zn} of g, so that

the structure constants (ak
ij(b)), given by [Zi, Zj ]b =

n∑
k=1

ak
ij(b)Zk, are rational

functions in b, satisfying ak
ij(b) = 0 for i < j, k ≤ j (so that Z is a Jordan-Hölder-

basis for (g, [, ]b) (see [L.M]).

A mapping on B is called polynomial if it is the restriction of a polynomial mapping
on W to B and it is called rational if it is the restriction of a rational mapping on
W to B, such that the denominators of the corresponding rational functions do
not vanish on B.

For every b ∈ B we choose m elements V1(b), · · · , Vm(b), in g∗ depending rationally
on b. Let V (b) = span(V1(b), · · · , Vm(b)) and φb : Rm → V (b) defined by φb(X) =
m∑

i=1

xiVi(b), where X = (x1, · · · , xm) ∈ Rm.

Let us denote for (X, b) ∈ Rm × B and for a polarization b at φb(X) in gb the
induced representation πφb(X),b by π(X,b),b. Given any Malcev basis B of gb relative
to b, we can realize the representation in a canonical way on L2(Rr) and for every
element u in the enveloping U(gb) of gb, the operator dπφb(X),b(u) becomes a
partial differential operator with polynomial coefficients on Rr.

In the following theorem we generalize the theorem 7.7 of [L.M.] by replacing the
generic points in g∗ by the generic points of the forms φb(X), X ∈ Rm:

1.2.1 Theorem There exists a Zariski-open subset O in Rm × B such that:

i) For every (X, b) ∈ O there exists a polarization b(X, b) = b(φb(X)) at φb(X)
and a Malcev basis B(X,φb(X)) of g relative to b(φb(X)) depending rationally on
(X, b).
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ii) For every partial differential operator D on Rd with polynomial coefficients
there exists a rational mapping

A : O → U(gb), A(X, b) =
∑
|I|≤nd

aI(X, b)ZI

such that π(X,b),b(A(X, b)) = D.

Proof. We use the notations and the proof of [L.M.].

Let b ∈ B and X ∈ Rm; we can construct the indices ji(X, b) = ji(φb(X)) =
ji(φb(X), b); ki(X, b) = ki(φb(X)) = ki(φb(X), b) as well as j1(X, b) and k1(X, b)
corresponding to (g, [, ]b) as in [L.M]. We put

j1 := max{j1(X, b) : X ∈ Rm; b ∈ B},

k1 := max{k1(X, b) : X ∈ Rm; b ∈ B},
and put B1 := {(X, b) ∈ Rm ×B : j1(φb(X), b) = j1 and k1(φb(X), b) = k1}. Then

B1 = {(X, b) : φb(X)([Zj1 , Zk1 ]b) 6= 0}

is a Zariski-open in Rm × B. Next, for (X, b) ∈ B1, we put (p1(φb(X), b), [, ]b) :=
{Y ∈ g : φb(X)([Zj1 , Y ]b) = 0}, and

Z1
i (X, b) := Zi −

φb(X)([Zj1 , Zi]b)
φb(X)([Zj1 , Zk1 ]b)

Zk1 , i 6= k1.

Then Z1
i (X, b), i 6= k1, form a Jordan-Hölder-basis of (p1(φb(X), b), [, ]b).

We identify (p1(φb(X)), b) with p1 := Rq, where q = dim(p1(φb(X)), b), we obtain
a new r.v.n.(p1,B1). Now for b1 = (X, b) ∈ B1, we get m linear forms: (V 1

i (b1))m
i=1

in Rq given by: V 1
i (b1) = V 1

i (X, b) =

(〈Vi(b), Z1
1 (X, b)〉, · · · , 〈Vi(b), Z1

k1−1(X, b)〉, 〈Vi(b), Z1
k1+1(X, b)〉, · · · , 〈Vi(b), Z1

n(X, b)〉).

We put V 1(b1) = span (V 1
1 (b1), · · · , V 1

m(b1)), and φb1 : Rm → V 1(b1) : φb1(Y ) =
m∑

i=1

yiV
1
i (b1).

Applying the same procedure now to (p1,B1) instead of (g,B1), and iterating
this process, which stops after a finite number d of steps, we construct indices
ji(X, b) and ki(X, b) for i = 1, · · · , d, and finally stop at some r.v.n (pd,Bd) where
Bd ⊂ Rm × Bd−1 is Zariski-open. We put O = Bd.

Moreover, it has been shown in [L.M.] that for (X, bd−1) ∈ O the subalgebra
pd(φbd−1

(X), bd−1) = b(φbd−1
(X)) is the Vergne polarization for φbd

(X) associated
to the basis Z and there exist rational mappings Yi : Rm → g, 1 ≤ i ≤ d, such
that {Y1(X), · · · , Yd(X)} forms a Malcev basis of g relative to b(φbd−1

(X)).
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One continues as in the proof of theorem 7.7 in [L.M.]. �

1.2.2 Proposition Let g be a nilpotent Lie algebra. Let h and b be two subalgebras
of g. There exists a Malcev-basis U of g relative to b, which contains a Malcev-basis
of h relative to h ∩ b.

Proof. We proceed by induction on dim(g).

Let g0 be an ideal of g with codimension one containing b.

i) If h ⊂ g0, the induction hypothesis gives us a Malcev basis U0 of g0 relative to
b which contains a Malcev-basis of h relative to h∩ b. Hence we put U = {U0, X},
where X ∈ g \ g0.

ii) If h 6⊂ g0, we can choose X ∈ h such that g = g0⊕RX. The induction hypothesis
gives us a Malcev-basis U0 of g0 relative to b, which contains a Malcev-basis of
h ∩ g0 relative to h ∩ b. Hence we put U = {U0, X}. �

1.3 The Bonnet Plancherel Formula

The aim of this section is to describe explicitly the Bonnet Plancherel Formula
associated to the disintegration (2). Let G,H, f,V,Σ be as in (1.1.b).

For σ ∈ Σ, g ∈ Gσ we define the operator: qg,σ : H∞
σ → C by

〈qg,σ, ξ〉 =
∫

H/B(g·σ)∩H

ξ(hg)χf (h)dḣ.

It has already been shown in [Fuj.1] that the integral on the right is well defined
(here it suffices to use that for g ∈ Gσ χg·σ(h) = χf (h) for all h ∈ H), the operator
qg,σ is continuous and for all h ∈ H, πσ(h)qg,σ = χf (h)qg,σ.

Let ϕ be in S(G). For σ ∈ V, the operator πσ(ϕ) is a kernel-operator, whose kernel
Kπσ(ϕ) is given by

Kπσ(ϕ)(x, y) =
∫

B(σ)

ϕ(xby−1)χσ(b)db, x, y ∈ G.

Furthermore, for any Malcev-basis Y = {Y1, · · · , Yd} of g relative to b(σ), the
function

(s, t) 7→ Kπσ(ϕ)(
d∏

i=1

exp(siYi),
d∏

i=1

exp(tiYi))

is a Schwartz-function on Rd × Rd (see [C.G.]).
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Let us recall some results from [L.M.].
Let Z1, · · · , Zn ∈ g be a basis of g, and put

L :=
n∑

j=1

Z2
j ∈ U(g),

where U(g) is the envelopping algebra of g. Let N ∈ N. Since (1− L)N is hypoel-
liptic for every N ∈ N∗, there exists a local fundamental solution EN ∈ D′(U) of
(1− L)N on a neighbourhood U of e ∈ G, i.e.

(1− L)NEN = δe in U.

Since (1− L)N is hypoelliptic, we have that EN is C∞ on G \ {e} and for d ∈ N,
if N is big enough EN is in Cd(G). Hence EN is in L1(G) ∩ L2(G) and is even of
class Cd in L1(G).

We recall that the N ′th Sobolev L1-norm on G is defined by

‖f‖N,1 =
∑
|α|≤N

‖Zα ∗ f‖1 +
∑
|α|≤N

‖f ∗ Zα‖1,

where Zα = Zα1
1 ∗ · · · ∗ Zαn

n and |α| = α1 + · · ·+ αn for α = (α1, · · · , αn) ∈ Nn.

1.3.1 Proposition There exists N ∈ N such that for almost all σ ∈ Σ and all
g ∈ Gσ the distribution qg,σ is an element of H−N

σ and∫
G/B(σ)

∫
H/H∩B(gσ)

|Kπσ(ϕ)(u, hg)|dḣdu̇ ≤ Cσ,g‖ϕ‖N,1 ϕ ∈ S(G),

for some constant Cσ,g.

Proof. Let σ ∈ Σ and g ∈ G, such that gσ ∈ V. Let B1 =< Y1, · · · , Yd >
be a Malcev-basis of g relative to b(gσ) such that B′

1 =< Yi1 , · · · , Yir > is a
Malcev-basis of h relative to h ∩ b(gσ) (according to 1.2.2). Then we have

〈qg,σ, ξ〉 =
∫

Rr

ξ(exp(t1Yi1) · · · exp(trYir
)g)e−i<f,

∑r
j=1 tjYij

>dt1 · · · dtr

=
∫

Rr

(ξg ◦ EB′
1
)(t1, · · · , tr)(χf ◦ EB′

1
)(t1, · · · , tr)dt1 · · · dtr

where ξg(g′) = ξ(g′g).

Let Pσ be a function on G/B(σ) such that S 7→ Pσ(E′
B1

(S)) is a polynomial on
Rd of degree ≤ 2r such that

cgσ =
∫

Rr

1
|Pσ(E′

B1
(T )g)|

dT <∞.
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Then we get
|〈qg,σ, ξ〉| ≤ cgσ‖(Pσ · ξ)g‖∞.

Let now B2 = B2(gσ) be the Malcev-basis of g relative to b(gσ) obtained by
theorem (1.2.1) applied to the affine subspace V and the one point set B.

Let Q̃σ(S) = Pσ(E′
B2

(S)g) = Pσ(E′
B1
◦(E′

B1

−1 ◦ E′
B2

)(S)g), S ∈ Rd, whose coeffi-
cients depend on g, σ and whose degree is bounded by an integer M1 independent
of g, σ (by 1.1.a.1).

Moreover we can see that for some constant c′gσ big enough the polynomial c′gσF =
c′gσ(1 + ‖T‖2)M1 , T ∈ Rd, dominates the function Q̃σ on Rd. Hence

‖Q̃σξg‖∞ ≤ c′gσ‖Fξg ◦ EB2‖∞ ≤ c′gσ‖D(Fξg ◦ EB2)‖2

for some fixed partial differential operator with constant coefficients on Rd. Now
by theorem (1.2.1) we have that for almost all σ ∈ V there exists a(σ) ∈ U(g) such
that : dπσ(a(σ)) = D◦ multiplication by F . Moreover the degree of dπσ(a(σ)) is
bounded by a constant N independent of σ. Thus for almost all σ ∈ Σ and all
g ∈ G

|〈qg,σ, ξ〉| ≤ c′′σ‖ξ‖N

for some big enough constant c′′σ.

For the second statement, we remark that, since Kπσ(ϕ) is a Schwartz-function on
G×G modulo B(σ)×B(σ) by Howe’s result (see [C.G.]), the function

G 3 u 7→ ηv(u) = Kπσ(ϕ)(u, v), v ∈ G,

is in S(G/B(σ), χf ) and so by the arguments for the first statement∫
G/B(σ)

∫
H/H∩B(gσ)

|Kπσ(ϕ)(hg, v)|dḣdv̇ =
∫

H/H∩B(gσ)

(∫
G/B(σ)

|Kπσ(ϕ)(hg, v)|dv̇

)
dḣ

=
∫

H/H∩B(gσ)

1
|Pσ(hg)|

(∫
G/B(σ)

|Pσ(hg)ηv(hg)|dv̇

)
dḣ

≤
∫

H/H∩B(gσ)

1
|Pσ(hg)|

(∫
G/B(σ)

|πσ(a′(gσ))ηv(hg)|dv̇

)
dḣ

for some element a′(gσ) in the enveloping algebra of g, whose degree is bounded
by a constant N which does not depend on gσ according to (1.2.1). Since∫

G/B(σ)

|πσ(a′(gσ))ηv(hg)|dv̇ =
∫

G/B(σ)

|
∫

B(σ)

a′(gσ) ∗ ϕ(hgbv−1)χσ(b)db|dv̇

≤
∫

G

|a′(gσ) ∗ ϕ(hgv)|dv =
∫

G

|a′(gσ) ∗ ϕ(v)|dv ≤ cgσ‖ϕ‖N,1,
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(for some constant cgσ depending on a′(gσ)) for all h ∈ H, it follows that∫
G/B(σ)

∫
H/H∩B(gσ)

|Kπσ(ϕ)(v, hg)|dḣdv̇ =
∫

G/B(σ)

∫
H/H∩B(gσ)

|Kπσ(ϕ∗)(hg, v)|dḣdv̇

≤ cgσ‖ϕ∗‖N,1

∫
H/H∩B(gσ)

1
|Pσ(hg)|

dḣ ≤ Cgσ‖ϕ‖N,1

(for some new constant Cgσ). �

This gives us the one dimensional operators:

Qg,σ = Pqg,σ,qg,σ
: HN

σ → H−N
σ , Qg,σ(ξ) = 〈ξ, qg,σ〉qg,σ; ξ ∈ HN

σ .

In particular for ϕ ∈ S(G), πσ(ϕ) ◦Qg,σ = Pπσ(ϕ)qg,σ,qg,σ
(see [G.H.L.S.]).

For σ ∈ Σ, we define the operator Uσ : HN
σ → H−N

σ as the integral of these
operators:

Uσ =
∫

Γσ

Qg,σdλσ(ġ). (6)

We have the following:

1.3.2 Proposition For almost all σ ∈ Σ we have: Uσ : HN
σ → H−N

σ is trace
class.

Proof. Let σ ∈ Σ, s ∈ Gσ. We recall that the rank one operator Qs,σ has a trace
which is given by:

tr(Qs,σ) = tr(A−N
σ ◦Qs,σ ◦A−N

σ ) = 〈πσ(EN )qs,σ, πσ(EN )qs,σ〉,

where A−N
σ = πσ(EN ) (see [G.H.L.S.]).

On the other hand for ψ ∈ H∞
σ we have:

〈πσ(EN )qs,σ, ψ〉 = 〈qs,σ, πσ(E∗
N )ψ〉 =

∫
H/B(s·σ)∩H

πσ(E∗
N )ψ(hs)χf (h)dḣ

=
∫

H/B(s·σ)∩H

∫
G/B(σ)

Kπσ(E∗
N )(hs, u)ψ(u)duχf (h)dḣ

=
∫

H/B(s·σ)∩H

∫
G/B(σ)

Kπσ(EN )(u, hs)ψ(u)duχf (h)dh.
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As N is increasing, the function EN becomes smoother and smoother and the
kernel function

(u, h) 7→ Kπσ(EN )(u, hs)

is decreasing more and more rapidly at infinity, and so for N big enough, this
function is in L1(G/B(σ), σ) ⊗ L1(H/B(s · σ) ∩ H, f) for almost all σ ∈ V (see
1.3.1). Hence, using Fubini, we can deduce that

〈πσ(EN )qs,σ, ψ〉 =
∫

G/B(σ)

∫
H/B(s·σ)∩H

Kπσ(EN )(u, hs)χf (h)dhψ(u)du

= 〈ηs,σ, ψ〉 (∗)

where ηs,σ(u) =
∫

H/B(s·σ)∩H

Kπσ(EN )(u, hs)χf (h−1)dḣ is in L2(G/B(s · σ), s · σ).

Hence

tr(Qs,σ) = 〈ηs,σ, ηs,σ〉
=
∫

G/B(σ)
ηs,σ(g)ηs,σ(g)dġ

=
∫

G/B(σ)

∫
H/B(s·σ)∩H

Kπσ(EN )(g, h′s)χf (h′−1)dḣ′∫
H/B(s·σ)∩H

Kπσ(EN )(g, hs)χf (h−1)dḣdġ

=
∫

G/B(σ)

∫
H/B(s·σ)∩H

∫
B(σ)

EN (gbs−1h′−1)χσ(b)dbχf (h′−1)dḣ′∫
H/B(s·σ)∩H

∫
B(σ)

EN (gbs−1h−1)χσ(b)dbχf (h−1)dḣdġ

=
∫

G/B(s·σ)

∫
H/B(s·σ)∩H

∫
B(s·σ)

EN (gbh′−1)χs·σ(b)dbχf (h′−1)dḣ′∫
H/B(s·σ)∩H

∫
B(s·σ)

EN (gbh−1)χs·σ(b)dbχf (h−1)dḣdġ.

Now for q ∈ Cc(G), it has been shown in [B.L.2] that∫
H/B(s·σ)∩H

∫
B(s·σ)

q(bh−1)χs·σ(b)dbχf (h−1)dḣ =

∫
B(s·σ)/B(s·σ)∩H

∫
H

q(bh−1)χs·σ(b)χf (h−1)dhdḃ (∗∗)

We obtain:

tr(Qs,σ) = 〈Ts·σ(PH,f (EN )), Ts·σ(PH,f (EN ))〉Hs·σ = ‖Ts·σ(PH,f (EN ))‖2
Hs·σ

On the other hand one has by (3)∫
Σ

∫
Γσ

‖Ts·σ(PH,f (EN ))‖2
Hs·σ

dλσ(ṡ)dν(σ) =
∫
V
〈Tφ(PH,f (EN )), Tφ(PH,f (EN ))〉Hφ

dφ =

‖(PH,f (EN ))‖2
Hτ

by (4).



56 Amira Ghorbel

Hence for almost all σ ∈ Σ

‖Uσ‖1 =
∫

Γσ

tr(Qg,σ)dλσ(ġ) <∞

and the integral

Uσ =
∫

Γσ

Qg,σdλσ(ġ)

converges in the space of the trace-class operators. �

1.3.4. Theorem There exists N ∈ N, such that for every ϕ ∈ S(G) and for
almost all σ ∈ Σ, we have that the operator πσ(ϕ) ◦ Uσ : HN

σ → HN
σ is trace class

and
< SH,f , ϕ >=

∫
Σ

tr(πσ(ϕ) ◦ Uσ)dν(σ).

Proof. Let σ ∈ Σ, s ∈ Gσ and ϕ ∈ S(G). An argument similar to (*) permits

us to write πσ(ϕ)qs,σ(u) = ϕs,σ(u) =
∫

H/B(s·σ)∩H

Kπσ(ϕ)(u, hs)χf (h)dh, for all

u ∈ G.

Then

〈πσ(ϕ)qs,σ, qs,σ〉 =
∫

H/B(s·σ)∩H

ϕs,σ(hs)χf (h)dḣ

=
∫

H/B(s·σ)∩H

∫
H/B(s·σ)∩H

Kπσ(ϕ)(hs, h′s)χf (h′−1)dḣ′χf (h)dḣ

=
∫

H/B(s·σ)∩H

∫
H/B(s·σ)∩H

Kπs·σ(ϕ)(h, h′)χf (hh′−1)dḣ′dḣ.

We recall that πσ(ϕ)◦Uσ = πσ(ϕ)◦
∫

Γσ

Pqs,σ,qs,σdλσ(ṡ) =
∫

Γσ

Pπσ(ϕ)qs,σ,qs,σ
dλσ(ṡ).

Hence we deduce that

tr(πσ(ϕ)◦Uσ) =
∫

Γσ

∫
H/B(s·σ)∩H

∫
H/B(s·σ)∩H

Kπs·σ(ϕ)(h, h′)χf (hh′−1)dḣ′dḣdλσ(ṡ).

(∗ ∗ ∗)
Now we recall that, from [B.L.2] one has

〈SH,f , ϕ〉 =
∫
V
〈Sφ, ϕ〉dµ(φ)

=
∫

Σ

∫
Γσ

∫
H/H∩B(s·σ)

Ts·σ(PH,f (ϕ))(h)χf (h)dḣdλσ(ṡ)dν(σ)

(by (3) and (5)).
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On the other hand∫
Γσ

∫
H/H∩B(s·σ)

Ts·σ(PH,f (ϕ))(h)χf (h)dḣdλσ(ṡ)

=
∫

Γσ

∫
H/H∩B(s·σ)

∫
B(s·σ)/B(s·σ)∩H

PH,f (ϕ)(hb)χs·σ(b)dbχf (h)dḣdλσ(ṡ)

=
∫

Γσ

∫
H/H∩B(s·σ)

∫
B(s·σ)/B(s·σ)∩H

∫
H

ϕ(hbh′)χf (h′)dh′χs·σ(b)dbχf (h)dḣdλσ(ṡ)

=
∫

Γσ

∫
H/H∩B(s·σ)

∫
B(s·σ)/B(s·σ)∩H

∫
H

ϕ(hbh′−1)χf (h′−1)dh′χs·σ(b)dbχf (h)dḣdλσ(ṡ).

Then by (∗∗), (∗ ∗ ∗)∫
Γσ

∫
H/H∩B(s·σ)

Ts·σ(PH,f (ϕ))(h)χf (h)dḣdλσ(ṡ)

=
∫

Γσ

∫
H/H∩B(s·σ)

∫
H/B(s·σ)∩H

∫
B(s·σ)

ϕ(hbh′−1)χs·σ(b)dbχf (hh′−1)dḣ′dḣdλσ(ṡ)

=
∫

Γσ

∫
H/H∩B(s·σ)

∫
H/B(s·σ)∩H

Kπs·σ(ϕ)(h, h′)χf (hh′−1)dḣ′dḣdλσ(ṡ)

= tr(πσ(ϕ) ◦ Uσ).

Whence
〈SH,f , ϕ〉 =

∫
Σ

tr(πσ(ϕ) ◦ Uσ)dν(σ).

�

2. The Bonnet Plancherel formula for a class of
completely solvable Lie group

In this part we take, as mentioned in the introduction, the semi-direct product
G = NH; where N = exp(n) is nilpotent and normal in G, and H = exp(h) is
abelian and acts semi-simply on N with real eigenvalues. Let χ = χf be a unitary
character of H (where f ∈ g∗). We consider the representation τf = IndG

Hχf and
we assume that τf has finite multiplicity.

Let us recall some results given in the paper [Cu.2].

2.1 Generalities and main results

2.1.1 C∞ vectors

Let G be an exponential solvable Lie group and K a closed subgroup of G. Fix a
choice of right Haar measures dg, dk onG andK. We write ∆G,∆K for the modular
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functions of G, K (respectively). If χ is a unitary character of K, the induced
representation πχ = IndG

Kχ acts in the space C∞
c (G,K,χ) = {f ∈ C∞(G) :

f(kg) = χ(k)f(g) ∀k ∈ K, g ∈ G; f compactly supported mod K}, by the formula

πχ(g)f(x) = f(xg)q(g)1/2.

Here q = qK,G : G→ R∗
+ is a smooth function on G satisfying q(e) = 1, q(kg) =

∆K,G(k)q(g).

The space K \G carries a relatively invariant measure dγ with modulus q−1 which
satisfies: ∫

K\G
f(γg)dγ =

∫
K\G

f(γ)q(g−1)dγ

where f ∈ Cc(K \G).

The Hilbert space Hπχ
= L2(G,K,χ) is the completion of C∞

c (G,K,χ) under the
norm ‖f‖2 = (

∫
K\G |f(γ)|2dγ)1/2.

Now let π be a unitary representation of G on a Hilbert space Hπ, we denote by
H∞

π the Fréchet space of smooth vectors of π. Its anti-dual space is denoted by
H−∞

π . It is well known that π(D(G))H−∞
π ⊂ H∞

π where D(G) = C∞
c (G).

2.1.2 Algebraic structure

Let g = n + h where n is nilpotent, [g, g] ⊂ n and where h is an abelian subalgebra
of g such that ad(h) consists of semi-simple endomorphisms with real eigenvalues.

In [Cu.2] it has been shown that if τf is of finite multiplicity then the Lie algebra
g has a basis B = {C1, · · · , Ca, V1, · · · , Vν , X1, · · · , Xu, Y1, · · · , Yu, A1, · · · , Au, B1,
· · · , Bν} such that

n = vect < C1, · · · , Ca, V1, · · · , Vν , X1, · · · , Xu, Y1, · · · , Yu >

and h = vect < A1, · · · , Au, B1, · · · , Bν >. Furthermore we have:

i) [Xh, Yh′ ] = 0 if and only if h 6= h′ and [Xh, Yh] is central in n for 1 ≤ h ≤ u.

ii) For every h, h′ [Xh, Xh′ ] = [Yh, Yh′ ] = 0.

iii) cent(g) = vect < C1, · · · , Ca >, and cent(n) = vect < C1, · · · , Ca, V1, · · · , Vν >.

iv) [Ah, Xh] = −Xh; [Ah, Yh] = Yh; [Ah, Xh′ ] = [Ah, Yh′ ] = 0 for h 6= h′.

v) [Bk, Xh] = αk,hXh, αk,h ∈ R; [Bk, Yh] = 0; [Ah, Vk] = 0; [Bk, Vk] = Vk and
[Bk, Vk′ ] = 0 for k 6= k′

(see Theorem 1.8 in [Cu.2]), we have simplified here the notations of Currey).
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2.1.3 Plancherel formula

Let τ be the monomial representation: τ = τf = IndG
Hχf . To decompose τ means

to describe the spectrum of τ , the multiplicities and the equivalence class of the
Plancherel measure in terms of the coadjoint orbit picture.

In the case of a completely solvable Lie group, it has been shown in [Li.1] that

the spectral decomposition formula is given by τ =
∫ ⊕

(f+h⊥)/H

πθdν(θ) where ν

is a pushforward of a finite measure on (f + h⊥) which is equivalent to Lebesgue
measure.

In the case with which we are concerned where G = NH and τf has finite mul-
tiplicity, it has been shown in [Cu.2] that the set of generic H−orbits in the
decomposition of τf admits a natural algebraic cross-section Σ and the measure ν
is given as an explicit measure on Σ.

Furthermore we can choose f |n = 0 .

The cross-section in f + h⊥ is f + Σ and is given as follows:

Fixing a choice of signs θ = (ε, δ) = (ε1, · · · , εu, δ1, · · · , δν) ∈ {1,−1}d; d = u+ ν,
one has Σ =

⋃
θ∈{1,−1}d Σθ where Σθ = {l ∈ Ω∩ h⊥; l(Yk) = εk, 1 ≤ k ≤ u and

l(Vi) = δi, 1 ≤ i ≤ ν}. Here Ω = Ω0∩Ω1, where Ω0 is the set of G−orbits having
maximal dimension in g∗ and Ω1 consists with H−orbits of maximal dimension.
The irreducible representations which correspond toG−orbitsG·l, l ∈ Ω∩(f+h⊥),
are sufficient to decompose τf .

There exists a dense open subset Dθ of Ra × Ru such that

Σθ = {
a∑

h=1

ξhC
∗
h +

ν∑
i=1

δiV
∗
i +

u∑
k=1

εkY
∗
k +

u∑
k=1

µkX
∗
k ; (ξ, µ) ∈ Dθ} (7)

(see [Cu.2], we have made a small change of notations).

Let F be a function on f + h⊥. One has∫
f+Σ

F (l)dl =
∑

θ∈{1,−1}d

∫
Ra×Ru

F (f+
a∑

h=1

ξhC
∗
h+

ν∑
i=1

δiV
∗
i +

u∑
k=1

εkY
∗
k +

u∑
k=1

µkX
∗
k) dξdµ.

Now for l ∈ Σ, an H−covariant generalized vector for πl is defined formally by;
for ψ ∈ H∞

l

βl(ψ) =
∫

H

ψ(h)q1/2
B,Gq

−1/2
H,G χf (h)dh, (8)

(see 2.1 in [Cu.2]).

2.1.3.1. Theorem [Cu.2] The integral (8) is absolutely convergent for every
ψ ∈ H∞

l and βl is continuous on HN
l for a certain integer N (see [Cu.2] proof of

theorem 2.2).
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The distribution-theoretic Plancherel formula which is equivalent to the disinte-
gration of τf is

〈τf (ω)ατ , ατ 〉 =
∫

f+Σ

〈πl(ω)βl, βl〉|R(l)|dl

where R(l) = ((2π)nl([X1, Y1])l([X2, Y2]) · · · l([Xu, Yu]))−1 with n = dim(n) and
ατ is the generalized cyclic vector for τ : ατ (ξ) = ξ(e) for ξ ∈ H∞

τ (cf. [Cu.2]
Theorem 3.2).

Of course the reference [Cu.2] contains more information than is conveyed here.

2.2 The Bonnet Plancherel formula

The aim of this section is to describe explicitly the Bonnet Plancherel Formula
associated to the disintegration of τf . Let G,H, f (and so on) be as above. We
recall that the distribution SH,χf

, defined on D(G) by: 〈SH,χf
, ϕ〉 =

∫
H
ϕ(h)χf (h)

∆1/2
G,H(h)dh, is positive.

By the theorem of P. Bonnet [Bon.], there exist positive nuclear operators Uπ :
H∞

π → H−∞
π , such that

〈SH,χf
, ϕ〉 =

∫
Ĝ

tr(π(ϕ)Uπ)dµ(π), ϕ ∈ D(G).

We shall show that the operators Uπ are finite sum of rank one operators. The
first step is a determination of a cross-section for G-orbits in G.(f + Σ).

Let l = f + l0 ∈ f +Σ. By (2.1.3) there exists θ = (ε, δ) = (ε1, · · · , εu, δ1 · · · , δν) ∈

{−1, 1}d such that l0 ∈ Σθ: l0 =
a∑

h=1

ξhC
∗
h +

ν∑
i=1

δiV
∗
i +

u∑
k=1

εkY
∗
k +

u∑
k=1

µkX
∗
k ; the

G−orbit of l consists of elements l′ of the form:

l′ =
a∑

h=1

ξhC
∗
h +

ν∑
i=1

δiwiV
∗
i +

u∑
k=1

ykY
∗
k +

u∑
k=1

xkX
∗
k +

u∑
k=1

Pk(w, xk, yk)A∗k +
ν∑

i=1

biB
∗
i

where wi ∈]0,+∞[ 1 ≤ i ≤ ν, xk, yk, bi ∈ R and Pk are polynomials in xk, yk

and rationals in wi, 1 ≤ k ≤ u.

It has been shown in [Cu.2] that

Ol = G·l∩(f+Σ) = f+
⋃

ε′∈{−1,1}u

{
a∑

h=1

ξhC
∗
h+

ν∑
i=1

δiV
∗
i +

u∑
k=1

ε′kY
∗
k +

u∑
k=1

εkε
′
kµkX

∗
k}.

(9)
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We give a cross-section for G− orbits in G.(f + Σ) as the set

Γ =
{
f +

a∑
h=1

ξhC
∗
h +

ν∑
i=1

δiV
∗
i +

u∑
k=1

Y ∗
k +

u∑
k=1

µkX
∗
k , (ξh, µk) ∈ Ra × Ru,

and δ = (δ1, · · · , δν) ∈ {−1, 1}ν
}

=
⋃

δ∈{−1,1}ν

Γδ.

We see that our cross-section Γ for G− orbits in G.(f + Σ) is contained in f + Σ.

Furthermore we decompose the Lebesgue measure on f + Σ into integral of mea-
sures on Ol, l ∈ Γ: Given a function F on (f + Σ) we write:∫

f+Σ

F (l)dl =
∫

Γ

∫
G·σ∩(f+Σ)

F (φ)dµσ(φ)dν(σ) (10)

=
∑

δ∈{1,−1}ν

∫
Ra×Ru

∑
ε′∈{1,−1}u

F (f+
a∑

h=1

ξhC
∗
h+

ν∑
i=1

δiV
∗
i +

u∑
k=1

ε′kY
∗
k +

u∑
k=1

ε′kµkX
∗
k) dξdµ.

On the other hand recall that for all ω ∈ D(G) we have by [Cu.2]:

〈τf (ω)ατ , ατ 〉 =
∫

f+Σ

〈πl(ω)βl, βl〉|R(l)|dl,

where R(l) = ((2π)n

u∏
k=1

l([Xk, Yk]))−1.

Remarks

i) From the construction of vectors Xk, Yk one can verify that l([Xk, Yk]) 6= 0 for
all l ∈ Ω.

ii) Since for all 1 ≤ k ≤ u, [Xk, Yk] ∈ cent(n) then for every σ ∈ Γ by (9) we
have R(σ) = R(l) ∀l ∈ G · σ ∩ (f + Σ). Thus we can write R(l) = R(f, δ, ξ) as a
function uniquely depending on f, δ = (δ1, · · · , δν) and ξ = (ξ1, · · · , ξa).

Let us write π(ξ,δ,ε,µ) for the irreducible representation associated to the element

l = l(ξ, δ, ε, µ) = f +
a∑

h=1

ξhC
∗
h +

ν∑
i=1

δiV
∗
i +

u∑
k=1

εkY
∗
k +

u∑
k=1

µkX
∗
k in g∗. We deduce

that:

〈τf (ω)ατ , ατ 〉 =∑
δ∈{1,−1}ν

∫
Ra×Ru

∑
ε∈{1,−1}u

〈π(ξ,δ,ε,µ)(ω)β(ξ,δ,ε,µ), β(ξ,δ,ε,µ)〉|R(f, δ, ξ)|dξdµ. (11)

Let now σ = f +
a∑

h=1

ξhC
∗
h +

ν∑
i=1

δiV
∗
i +

u∑
k=1

Y ∗
k +

u∑
k=1

µkX
∗
k ∈ Γ ⊂ (f + Σ).
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For every l ∈ G · σ ∩ (f + Σ) there exists by (9) an ε ∈ {−1, 1}u such that:

l = f +
a∑

h=1

ξhC
∗
h +

ν∑
i=1

δiV
∗
i +

u∑
k=1

εkY
∗
k +

u∑
k=1

εkµkX
∗
k .

Put for 1 ≤ k ≤ u : ak(σ) = 〈σ, [Xk, Yk]〉. Since [Xk, Yk] ∈ cent(n), we have that
ak(σ) = ak(l). Then by the obvious remark (i) one has ak(σ) 6= 0.

Let gl =
u∏

k=1

exp(ykYk)
u∏

k=1

exp(xkXk)
ν∏

h=1

exp(vhVh) ∈ N , where xk = 1−εk

ak(l) ,

yk = εk−1
ak(l)µk, and vh = −δ−1

h

u∑
k=1

1− εk
ak(l)

αh,kµk.

2.2.1 Lemma. We have that:
l = gl · σ

Proof. We recall that

g = vect < C1, · · · , Ca, V1, · · · , Vν , X1, · · · , Xu, Y1, · · · , Yu, A1, · · · , Au, B1, · · · , Bν > .

According to the expressions of σ, l and since the vectors Ch and Vi are central in
n we have gl · σ(Ch) = l(Ch), 1 ≤ ∀h ≤ a, and gl · σ(Vi) = l(Vi), 1 ≤ ∀i ≤ ν.

Fix s ∈ {1, · · · , ν}, we have by (2.1.2.v) and the fact that f|n = 0

gl · σ(Bs) = σ(Ad(
ν∏

h=1

exp(−vhVh)
u∏

k=1

exp(−xkXk))(Bs))

= σ(Ad(
ν∏

h=1

exp(−vhVh))(Bs +
u∑

k=1

xkαs,kXk))

= σ(Bs + vsVs +
u∑

k=1

xkαs,kXk)

= σ(Bs) + δsvs +
u∑

k=1

xkαs,kµk

= σ(Bs)−
u∑

k=1

xkαs,kµk +
u∑

k=1

xkαs,kµk

= σ(Bs) = l(Bs) = f(Bs).
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For 1 ≤ i ≤ u, we have by (2.1.2.v), (2.1.2.iv), (2.1.2.ii) and by the fact that
f|n = 0:

gl · σ(Ai) = σ(Ad(
u∏

k=1

exp(−xkXk))(Ai + yiYi))

= σ(Ai + yiYi − xiXi − xiyi[Xi, Yi])
= σ(Ai) + yi − xiµi − xiyiai(σ)

= σ(Ai) +
εi − 1
ai(σ)

µi +
εi − 1
ai(σ)

µi +
(εi − 1)2

ai(σ)
µi

= σ(Ai) +
µi

ai(σ)
(2εi − 2 + 1 + (εi)2 − 2εi)

= σ(Ai) = l(Ai),

gl · σ(Xi) = σ(Ad(
u∏

k=1

exp(−xkXk))(Xi − yi[Yi, Xi]))

= σ(Xi + yi[Xi, Yi])
= σ(Xi) + (εi − 1)µi

= εiµi

= l(Xi)

and

gl · σ(Yi) = σ(Yi − xi[Xi, Yi])
= σ(Yi)− (−εi + 1)
= εi

= l(Yi).

Thus gl · σ = l. �

We turn now to Bonnet’s operators. First we define for every l ∈ G · σ ∩ (f + Σ)
an operator β′l : H∞

σ → C by

β′l(ψ) =
∫

H

ψ(g−1
l h) q1/2

B,G q
−1/2
H,G χf (h)dh (12)

and a function ψgl
by ψgl

(g′) = ψ(g−1
l g′), g′ ∈ G. We can see that ψgl

is an element
of H∞

l . Indeed, the covariance condition is satisfied.

Let B(l) be the Vergne polarization associated to l and to our Jordan-Hölder basis
of g. For g′ ∈ G, b ∈ B(l) we have ψgl

(bg′) = ψ(g−1
l bg′) = ψ(g−1

l bglg
−1
l g′). Since
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l = gl · σ, we have that then B(l) = glB(σ)g−1
l and b′ = g−1

l bgl ∈ B(σ). Hence

ψgl
(bg′) = ψ(b′g−1

l g′)
= χσ(b′)ψ(g−1

l g′) (ψ ∈ H∞
σ )

= χσ(b′)ψgl
(g′)

= χl(b)ψgl
(g′).

Evidently ψgl
is C∞ function. We obtain β′l(ψ) = βl(ψgl

) where βl is as in (8).
Then using (2.1.3.1) we have that (12) converges for all ψ ∈ H∞

σ and β′l ∈ H−∞
σ .

Let σ ∈ Γ, l ∈ G ·σ∩ (f +Σ) and ε = (ε1, · · · , εu) ∈ {−1, 1}u such that εk = l(Yk).
Since l depends only on ε we put β′l = β′ε and we define the operator Uσ : H∞

σ →
H−∞

σ by:

Uσ =
∑

ε∈{−1,1}u

Pβ′ε,β′ε . (13)

Here Pβ′ε,β′ε : H∞
σ → H−∞

σ is a rank one operator defined by Pβ′ε,β′ε(ψ) = 〈ψ, β′ε〉β′ε.

We have the following:

2.2.2 Theorem Let G = exp(g) be the semi direct product; where N = exp(n)
is nilpotent and normal in G, and H = exp(h) is abelian and acts semi-simply on
N with real eigenvalues. Let f be a linear functional of g such that f([h, h]) = {0}
and χf the corresponding unitary character of H. Let τf = IndG

Hχf and assume
that τf has finite multiplicity. Let Σ ⊂ g∗ be the cross-section for the H−orbit in
Ω ∩ h⊥ given in [Cu.2]. Then there exists: a cross-section Γ for the G−orbit in
G · (f + Σ), a measure ν on Γ, such that for every ω ∈ D(G) we have:

〈τf (ω)ατ , ατ 〉 =
∫

Γ

tr(πσ(ω) ◦ Uσ)dν(σ)

where Uσ, σ ∈ Γ, is defined in (13).

Proof. Let ω ∈ D(G). We have πσ(ω) ◦ Uσ =
∑

ε∈{−1,1}u

Pπσ(ω)◦β′ε,β′ε
. Hence

tr(πσ(ω) ◦ Uσ) =
∑

ε∈{−1,1}u

〈πσ(ω)β′ε, β
′
ε〉.

On the other hand, for all ψ ∈ H∞
σ , we have:

〈πσ(ω)β′ε, ψ〉 = 〈β′ε, πσ(ω∗)ψ〉 = βl((πσ(ω∗)ψ)gl
); where l = gl · σ.
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Since for all x ∈ G

(πσ(ω∗)ψ)gl
(x) = πσ(ω∗)ψ(g−1

l x)

=
∫

G

ω∗(y)(πσ(y)ψ)(g−1
l x)dy

=
∫

G

ω∗(y)ψ(g−1
l xy)q(y)1/2dy

=
∫

G

ω∗(y)ψgl
(xy)q(y)1/2dy

= πl(ω∗)ψgl
(x),

it follows that (πσ(ω∗)ψ)gl
= πl(ω∗)ψgl

.

Thus

〈(πσ(ω)β′ε)gl
, ψgl

〉Hl
= 〈πσ(ω)β′ε, ψ〉Hσ = 〈β′ε, πσ(ω∗)ψ〉Hσ

= 〈βε, πl(ω∗)ψgl
〉Hl

= 〈πl(ω)βl, ψgl
〉Hl

.

Hence πl(ω)βl = (πσ(ω)β′ε)gl
and 〈πσ(ω)β′ε, β

′
ε〉 = 〈(πσ(ω)β′ε)gl

, βl〉 = 〈πε(ω)βε, βε〉.

We deduce that
tr(πσ(ω) ◦ Uσ) =

∑
ε∈{−1,1}u

〈πε(ω)βε, βε〉.

The formulas (10) and (11) permit us to conclude, the measure ν is given on each
Γδ by: |R(f, δ, ξ)|dξdµ. �

2.3 Exemple ([Cu.2])

Let g = vect < B,A,X, Y, Z > with non vanishing brackets

[A,X] = −X, [A, Y ] = Y, [X,Y ] = Z, [B,X] = X, [B,Z] = Z.

Here h = vect < A,B > and n = vect < X, Y, Z > .

For l ∈ g∗ we write l = (λ, γ, µ, α, θ) where λ = l(Z); γ = l(Y );µ = l(X);α =
l(A); θ = l(B). Ω0 = {l ∈ g∗, λ 6= 0} and Ω1 = {l ∈ g∗, γ 6= 0} and the set Ω of
generic linear functionals is Ω = Ω0 ∩ Ω1.

The cross-section for H−orbits in h⊥ ∩ Ω is given in [Cu.2] as:

Σ = {(δ, ε, µ, 0, 0); µ ∈ R; (ε, δ) ∈ {−1, 1}2} = ∪Σθ.

Now the cross-section for G− orbits in G · Σ is: Γ = ∪δ∈{−1,1}Γδ where
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Γ = {(δ, 1, µ, 0, 0); µ ∈ R, δ ∈ {−1, 1}}.

Let σ ∈ Γ; there exits δ ∈ {−1, 1} such that σ = (δ, 1, µ, 0, 0). The theorem (2.2.2)
says that the Bonnet Plancherel measure is given on each Γδ by (2π)−3dµ.

For l ∈ G · σ ∃ ε = l(Y ) such that l = (δ, ε, εµ, 0, 0). Put gl such that l = gl · σ,
here we have: V = Z; and since [B,X] = X then for ε = −1

gl = exp(
−2µ
δ
Y )exp(

2
δ
X)exp(

−2µ
δ2

Z.)

The operator βl is given in [Cu.2]:

βl(ψ) =
∫

R2
ψ(exp(sB)exp(tA))ese

(t−s)
2 dsdt.

Thus the formula for the operator β′l is:

β′l(ψ) = β′ε(ψ) =
∫

R2
ψ(g−1

l exp(sB)exp(tA))ese
(t−s)

2 dsdt = βl(ψgl
).

Then Bonnet’s operator Uσ is given by

Uσ =
∑

ε1∈{−1,1}

Pβ′ε1 ,β′ε1
where Pβ′ε,β′ε(ψ) = 〈ψ, β′ε〉β′ε.

Furthermore for ε = 1, β′1 = βσ, then

Uσ = Pβ′−1,β′−1
+ Pβ1,β1 .

Now for ω ∈ D(G) we have: πσ(ω) ◦ Uσ = Pπ(δ,1,µ)(ω)β′−1,β′−1
+ Pπ(δ,1,µ)(ω)β1,β1 .

Then:
tr(πσ ◦ Uσ) = 〈π(δ,1,µ)(ω)β′−1, β

′
−1〉+ 〈π(δ,1,µ)(ω) ◦ β1, β1〉

By theorem (2.2.2) we have the Bonnet Plancherel formula:

〈τf (ω)ατ , ατ 〉 = (2π)−3
∑

δ∈{−1,1}

∫
R

tr(π(δ,1,µ)(ω)U(δ,1,µ))dµ.
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[D.R.] M. Duflo, M. Räıs, Sur l’analyse harmonique sur les groupes de Lie
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