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Abelian extensions of infinite-dimensional Lie groups

Karl-Hermann Neeb

Abstract

In the present paper we study abelian extensions of a connected Lie group G
modeled on a locally convex space by a smooth G-module A. We parameter-
ize the extension classes by a suitable cohomology group defined by locally
smooth cochains and construct an exact sequence that permits us to calculate
the group cohomology from the corresponding continuous Lie algebra coho-
mology and topological data. The obstructions for the integrability of a Lie
algebra 2-cocycle to a Lie group 2-cocycle are described in terms of a period
and a flux homomorphism. We also characterize the extensions with global
smooth sections, resp., those given by globally smooth cocycles. We apply
the general theory to abelian extensions of diffeomorphism groups, where the
Lie algebra cocycles are given by closed 2-forms on the manifold M . In this
case we show that period and flux homomorphism can be described directly
in terms of M, and for central extensions of groups of volume preserving dif-
feomorphisms corresponding to Lichnerowicz cocycles, this entails that the
flux homomorphism vanishes on an explicitly described covering group. We
also discuss the group cohomology of the diffeomorphism group of the circle
and its universal covering with values in modules of \-densities.

Introduction

In this paper we undertake a detailed analysis of abelian extensions of Lie groups
which might be infinite-dimensional, a main point being to derive criteria for
abelian extensions of Lie algebras to integrate to extensions of corresponding
connected groups. This is of particular interest in the infinite-dimensional theory
because not every infinite-dimensional Lie algebra can be ‘integrated’ to a global
Lie group.

The concept of a Lie group used here is that a Lie group G is a manifold
modeled on a locally convex space, endowed with a group structure for which the
group operations are smooth (cf. [Mi83]; see also [Gl01] for non-complete model
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spaces). An abelian extension is an exact sequence of Lie groups A — G — G
which defines a locally trivial smooth principal bundle with the abelian structure
group A over the Lie group G. Then A inherits the structure of a smooth G -
module in the sense that the conjugation action of G on A factors through a
smooth map G x A — A. The extension is called central if this action is trivial.

The natural context to deal with abelian extensions of Lie groups is provided
by a suitable Lie group cohomology with values in smooth modules: If G is
a Lie group and A a smooth G-module, then the space C7(G,A) of (locally
smooth) n-cochains consists of maps G™ — A which are smooth in an identity
neighborhood and vanish on all tuples of the form (¢1,...,1,...,9,). We thus
obtain with the standard group differential d¢ a cochain complex (C?(G, A),dq)
with cohomology groups H? (G, A).If G and A are discrete, these groups coincide
with the standard cohomology groups of G with values in A ([EiML47]), but if
G is a finite-dimensional Lie group, they differ in general from the traditionally
considered cohomology groups defined by globally smooth cocycles as in [Gui80)]
and [HocMo62]. In the following we assume that the identity component Ay of
A is of the form a/T 4, where T'4 is a discrete subgroup of the Mackey complete
locally convex space a. Mackey completeness means that Riemann integrals of
smooth curves [0,1] — a exist ([KM97]), which is needed to ensure the existence
of a-valued period integrals. We write ga: a — Ag = a/T'4 for the quotient map
which is a universal covering of Ag.

It is a key feature of Lie theory that one can calculate complicated objects
attached to a Lie group G in terms of linear objects attached to the Lie algebra
and additional topological data. This is exactly what we do in the present paper
with the cohomology groups H}(G,A) and HZ?(G, A). Passing to the derived
representation of the Lie algebra g of G on the Lie algebra a of A, we obtain
a module of the Lie algebra g which is topological in the sense that the module
structure is a continuous bilinear map g X a — a. Then the continuous alternating
maps g” — a form the (continuous) Lie algebra cochain complex (C¢(g,a),dy),
and its cohomology spaces are denoted H(g,a). It is shown in Appendix B that
for n > 2 there is a natural derivation map

(0.1) Dy: HNG, A) — H'(g,a),  [f]— [Dnf]

from locally smooth Lie group cohomology to continuous Lie algebra cohomology,
considered first by van Est in [Est53] (see also [Gui80, II1.7.7] and [EK64]). This
map is based on the isomorphism

Hi(g,0) = Hig oq(Gsa),  [w] = [w™]

between Lie algebra cohomology and the de Rham cohomology of the complex
(28R eq(G, a),d) of equivariant a-valued differential forms on G, introduced by
Chevalley and Eilenberg for finite-dimensional groups ([CE48]). Here w®? denotes
the unique equivariant a-valued form on G with wi? = w. For n = 1 we only have
amap Dy: ZYG,A) — Z!(g,a), and if A is connected, then this map factors to
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amap Di: HY(G,A) — H!(g,a) on the cohomology level. Since the Lie algebra
cohomology spaces H'(g,a) are by far better accessible than those of G, it is
important to understand the amount of information lost by the map D, , i.e., one
is interested in kernel and cokernel of D,,. A determination of the cokernel consists
in describing integrability conditions on cohomology classes [w] € H(g,a) which
are necessary for the existence of some f € Z?(G, A) with D, f =w.

The present paper consists of three main parts. In Sections 1-8 we describe
the classification of abelian extensions of a Lie group G by a smooth G-module
A in terms of the cohomology group HZ(G, A) and explain how this group can
be calculated in terms of HZ2(g,a) and data related to the first two homotopy
groups m1(G) and mo(G). Sections 9-11 are devoted to applications to several
types of groups of diffeomorphisms of compact manifolds. The remainder of the
paper consists of six appendices in which we prove auxiliary results that are used
either for the analysis of H2(G, A) or for the applications to diffeomorphism groups
in Section 9.

We now describe the main results of the paper in some more detail. After
briefly reviewing the relation between abelian extensions of topological Lie algebras
and the continuous cohomology space H?(g,a), we show in Section 2 that for a
connected Lie group G and each 2-cocycle f € Z2(G, A) the multiplication

(a,9)(d’,g') := (a+g.d' + f(g9,9'),99")

on the product set A x G defines a Lie group structure, denoted A x; G. Here
a subtle point is that in general the manifold structure on A x¢ G is not the
product manifold structure. Only if f is a smooth function on G x G, we can
simply take the product structure and obtain a smooth multiplication. If A is a
discrete group, then A x ¢ G is a covering group of G. Standard arguments show
that equivalent cocycles lead to equivalent extensions, and we derive that H2(G, A)
parameterizes the equivalence classes of Lie group extensions A — G —» G for
which the action of G on A induced by the conjugation action of G on A coincides
with the original G-module structure. This was our original motivation to study
the (locally smooth) cohomology groups H2(G, A). If G is not connected, then an
appropriate subgroup H2 (G, A) C H2(G, A) classifies the extensions of G by A.

In Section 3 we briefly discuss the relation between smooth 1-cocycles on
a connected Lie group and the corresponding continuous Lie algebra 1-cocycles.
This is instructive for the understanding of the flux homomorphism occurring
below as an obstruction to the existence of global group extensions. For a Lie
algebra cocycle a € Z!(g,a) we define the period homomorphism

a) :[Ya—i—FA.

The first main point in Section 3 is the exactness of the sequence

Pillal) = qaoper,i m(@) — A% [ aa( [

v

(0.2) 0 — HX(G, A)-2%HY (g, a)-25 Hom(m (G), A)
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which is valid for a connected Lie group G if A is connected.

If the connected group G acts on a non-connected smooth module A, then
it acts trivially on the discrete abelian group mo(A) = A/Ag of connected com-
ponents, but to determine the action on A, one needs more information than the
G-action on Ag. As a consequence of the exact sequence (0.2), we show that this
information is contained in the characteristic homomorphism

0a: mo(A) — HY(g,a), [a] — Dildgal.

In Sections 4-7 we determine kernel and cokernel of the map Dy from (0.1).
First we show in Section 4 that each cocycle w € Z2(g,a) determines a period
homomorphism

per,: mo(G) — a%,  [o] — /weq,

where o: S? — G is a (piecewise) smooth representative of the homotopy class,
whose existence has been shown in [Ne02]. In Section 5 we then show that if G
is simply connected and g4 o per,, vanishes, then [w] € im Ds. For that we use a
slight adaptation of the method used in [Ne02] for central extensions and originally
inspired by the construction of group cocycles in [Est54] by using the symplectic
area of geodesic triangles (see also [DuGu78] for a similar method).

In Section 6 we eventually turn to the refinements needed for non-simply
connected groups which leads to the flux homomorphism

F,: m(G) — Hcl(g, a).

If g5 G — G is the universal covering of G, and we identify 71 (G) with ker g,
then F,, is the restriction to m1(G) of the flux cocycle,

F,: G — Ccl(g, a)/dga,

which is a group cocycle whose “derivative” is the Lie algebra cocycle f,(z) =
[izw]. In general we cannot expect the space Cl(g,a)/dga to carry any reasonable
Hausdorff topology. Therefore we cannot directly apply the results from Section 3
and thus have to work our way around this problem. For central extensions the flux
homomorphism is much less complicated because it simplifies to a homomorphism
m1(G) — Hompic(g,a) ([Ne02]). The main result of Section 6 is the Integrability
Criterion (Theorem 6.7) which says that, for a connected group A, [w] € im(Ds)
if and only if

(0.3) Py([w]) := (ga o per,, F,,) = 0.

We also prove a generalization of this criterion for non-connected groups A which
is more complicated because the condition F,, = 0 has to be modified suitably. If G
is smoothly paracompact, then the closed a-valued 2-form w®? defines a singular
cohomology class in Hfing(G,Ao) =~ Hom(H2(G), Ap), and from a description of
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generators of Ho(G) in terms of m3(G) and 71 (G), we show that in general the
vanishing of this cohomology class is weaker than P([w]) = 0. In Section 7 we
combine the results on the cokernel of Dy with a description of its kernel and get
the following exact sequence (Theorem 7.2):

0 — HNG, A)——HYG, A)—L-H' (11(G), A)® = Hom (m(G), A9) ——
212G, A H2(g,0) " Hom (m2(G), A) x Hom (my(G), HL (g, ).

(0.4)

Here I and R are the natural inflation and restriction maps and J assigns to a
group homomorphism 7: 71 (G) — A the quotient of the semi-direct product
A x G by the graph {(y(d),d): d € 7 (G)} of ~, which is a discrete central
subgroup.

In many situations one would like to know when it is possible to integrate
Lie algebra cocycles to global smooth group cocycles f: G x G — a. In Section 8
we show that, under the assumption that G is smoothly paracompact, this it is
possible if and only if w®? is an exact 2-form and F, vanishes (Proposition 8.4
and Remark 8.5).

Combining the exact sequence from above with the exact Inflation-Restriction
Sequence derived in Appendix D, we obtain for connected groups G and A = a/T' 4
the following commutative diagram with an exact second row (Prop. D.8 and the
subsequent discussion) and exact columns (Proposition 3.4 for H! and Theorem
7.2 for H?):

0 Hom(71 (@), A%) 0

0
| ls |
H(G, A) L H;(Jé,A) —2 L Hom(m (G), A®)—>—  H2(G,A) —1> H2(G,A)

Dy Dy id Dy Do
id P id
HNg,a) —— Hg,0) —— Hom(m(G), A%) H2(g,a) —  Hg,a)
Py Py Jpz

Hom(w5(G),A%)®

Hom(m (G), A9) 0 Hom(w(G),H}(g,a))

Hom (w2 (@), AY)

In the remaining Sections 9-11 we apply the general theory to various kinds
of diffeomorphism groups. In Section 9 we turn to the special situation arising
for the group G := Diff (M)’ of diffeomorphism of a compact manifold, its Lie
algebra g := V(M) (the smooth vector fields on M), the smooth G-module
A =a=C®M,V) (V a Fréchet space), and the special class of 2-cocycles of
the form wgy(X,Y) := wp(X,Y), where wys is a closed V-valued 2-form on M.
In this case we explain how information on the period map and the flux cocycle
can be calculated in geometrical terms. The two main results are that that the
period map

per,, mo(Diff (M) — C*°(M, V)V(M) -V
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factors through the evaluation map evl : Diff (M) — M, ¢ — ¢(mg) to the map

per,,, : (M, mg) =V, [o] — / WM

Likewise the flux homomorphism can be interpreted as a map
F,: m(Diff(M)) — Hig(M,V) = Hom(m (M), V),

that vanishes if and only if all integrals of the 2-form wjy; over smooth cycles of
the form H: T? — M, (s,t) — a(s).8(t) with a loop « in Diff(M) and 8 in M
vanish.

In Section 10 we consider the important group G = Diff(S!)y of orientation
preserving diffeomorphisms of the circle and the module a of A-densities for A € R.
The corresponding group cocycles have been discussed by Ovsienko and Roger in
[OR98]. Here we extend their results to Lie algebra cocycles not integrable on G
which integrate to group cocycles of the universal covering group G , for which we
provide explicit formulas. As a byproduct of this construction, we obtain a non-
trivial abelian extension of the group SLs(R) by an infinite-dimensional Fréchet
space. Since all finite-dimensional Lie group extensions of SLy(R) by vector spaces
split on the Lie algebra level, this example nicely illustrates the difference between
the finite and infinite-dimensional theory.

If © is a volume form on the compact manifold M and D(M,pu) :=
Diff (M, p)¢P the identity component of the group Diff (M, p1) of volume preserving
diffeomorphisms of M with Lie algebra V(M, ) :={X € V(M): Lxpu = 0}, then
interesting scalar-valued Lie algebra cocycles (Lichnerowicz cocycles) arise from
closed 2-forms w € Z33(M,R) by

VM, p) x V(M p) = R, (X,Y) — MW(XaY)u-

The existence of corresponding central extensions is addressed in Section 11, where
we use the information on the C*°(M,R)-valued cocycle on the full Lie algebra
V(M) derived in Section 9 to show in particular that if the manifold M is a
compact connected Lie group, then each Lichnerowicz cocycle can be integrated
to a group cocycle on a certain covering group D (M, ) which is an extension of
D(M, p) by the discrete group m1(M). The main point is to show that the flux
cocycle vanishes on the fundamental group of the covering group E(M )

We conclude this paper with several appendices dealing with the relation be-
tween differential forms and Alexander—Spanier cohomology (Appendix A), which
in turn is used in Appendix B to show that the maps D, from locally smooth
Lie group cochains to Lie algebra cochains intertwine the differentials dg and dj
(cf. [Est53], [EK64]). In Appendix C we describe a general procedure to construct
global Lie groups from local data, which is used in Section 2 and in [Ne04a] to
obtain Lie group structures on group extensions. For calculations of cohomology
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groups, the corresponding exact Inflation-Restriction Sequence for Lie group co-
homology is provided in Appendix D and the long exact sequence in Lie group
cohomology induced from an exact sequence of smooth modules in Appendix E.
The latter sequence is obtained from general homological algebra, whereas the for-
mer contains certain subtleties related to smoothness conditions that are specific
in the Lie theoretic context. Finally we show in Appendix F that multiplication
of Lie group and Lie algebra cocycles is compatible with the differentiation maps
D,,. This has interesting applications in various contexts, in particular in Section
10 and [Ne04b].

If G is simply connected, the criterion for the integrability of a Lie algebra
cocycle w to a group cocycle is simply that all periods of the equivariant a-
valued 2-form w®? are contained in I'y = kerga C a. Similar conditions arise in
the theory of abelian principal bundles on smoothly paracompact presymplectic
manifolds (M,w), i.e., w is a closed 2-form on M. Here the integrality of the

cohomology class [w] € H3 (M, R) is equivalent to the existence of a T-principal

bundle T < M —» M whose first Chern class is [w] (cf. [Bry93)]). If G is
smoothly paracompact, w € Z2(g,a) and A = Ay as above, then the vanishing
of the corresponding cohomology class in Hszing(G,A), which corresponds to the
“integrality” of the periods, also implies the existence of a corresponding A-bundle
over GG, but this does not imply in general that w corresponds to an extension
of G by A. It might be necessary to consider a non-connected group A’ with
mo(A’) 2 w1 (G) (see Section 6 for more details).

It is instructive to illustrate the difference between abelian and central ex-
tensions of Lie groups in the context of abelian principal bundles. Let ¢: P — M
be a smooth principal bundle with the abelian structure group Z over the com-
pact connected manifold M . Then the group Diff(P)? of all diffeomorphisms of P
commuting with Z (the automorphism group of the bundle) is an abelian extension
of an open subgroup of Diff(M) by the gauge group Gau(P) = C*°(M, Z) of the
bundle. Here the conjugation action of Diff (M) on Gau(P) is given by composing
functions with diffeomorphisms. In this context central extensions arise as follows.
Let 6 € Q'(P,3) be a principal connection 1-form and w € Q?(M,3) its curva-
ture, i.e., ¢*w = —df. Then the subgroup Diff(P)# of Diff(P)? preserving 0 is
a central extension of an open subgroup of Sp(M,w) := {¢ € Diff(M): ¢*w = w}
by Z . Therefore the passage from Diff (M) to the much smaller subgroup Sp(M,w)
corresponds to the passage from an abelian extension by C*°(M, Z) to a central
extension by Z. Philosophically this means that diffeomorphism groups have nat-
ural abelian extensions, whereas symplectomorphism groups have natural central
extensions.

This point of view is also crucial in the representation theory of infinite-
dimensional Lie groups, where one is forced to consider Lie groups G acting on a
manifold M on which we have a circle bundle ¢q: P — M with a connection 6,
but its curvature w is not G-invariant. Then it might happen that each element
of G can be lifted to a bundle automorphism on P, but this automorphism will
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not preserve the connection 1-form. This leads to the abelian extension of G by
the gauge group C°(M, 7), instead of the central extension by Z, to which we
may reduce if G preserves the curvature form. Note that each abelian extension
A — G —» G corresponding to a Lie algebra cocycle w € Z2(g,a) is of this
form, because the left translation action of G on itself does not preserve the
equivariant 2-form w®d, which plays the role of the curvature of the A-bundle
G — G. We refer to [Mi89] for a detailed discussion of the case where M is a
restricted GraBmannian of a polarized Hilbert space and the groups are restricted
operator groups of Schatten class p > 2, resp., mapping groups C* (M, K), where
K is finite-dimensional and M is a compact manifold of dimension > 2 (see also
[PS86] for a discussion of related points). It is for the same reason that abelian
extensions of vector field Lie algebras occur naturally in mathematics physics (cf.
[La99] and also [AI95] for more general applications of Lie group cohomology in
physics), and the need for a corresponding global group corresponding to these
abelian extensions arises naturally. One way to get these global groups, which
is complementary to our direct approach, is to use crossed homomorphisms of
Lie groups to pull back central extensions to abelian ones. Y. Billig applied this
method quite successfully in [Bi03], where he introduces for orientable manifolds
natural analogs of the Virasoro group which are abelian extensions of Diff (M).

Another motivation for a general study of abelian extensions comes from the
fact that for the group Diff (M), where M is a compact orientable manifold, one
has natural modules given by tensor densities and spaces of tensors on M. The
corresponding abelian extensions can be used to interprete certain partial differ-
ential equations as geodesic equations on a Lie group, which leads to important
information on the behavior of their solutions ([Vi02], [AK9S]).

If the smooth G-module A is trivial and the space HZ(g,a) is trivial, or if
at least D = 0, then the exact sequence (0.4) leads to

H?(G,A) = Hom (71'1 (@), A)/Hom (67 A) Iy (G

a formula which has first been obtained for connected compact Lie groups by
A. Shapiro ([Sh49]). A crucial simplification in the finite-dimensional case is that
extensions of simply connected Lie groups have smooth global sections, so that one
can get along by using only globally smooth cochains. Along these lines many spe-
cific results have been obtained by G. Hochschild ([Ho51]). For finite-dimensional
Lie groups our integrability criterion for Lie algebra 2-cocycles simplifies signifi-
cantly because 75(G) vanishes ([Car52]). This in turn has been used by E. Cartan
to construct central Lie group extensions and thus to derive Lie’s Third Theorem
that each finite-dimensional Lie algebra belongs to a global Lie group. Our char-
acterization of abelian extensions with global smooth sections in Section 8 follows
Cartan’s construction.

Cohomology theories for topological groups with values in topological mod-
ules have been studied from various points of view by several people. In [Se70]
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G. Segal defines cohomology of topological groups as a derived functor. In his con-
text the values lie in an abelian group which is compactly generated and locally
contractible as an abelian group in the category of k-spaces. The corresponding
cohomology groups H2(G, A) classify topological extensions with continuous local
sections. In a similar fashion D. Wigner defines cohomology for topological groups
in terms of Ext-functors and explains how it can be described in terms of group
cocycles.

In [Mo64] C. C. Moore defines group cohomology for second countable locally
compact groups in terms of cochains which are Borel measurable. This is natural
in this context, where group extensions have Borel measurable cross sections
([Ma57]). For finite-dimensional Lie groups measurable cocycles are equivalent to
locally smooth cocycles ([Va85, Th. 7.21]). In [Mo76] Moore also discusses universal
central extensions of finite-dimensional Lie groups and criteria for the triviality of
all central extensions. Universal central extensions of finite-dimensional groups are
also described in [CVLL98], which is a nice survey of central T-extensions of Lie
groups and their role in quantum physics. For infinite-dimensional groups universal
central extensions are constructed in [Ne03b] and for locally convex root graded
Lie algebras in [Ne03a).

Hochschild and Mostow approach in [HocMo62] cohomology of finite-dimen-
sional Lie groups by injective resolutions in a topological and a differentiable
setting, which leads to continuous and differentiable cohomologies H? (G, V) and
H3(G,V) with values in a locally convex space V' on which G acts continuously,
resp., differentiably. Under mild assumptions on V (concerning the existence of
V -valued integrals), they show that for a connected finite-dimensional Lie group
G there are isomorphisms

(0.5) HI (G, V)= Hy(G, V)= H*(g,t, V),

where the latter term denotes relative Lie algebra cohomology, and £ is the Lie
algebra of a maximal compact subgroup K of G ([HocMo62, Th. 6.1]).

The isomorphism (0.5) generalizes a result of van Est ([Est55]) to infinite-
dimensional modules V' (cf. also [Gui80]). In [GWT78] A. Guichardet and D. Wigner
give an explicit realization of the isomorphism (0.5) for a semisimple group G by
writing down an explicit map from H"(G,V) to H"(g,t, V) which is a restriction
of the map D,, in (0.1). Here a main point is that after averaging over the maximal
compact group K, one can represent group cocycles by functions f for which
D, f is a relative cocycle in Z"(g, 8 V) (cf. also [Est55, Thm. 1]). This averaging
process would not work for locally smooth cochains because they do not form
a translation invariant space of functions. The homogeneous space G/K is a
Riemannian symmetric space of semi-negative curvature, so that two points are
joint by a unique geodesic. This implies that one can assign to each ordered triple
in G/K in a G-equivariant fashion a differentiable 2-simplex, and integrating G-
invariant closed forms leads directly from relative Lie algebra 2-cocycles to smooth
global group cocycles ([DuGu78]). It is interesting to compare this approach with
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our integration method in Section 5, where we choose some G-invariant system
of “line segments” on G, whereas the symmetric space G/K has the natural
G-invariant system consisting of geodesic segments.

In all situations where one wants to apply spectral sequence arguments, one
is forced to assume that the cohomology spaces occurring as target spaces of co-
cycles are finite-dimensional. In [HocMo62] this leads to the assumption that the
topological group G under consideration is of finite homology type, i.e., for each
finite-dimensional topological G-module V' the cohomology spaces H*(G, V) are
finite-dimensional (cf. also [Est58] for similar assumptions). It is clear that for
infinite-dimensional groups such assumptions are only met in very rare circum-
stances. Another important feature of finite-dimensional connected Lie groups G
is that for a maximal compact subgroup K the quotient space G/K is contractible.
Therefore one can combine averaging over K with the smooth contractibility of
G/K, which eventually leads to the van Est Theorem (0.5) above. In [Est53]
van Est studies another spectral sequence relating the cohomology H (G, a) of
a finite-dimensional connected Lie group G with values in a finite-dimensional
smooth G-module a and defined by globally smooth cochains to the cohomology
of its Lie algebra. The group HZ (G, A) = HZ (G, a) can be viewed as a subgroup
of H2(G, A) corresponding to extensions with smooth global sections, but it might
be quite small if the first two homotopy groups of G are non-trivial and A # a
(cf. Remark 8.5).

We emphasize that our results hold for Lie groups which are not necessarily
smoothly paracompact, so that one cannot use smooth partitions of unity to
construct bundles for prescribed curvature forms and de Rham’s Theorem is not
available (cf. [KM97, Th. 16.10]). This point is important because many interesting
Banach—Lie groups are not smoothly paracompact since their model spaces do
not permit smooth bump functions (cf. [KM97]). For smooth loop groups central
extensions are discussed in [PS86], but in this case many difficulties are absent
due to the fact that loop groups are modeled on nuclear Fréchet spaces which
are smoothly regular ([KM97, Th. 16.10]), hence smoothly paracompact because
this holds for every smoothly Hausdorff second countable manifold modeled on a
smoothly regular space ([KM97, 27.4]).

The present paper is a sequel to [Ne02], dealing with central extensions. For-
tunately it was possible to use some of the constructions from [Ne02] quite directly
in the present paper, but the material on the flux homomorphism developed in
Section 6 is completely new. It is quite trivial for central extensions, where it does
not play such an important role. In [Ne0O4a] the results on abelian extensions are
used to classify general extensions: Let N be a Lie group and Z(N) its center.
Suppose further that Z(N) is an initial Lie subgroup, i.e., that Z(N) carries a
Lie group structure and every smooth map M — N with values in Z(N) de-
fines a smooth map M — Z(N). Then the group HZ2 (G, Z(N)) parameterizes
the equivalence classes of extensions of G by N corresponding to a given smooth
outer action of G on N. We refer to [Ne04a] for more details and the definition
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of a smooth outer action.

In the present paper we give a complete description of kernel and cokernel
of the map D5 for a connected Lie group G and a connected module A = a/T 4.
We plan to return in a subsequent paper to this problem for non-connected groups
G, which, in view of the present results, means to obtain accessible criteria for the
extendibility of a 2-cocycle on the identity component Gg of G to the whole group
G. For trivial modules A, i.e., central extensions of Gy, this leads to obstructions
in H3(my(G), A) arising as the characteristic class of a crossed module

IHAHGHGH’IT()(G)‘):[

(cf. [NeO4a]). The crossed module structure contains in particular an action of the
whole group G by automorphisms on the central extension G of G . The existence
of this action is closely related to the invariance of the class [w] € H?(g,a) under
the action of mo(G) (see the discussion of automorphisms of extensions in the
appendix of [Ne04a]), and this in turn is related to the question whether HZ (G, A)
is strictly smaller than H2(G, A).

We are grateful to S. Haller for providing a crucial topological argument
concerning the flux homomorphism for the group of volume preserving diffeomor-
phisms (cf. Section 11). We also thank C. Vizman for many inspiring discussions
on the subject, and G. Segal for suggesting a different type of obstructions to
the integrability of abelian extensions in [Se02]. Many thanks go also to A. Dzhu-
madildaev for asking for global central extensions of groups of volume preserving
diffeomorphisms which correspond to the cocycles he studied on the Lie algebra
level in [Dz92]. This led us to the results in Section 11.

0. Preliminaries and notation

In this paper K € {R,C} denotes the field of real or complex numbers. Let X
and Y be topological K-vector spaces, U C X open and f: U — Y a map. Then
the derivative of f at x in the direction of h is defined as

4 () (h) = Jim = (F (2 + ) — £ ()

whenever the limit exists. The function f is called differentiable at x if df (x)(h)
exists for all h € X . It is called continuously differentiable or C! if it is continuous,
differentiable at all points of U and

df : Ux X =Y, (x,h)—df(z)(h)

is a continuous map. It is called a C™-map if f is C' and df is a C"~!-map,
and C* (smooth) if it is C™ for all n € N. This is the notion of differentiability
used in [Mil83], and [G101], where the latter reference deals with the modifications
necessary for incomplete spaces.
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Since we have a chain rule for C°-maps between locally convex spaces
([G101]), we can define smooth manifolds M as in the finite-dimensional case. A
Lie group G is a smooth manifold modeled on a locally convex space g for which
the group multiplication mg: G x G — G and the inversion are smooth maps.
We write 1 € G for the identity element, \,(z) = gz for left multiplication,
pg(z) = mg for right multiplication, and c4(z) := grg~' for conjugation. The
tangent map Tmg: T(Gx G) 2 TG x TG — TG defines a Lie group structure on
TG, and the zero section G <— TG realizes G as a subgroup of T'G. In this sense
we obtain the natural left and right action of G on T'G by restricting T'm¢g. We
write (g,v) — g.v:=Tmeg(g,v) for the left action and (v,g) — v.g := Tmg(v, g)
for the right action. In this sense each = € T1(G) corresponds to a unique left
invariant vector field z;(g) = g.x and the space of left invariant vector fields is
closed under the Lie bracket of vector fields, hence inherits a Lie algebra structure.
In this sense we obtain on g := L(G) := T1(G) a continuous Lie bracket which
is uniquely determined by [z,y]; = [x;,y]. For the right invariant vector fields
z,-(g) = x.g we then have [z,,y.] = —[z,y]:.

We call a Lie algebra g which is a topological vector space such that the
Lie bracket is continuous a topological Lie algebra. In this sense the Lie algebra
of a Lie group is a locally convex topological Lie algebra. If G is a connected Lie
group, then we write qg: G — G for its universal covering Lie group and identify
m1(G) with the kernel of gg.

Throughout this paper we write abelian groups A additively with 0 as
identity element. If G is a Lie group, then a smooth G-module is an abelian
Lie group A, endowed with a smooth G-action ps: G x A — A by group
automorphisms. We sometimes write (A, pa) to include the notation p4 for the
action map. If a is the Lie algebra of A, then the smooth action induces a smooth
action on a, so that a also is a smooth G-module, hence also a module of the
Lie algebra g of G by the derived representation. In the following we shall mostly
assume that the identity component Ay of A is of the form Ay = a/T 4, where
I'4 C a is a discrete subgroup of the Mackey complete space a. Then the quotient
map g4: a — Ag is the universal covering map of Ay, and 71 (A) = T4.

A linear subspace W of a topological vector space V' is called (topologically)
split if it is closed and there is a continuous linear map o: V/W — V for which
the map

WxV/W =V, (wz)—w+o(z)

is an isomorphism of topological vector spaces. Note that the closedness of W
guarantees that the quotient topology turns V/W into a Hausdorff space which
is a topological vector space with respect to the induced vector space structure. A
continuous linear map f: V — W between topological vector spaces is said to be
(topologically) split if the subspaces ker(f) C V and im(f) C W are topologically
split.
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1. Abelian extensions of topological Lie algebras

For the definition of the cohomology of a topological Lie algebra g with values in
a topological g-module a we refer to Appendix B.

Definition 1.1. Let g and n be topological Lie algebras. A topologically split
short exact sequence

n—g—>g

is called an extension of g by n. We identify n with its image in g, and write g
as a direct sum g = n® g of topological vector spaces. Then n is a topologically
split ideal of g and the quotient map ¢: g — g corresponds to (n,z) — z.If n is
abelian, then the extension is called abelian.

Two extensions n < g; —» g and n < gy —» g are called equivalent if there
exists a morphism ¢: gy — gz of topological Lie algebras such that the diagram

commutes. It is easy to see that this implies that ¢ is an isomorphism of topological
Lie algebras, hence defines an equivalence relation. We write Ext(g,n) for the set
of equivalence classes of extensions of g by n denoted [g].

We call an extension ¢: g — g with kerq = n trivial, or say that the
extension splits, if there exists a continuous Lie algebra homomorphism o: g — g
with g o o = idg. In this case the map

nxgg—g (nz)—n+o(x)
is an isomorphism, where the semi-direct sum is defined by the homomorphism

S:g—der(n), S(z)(n):=[o(z),n]. [

Definition 1.2. Let a be a topological g-module. To each continuous 2-cocycle
w € Z2(g,a) we associate a topological Lie algebra a @, g as the topological
product vector space a X g endowed with the Lie bracket

[(a,z),(d,2")] := (x.d' —2".a +w(x,2), [z, 2']).
The quotient map ¢: a @, g — g, (a,z) — 2z is a continuous homomorphism of

Lie algebras with kernel a, hence defines an a-extension of g. The map o: g —
a®, g,z +— (0,x) is a continuous linear section of q. |
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Proposition 1.3.  Let (a,pq) be a topological g-module and write Ext, (g, a)
for the set of all equivalence classes of a-extensions g of g for which the adjoint
action of g on a induces the given g-module structure on a. Then the map

Z3(g,a) = Ext,, (g,0), w— [0, g
factors through a bijection

Hc2(g7a) - EXtPu (gva)a [w] = [CL @w 9]
Proof. Suppose that ¢: § — g is an a-extension of g for which the induced

g-module structure on a coincides with p,. Let 0: g — g be a continuous linear
section, so that ¢ oo =idy. Then

w(z,y) := [o(z),0(y)] - o([z,y])

has values in the subspace a = ker q of g, and the map axg — @, (a,z) — a+o(x)
is an isomorphism of topological Lie algebras a ®, g — @.

It is easy to verify that a, g ~ a®, g if and only if w—n € B2(g, a). There-
fore the quotient space H2(g,a) classifies the equivalence classes of a-extensions
of g by the assignment [w] — [a &, g] (cf. [CE48]). L

2. Abelian extensions of Lie groups

Let A be a smooth G-module. In this section we explain how to assign to a
cocycle f € Z2(G, A) (satisfying some additional smoothness condition if G is
not connected) a Lie group A Xy G which is an extension of A by G for which the
induced action of G on A coincides with the original one. We shall see that this
assignment leads to a bijection between a certain subgroup H2 (G, A) of H2(G, A)
with the set of equivalence classes of extensions of G' by the smooth G-module A.
If G is connected, then H2 (G, A) = H2(G, A). We also show that the assignment
[ +— Ax;G is compatible with the derivation map D: Z2(G, A) — Z%(g,a) in the
sense that a @py g is the Lie algebra of A x; G (cf. Appendix B for definitions).

Lemma 2.1. Let G be a group, A a G-module and f: GXG — A a normalized
2-cocycle, i.e.,

flg,1)=f(1,9) =0, fl9.9)+f(99".99") =9.f(d,9")+f(9,.9'9"), 9,9.9" €G.

Then we obtain a group A x; G by endowing the product set A x G with the
multiplication

(2.1) (a,9)(d,g") = (a+g.d" + f(g9,9"), 99").

The unit element of this group is (0,1), inversion is given by

(2.2) (a,9)"' = (=g~ (a+ flg.97 1)) g7 ),
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and conjugation by the formula

(2.3) (a,9)(a’,¢')(a,9)"" = (a+g.0'—gg'9g " a+ f(9.9)— Flgg'a™ " 9).99'97").

The map q: Axy G — G, (a,9) — g is a surjective homomorphism whose kernel
A x {1} is isomorphic to A. The conjugation action of A Xy G on the normal
subgroup A factors through the original action of G on A.

Proof. The condition f(1,9) = f(g,1) = 0 implies that (0,1) is an identity
element in A x ¢ G, and the associativity of the multiplication is equivalent to the
cocycle condition. The formula for the inversion is easily verified. Conjugation in
A x5 G is given by

(a.9)(a’,9')(a,g)"
= (a+g.a + f(9.9).99) (=g " (a+ flg.97")) g7 ")
=(a+g.a+flg.9) =999 " (a+ flg.97") + flag",97 ") 99’97 ").

To simplify this expression, we use

flg,97 ) =Flg.g7 )+ g =flg.1)+g.flg " 9)=9.f(g" " 9)

and
flog 97"+ fl9g'g " 9) = flag', 1)+ 99 . flg~ " 9) =99' - f(g7 ", 9)
to obtain
(a,9)(d'.¢')(a,g)™*
=(a+g.d +f(g9.9)— 999 " a—gd g . flg.97 ")+ flgg',97 "), 99’97 ")
=(a+g.d+f(9.9) 999 .a—gq flg~".9)+ flgq',97"). 99’97 ")
=(a+g.d+f(9.9)— 999 .a—flgg'a™",9),99'97").

In particular, we obtain

(0,9)(a,1)(0,9)"" = (g.a,1).

This means that the action of G on A given by ¢(g).a := gag™* for g€ Ax; G
coincides with the given action of G on A. |

Definition 2.2.  An extension of Lie groups is a surjective morphism q: G—aG
of Lie groups with a smooth local section for which N := ker ¢ has a natural Lie
group structure such that the map N x G — @, (n, g) — ng is smooth. Then
the existence of a smooth local section implies that G is a smooth N -principal
bundle, so that N is a split Lie subgroup of G in the sense of Definition C.4.
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We call two extensions N — él —» G and N — @2 —» G of the Lie group
G by the Lie group N equivalent if there exists a Lie group morphism ¢: G; — G»
such that the following diagram commutes:

Nf—>(A¥1—»G

o [ e

N < 62 — (.

It is easy to see that any such ¢ is an isomorphism of groups and that its inverse
is smooth. Thus ¢ is an isomorphism of Lie groups, and we obtain indeed an
equivalence relation. We write Ext(G, N) for the set of equivalence classes of Lie
group extensions of G by N. [ ]

Lemma 2.3. If A — élLG and A — GQLG are equivalent abelian
extensions of G by the Lie group A, then the induced actions of G on A coincide.

Proof.  An equivalence of extensions yields a morphism of Lie groups ¢: @1 —
Gy with ¢ |4 = idy and gg o = ¢q1. For ¢ € G and a € A the extension
G defines an action of G on A by g *; a := glagl_l7 where ¢1(g1) = g. We

likewise obtain from the extension ég an action of G on A by g *3 a 1= gaag, !
for q2(g2) = g. We then have

gr1a = gragy " = @(gragi ") = o(g1)ap(g1) " = @2(0(g1))*2a = q1(g1)*2a = g*aa.
| |

Definition 2.4. If (A4, p4) is a smooth G-module, then an extension of G by A
is always understood to be an abelian Lie group extension ¢: G — G with kernel A
for which the natural action of G on A induced by the conjugation action coincides
with p4. In view of Lemma 2.3, it makes sense to write Ext,, (G, A) C Ext(G, A)
for the subset of equivalence classes of those extensions of G by A for which the
induced action of G on A coincides with p4 . [

Definition 2.5. Let G be a Lie group and A a smooth G-module. For f €
Z%(G, A) (cf. Definition B.2) and g € G we consider the function

fo: G— A, fold) = flg.9)— flag'g " 9)
and write
Z:(G,A) :={f € Z2(G,A): Vg € G) fy € CL(G,A)}

for those f € Z2(G, A) for which, in addition, all functions f, are smooth in an
identity neighborhood of G.
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If £ e CHG,A) and f(g,9') = (dal)(g,9") = U(g) + g-L(g') — £(gg'), then
folg") = L(g) +g-L(g") — tlgg") — (L(gg'g™") + (99’9~ ") -L(g) — L(gg"))
(9) +9-0g") — Lgg'9™") — (99’9~ ") .(g)

is smooth in an identity neighborhood of G for each g € G. Therefore B2(G, A) C
Z2 (G, A) and

=/
=/

HSQS(G’ A) = ng(G7 A)/B?(Gv A)
is a subgroup of HZ(G, A). [

Proposition 2.6. Let G be a Lie group and (A, pa) a smooth G-module. Then
for each f € Z2 (G, A) the group Ax G carries the structure of a Lie group such
that the map q: A xy G — G,(a,9) — g is a Lie group extension of G by the
smooth G-module A. Conversely, every Lie group extension of G by the smooth
G -module A is equivalent to one of this form. The assignment

Z3(G, A) — Ext,, (G, 4), [ [Ax;G]
factors through a bijection
HZ (G, A) — Ext,, (G, A).
If G is connected, then Z% (G, A) = Z2(G, A) and we obtain a bijection

H2?(G,A) — Ext,, (G, A).

Proof. (1) Let f € Z2,(G,A) and form the group G:=A x5 G (Lemma 2.1).
First we construct the Lie group structure on G. Let Us C G be an open
symmetric 1-neighborhood such that f is smooth on Ug x Ug, and consider
the subset

U::AxU(;:qfl(UG)g@:Afo.

Then U = U~'. We endow U with the product manifold structure from A x Ug.
Since the multiplication me |y, xve: Ue X Ug — G is continuous, there exists an
open identity neighborhood Vg C Ug with VgVa C Ug. Then theset V := Ax Vg
is an open subset of U such that the multiplication map

VxV-U ((az2),(@d,2)) = (a+zd+ f(z,a),z2)
is smooth. The inversion
U—U, (az)— ( —2 ' (a+ f(x,xil)),xfl)

(Lemma 2.1) is also smooth.
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For (a,g) € G let Vy € Ug be an open identity neighborhood such that the
conjugation map ¢,(x) = grg~! satisfies ¢4(Vy) C Ug. Then ¢(q ) (¢~ (Vy)) CU
and the conjugation map

Clag):d (V) = U, (d,¢) (a+g.a —gg'g7 a+ fo(d'),99'97")
Lemma 2.1) is smooth in an identity neighborhood because f € Z2 (G, A).
8Ss

Now Theorem C.2 implies that G carries a unique Lie group structure for
which the inclusion map U = A X Ug < G restricts to a diffeomorphism of some
open 1-neighborhood in A x G to an open 1-neighborhood in G It is clear that
with respect to this Lie group structure on G the map ¢: G — G defines a
smooth A-principal bundle because the map Vg — G g — (0,g) defines a section
of ¢ which is smooth on an identity neighborhood in G which might be smaller
than Vg.

(2) Assume, conversely, that ¢: G — G is an extension of G by the smooth
G-module A. Then there exists an open 1-neighborhood Ug C G and a smooth
section o: Ug — G of the map ¢: G — G. We extend o to a global section
G — G which need neither be continuous nor smooth. Then

fla,y) = o(@)o(y)o(zy)™

defines a 2-cocycle G x G — A which is smooth in a neighborhood of (1,1), and
the map R
AXfGHGa (a,g)r—>a0(g)

is an isomorphism of abstract groups. The functions f;: G — A are given by
fald") = fl9,9") = Flgg'a™ ", 9) = o(9)o(g)o(9g) ™" — a(gg'g™ )o(g)algg) ™"
= o(9)a(g)algg) " algg)a(9) " algg'g™) " = a(g)alg))alg) "olgg'g™ ")

hence smooth near 1. This shows that f € Z2 (G, A). In view of (1), the group
AXx G carries a Lie group structure for which there exists an identity neighborhood
Ve C G for which the product map

AxVg—Ax;G, (a,v) (a,1)(0,v) = (a,v)

)

is smooth. This implies that the group isomorphism A x; G — G is a local
diffeomorphism, hence an isomorphism of Lie groups.
(3) Step (1) provides a map

ZSQS(GvA) - EXtPA (Ga A)v f = [A Xf G]a

and (2) shows that it is surjective. Assume that two extensions of the form Ax s, G
for f1,f2 € Z2,(G,A) are equivalent as Lie group extensions. An isomorphism
Axy G — Axy, G inducing an equivalence of abelian extensions must be of the
form

(2.4) (a,9) = (a+ h(g),9),
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where h € C1(G, A). The condition that (2.4) is a group homomorphism implies
that

(h(gg") + f1(9,9"),99") = (h(9),9)(M(g), ") = (W(g) + g-h(g") + f2(9,9'),99")

which means that

(2:5) (fi = f2)(9-9") = g-h(g") — h(gg") + h(g) = (dch)(g,9'),

so that fi — fa € B2(G, A).

If, conversely, h € C1(G, A) and fi — fo = dgh, then it is easily verified
that (2.4) defines a group isomorphism for which there exists an open identity
neighborhood mapped diffeomorphically onto its image. Hence (2.5) is an isomor-
phism of Lie groups. We conclude that the map Z2 (G, A) — Ext,, (G, A) factors
through a bijection HZ (G, A) — Ext,, (G, A).

(4) Assume now that G is connected and that f € Z2(G, A). In the context
of (1), the conjugation map ¢, g): g '(Vy) — U is smooth in an identity neigh-
borhood if and only if the function f,; is smooth in an identity neighborhood. As
f € Z2(G,A), the set W of all g € G for which this condition is satisfied is an
identity neighborhood. On the other hand, the set W is closed under multiplica-
tion. In view of the connectedness of G, we have G = |J, .y W™ = W . This means
that f € Z2 (G, A), and therefore that Z2(G, A) = Z2,(G, A). n

Problem 2. Do the two spaces Z2(G, A) and Z2,(G, A) also coincide if G is
not connected? [

The following lemma shows that the derivation map
D: Z3(G, A) = Z2(g,0), (Df)(z.y) = d*f(1,1)(z,y) — d*f(1,1)(y,2)

from Theorem B.6 and Lemma B.7 is compatible with the construction in Proposi-
tion 2.6. In the following proof we use the notation d?f introduced in Appendix A.

Lemma 2.7. Let A= a/T 4, where T'a C a is a discrete subgroup, f € Z2,(G, A)
and G = A Xy G the corresponding extension of G by A. Then the Lie algebra
cocycle Df satisfies § = g ®py a.

Proof. Let U, C a be an open 0O-neighborhood such that the restriction
pa: Uy = Uy +T4 C A of the quotient map ga: a — A is a diffeomorphism
onto an open identity neighborhood in A and ¢g: Uy — G a local chart of G,
where Uy C g is an open 0-neighborhood, ¢¢(0) = 1 and dy¢(0) = idg. After
shrinking U, further, we obtain a chart of A x; G by the map

P Ua X Ug — A X G’ (a>$) = (@A(a)aﬁpG(x))'

Moreover, we may assume that Uy is so small that f(oq(Ug) X ¢a(Ug)) C
©a(Uq)), which implies that there exists a smooth function f,: Uy x Uy — U,

with 40 fo = fo(pa X va).

a
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Writing = * 2’ := 5! (pg(z)pa(x)) for z,2’ € Uy with pg(z)pa(a’) €
0 (Ug), the multiplication
(a,9)(d'.g") = (a+g.d + f(9,9'),99)
in A xy G can be expressed in local coordinates for sufficiently small a,da’ €

a,z,z’ € g by

pla,z)p(d’,2") = (pala) + pc(r).0a(d) + flec(z), pa(@)), pa(@)pa(a’))
= (pala+vg(r).d" + fa(z,2")), pa(x * 2"))
= p(a+ @g(x).d + folz,2'),xx2").
Here the identity element has the coordinates (0,0) € a x g.
For the multiplication in G we have

rxzr' =z +2 +b(z,2)+ -

where --- stands for the terms of order at least three in the Taylor expansion of
the product map and the quadratic term b(z, ') is bilinear. The Lie bracket in g
is given by

[z,2] = b(x,2") — b2, )

([Mil83, p.1036]). Therefore the Lie bracket in the Lie algebra L(AX ;G) of Ax ;G
can be obtained from

(a+¢a(x).d + fa(z,a'),zxa)
=(a+d +z.d 4+ d*f.(0,0)(z,2) + - x4+ +blx,2')+ )
=(a+d +r.a +df(1,1)(z,2)+ -,z +2 +bz,2)) + ),

which leads to

[(a,2),(d',2")] = (w.d' —2".a + Df(x,2), [z, 2]). [

3. Locally smooth 1-cocycles

Let G be a Lie group and A a smooth G-module. In this section we take a closer
look at the space Z1(G, A) of locally smooth A-valued 1-cocycles on G. We know
from Appendix B that there is a natural map

Dy: Z;(G, A) — Z(g,0), Di(f)(z) == df(1)().

If A~ a/T' 4 holds for a discrete subgroup I'y of a and ¢4: a — A is the quotient
map, then we have for a € a the relation

Di(da(qa(a))) = dg(a)
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and thus D;(B}(G, A)) = Bl(g,a). Hence D; induces a map
Dy: H(G,A) — Hl(g, ),

and it is of fundamental importance to have a good description of kernel and
cokernel of D; on the level of cocycles and cohomology classes.

We shall see that the integration problem for Lie algebra 1-cocycles has a
rather simple solution, the only obstruction coming from m(G).

Lemma 3.1. FEach f € Z1(G, A) is a smooth function and its differential df €
OYG,a) is an equivariant 1-form.

Proof. Let g € G. In view of
(3.1) flgh) = g.f(h) + f(9),

the smoothness of f in an identity neighborhood implies the smoothness in a
neighborhood of g.

Formula (3.1) means that fo X\, = pa(g) o f + f(g), so that df satisfies
Asdf = pa(g) o df, i.e., df is equivariant. [

Lemma 3.2. Let G be a Lie group with identity component Go and A a smooth
G -module. Then for a smooth function f: G — A with f(1) = 0 the following
are equivalent:
(1) df is an equivariant a-valued 1-form on G.
2) flgn) = f(g)+9.f(n) for g€ G and n € Go.

If, in addition, G is connected, then df is equivariant if and only if f is a
cocycle.
Proof. We write g.a = pq(g).a for the action of G on a and g.a = pa(g).a for
the action of G on A.

(1) = (2): Let g € G. In view of d(pa(g) o f) = pa(g) o df, we have

d(foXg—palg)of—f(g)=AN,df — palg) o df.

Hence (1) implies that all the functions fol;—pa(g)of—f(g) are locally constant.
Since the value of these functions in 1 is 0, they are are constant 0 on Gg, which
is (2).

(2) = (1): If (2) is satisfied, then df (g)dAy(1) = pa(g) odf(1) holds for each
g € G, and this means that df is equivariant. ]

Definition 3.3.  Suppose that a is Mackey complete. If o € Z}(g,a) and a4
is the corresponding closed equivariant 1-form on G (cf. Definition B.4), then we
obtain a morphism of abelian groups, called the period map of «:

per s m(@) —a bl [ o= [t GO)a = [ awato o)
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where 7: [0,1] — G is a piecewise smooth loop based in 1. The map
C=(E.6)~a, e [an
~

is locally constant, so that the connectedness of GG implies in particular that for
g € G the curves v and A\, oy are homotopic, and we get

/aeq:/ aeq:/)\;aequa(g)-/aeq
v Agoy vy vy

im(per,) C a“.

which leads to

If T4 C a% is a discrete subgroup, then A := a/T'4 is a smooth G-module
with respect to the induced action. Let g4: a — A denote the quotient map. We
then obtain a group homomorphism

Pi: Z Mg, a) — Hom(m (G), A®), Pi(a) := qa oper,,. [

Proposition 3.4. If G is a connected Lie group and Ay = a/T's, where
'y C a% is a discrete subgroup and a is Mackey complete, then the sequence

(3.2) 0 — Z1(G, A)-25 7 (g, a) 25 Hom(my (G), AC)
is exact. If, in addition, A = a/T 4, then it induces an exact sequence

(3.3) 0 — HNG, A)-25H (g, 0)-25 Hom(m (G), A9).

Proof. If f € ZY(G,A) satisfies D;f = 0, then Lemma 3.2 implies that
df = 0 because df is equivariant, and hence that f is constant, so that f(g) =
f(1) = 0 for each g € G. Therefore D; is injective on Z1(G, A). The kernel of
Py: Z!(g,a) — Hom(m(G), A) consists of those 1-cocycles a for which a® is the
differential of a smooth function f: G — A with f(1) = 0 ([Ne02, Prop. 3.9]),
which means that o = Dy f for some f € Z!(G, A) (Lemma 3.2). This proves the
exactness of the first sequence.

Now we assume that A = a/T'4. If @ € Bl(g,a), then a® is exact
(Lemma B.5), so that Pj(a) = 0. Therefore P; factors through a map H!(g,a) —
Hom(m(G), a). The exactness of (3.3) now follows from D;(BL(G, A)) = DidgA =
dga = Bl(g,a) and the exactness of (3.2). L]

Remark 3.5. For each o € Z!(g,a) the corresponding equivariant 1-form a®4
is closed, and it is exact if a € Bl(g,a), so that we obtain a map

H,(g,0) = Hig(G,a), [a] — [*].
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Proposition 3.4, applied to A := a now means that the sequence
0 — HY(G,a)-"H! (g, 0)— Hig (G, a)
is exact. Let T4 C a be a discrete subgroup and consider A := a/T 4. For

Hp (G T 4) = {[a] € Hiu(G,a): (vy € C=(S,G)) /a € FA},

Y

we then have
Hi(G,Ta) = dC™ (G, A) /dC™ (G, a)

([Ne02, Prop. 3.9]), and we obtain an exact sequence

0 — HNG, A)-2HH (g, 0) —QY(G, a)/dC™ (G, A)

(3'4) = (Ql(G’ a)/dcoo(G7 a))/HéR(G7 FA)?
because for a € Z!(g,a) the condition [a®l] € dC*(G,A) is equivalent to
Pi([a]) =0 (Proposition 3.4). ]

In the remainder of this section we address the question how to classify the
smooth G-modules A with a given identity component (as G-module). We shall
see that the crucial data is given by a homomorphism 04: mo(A) — H}(g,a).

Definition 3.6. Let A be a smooth G-module for the connected Lie group G
and assume that Ag = a/T"4 holds for the identity component of A. Then for each
a € A we obtain a smooth cocycle

dn(a) € ZHG, Ay), dg(a)(g) :=g.a — a.
Taking derivatives in 1 leads to homomorphisms
04:=Dyody: A— Z}(g,a) and 04: mo(A) — H}(g,a).

The map 04 is called the characteristic homomorphism of the G-module A. It
can be viewed as an obstruction for the existence of a derivation map H!(G, A) —
Hi(g.a). n

Remark 3.7. The characteristic homomorphism clearly defines an action of
mo(A) on H!(g,a), and we have in this sense
H!(g,a)/m(A) = cokerf 4 = coker 4.

If G is the simply connected covering group of G, then Proposition 3.4 shows that
the map D;: Z}(G, A) — Z1(g,a) is bijective, so that

HY(G, A) = Z)(G, A) /dg(A) = Hi (g, a) /mo(A). .

The following lemma shows how the characteristic homomorphism classifies
all smooth G-modules for which the module structure on the identity component
is given.
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Lemma 3.8. Let A and B be smooth modules of the connected Lie group G and
assume that Ay = By =2 a/T 4 as G -modules, where T'4 C a is a discrete subgroup.
Then there exists an isomorphism : A — B of G-modules with v |4, = ida,
if and only if there exists an isomorphism ~v: mo(A) — mo(B) such that the
characteristic homomorphisms of A and B are related by

Op o v = 04.
Proof. 1If ¢: A — B is an isomorphism of G-modules restricting to the identity
on Ap, then v induces an isomorphism 7 := 7y (1)) : mp(A4) — mo(B), and it follows
directly from the definitions that g oy = f4.
Suppose, conversely, that v: mo(A) — my(B) is an isomorphism with fgoy =
04. Since Ap is an open divisible subgroup of A, we have A = Ay x mo(A)
as abelian Lie groups, and likewise B = Ay X mo(B). For each homomorphism
o mo(A) — Ag we then obtain a Lie group isomorphism

(3.5) p: A— B, (ag,a1) — (ao + ¢o(a1),v(a1)).

Since G acts on A = Ag x m(A) by

g.(a07a1) = (g'a() + d/CJ(al)(g)7a1)’

the isomorphism ¢ is G-equivariant if and only if

(3.6) po(ar) + dg(a1)(g) = g-vo(a1) + dg(v(a1))(g)

for g € G, a1 € mp(A), which means that

da(po(ar)) = dg(ar) — dg(v(a1)) =: Bar).

To see that a homomorphism ¢y with the required properties exists, we first ob-
serve that our assumption implies that 3 is a homomorphism 7o(A4) — Z1(G, Ay)
with im(D; o ) C dga. In view of the divisibility of a, there exists a homomor-
phism §: mo(A) — a with Dyof8=dgod =Diodgogaod. Since D, is injective
on cocycles (Proposition 3.4), we obtain 8 = dg o g4 o 6. We may therefore put
0 = g4 00 to obtain an isomorphism ¢ of G-modules as in (3.5). [

4. The period homomorphism
In this section G denotes a connected Lie group, a is a smooth Mackey complete

G-module, and w € Z2(g,a) is a continuous Lie algebra cocycle. We shall define
the period homomorphism

per,: m3(G) — a, per,([o]) = / W,
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where ¢ is a (piecewise) smooth representative in the homotopy class.

If g: G — G is an extension of G by the smooth G-module A whose Lie
algebra is isomorphic to a @, g and Ay = a/T'4 holds for a discrete subgroup
'y of a. Then we show that the period map is, up to sign, the connecting map
m2(G) — m(A) = T'y of the long exact homotopy sequence of the principal A-
bundle A — G — G.

Definition 4.1.  In the following A, = {(z1,...,2p) € RP: 2; > 0,3, 2; < 1}
denotes the p-dimensional standard simplex in RP. We also write (vo, ..., v,) for
the affine simplex in a vector space spanned by the points vy, ...,v,. In this sense
A, ={0,e1,...,ep), where e; denotes the i-th canonical basis vector in RP.

Let Y be a smooth manifold. A continuous map f: A, — Y is called
a C'-map if it is differentiable in the interior int(A,) and in each local chart
of Y all directional derivatives x +— df(x)(v) of f extend continuously to the
boundary 9A, of A,. For k > 2 we call f a C*-map if it is C! and all maps
x + df(z)(v) are C*¥~1. We say that f is smooth if f is C* for every k € N. We
write C°(A,,Y) for the set of smooth maps A, — Y.

If ¥ is a simplicial complex, then we call amap f: X — Y piecewise smooth
if it is continuous and its restrictions to all simplices in ¥ are smooth. We write
C’I?E)(Z,Y) for the set of piecewise smooth maps ¥ — Y. There is a natural
topology on this space inherited from the natural embedding of Cpy, (%,Y) into
the space Hsgz Cpw(S,Y), where S runs through all simplices of 3 and the
topology on Cpg,(S,Y) is defined as in [Ne02, Def. A.3.5] as the topology of uniform
convergence of all directional derivatives of arbitrarily high order. ]

The equivariant form w®? is a closed a-valued 2-form on G, and we obtain
with [Ne02, Lemma 5.7] a period map

per,: m(G) — a

which is given on piecewise smooth representatives o: S — G of free homotopy

classes by the integral
per,,([o]) = / ofw = / wed,
S2 o

If w is a coboundary, then Lemma B.5 implies that w®? is exact, so that the period
map is trivial by Stoke’s Theorem. We therefore obtain a homomorphism
H?(g,a) — Hom(72(G),a), [w]+ per,, .

The image II, := per,(m2(G)) is called the period group of w. Since the group G
is connected, the group m(C°°(S?%, G)) of connected components of the Lie group
C*(S?%,@G) is isomorphic to mo(G), and we may think of per, as the map on
mo(G) obtained by factorization of the locally constant map

C>(S$?,G) — a, Ur—>/weq
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to mo(C™(S?,G)) = m2(G) ([Ne02, Lemma 5.7]).
Lemma 4.2. The image of the period map is fized pointwise by G , i.e., I, C a®.

Proof. In view of [Ne02, Th. A.3.7], each homotopy class in m2(G) has a
smooth representative o: S?> — G. Since G is connected, and the map G —
C>=(S?,G),g — Ay oo is continuous, we have for each g € G:

per, (o) = [ ot = [ ¥t = [ o (pula) o) = pula)-pers (o)

We conclude that the image of per,, is fixed pointwise by G. ]

Let A — G—15G be an abelian Lie group extension of A. Then the Lie
algebra g of G has the form a @, g because the existence of a smooth local
section implies that g — g has a continuous linear section (Proposition 1.3). In
this subsection we show that the period homomorphism per, coincides up to
sign with the connecting homomorphism §: m3(G) — 71 (A) from the long exact
homotopy sequence of the bundle A — G-1.G.

Definition 4.3. We recall the definition of relative homotopy groups. Let I™ :=
[0,1]™ denote the n-dimensional cube. Then the boundary OI™ of I™ can be
written as I~ ! U J"" !, where I""! is called the initial face and J"~! is the
union of all other faces of I™.

Let X be a topological space, Y C X a subspace, and zg € Y. A map

fo gl — (X, Y, 20)

of space triples is a continuous map f: I" — X satisfying f(I""!) C Y and
F(IY) = {z}. We write F*(X,Y, zq) for the set of all such maps and 7,,(X, Y, z0)
for the homotopy classes of such maps, i.e., the arc-components of the topological
space F"(X,Y,x0) endowed with the compact open topology (cf. [Ste51]). We de-
fine F™(X,x0) :== F™"(X,{x0},x0) and 7, (X, o) := (X, {z0}, zo) and observe
that we have a canonical map

9: (X, Y, 20) = M (Yizo),  [f] = [f |, .

Remark 4.4. Let qg: P — M be a (locally trivial) H -principal bundle, yo € P
a base point, xq := q(yo), and identity H with the fiber ¢=!(zo). Then the maps

gs: T (P, H) := (P, H,yo) — m(M) := 7 (M,x0), [f]—[go f]

are isomorphisms ([Ste51, Cor. 17.2]), so that we obtain connecting homomor-
phisms
§:=00 (q.) ' (M) — mp_1(H).

The so obtained sequence
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o mp(P) > (M) = w1 (H) — ... = m(P) = m (M) — mo(H) — 7o(P)
—» mo (M)

is exact, where the last two maps cannot be considered as group homomorphisms.
This is the long exact homotopy sequence of the principal bundle P — M . ]

Proposition 4.5. Let q: G — G be an abelian extension of not necessarily
connected Lie groups with kernel A satisfying Ag = a/T' 4, where a is a Mackey
complete locally convex space. Then q defines in particular the structure of an A-
principal bundle on G . If w € Z2(g,a) is a Lie algebra 2 -cocycle with § = a®,, g,
then §: ma(G) — m1(A) and the period map per,,: m2(G) — a are related by

d = —per,: m2(G) — m(4) C a.

Proof. We consider the action of G on A given by g.a := ¢q(g).a. Then ¢*w®? is
an equivariant closed 2-form on G with (¢*w®?); = L(q)*w. Let py: g =< a®d, g —
a, (a,x) — x denote the projection onto a. Then

dgpa((avl')v (a/axl)) = (a,x).pa(a',x’) - (a',x’).pa(a,x) - pa([(a,m), (a/axl)})
=z.a —2'.a—(z.d —2'.a+w(x ")) = -w(z,2)

= —(L(9)"w)((,2), (d',2")).

In view of Lemma B.5, this implies
d(pa?) = (dgpa)™® = —(L(q)"w)*! = —¢"w*.

We conclude © :=p3? € Ql(é, a) is a 1-form for which ©|4 is the Maurer-
Cartan form on A. Therefore [Ne02, Prop. 5.11] and ¢*w®® = —dO imply that
0 = —perq. [

Remark 4.6. Let A — G — G be an abelian extension of connected Lie groups
and assume that A 2 a/T" 4 holds for a discrete subgroup I'y C a that we identify
with 71 (A). In view of m3(A) = m3(a) = 0, the long exact homotopy sequence of
the bundle G — G leads to an exact sequence

0 — m3(G) = m(G) 207y (A) — 11 (G) — 71 (G) — 0.
This implies that
772(@) =~ kerper, C m(G) and  m(G) = 1 (G)/ coker per,, .

These relations show how the period homomorphism controls how the first two
homotopy groups of G and G are related. [ ]
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5. From Lie algebra cocycles to group cocycles

In Sections V and VI we describe the image of the map
D :=Dy: H}(G,A) — H2(g,a), [fl— [Df], Df(x,y)=d*f(1,1)(z,y)
_d2f(17 1)(ya Jj)

for a connected Lie group G and an abelian Lie group A of the form a/T'4. In
the present section we deal with the special case where, in addition, G is simply
connected.

Let G be a connected simply connected Lie group and a a Mackey complete
locally convex smooth G-module. Further let Ty C a® be a subgroup and write
A:=a/T 4 for the quotient group, that carries a natural G-module structure. We
write q4: a — A for the quotient map. If, in addition, I"4 is discrete, then A
carries a natural Lie group structure and the action of G on A is smooth, but we
won’t make this assumption a priori.

Let w € Z2(g,a) and II,, C a“ be the corresponding period group (Lem-
ma 4.2). In the following we shall assume that

I, C T4

The main result of the present section is the existence of a locally smooth group
cocycle f € Z2(G,A) with Df = w if T'4 is discrete (Corollary 5.3).

A special case of the following construction has also been used in [Ne02] in the
context of central extensions. For g € G we choose a smooth path a4 4: [0,1] — G
from 1 to g. We thus obtain a left invariant system of smooth arcs ogp :=
Agoay g-1p from g to h, where A\y(z) = gx denotes left translation. For g, h,u € G
we then obtain a singular smooth cycle

Qg.hu = Ogh + Qpu — Qgu,

that corresponds to the piecewise smooth map ay p . € Cpy, (0A2,G) with

ag.1(8), for t=0
Qghu(s,t) =4 apu(l—3s), for s+t=1
ag,u(t)a for s=0.

For a simplicial complex 3 we write ¥ ;) for the j-th barycentric subdivision
of ¥. According to [Ne02, Prop. 5.6], each map «gp, is the restriction of a
piecewise smooth map o: (Az)1) — G. Let ¢’: (Az)1) — G be another piecewise
smooth map with the same boundary values as 0. We claim that fU w®— fo, w e
II,. In fact, we consider the sphere S? as an oriented simplicial complex X
obtained by gluing two copies D and D’ of A, along their boundary, where
the inclusion of D is orientation preserving and the inclusion on D’ reverses
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orientation. Then o and ¢’ combine to a piecewise smooth map v: ¥ — G with
Y|lp =0 and v|pr = ¢/, and we get with [Ne02, Lemma 5.7]

/weq—/ weq:/weqeﬂwgf‘A.
o o’ o

We thus obtain a well-defined map

F:G3— A, (g,h,u)HqA(/weq),

o

where o € Cp5,((A2)1),G) is a piecewise smooth map whose boundary values
coincide with ag p . -

Lemma 5.1. The function
f:G*— A, (9,h)— F(1,9,9h)

is a group cocycle with respect to the action of G on A.

Proof. First we show that for g,h € G we have
flg,1)=F(1,9,9) =0 and [f(1,h)=F(1,1,h)=0.

If g=h or h = u, then we can choose the map o: Ay — G extending ogp,. in
such a way that rk(do) < 1 in every point, so that c*w®® = 0. In particular, we
obtain F(g,h,u) =0 in these cases.

From ag p o = Agoay g-1p,4-1, We see that for every extensions o: (Ag)1) —
G of ay g-1p,g-14, the map Ay oo is an extension of agp . In view of Ajw® =
pa(g) 0w, we obtain

/ (Ag 0 0) W =/ T AW = pa(g)~/ ot we,
S2 S2 S2

and therefore
(5.1) F(g,h,u) = pa(g)-F(1,9~ " h, g~ u).

Let A3 C R? be the standard 3-simplex. Then we define a piecewise smooth
map v of its 1-skeleton to G by

’Y(t, 07 O) = al,g(t)a 7(07 tu 0) = al,gh(t)u 7(07 Ou t) = al,ghu(t)
and
7(1 —1,t, 0) = O‘g,gh(t)v ’Y(Oa 1—t, t) = agh,ghu(t)a 7(1 —t,0, t) = O‘g,ghu(t)-

As G is simply connected, we obtain with [Ne02, Prop. 5.6] for each face Ag,
j=0,...,3, of A3 a piecewise smooth map ~; of the first barycentric subdivision
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to G, extending the given map on the 1-skeleton. These maps combine to a
piecewise smooth map ~: (0A3)y — G. Modulo the period group Il , we now
have

3

vy 0A3 Vi

=0
= F(g,gh,ghu) — F(1,gh, ghu) + F(1, g,ghu) — F(1, g, gh)

= pa(g)-f(h,u) = f(gh,u) + f(g, hu) — f(g, h).
Since f7 w® e I, this proves that f is a group cocycle. ]

In the next lemma we show that for an appropriate choice of paths from
1 to group elements close to 1 the cocycle f will be smooth in an identity
neighborhood. The following lemma is a slight generalization of Lemma 6.2 in
[Ne02].

Lemma 5.2. Let U C g be an open convexr 0-neighborhood and o: U — G a
chart of G with ©(0) =1 and dp(0) = idg. We define the arcs a,(y)(t) := @(tz).
Let V. C U be an open convex 0-neighborhood with o(V)p(V) C o(U) and define
zxy =@ Yp(@)p(y)) for x,y € V. If we define 04y = p 07y, with

Yow: Bz = U, (ts) = tax sy) + sl (1 - 1)y),

then for any closed 2-form Q € Q%(G,a), a a Mackey complete locally conver
space, the function

fV:VXV_)a7 (xay)’_)/ Q
Ozy

is smooth with d?fy(0,0)(z,y) = Q41 (z,y) (see the end of Appendix B for the
notation).

Proof. First we note that the function V x V — U, (z,y) — x % y is smooth.
We consider the cycle

A1.0(z),0(2)e(y) = O,p(x)p(zry) = V(@) T Xp(z),p(zry) — O1p(zxy)-

The arc connecting x to x * y is given by s — x * sy, so that we may define
Op,y = P O Vzy With 7, , as above. Then

fr:VxV —a, (fc,y)H/ Q=/ Yo,y P 8,
SDO’Yac,y A2
and

62 flen) = [ @D E0m 0 5D) (Gl 5ot dds
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implies that fy is a smooth function in V' x V.

The map v: (z,y) — 7, satisfies

(1) 70.p(t:5) = sy and vy o(t,5) = (¢ + 5)a

(2) Zvpy N LApy =0 for =0 o0r y=0.

In particular we obtain fy (z,0) = fi/(0,y) = 0. Therefore the second order
Taylor polynomial

Tal)(,9) = i (0,0) -+ (0,0) 0+ (0, 0)(0, )+ 5 - (0,0)(,9), (2,))

of fy in (0,0) is bilinear and given by
Ta( ) (w,0) = 5% 1y (0,0)((2,0), 0,9)) + 30 £ (0,0)((0, ), (2,0))

= deV(Oa O)(z,y)

(see the end of Appendix B).

Next we observe that (1) implies that %%,y and %%’y vanish in (0,0).
Therefore the chain rule for Taylor expansions and (1) imply that for each pair
(t,s) the second order term of

. 0 9]
(" Dy (b)) (57 (1 8)s 500 (8 9))
is given by

(") (10,0(t,8)) (2, y) = (dp(0)* Q1) (z,y) = Qa(=,y),

and eventually

Er0.0w0) = Ta(f)w0) = [ dids-Qaleg) = o) m

Az

Corollary 5.3.  Suppose that T 4 is discrete with 11, C T'4 and construct for
w € Z2(g,a) the group cocycle f € Z*(G,A) as above from the closed 2-form
w® € O*(G,a). If the paths a1,y for g € p(U) are chosen as in Lemma 5.2, then
feZ3G,A) with D(f) =w.

Proof. In the notation of Lemma 5.2 we have for x,y € V' the relation

fle(x), o)) = qalfv(@,v)),
so that f is smooth on ¢(V) x ¢(V), and further

Df(z,y) = d*fv(1,1)(z,y) — d*fv(1,1)(y, z) = w(z,y). n

The outcome of this section is the following result:
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Theorem 5.4. Let G be a connected simply connected Lie group and A a smooth

G -module of the form a/T 4, where T4 C a is a discrete subgroup of the Mackey

complete space a. Let w € Z%(g,a) be a continuous 2-cocycle and 1, C a% its

period group. Then the following assertions are equivalent:

(1) The Lie algebra extension a — g:=ad, g — g can be integrated to a Lie
group extension A — G — G.

(2) [w] €im(D).

(3) w € im(D)

(4) II,CTIy4.

(5) If ga: a — A is the quotient map, then qa oper, =0.

Proof. (1) = (2): If G is an extension of G by A corresponding to the Lie
algebra extension g = a @, g, then we can write Gas A X ¢ G (Proposition 2.6),
and Lemma 2.7 implies that D[f] = [Df] = [w].

(2) = (3): If [w] = D[f] = [Df] for some f € Z2(G, A), then there exists
an o € Cl(g,a) with Df —w = dga. The 2-form (dga)®? = da®t € O*(G,a) is
exact (Lemma B.5), so that its period group is trivial, and Corollary 5.3 implies
the existence of h € Z2(G, A) with Dh = dga. Then f; := f — h € Z2(G, A)
satisfies D(f —h) = Df — Dh = w.

(3) = (1): If Df = w, then the Lie group extension A x ¢y G — G (Proposi-
tion 2.6) corresponds to the Lie algebra extension a ®prg=aP, g — g (Lemma
2.7).

(1) = (4) follows from Proposition 4.5, which implies that if G exists,
then the period map coincides up to sign with the connecting homomorphism
§: m2(G) — m(A) 2 T4 C a in the long exact homotopy sequence of the principal
A-bundle G.

(4) = (3) follows from Corollary 5.3.

(4) & (5) is a trivial consequence of the definitions. [

6. Abelian extensions of non-simply connected
groups

We have seen in the preceding section that for a simply connected Lie group G and
a smooth G-module of the form A = a/I"4 the image of the map D: H(G, A) —
H2(g,a) consists of the classes [w] of those cocycles w € Z2(g,a) for which
II, CTI'y.

_In this section we drop the assumption that G is simply connected. We write
gc: G — G for the simply connected covering group of G and identify 71 (G) with
the discrete central subgroup ker go of G.

Let w € Z2(g,a). In the following we write p4 for the action of G on A, p,
for the action of G on a and p, for the derived representation of g on a.
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Remark 6.1. (a) To a 2-cocycle w € Z2(g,a) we associate the linear map
fo:g— Cl(g,a) = Lin(g,a), = — iw.
We consider Lin(g,a) as a g-module with respect to the action

(z.0)(y) = pa(x).aly) — allz,y]).

We do not consider any topology on this space of maps. The corresponding Lie
algebra differential dg: C'(g, Lin(g,a)) — C?(g, Lin(g, a)) then satisfies

(dg.ﬁi)(xv y)(z) = ($.iyw — Ylgw — Z[:1:,11]“")(2’/)
= x‘w(y7 Z) - w(y> [LU, Z]) - y.w(x, Z) + w((E? [ya Z]) - W([$7 y]7 Z)
= —zw(@,y) = —dg(w(z, 9))(2).
Since the subspace B.(g,a) = dya C Cl(g,a) is g-invariant, we can also form the
quotient g-module

Hl(g.a) :== Cl(g,a)/BL(g,a).

We then obtain a linear map
forg— Hi(g.0), @ i),

and the preceding calculation shows that this map is a 1-cocycle. We call f,, the
infinitesimal fluz cocycle. In the following we are concerned with integrating this
cocycle to a group cocycle L

F,: G — H(g,a).

This is problematic because the right hand side does not carry a natural topology,
so that we cannot directly apply Proposition 3.4.
(b) The injective map

Eq: C?(g,a) — O7(G,a), ara*
satisfies with respect to the natural action of G on CP(g,a) by

(g.)(21,...,7p) = g.a(Ad(9) t.21,...,Ad(9) " .2p)

for h € G and y € g = T1(G) the relation

(g-0)°U by, .. hyp) = h((9-0) (Y1, .-, 4p)) = hg.a(Ad(g)  y1, ..., Ad(g) " yp)
= a*Uhy1.g,. .., hyp.g) = (pya) (hy1, ..., hyp).

This means that Eq is equivariant with respect to the action of G on Q°*(G, a) by
g.a = pya. The corresponding derived action of the Lie algebra g on Q*(G,a) is
given by X.a := Ly, ., where £;, = doiy, + iy od denotes the Lie derivative as
an operator on differential forms.
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For the linear map
Eqof,: g — QNG a), z+— (iyw)™
we obtain for h € G and y € g:
(izw)®(hy) = h.(izw(y)) = hw(z,y) = WU h.2, h.y) = W (x;(h), h.y),

which means that (iyw)®d = i,,w®. With respect to the natural action of g on
QY(G,a) by L, we then obtain a Lie algebra cocycle
foi=Eqof,: g — H(G,a) := QY(G,0)/dC™(G,a), x> [igw]

(cf. Lemma 9.8).
(¢) Next we derive some formulas that will be useful in the following. The
equivariance of w®? leads to

Lo, w0 = fq() 0w

([Ne02, Lemma A.2.4]). In view of the closedness of w®, this leads to
(6.1) d(ig,w) = Ly, W™ — iy dw® = pg(x) o w®.
Further [Ly,,iy,.] = i, .y,] = —i[z,y), implies
ifa,y], W = iy, Lo, w™ = La, iy, 0™ =iy, (pa(z) 0 W) = (iz, 0 d + d 0 iy, )iy, w™
= pa(@) 01y, w™ — pa(y) © e, w™ — d(iz, iy,w*).
This means that the a-valued 1-form
(62)  fale) 0 iy — fa(y) 0, 0 — ifn 4w = dli, iy, )
is exact. |

A first step to integrate the Lie algebra cocycle f, is to translate matters
from the Lie algebra to vector fields and differential forms on G. On the formal
level, without worrying about topologies on the target space, the linear map
fu: g — Lin(g,a),x — i,w defines an equivariant Lin(g, a)-valued 1-form f24
on G. For each z € g, evaluation ev, in z is a linear map ev,: Lin(g,a) —
a,a — afz) and evyofd € Q(G,a) is an a-valued smooth 1-form on G, a
well-defined object, satisfying for g € G and y € g:

(eve of2)(9.y) = eva(g.-fu(y)) = 9. fu(y)(Ad(9) " .2) = gw(y, g~ .9)
= wYg.y, z,(9)),

which leads to
evy ofSd = —i, wd.

Having this formula in mind, the definition in Lemma 6.2 below is natural.
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Lemma 6.2. Let v:[0,1] — G be a piecewise smooth path. Then we obtain a
continuous linear map

Fu(y) € Lin(g.a),  Fu(y)(@) = — [, i, = [} v(D)(3() 7/ (1),

with the following properties:

(1) If v(1)=1y(0) is contained in Z(G) and acts trivially on a, then ﬁw(w) €
Z:(g,0).

(2) If v1 and o are homotopic with fized endpoints, then ﬁ'w(fyl) — ﬁw(w) is a
coboundary.

(3) For a piecewise smooth curve n: [0,1] — G we have

/nﬁwmeq:/Hweq

for the piecewise smooth map H: [0,1]2 — G, (t,s) — n(s) - y(t).
(4) For a differentiable curve v: [0,1] — G with v(0) =1 and +'(0) =y we have
pointwise in Lin(g, a):

d ~ . ~
o Fo(vlo,g) = iyw = fu(y)-

Proof. In view of formula (6.2) above, we find for =,y € g the relation

dg(Fuo (7)) (2, y)

t=0

=z.Fu(V)(y) — y-Fu()(z) — Fu(v)([z, y])

== [ a0, 05— aly) 2, a0 = = [ )
Y Y

= w(7(0)) (4(7(0)), 27(7(0))) = w*U(v(1)) (wr(v(1)), 2 (7(1)))
— 1(0) w(Ad((0)) ™9, Ad(3(0))~" 1) — (1) w(Ad (1 (1)), Ad (1)) ).
(1) If 7(1)~"(0) € Z(G) = kerAd acts trivially on a, then the above

formula implies that dg(F., (7)) = 0, ie., that F,(y) € Z!(g,a).
(2) For g € G we first observe that

Fo(g-7)(x) = —A g, W =/0 gr(t)w(y(H) A (1), Ad(gy (1)) dt

29-/0 V(&) w(y() 7 (1), Ad(y(1) 7! Ad(g) ) dt

= 9.F.(7)(Ad(9)""2) = (9.-F. (7)) ().
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For the natural action of G on Lin(g,a) by (g9.¢)(z) := g.¢(Ad(g)~t.z) and
the left translation action on the space C;w(l ,G) of piecewise smooth maps
I:=[0,1] — G, the preceding calculation implies that the map

F,: C},(I,G) — Lin(g,a) = C}(g,0)

is equivariant.
For the composition

B 1(2t) for 0
(Ya#y2) () := { 11(1)72(0)—172(215 ~1) fgr :

of paths we thus obtain the composition formula
(6.3) Fu(ntre) = Fu(n)+Fo(m(1)72(0)"92) = Fu(11) +71(1)72(0) " Fu (7).

For the inverse path v~ (¢) := v(1 —t) we trivially get Fi,(y~) = —F(7) from the
transformation formula for one-dimensional integrals. If the two paths v, and ~»
have the same start and endpoints, then the path 4y, is closed, and we derive
with (1) that

Fu(m) = Fu(y2) = Fulm) + 11 (1)75 (0) 1 F, () = Fu(ntys ) € ZX (g, a).

That two paths ; and v, with the same endpoints are homotopic with fixed
endpoints implies that the loop v := 7175 is contractible. It therefore has a closed
piecewise smooth lift 7: [0,1] & Ay — G with g oy = . Using Proposition 4.6
in [Ne02], we find a piecewise smooth map &: Ay — G such that & |sa, = 7. Let
0:=qgoo. Then olpa, =7, so that Stoke’s Theorem and formula (6.1) lead to

SE)@) = [t = [ 0w = [ o)
vy aAQ AQ

= [ i) = [ pule) 0w = puta). [

Therefore F,(v) € BL(g,a), and (2) follows.
(3) We have

/ﬁwmcq :/O n(s)-Fo(7)(n(s) "0 (s)) ds
:/0 /0 n(s)y(t).w(y(®) LA (1), Ad(y(£) ™) o n(s) "t (s)) dt ds
:A A H(t,s)W(H(t,s)_ln(s)fyl(t)’H(t7s)—1(n/(s),y(t)))dtds
_ [ L OH(ts) . OH(Ls)
] e B g 2
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= H*weq:/ w9,
[0,1]2 H

(4) For n:(s) := ~v(ts) we have

t

oy lo) (@) = / 7(8) wy(s) " 7/ (5), Ad(y(s)) ) ds

/O 7 (st)w((st) ™ A (1), Ad(y(st)) ") tds = tE, (me) ()

Therefore
d ~ e _ _
Gl o Fulrloa)(e) = lim [ 2 (st)0(a(st) 1y (st), Adr(51) ) ds
= — 0
1

- / 7(0) w(x(0) " (0), Ad(5(0)) ) ds

0
= w(y,z) = (iyw)(2).

Proposition 6.3. We have a well-defined map

Fo: é - I/—jpl (ga Cl) = Lin(g7 a)/Bcl (gv Cl), g— [Fw(QGO’Yg)] = ﬁw(QGO’Yg)+Bg (97 Cl),

where v4: [0,1] — G is piecewise smooth with v4(0) =1 and v4(1) = g. The map
F,, is a 1-cocycle with respect to the natural action of G on ffcl (g,a). Moreover,
we obtain by restriction a group homomorphism Z(G) Nker po — H!(g, ), [y] —
[Fl(7)] and further by restriction to m (G) a homomorphism

F,: m(G) — Hcl(g,a).

Proof. That F, is well-defined follows from Lemma 6.1(2) because two different
choices of paths v, and 7, lead to paths gg o<y, and gg o7y in G which are
homotopic with fixed endpoints. Next we note that for paths 4, , ¢ = 1,2, from 1
to g; in G the composed path 74,74, connects 1 to g1g2. Hence the composition
formula (6.3) leads to

Fu(9192) = Fulvg879:) = Fulvg) + 91-F(vgs) = Fuu(g1) + 91.Fu(g2),

showing that the map F,, is a 1-cocycle.
Since Z(G) N ker p, acts trivially on g and a, hence on Lin(g,a), the
restriction of F,, to this subgroup is a group homomorphism, and Lemma 6.2(1)

shows that its values lie in the subspace H'(g,a) of H(g,q). n
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We call F,: G — H(g,qa) the fluz cocycle and its restriction to 1 (G) the
flux homomorphism for reasons that will become clear in Definition 9.9 below.
Composing with the map

Eq: H(g,a) — Hip(G, ),

we obtain a group cocycle

F,:=EqoF,: G — Hiz(G,a), ie, F.(g192) = F.(q1)+ pi Fu(go).

Since the elements of the target space are uniquely determined by their integrals
over loops, Lemma 6.2(3) completely determines F,,.

We now relate the flux homomorphism to group extensions. Although the
following proposition is quite technical, it contains a lot of interesting information,
even for non-connected groups A.

Proposition 6.4. Let A be an abelian Lie group whose identity component
satisfies Ao =2 a/T' 4, where T'4 C a is a discrete subgroup. Further let ¢: G — G
be a Lie group extension of the connected Lie group G by A corresponding to the
Lie algebra cocycle w € Z2(g,a), so that its Lie algebra is § = a @, g. In these
terms we write the adjoint action of G on g as

(6.4) Ad(g).(a,z) = (g.a — 0(g)(g.2),9.7), g€G,acaxeg,
where g.x = Ad(q(g)).z and
0: G — C(g,a) = Lin(g, a)

is a 1-cocycle with respect to the action of G on Lin(g, a) by (g.a)(z) := g.a(g~.z).
Its restriction 04 := 6|4 is a homomorphism given by

04(a) = D(dg(a)) with (dga)(g) := g.a—a and D(dga)(x) := x.a := (d(dGa)(l))(x).
This 1-cocycle maps Ay to Bl(g,a) and factors through a 1-cocycle
9: G/Ao — H}(g.0) = Lin(g,a)/Bl(g.0), alg) — [6(9)]-

The map q: @/Ao — G,gAp — q(g) is a covering of G, so that there is a unique

covering morphism qg: G — @/Ao with §oqg = qg, and the following assertions

hold:

(1) The coadjoint action of G on g and the flurx cocycle are related by F, =
—5 ] f]\G .

(2) If §: m(G) — mo(A) C (A}’/AO is the connecting homomorphism from the long
exact homotopy sequence of the principal A-bundle q: G — G, then

Fw = —gA O(SZ 7T1(G) — Hg(gva)a
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where 04: mo(A) — H}(g,a) is the characteristic homomorphism of the
smooth G -module A.
(3) The induced map
Fo:m(G) — He(g,a)/m(A)

vanishes, and if A is connected, then F,(m1(G)) = {0}.

Proof. From the description of the Lie algebra g as ad, g, it is clear that there
exists a function 6: G — Lin(g, a) for which the map (g,z) — 6(g)(z) is smooth

and the adjoint action of G on g is given by (6.4). Since Ad is a representation
of G, we have 6(1,z) =0 and

(6.5) 0(g192)(9192.¢) = 91.0(g2)(g2.) + 6(91)(g192.2), ¢1,92 € G,z eq,

which means that
0(9192) = 91.0(g2) + 0(g1),

i.e., 6 is a 1-cocycle. As A acts trivially on a and g, the restriction 64 = 0|4 is
a homomorphism

04: A— Z g,a) with  Ad(b).(a,2) = (a —0a(b)(x),z), bE A acazxcag.

The relation (b) € Z}(g, a) follows directly from Ad(b) € Aut(g).
For § € G with ¢(§) = g and b € A we have bgb~' = (bgb~'g~")g =
(b — g.b) - g, which leads to

Ad(b).(a,z) = (a — z.b, )

and therefore to 64(b)(x) = x.b. For a € a and b = ga(a) we have x.b = x.a, so
that 6(Ag) = B} (g, a). Hence 0 factors through a 1-cocycle 0: G/Ag — H}(g,a)
whose restriction 64 to mo(A) = A/Aq is given by

Ba: mo(A) = AJAg — Hg,a), [a] = [0a(a)] = [D(dga)).

(1) For a fixed = € g the cocycle condition (6.5) implies for the smooth
functions 6, : G — a,g +— 0(g)(z) the relation

0:(gh) = g.04-1 »(h) + 0.(g).
For the differentials we thus obtain
(6.6) 46,(9)dAg (1) = pa(g) 0 d0, -+ ,(1).
From formula (6.4) for the adjoint action, we get in view of (1) = 0 the formula
(2'.a —z.d +w(@ ), 2, z]) = ad(d,2")(a,z) = (2".a — db,(1)(d’,2), [z, x]),
so that 6 and the corresponding Lie algebra cocycle are related by
db.(1)(d,2") = w(z,2’) + x.d'.
With (6.6) this further leads to
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d0.(g)drg(1)(a’,2") = g.(w(g™ o, a’) + (971 2).a) = w2, (q(g)), dAg(g) (1).2")
+x.(g9.a").

In Ql(é, a) we therefore have the relation
0z = pa(x) 0 Pt + ¢ (i, ™),

where pqy(a’,2’) = a’ is the projection of g onto a and pg? the corresponding
equivariant 1-form on G.

Let ~v: [0,1] — G be any piecewise smooth loop based in 1. Then there
exists a piecewise smooth map 7: [0,1] — G with god =~ and 7(0) =1, so that
¥:i=qco75:[0,1] — G is the unique lift of v to a piecewise smooth path in G
starting in 1. We now have

_R()(@) = / iy % = /H 3 (14, w%) = /H g7 (i, )
_ / 0" (i, ) = / db, — pa(x) o P
— 0,(5(1)) - 0 (3(0)) — pa(a). / P8 = 6((1))() — pa(a). / pes.

This means that

F.(3(1)) = [Fo()] = ~163(1)] = ~0(@a(3(1))

and therefore that F,, = —f o g because v was arbitrary.

(2) If v:[0,1] — G is a piecewise smooth loop based in 1, then 7(1) €
kerg = A and §([y]) = [7(1)], as an element of mo(A). This means that § can be
considered as the restriction of Gg: G — G/Ag to the subgroup m1(G) = ker g .
Therefore (2) follows from (1) by restriction.

(3) This follows directly from (2) because H}(g,a)/mo(A) = coker @4 (Defi-
nition 3.6). [

Corollary 6.5. If, in addition to the assumptions of Proposition 6.4, the group
G is simply connected, then G is isomorphic to the identity component of the
group G /Ay, and in this sense

F,=—-0:G— H'(g,a).

On the subgroup A* := q~Y(Z(G) Nkerpa) of G the cocycle 0 restricts to a
homomorphism

(67) Qﬁ: Aﬂ - ch(gv a)v ar D(dg(a)),
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where for each a € A* the smooth cocycle dg(a) € Z1(G,A) is defined by
dg(a)(q(g)) := gag=ra=t. For two piecewise smooth curves v,n: [0,1] — G with
¥(0) = n(0) =1 and v(1),n(1) € A* we have for H: I? — G, H(t,s) = v(t)n(s)
©8) AW 0 = —aa( [

the formula
7]ﬁ,(n)eq) = QA(/Hweq).

Proof. To derive the first part from Propositions 6.3 and 6.4, we only have
to observe that for a € A* the condition pa(a) = ida implies that dg(a) is
well-defined on G by dg(a)(q(g)) = gag—ta~!, and that this is an element of A
because ¢(a) € Z(G) implies dg(a) € kerq.

For (6.8) we first observe that for € a and ga(z) =2+ T4 € A the map
dgga(z): G — A satisfies

0 =pa(y(1))(ga(@)) — ga(z) = (daga(z)) (v (1))=/d(dG(QA($)))+FA

:/(D(dGQA( / (dg)®d +T 4,
Y Y

so that the integration along ~ yields a well-defined map H Hg,a) — A [a] —
qa ( f,y aeq). We therefore get with Proposition 6.4, Lemma 6.2(3) (note the sign

change) and —0 = F,, on the identity component G of G/Ay:

Corollary 6.6.  Suppose that A = a/FA, that qg: G — G is a universal

covering homomorphism, let q: G — G be an A-extension of G corresponding
to w € Z%(g,a), and 71(G) := ¢ 1 (m1(Q)). Then the following are equivalent:

(1 Fw(ﬂ'l(G)) = {O}

)
(2) 0(71(G)) € Bi(g,a) = 0(A).
(3) m(G)=A+ker(0z (c)-
(4) qlker(fz,(a))) = m(G).
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(5) There exists a group homomorphism o: m(G) — ker(0 |z, (a)) = F(GQ)NZ(G)
with go o =idy (q)-
Proof. The equivalence of (1) and (2) follows from Corollary 6.5, and (2) is
clearly equivalent to (3), which in turn is equivalent to (4) because kerg = A.
That (5) implies (4) is trivial. If (4) is satisfied, then we first observe that
ker(0 [z, (c)) = 71(G) N Z(@), so that (3) implies that 71 (@) is abelian. Further
(6.7) in Corollary 6.5 leads to

ker(6 |z, (a)) Nker g = ker(6|a) = qa(a?),

which is a divisible group. Hence the extension g4(a?) < ker(0|z,(a)) — m1(G)
splits, which is (5). [

The following theorem is a central result of this paper.

Theorem 6.7. (Integrability Criterion) Let G be a connected Lie group and A
be a smooth G-module with Ag = a/T 4, where T 4 is a discrete subgroup of the
Mackey complete locally convex space a. For w € Z2(g,a) the abelian Lie algebra
extension a — g := a X, g —» g integrates to a Lie group extension A — G—G
if and only if
(1) II, CTy4, and
(2) there exists a homomorphism ~: 71 (G) — mo(A) such that the flurx homomor-

phism

F,: m(G) — HX(g,a)
is related to the characteristic homomorphism 0 4: mo(A) — H(g,a) by
Fw = EA o7.

If, in addition, A is connected, then (2) is equivalent to F, =0.

Proof. Suppose first that G isaLie group extension of G by A corresponding to
the Lie algebra cocycle w. According to Proposition 4.5, — per,, is the connecting
map m2(G) — m(A) = T'y. This implies (1). That (2) is satisfied follows from
Proposition 6.4(2) with v = —9§.

Conversely, suppose that (1) and (2) hold. Let ¢g: G — G denote the
simply connected covering group of G and recall that m3(gg) is an isomorphism
m(é) — 7o(G). We may therefore identify the period maps per,, of G and G
and likewise for all quotients of G by subgroups of m(G).

From the case of simply connected groups (Proposition 5.3), we know that
there exists an Ag-extension ¢f: G — é, where A carries the natural G-module
structure induced by the G-module structure. The Lie algebra of Gl is g =
a @, g. Let Gi := G/kery and observe that m1(Gy) = kery. Condition (2)
implies 71(G1) = kery C ker F,,, so that Corollary 6.6 implies that there exists a
homomorphism

o: m(G1) — ker(0]z, (@) € Z(G¥)
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with ¢f oo = ids, (@,)- Then the image of o is a discrete central subgroup of G*,
and therefore

Gy =G o(m1(Gy))

defines an abelian extension Ay — G1—2-G4 corresponding to the given Lie
algebra extension a @, g — g.

If ¢;: G; — G is the quotient map with kernel 71 (G)/ kery = im~ C mo(A),
then B := ¢; ' (m1(G)/ker) is a subgroup of Gy with By = Ay and 7o(B) =
B/By = im(y) C mo(A). Let A; C A denote the open subgroup whose image
in mo(A) is im(y). Then B = By x mp(B) & Ap x im(y) = A; as abelian Lie
groups. As « factors through an isomorphism 7: 7o(B) — im~y C my(A1) and the
characteristic maps 04: mo(A) — H}(g,a) and 0p: mo(B) — H}(g,a) satisfy

Os07=10p

(Proposition 6.4, Corollary 6.5), Lemma 3.8 implies that A; = B as smooth G-
modules. Therefore G is an A;-extension of G. Write G1 = Ay x; G for some
[ €Z%(G, A)) C Z2,(G, A) (Proposition 2.6). Then G := A x ;G is an extension
of G by A containing G as an open subgroup. |

Remark 6.8. The condition (2) in the preceding theorem reduces to the simple
condition F, = 0 if A is connected, but if A is not connected, it can become quite
involved. From the short exact sequence of abelian groups

0 — kerfy — mo(A) — im(64) — 0

and the corresponding long exact cohomology sequence we obtain an exact se-
quence

Hom(7,(G), mo(A)) — Hom (7, (G),im04) — H*(71(G), ker 04).

Clearly im(F,,) C im(04) is necessary for (2), but if this condition is satisfied,
then the obstruction for the existence of 7v: m(G) — me(A4) as in (2) is the
image of F,, in H?(m(G),kerf,). This cohomology class can be interpreted as a
central extension of 7 (G) by the discrete group im(64) (see also the discussion
in Example D.11). [

Remark 6.9. (a) Suppose that only (1) in Theorem 6.7 is satisfied. Consider the
corresponding extension ¢*: Gf — G of G by Ay = a/T'4. Then G = G!/71(G),
where 71(G) = (¢*) (71 (G)) is a central Ag-extension of 71(G), hence 2-step
nilpotent Lie group with Lie algebra a.

If 71 (G) is abelian, then we have an abelian Lie group extension

1-7(G) =G -G —1
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of G by the abelian group 71(G), and the corresponding Lie algebra extension is
0—a—g=ad,g—g—0.

(b) We have seen in the proof of Theorem 6.7 that whenever an A-extension
G of G corresponding to w € Z2(g,a) exists, then its identity component is a
quotient of G* by a subgroup o(m(G)), where o: m(G) — Z(G*) N71(G) is
a splitting homomorphism for 7;(G). This implies in particular that 71(G) is
abelian.

Let us take a closer look at the nilpotent group 71(G). If this group is
abelian, then the divisibility of Ay = a/T"4 implies that 71(G) splits as an Ag-
extension of m(G). Clearly this condition is weaker than the requirement that it
splits by a homomorphism o: 71 (G) — 71(G) N Z(G*) with values in the center
of G,

That 71(G) is abelian is equivalent to the triviality of the induced commu-
tator map

CA: 1 (G) x 1 (G) — Ag C A.

w

According to Corollary 6.5,

©9)  CAELI) =~aa( [ Futn?) = ~PCEED = - [ Falli).

Y

where Pi: H!(g,a) — Hom(m (G), A), Pi([a])([7]) := qA(f'y aeq) as in Proposi-
tion 3.4. Therefore the commutator map vanishes if and only if

(6.10) Py o F,(m(G)) = {0},

which means that Fy(m(G)) = {0}. This means that for all smooth loops
v,m: St — G and H: T? — G, (t,s) — v(t)n(s) we have

aa( [ Hw) = PR (D) = 0.

In view of Proposition 3.4, Condition (6.10) is equivalent to
(6.11) F,(m(G)) Cker P, =im(D;) =2 HX(G, Ay) C Hl(g,a),

i.e., that the image of the flux homomorphism consists of classes of integrable
1-cocycles, so that we may view F,, as a homomorphism

F,: m(G) — HX(G, Ay).
In Corollary 6.5 we have seen that we have a homomorphism

0" = Dy odg: 71(G) — Z2 (g, 0)
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which factors through the (negative) flux homomorphism —F,,: m1(G) — Hl(g, a).
The group 71(G) is a smooth G-module which is abelian if and only 7 (G) acts
trivially, which in turn is (6.11). If this is the case, then

—F,: m(71(G)) = m(G) — H)(g,0)

is the characteristic homomorphism of the smooth G-module 71 (G). In view of
Lemma 3.8, it vanishes if and only if the identity component 7 (G)o = Ap has a
G-invariant complement in 71 (G). [

Below we describe a typical example where the commutator map C4 van-
ishes and the flux homomorphism F,: m(G) — H}(g,a) is non-zero (see also
Example D.11(b)).

Example 6.10. Let G := T? = R?/Z? with universal covering group qg: G
R? — G. We consider Z := T = R/Z as a trivial G-module and write qz: j =
R — Z for the quotient map. Then

w(z,y) = x1Y2 — TaU1

defines a Lie algebra cocycle in Z2(g,3). Since m2(G) = m2(R?) vanishes, we have

per,, = 0. The corresponding central extension of G is given by
GH=Zx;G=Tx; R, flz,y) = qz(a1y2) = 2192 + Z.

Note that the biadditivity of f implies that it is a group cocycle, and clearly
D2f = w.

Since the differential dg on C*(g,3) vanishes, we have f[cl (g,3) = Lin(g,3) =
H!(g,3). The flux cocycle, which actually is a homomorphism, is given by

F,: G=R?> — ffcl(g,;,) = Lin(g,R) = g%, z—iyw.

It is a bijective linear map and in particular non-zero.
The kernel of the map

Py: H;(g,3) = Lin(g,3) — Hom(my(G), Z) = Hom(Z*, T) = T?,
a — (qz(a(e1)), gz(ale2)))
is the additive subgroup Hom(Z?,Z) of Lin(R? R). Therefore w(Z? x Z?) C Z
leads to
Pl o Fw(ﬂ'l(G)) = Pl(iz2w) = {0},
which corresponds to the triviality of the extension 71(G) := Z x5 Z? = Z x Z°.

We conclude that there is no Lie group extension Z — G—G correspond-
ing to the Lie algebra cocycle w. Another reason for such an extension not to exist
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is that any such extension would be central, but for all central extensions of tori by
connected Lie groups the corresponding Lie algebra cocycle vanishes (cf. [Ne02]).

We now consider the smooth G-module A := C*°(G,Z) with the action
(9.-f)(x) :== f(g + z) and note that a = C*°(G,3). We identify Z C A with the
subgroup consisting of constant functions. Then w is an element of Z2(g,a). A

linear functional «: g — a is determined by the pair (f1, f2) := (a(e1), ales)),
and the cocycle condition means that

on _of:

31‘2 31‘1 ’

ie., fidry + fadre € Q1(G,3) is a closed 1-form. This implies that
HY(8,0) = Z13(G,3)/dC™ (G,3) = Hig (G3) = Rldar] © Rldas].
In this sense the flux homomorphism is given by
F,: 7?21 (G) — Hi(g,a), F,(n,m) = nlic,w] + mlic,w] = n[dzs] — m[dz;].

For a smooth function f: T? — T we have d(f)(g) = (¢9.f)f~' and therefore
04(f) = D1(dgf) = f~'df, so that the characteristic homomorphism

aAZ 71'O(A> - Hcl(g’ a) = H&R(TQ’R)v [f] = [f_ldf]

is an injective homomorphism onto the discrete subgroup of integral cohomology
classes. The map

v:m(G)=Z° = m(A), (n,m)— [ga(z1,22) = gz(nzs — may)]
is an isomorphism of groups satisfying
04 07(n,m) = [ndry — mdx,] = F,(n,m),

so that the assumptions of the integrability criterion Theorem 6.7 are satisfied.
With the cocycle f € Z2(G, Z) C Z2(G, A) from above, we obtain a group
extension N _
Gi=Agx; G =4 xR, fz,y) = az(a1p2),
whose restriction to 1 (G) is the abelian group
%1(G) = Ap ><sz =~ A X 72 = A.

For (n,m) € Z* we have in G

(O’ (.T, y))(07 (n, m))(oa (_33’ _y)> = (f((x, Y)s (n’ m))7 (77‘7 m)) = (qZ(xm)a (’IL m))?

showing that Z(G) = Z, and there is no section m(G) — 71(G) with central
values. Nevertheless, the existence of v implies that 7, (G) = A as smooth G-
modules, so that N

A=7(G) =G — G

is an A-extension of G whose Lie algebra cocycle is w. u
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In Example 9.17 we shall discuss a generalization of the setting used in
Example 6.10 for the two-dimensional torus.

If G is a smoothly paracompact group, then each closed a-valued differential
form defines a singular A-valued cohomology class, and it is instructive to compare
the condition that the period map g4oper,, and the flux homomorphism F,, vanish
with the condition that the corresponding cohomology class in

Hs2ing(G7 A) = HOHI(HQ (G)a A)

vanishes (the equality follows from the Universal Coefficient Theorem). To evaluate
this cohomology classes, it is crucial to have a good description of the generators
of the group Hz(G).

Proposition 6.11.  Let G be a topological group, So(G) C Hy(G) the subgroup
of spherical 2-cycles, i.e., the image of mo(G) under the Hurewicz homomorphism
m2(G) — Ha(Q), and Ay(G) := H2(G)/S2(G) the quotient group. Then A2(G) is
generated by the images of cycles defined by maps of the form

axf:T? =G, (t5)— at)B(s),

where a, 3: T — G are loops in G.

Proof. First we recall that the group Hs(G) is generated by the cycles defined
by continuous maps F': ¥ — G, where X is a compact orientable surface of genus
g € Ny (this comes from the fact that the cone over each connected compact 1-
manifold is a disc). We may assume that g > 0, otherwise ¥ = S%, and there is
nothing to show.

We recall that 3 can be described as a CW-complex by starting with a
bouquet

Agg=S'vS'v...vS!

29

of 2g-circles. Let xy € S' be the base point in S' and ay the base point in
As,. We write ay,az,...,az5-1,a2,: S — As, for the corresponding generators
of the fundamental group of Ay, which is a free group on 2g generators. Then we
consider the continuous map ~: S' — Aag corresponding to

(6.12) [a1, a2] - - - [agg—1, azg] € m1(Azg),

where [r,y] := xyz~'y~! denotes a commutator. Now ¥ is homeomorphic to
the space obtained by identifying the points in dB? = S! (the boundary of the
2-dimensional unit disc B?) with their images in Aag under v, i.e.,

¥ Ay, U, B2

In this sense we can identify As, with a subset of ¥. Let f;: As; — S! be the
pointed map for which f;oa; =ids: and for ¢ # j the map f;oqy is constant .
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Then f; extends to a continuous map f;: 3 — S! because it maps the commutator
(6.12) to a contractible loop in S!.
For a continuous map F': ¥ — (G we now consider the continuous map

Fi:=(Foajofi):-(Foayo fy)

and observe that for each j we have Foa; = Fioaj,i.e., F' and F; coincide on the
subset Asy of ¥. Therefore the map Fj := Ffl - F: ¥ — @ is a continuous map
mapping Ay, to 1, so that it induces a map X/A5; 2 S? — G. Hence F = Fy - Fy,
where Fy factors through the continuous map f = (fi,..., f2g): & — T?9 and
F, factors through the quotient map ¥ — S? collapsing Ay, to a point. We thus
obtain a factorization of F' into maps

Y- T% xS? - G x G—29 G,

where mg is the group multiplication. Since the homology groups of S? and T29
are free, the Kiinneth Theorem yields

H,(S?* x T?9) = H,(S?) ® H,(T?9)
as graded abelian groups, and in particular
Hy(S? x T29) = Hyo(S?) @ Hy(T29).

This implies that Hy(F): Ha(X) =2 Z — H2(G) maps the fundamental class [X] €
H3(X) to the sum of two homology classes in the image of Ho(Fy) and Ha(F3).
Since im(Hz2(F1)) € S2(G), it remains to consider the image of Ha(F') of maps
F: T2 — G. As Hy(T?%) is generated by the classes of the (%) 2-dimensional
sub-tori obtained by the coordinatewise inclusions T? — T?29, everything reduces
to maps F: T? — G. Writing F, as above, as F) - I, we obtain a factorization

of F' into maps

T2 - (T % T) % S2 (Foajofi,Foazofs,Fs) G3 mgo(mgxidg) G,

Now Ho(T? x S?) = Hy(T?) @ Ho(S?) permits us to reduce matters to maps
Fy: T? — G of the form « * 3. This completes the proof. n

Remark 6.12. We apply the preceding proposition to Lie groups. Let G be a
smoothly paracompact Lie group. Then de Rham’s Theorem ([KM97, Thm. 34.7])
implies that the map

H2:(G,a) — Hom(Hy(G),a) = HZ (G, a)

sing

is an isomorphism of vector spaces. According to Proposition 6.11, Ha(G) is
generated by S2(G) and the classes of the maps « * (3. Therefore we obtain an
injective map

®: H3g(G,a) — Hom(ma(G),a) ® Hom(m (G) @ m1(G), a),
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with first component ®;([€2]) = perg and

where o, 8: S' — G are piecewise smooth representatives of their homotopy
classes. That the second component is well-defined follows from the fact that mg
induces a map
Hao(m
m(Q) ® 11(G) — Hi(G) ® Hi(G) — Ha(G x &) 22" gy (@)

mapping [a] @ [3] onto Ha(a * 3)([T?]) € Ha(G).

For an equivariant 2-form w®® we conclude in particular that the corre-
sponding cohomology class in H% (G, A) vanishes if and only if

sing
gaoper,=0 and CA=0

(cf. Remark 6.9). This condition is weaker than P;(jw]) = (g4 o per,, F,) = 0
(Example 6.10), but it already implies the existence of an abelian extension of G
by the abelian group 71 (G), even though A might not be isomorphic to 71(G) as
G-modules (cf. Remark 6.9). L]

Remark 6.13. With similar arguments as in Section 4, resp. Section 5 of [Ne02],
we can define a toroidal period map by observing that the integration map

ﬁﬂxmmmﬂﬁ,mH/w
is constant on the connected components, hence defines a map
perl: mo(C®(T?,G)) = [T?,G] = 711(G) x 71 (G) x m2(G) — a

(cf. [MNO3, Remark 1.11(b)], [Ne02, Th. A.3.7]). The restriction to m2(G), which
corresponds to homotopy classes of maps vanishing on (T x {1}) U ({1} x T), is
the period map per,,: m2(G) — a. The elements of the subgroup

’iTl(G) X 7T1(G) Q ’/T()(COO(T27G))

are represented by maps of the form a * 8 with a,8 € C*°(T,G), and from the
proof of Proposition 6.11 we know that

m(G) x m1(G) = a, ([a], [8]) — perg ([ * 5])

is biadditive. This implies in particular that, in general, per’ is not a group
homomorphism. The condition g4 o perl = 0 means that g4 o per, = 0 and
the commutator map C’j‘ vanish, which, for smoothly paracompact groups G, is
equivalent to the vanishing of the cohomology class in Hfmg(G, A) defined by the
closed 2-form w®d. |
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Remark 6.14. If A=~ a/T 4, then a® = a? is a closed subspace of a containing
I' 4. Therefore

AJAC =2 b :=a/a®

is a locally convex space which carries a natural smooth G-module structure.
Note that the quotient space b need not be sequentially complete if a has this
property. Nevertheless the construction in Section 5 leads to a group cocycle
f € Z2(G,a/1,) and since I, is always contained in a® (Lemma 4.2), we obtain
a group cocycle

fieZ}(G,b) with Dfi=w’:=gsouw,

where ¢p: a — b is the quotient map (Corollary 5.3). This leads to a Lie group
extension

b—G—>G

with § = b ®,e g. Note that
b=a/a% = B;(g.a) C Z;(g,0),

so that we may identify the quotient map ¢, with the coboundary map dg: a —
Bl(g,a). This makes it easier to identify the corresponding flux cocycle.

In Proposition 10.4 we shall encounter examples of modules a with a? = {0}
for which the flux cocycle is non-trivial (this is the case for the module F; of
Diff (S1)g ). Therefore one cannot expect F,, to vanish. [

7. An exact sequence for abelian Lie group exten-
sions

Let G be a connected Lie group and A a smooth G-module of the form A = a/T 4,
where I'4 C a is a discrete subgroup. The main result of the present section is an
exact sequence relating the group homomorphism

D :=Ds: HE(G,A) — Hf(g, a)

to the exact Inflation-Restriction Sequence associated to the normal subgroup
m(G) = kerqg of G, where gg: G — G is the universal covering map (cf.
Appendix D). The crucial information on im(D) has already been obtained in
Theorem 6.7, so that it essentially remains to show that ker D coincides with the
image of the connecting homomorphism ¢: Hom(m (G), AY) — H2(G, A).

In the following we shall always consider A as a é—module, where g € G
acts on A by g.a := qg(g).a, so that m1(G) acts trivially.
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Proposition 7.1. Let G be a connected Lie group. For an abelian Lie group

extension A — G—1-G the following conditions are equivalent:

(1) There exists an open identity neighborhood U C G and a smooth section
ou: U — G of q with ou(zy) = oy (x)ou(y) for x,y,zy € U.

2 G=A x¢ G, where f € Z2(G, A) is constant 0 on an identity neighborhood
in GxG.

(3) There exists a homomorphism ~: m(G) — AY and an isomorphism
®: (AxG)/T(y) — G with q(®([1,2])) = qa(x) for z € G, where T'(v) =
{(v(d),d): d € m1(G)} is the graph of ~.

Proof. (1) & (2) follows directly from the definitions and Proposition 2.6.

(1) = (3): We may w.l.o.g. assume that U is connected, U = U~!, and that
there exists a smooth section &: U — G of the universal covering map qg. Then

ov ° qalswy: 5(U) = G
extends uniquely to a smooth homomorphism ¢: G — G with poaog = oy and
go ¢ = g ([Ne02, Lemma 2.1]; see also [HofMo098, Cor. A.2.26]). We define

P: AxG — @, (a,9) — ap(g). Then v is a smooth group homomorphism which
is a local diffeomorphism because

Y(a,0(x)) = ap(c(z)) =aoy(z) for =zeU,acA

We conclude that 1 is a covering homomorphism. Moreover, ¢ is surjective
because its range is a subgroup of G containing A and mapped surjectively by ¢
onto G. This proves that

G = (AxG)/kery, kery)={(~¢(9).9): g € ¢ (A)}.
On the other hand, p~1'(A) = ker(q o ) = ker gc = m1(G), so that
keryp = {(v(d),d): d € m(G)} =T(y) for v:=—¢|)-

(3) = (1) follows directly from the fact that the map A x G — G is a
covering morphism. ]

For the following theorem we recall the definition of the period map per,
(Section 4) and the flux homomorphism F,: 71(G) — H}(g,a) associated to
w € Z%(g,a) (Proposition 6.3).

Theorem 7.2. Let G be a connected Lie group, A a smooth G-module of the
form A = a/T' 4, where T'a C a is a discrete subgroup of the Mackey complete
locally conver space a and qa: a — A the quotient map. Then the map

P: Z2(g,a) — Hom (m2(G), A) x Hom (1 (G), H!(g,a)), P(w) = (gaoper,, F.)
factors through a homomorphism
P: H}(g,a) — Hom (73(G), A) xHom (m1(G), H.(g,0)), P([w]) = (qaoper,, F.,)

and the following sequence is exact:
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0 — HYG, A)——HYG, A)—H (1(G), A) ¢ = Hom (my(G), AG) ——

—2 L H2(G, A)—2—H?(g, a)—— Hom (m5(G), A) x Hom (m,(G), H, (g, a)).

Here the map § assigns to a group homomorphism ~: 71 (G) — AY the quotient
of the semi-direct product A x G by the graph {(v(d),d): d € 71(G)} of v, which
18 a discrete central subgroup.

Proof. First we verify that P vanishes on B2(g,a), so that the map P is well-
defined. In Theorem 6.7 we have seen that [w] € im(D) is equivalent to P(w) = 0.
If [w] =0, then a®,g = axg and the semi-direct product AxG is a corresponding
extension of G by A, so that Theorem 6.7 leads to ]S(w) =0.As Pisa group
homomorphism, it factors to a homomorphism P on H?2(g,a).

The exactness of the sequence in HX(G, A), H(G, A) and Hom(m(G), AS)
follows from Example D.11(b) and the exactness in H2(g,a) from Theorem 6.7.
It therefore remains to verify the exactness in H2(G, A).

First we need a more concrete interpretation of the map § in terms of abelian
extensions. Let v € Hom(m(G), A®) and f € C1(G, A) as in Lemma D.7, applied
with N = m,(GQ) with f(gd) = f(g) +~(d) for g € G,d € m(G). Then the
arguments in Remark D.10 show that the map

q)ZAXdéfé—)AXléy (a,g)'—>(a+f(g)7g)

is a bijective group homomorphism. Since, in addition, ® is a local diffeomorphism,
it also is an isomorphism of Lie groups, and therefore the cocycle §(f) := dxf €
Z%(G, A) satisfies

Axs(p) G = (Axags G)/({0} x m(G)) = (A G)/2({0} x m1(G))
= (A% G)/{(d.y(d): d € m(G)}.

Now the inclusion im(d) C ker(D) follows from Proposition 7.1 because for a
cocycle f € Z2(G,A) vanishing in an identity neighborhood we clearly have
Df=0.

Conversely, let f € Z2(G, A) be a locally smooth group cocycle for which
w = Df is a coboundary and let ¢: G=A x¢ G — G be a corresponding Lie
group extension (Proposition 2.6). Then the Lie algebra extension g 2 a®, g — g
splits, and there exists a continuous projection p,: g — a whose kernel is a closed
subalgebra isomorphic to g. Considering p, as an element of C(g,a), we have

(dgpa)(,y) = 2.pa(y) — y-Pa(x) — pa([7,y]) = Pa([r — pa(x), pa(y) —y]) =0,

for z,y € g, so that p, € Z!(g,a). Let q5: G* — G denote the universal

covering group of G. Then the corresponding equivariant 1-form pSd on G¥ is
closed (Lemma B.5), so that we find with [Ne02, Prop. 3.9] a smooth function

0:G* > a with ¢(1)=0 and dp=7pd,
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and Lemma 3.2 implies that ¢ € Z! (é, a) is a group cocycle.

Using the local description of é, resp., G* by a 2-cocycle, we see that
the inclusion map Ay — G of the identity component of A lifts to a Lie group
morphism 7,: a — G* whose differential is the inclusion a < g. Since pq l|a = idg
and the image of 7, acts trivially on a, the composition pon.: a — a is a
morphism of Lie groups whose differential is id,, which implies that pon, = id, .
Moreover, the cocycle condition implies that

(7.1) p(ag) = p(a) + ¢(9), a€mna(a),ge

Let U C G be a connected open identity neighborhood on which there exists
a smooth section o: U — G¥ of the quotient map ¢* := qo qa: G* — G. We then
obtain another smooth map by

o: U= G 2 na(p(o(z) Ho(x).

In view of (7.1), this map is also a section of ¢*. Moreover, im(oy) C ¢~1(0).

From the description of G with the cocycle f it follows that there exists an
open 1-neighborhood in G¥ of the form

Ut = Na(Ua)o1(U),

where U, C a is an open 0-neighborhood. Restricting ¢ to U¥, we see that
o1(U) = ¢~ 1(0) N U*. Since ¢~1(0) is a subgroup of G*, we have

(o1 (D)o (U)) NU* C oy (U).

Let V C U be an open connected symmetric 1-neighborhood in G' such that there
exists a smooth section oy : V — G of the universal covering map ¢ : G—G and,
in addition, VV C U and o,(V)oy(V) C U*. For z,y € V we then have zy € U,
and o1 (z)o1(y) € U' implies the existence of z € U with o1(2) = o1(z)o1(y).
Applying ¢* to both sides leads to

z= unl(Z) = qﬁ(Ul(m)Ul(y)) =Y.

We therefore have
o1(zy) = o1(x)o1(y) for z,yeV.

Hence there exists a unique group homomorphism f: G — G* with fooy =01
([HoftMo098, Cor. A.2.26]). Composing f w1th the covering map qG Gt - G,

we obtain a smooth homomorphism fA — G with qo f = . According
to Proposition 7.1, this implies that G is isomorphic to a group of the type
(A x G)/T(y), where v: m(G) — AY is a group homomorphism. [

Since the fundamental group 71 (G) vanishes, we obtain in particular:
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Corollary 7.3.  The map Dy: H2(G, A) — H2(g,a) is injective. L]

Remark 7.4. In view of Corollary 7.3, we may identify H?2 (é, A) with a sub-
group of H?(g,a). Then the inflation map

I: H2(G, A) — H2(G,A) satisfies DS ol =DS: H*G,A) — H*(g,a). m

Remark 7.5. At first sight, the following argument seems to be more natural to
show in the proof of Theorem 7.2 that ker D C imd: If the group G is regular (cf.
[Mil83]), then the Lie algebra morphism o: g — g whose existence is guaranteed
by [Df] = 0 can be integrated to a Lie group morphism G — CAY', and we can
argue as above. Unfortunately this argument requires the regularity of the group
G, which is not needed for the argument given above. u

Although the following example is concerned with a finite-dimensional group
G, it demonstrates quite nicely the difficulties arising for smooth modules with
are neither connected nor simply connected.

Example 7.6. Let GG be a connected finite-dimensional Lie group, 3 a Fréchet
space, I'z C 3 a discrete subgroup and Z := 3/T'z. Then a := C*°(G,3) also
is a Fréchet space and (g.f)(x) := f(xg) defines a smooth action of G on a
([Ne01, Th. IIL5]; note that C'°°(G,3) is Fréchet and therefore metrizable, which
is needed for the proof in loc. cit., although it is not stated there explicitly).
We endow the abelian group A := C*°(M,Z) with the Lie group structure for
which Ag := gz 0 C*(M,3) is an open subgroup isomorphic to the quotient group
a/T'z = C>°(M,3)/T 7z, which is a Lie group because I'z is discrete in the closed
subspace 3 of a, hence also discrete in a. It is clear from the construction that G
acts smoothly on the identity component Ay of A and further that each element
of G acts as a smooth automorphism on the whole group A. To see that G acts
smoothly on A, it remains to show that all orbit maps are smooth in the identity.
For f € A and g € G the connectedness of G implies that g.f—f = fop,—f € Ao,
so that we have to verify that the map G — Ag,g9 — g.f — f is smooth. Let
S'(f) = f~l.df denote the left logarithmic derivative of f, which is a closed
3-valued 1-form on G with periods in I'z, so that we may write

agxr

(0:=Dta) = a9~ @) = oz [ ) =az( [ ) (0 () 1) )

where 74: [0,1] — G is a smooth path from 1 to g. Locally we may choose 7,
in such a way that it depends smoothly on ¢ (cf. Lemma 5.2), which implies that
the orbit map of f is smooth in 1 and hence that G acts smoothly on A.

Since g — V(G),z — x; (x;(g) = g.) is a homomorphism of Lie algebras,
the map

b Qp(Gaa) Hcf(gﬂl)v (I)(O‘)(xla---axp) = a(xl,la-~'a$p,l)a Il(g) =g.x
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is a morphism of chain complexes, i.e., dgo® = ®od. On the other hand, we obtain
from each a-valued p-form o on G a 3-valued p-form ev§oa by composing it
with the evaluation map ev§: a — 3, f — f(1). Then

U :=evioEq: CP(g,a) — QP(G,3)
satisfies
W(a) (@10, 2p1)(h) =evioad(zyy,...,xp)(h) =evi (ha(z,...,2p))
=ev} (a(a:l, ceey@p) O ph) =a(x1,...,2p)(h),
which leads to ¥ o ® =id and ® o ¥ = id. Therefore ¥ induces isomorphisms
(72) \II: Hg(g’ a) - HgR(G73)7

indentifying a-valued Lie algebra cohomology with 3-valued de Rham cohomology.
For g € G, a € CP(g,a) and ag = ¥(a) € QP(G,3) we have the relation

Ayag = evgoa,

which follows directly from

(Ajac) (@1, xp)(h) = (ag(Ti, - 2p1))(gh) = evg(h.a(zy, ... xp))

=evgoa®(z1,. .., 2p1)(h).

If M is a smooth oriented p-dimensional compact manifold, then we thus obtain
for a smooth map v: M — G and « € ZP(g,a):

(/aeq)(g) :/ evgo'y*oaeq:/ ()\go'y)*ozG:/ a(;:/ag €3 =aC
v M M Agoy v

This shows that the period map per,,: m,(G) — a® of a coincides with the period
map per,, . of the closed 3-valued p-form ag. With Proposition 3.4 we now obtain

(7.3)  H(G,Ap) = ker P = Hjg(G,I'z) 2 Hom(m (G),Tz) = Hy,,(G,Tz).
The characteristic homomorphism of A is given by
Oa:m0(A) =[G, Z] — H.(g,0) = Hir(G,3), [f]— Dildaf]=[6'())] = [f'df].

It is injective with image ker P, = Hly(G,Tz). This implies that Z!(G, 4y) =
ZYG,A) CdgA, and therefore

(7.4) HX(G,A) =o0.

We now turn to H2(G, A). Since 7m2(G) vanishes ([Car52]), Proposition 6.11
shows that Ho(G) is generated by homology classes defined by maps T? — G of
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the form [a] * [3] := [a * (], where «, 3: T — G are piecewise smooth loops. For
w € Z2(g,a) and the corresponding closed 3-valued 2-form wg = ¥(w) the flux
homomorphism F,,: m1(G) — H}(g,a) = Hiz (G, 3) satisfies

(15)  Fu(al(8) = ~C3(03) fa) = CS(ial. () = [ wi= [ we

In view of

Hom(m (G), H)(g,a)) = Hom(m(G), Hig(G,3)) = Hom(m (G), Hom(m (G), 3))
= Hom(m (G) @ m1(G),3),

this shows that the map
Py: HZ(g,a) = Hig(G,3) = Hom(Hy(G),3) — Hom(m (G), He (g, a),  [w] — F,
is injective because the alternating biadditive map
m(G) @ m(G) — Ha(G), [o] @ [B] — [ax[]

is surjective. This in turn implies that Do(H2(G, Ag)) = {0}, so that the sequence

H{(G, Ao) — Hom(m(G), A%) = Hom(m1(G), Z) — HZ(G, Ag) — 0
is exact (Theorem 7.2). From

H(G, Ao) = H(9,a) = Hix(G,3) = Hom(m (G),3)

we thus get

H2(G, Ay) = Hom(71(G), Z)/qz o Hom(71(G), 3) = Extap(m1(G),Tz)

because the divisibility of 3 implies Ext,p(m1(G),3) = 0.
To calculate H2(G, A), we use the exact sequence from Appendix E:
(7.6)
HY(G,m(A)) — H*(G, Ag) — H2(G,A) — H?(G,mo(A)) — H3(G, Ag) — ...

Since G is connected, Z!(G,m(A)) is trivial and thus H!(G, my(A)) vanishes,
so that we have an injection H2(G,Ag) — HZ(G,A). From our description of
H2(G, Ap), it follows that the image of this injection coincides with the image of
the connecting map H'(m;(G), A)¢) = Hom(m (G), Z) — H?(G, A). We likewise
have H!(G,m(A)) = 0, and Theorem 7.2 implies that

H2(G, mo(A)) & Hom(m(G), mo(A)) & Hom(m (G), Hom(m: (G), 7))
= Hom(m (G) @ m1(G),T'z).
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If ¢: G — G is an A-extension of G, then @/AO is the corresponding ex-
tension of G by m(A), which is a covering, hence given by a homomorphism
m1(G) — m(A), which coincides with the corresponding connecting homomor-
phism in the long exact homotopy sequence of the A-principal bundle G. There-
fore the map H2(G,A) — H2(G,mo(A)) = Hom(m(G), mo(A)) assigns to an A-
extension the corresponding connecting map &, which satisfies F,, = —04 o 6 if
w € Z2(g,a) is the corresponding Lie algebra cocycle (Proposition 6.2(2)).

Next we use the Integrability Criterion from Theorem 6.7. Since the char-
acteristic homomorphism 6,4 is injective, for w € Z2?(g,a) & H3z(G,3) there
exists a homomorphism v: m(G) — mo(A) with F, = 64 o« if and only if
im(F,) C im(f4) = Hiz(G,Tz), and in this case —F,, considered as a map
1 (G) — m(A), is the connecting map of the corresponding extension (Proposi-
tion 6.2(2)). In view of (7.5), this means that the Lie algebra cocycle w is integrable
if and only if wg € H3z(G,T'z) in the sense that all periods of the 2-form wg are
contained in I'z. Identifying Hom(m(G), m(A)) with Hom(m(G) ® m1(G),T'z),
the corresponding connecting map corresponds to the commutator map C?2,
which is alternating. We conclude that a homomorphism m(G) ® m(G) — I'z
is a connecting map of an A-extension of G if and only if it factors through
x: m(G) @ 11 (G) — H2(G) to a homomorphism Hs(G) — 'z given by integrat-
ing against a closed 2-form with periods in I'y. Combining all this, we get an
exact sequence

0 — Exta,(m1(G),T'z) — HSQ(G7 A) — Hom(H>(G),T'z) — 0.

From [Ne02, Rem. 9.5(e)] we know that discrete subgroups of separable lo-
cally convex spaces are free. Therefore ' is free if 3 is separable. If this is the case,

then the fact that Hy(G) is finitely generated implies that Hom(H2(G),I'z) =

I‘bZQ(G) is also free, so that the above sequence splits, and we get from the Univer-

sal Coefficient Theorem
(7.7) HZ(G, A) = Extap(m1(G),T'z) & Hom(Hy(G),Tz) = HE,,(G,Tz).
Finally we observe that the homomorphism
Hom(H(G),T'z) — Hom(7(G) @ m(G),T'z) = H2(G,mo(A))

is not surjective, which is due to the fact that the map 71 (G) ® 71 (G) — Ha(G)
is alternating. This implies that the map

HOIH(Wl(G) X 7T1(G), FZ) - Hf(Ga AO)

obtained from (7.6) is non-zero.

To make this more explicit, let K C G be a maximal compact subgroup.
Then there exists a torus T with K = (K, K) x T and d := dimT = dim Z(K).
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Since the inclusion K <— G is a homotopy equivalence and all homology groups
of T are free, we derive from the Kiinneth Theorem

Hy(G) = Hay(K) = Hy(T) @ Hi(T) ® Hi((K, K)) © Hy((K, K)),

where the latter two summands are finite groups. Likewise m1(G) = m(T) &
(K, K)) = m(T) ® Hy((K,K)). Therefore Hy(T) = Z¢ and Hy(T) = 7(>)
lead to

d

Hom(H2(G),T'z) = Hom(Hy(T),I'z) = I‘(ZQ)
and ,
Hom(71(G) ® 71(G),Tz) = Hom(m (T) @ m1(T),Tz) = T% .

We therefore obtain an injection

d+1

F(22 ), H3(G, Ap).

It would be interesting to calculate the higher cohomology groups H (G, A)
and H?(G, Ag) explicitly, but for that one needs different tools. With van Est’s
Theorem, in the version of [HocMo62], one gets

H;ls(Gv a) = Hg(g,P, Cl) = HgR(G/Kvﬁ) =0

for n > 0, where Hy (G, a) denotes the cohomology defined by the globally smooth
cochains, but this provides not enough information on the groups H (G, a) defined
by the locally smooth cochains. [

8. Abelian extensions with smooth global sections

In this subsection we discuss the existence of a smooth cross section for an abelian
Lie group extension A < G —» G which is equivalent to the existence of a smooth
global cocycle f: G x G — A with G =2 G x; A. Moreover, we will show that
for simply connected groups, it is equivalent to the exactness of the equivariant
2-form w®! on G, where w = Df.

The following lemma will be helpful in the proof of Proposition 8.2.

Lemma 8.1. Let G be a connected Lie group, A a smooth G-module and
f € Z%(G, A) such that all functions f,: G — A,x — f(g,x) are smooth. Then
f: G x G — A is a smooth function.

Proof. We write the cocycle condition as
[y, 2) = f(z,y2) + pa(®).f(y, 2) — f(z,y), =y,2€G.

For z fixed, this function is smooth as a function of the pair (y,z) in a neigh-
borhood of (1,1). This implies that f is smooth on a neighborhood of the points
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(z,1), = € G. Fixing x and z shows that there exists a 1-neighborhood V C G
(independent of ) such that the functions f(-,z2), z € V, are smooth in a neigh-
borhood of z. Since x € G was arbitrary, we conclude that the functions f(-,z2),
z € V, are smooth. Now

f(yz) = f(y, 2) — pal)-fy,2) + f(,y)

shows that the same holds for the functions f(-,u), u € V2. Iterating this process,
using G = (J,cy V", we derive that all functions f(-,z), » € G, are smooth.
Finally we see that the function

(@,y) = f(x,y2) = f(zy, 2) — pa@)-fy, 2) + f(2,y)

is smooth in a neighborhood of each point (xg,1), hence that f is smooth in each
point (g, 29), and this proves that f is smooth on G x G. [

Proposition 8.2. Let G be a connected Lie group, a a Mackey complete lo-
cally convex smooth G-module, w € Z*(g,a) a continuous 2-cocycle, and w® €
O%(G,a) the corresponding equivariant 2-form on G with wi% = w. We assume
that

(1) w®=df for some 0 € Q' (G, a) and
(2) for each g € G the closed 1-form \;0 — pa(g) 00 is ezxact.

Then the product manifold G :=ax G carries a Lie group structure which
is given by a smooth 2-cocycle f € Z2(G,a) with D[f] = [w] via

(a,9)(d'. ') == (a+g.d" + f(g,9),99).
Proof. For each g € G the relation p4(g) o w® = Ajw®! implies
A(palg) 0 — A36) = palg) 0w — X = 0.

In view of (2), for each g € G there exists a smooth function f,: G — a with
fg(1) =0 and
dfg = )‘;9 — palg) 0.
Observe that f; = 0. For g, h € G this leads to
dfgn = Agnt — pa(gh) o 6 = A, (AG0 — pa(g) © 0) + A, (palg) ©0) — pa(gh) o 6
= Mudfg + pa(9)(AR0 — pa(h) 0 0) = ALdfg + pa(g) © dfy
=d(fg o An+ palg) © fn)-

Comparing values of both functions in 1, we get

(8.1) fon = fg 0 An+palg) o fn — fo(h).
Now we define f: G x G — a by f(z,y) := fz(y). Then (8.1) means that

f(gh7u) = f(g7hu) + pu(g)f(h7u) - f(gvh)a g7hau € G7
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i.e., f is a group cocycle.

Moreover, the concrete local formula for f, in the Poincaré Lemma ([Ne02,
Lemma 3.3]) and the smooth dependence of the integral on z imply that f is
smooth on a neighborhood of (1,1), so that Lemma 8.1 implies that f: GXG — a
is a smooth function. We therefore obtain on the space G :=ax G aLie group
structure with the multiplication given by

(a,9)(d’,g") = (a+g.a" + f(g,9'),99")

(Lemma 2.1), and Lemma 2.7 implies that the corresponding Lie bracket is given
by

[(a,2),(d,2")] = (z.a' = 2".a+ d* f(1,1)(2,2) — d*f(1,1)(a', 2), [, 2']).

Now we relate this formula to the Lie algebra cocycle w. The relation
dfy = A;0 — pa(g) o 6 leads to

df(9,1)(0,y) = dfy(1)y = (\;0 — pa(g) © 0)1(y) = (0,41)(9) — pal9)-01(y),

where y; denotes the left invariant vector field with y;(1) = y. Taking second
derivatives, we further obtain for = € g:

& f(1,1)(2,y) = 2((0,y))(1) — 2.01(y) = () (1, ) (1) +yi((8,20))(1)
+ 0z, ui]) (1) — .01 (y)
= w(@,y) +u((0,20)) (1) + 01([2,y]) — 2.0 (y),

Subtracting d?f(1,1)(y,z) = yi ({0, 2,))(1) — y.01(x), leads to

(D), y) = w(@,y) + 01z, y]) — 2.01(y) + y.01(2) = w(z,y) — (dgb1)(2,y).
Since this cocycle is equivalent to w, the assertion follows. ]

Using the methods developed in [NV02], it is not hard to show that condition
(2) in Proposition 8.2 is equivalent to:
(2) for each x € g the closed 1-form L 6 — pq(x) 00 is exact.

In view of L, 6 = di,, 0 + i, w1, this means that [i,, w®l] = [pq(z) 0 0] in
HlL (G, a).

Corollary 8.3. If G is simply connected and w® is exact, then there exists a
smooth cocycle f: Gx G — a with D[f] = [w], so that G := ax ;G is a Lie group
with Lie algebra g =a®, g.

Proof. Since m1(G) is trivial, condition (2) in Proposition 8.2 is automatically
satisfied. [
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For central extensions of finite-dimensional groups, the construction de-
scribed in Proposition 8.2 is due to E. Cartan, who used it to construct a central
extension of a simply connected finite-dimensional Lie group G by the group a.
Since in this case

H3:(G,a) 2 Hom(m(G),a) =0 and Hig(G,a) = Hom(m (G),a) =0,

(cf. [God71]), the requirements of the construction are satisfied for every Lie
algebra cocycle w € Z2(g,a).

Proposition 8.4. If G is a connected Lie group which is smoothly paracompact,
then the conclusion of Proposition 8.2 remains valid under the assumptions:

(1) w*? is an exact 2-form, and

(2) F,=0.

Proof. In view of (1), we can apply Proposition 8.2 to the universal covering
group qg: G — G of G, which leads to an a-extension

¢ G ::axfé—>é, (a,g) — g,

where f € Z2(G, a) is a smooth cocycle with D[f] = [w]. In view of Corollary 6.5,
the vanishing of F, implies the existence of a homomorphism ~: m (G) — Z(G*)
with ¢f oy = ids, (). Then im(y) is a discrete central subgroup of G*, so that

G = G*/im(v) is a Lie group, and we obtain an a-extension of G by
¢:G— G, gim(y) — qcog(g).

As G is a principal a-bundle over G, its fibers are affine spaces whose
translation group is a. If G is smoothly paracompact, we can therefore use a
smooth partition of unity subordinated to a trivializing open cover of the a-
bundle G — G to patch smooth local sections together to a global smooth section
0: G — G. Then the map

axso G =G, (a,9) — ao(g)
is an isomorphism of Lie groups, where fg € Z2(G,a),(g,9') — o(g)o(g’)o(gg’)~*

is a globally smooth cocycle. [ ]

Remark 8.5. Let G be a connected Lie group and A a smooth G-module of
the form a/T'4. Let ZZ (G, A) denote the group of smooth 2-cocycles G x G — A
and B2 (G, A) C Z,(G,A) the cocycles of the form dgh, where h € C*°(G, A)
is a smooth function with k(1) = 0. Then one can show that we have an injection

HL (G, A) = Z2,(G,A)/BL(G,A) — H(G, A),

gs
the space H, gs(G,A) classifies those A-extensions of G with a smooth global
section, and we have an exact sequence

Hom(m (G),a%)—~H2,(G, A)—~H?(g,a)
— L H24(G, ) x Hom (m1(G), H(8,0)),
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where P([w]) = ([w®q], F,,). The proof is an easy adaptation from the correspond-
ing arguments for central extensions in Section 8 of [Ne02]. [

9. Applications to diffeomorphism groups

In the present section we apply the general results of this paper to the diffeomor-
phism group G of a compact manifold M. In this case the Lie algebra g is the
Frécht—Lie algebra V(M) of smooth vector fields on M and we obtain interesting
Lie algebra 2-cocycles with values in the space C°°(M, V) of smooth V -valued
functions from closed V -valued 2-forms on M. In this case the period map and
the flux cocycle can be made more concrete in geometric terms which makes it
possible to evaluate the obstructions to the existence of abelian extensions in many
concrete examples, even if m (Diff (M)) and mo(Diff(M)) are not known.

The diffeomorphism group as a Lie group

Definition 9.1. Let M be a compact manifold.

(a) We write Diff (M) for the group of all diffeomorphisms of M and V(M)
for the Lie algebra of smooth vector fields on M, i.e., the set of all smooth maps
X: M — TM with mpp o X = idps, where wppr: TM — M is the bundle
projection of the tangent bundle. We define the Lie algebra structure on V(M)
in such a way that [X,Y].f = X.(Y.f) — Y.(X.f) holds for X,Y € V(M) and
feC>(M,R).

Then Diff(M) is a Lie group whose Lie algebra is V(M)°P (the same space
with the apposite bracket (X,Y) — —[X,Y]) and we have a smooth exponential
function

exp: V(M) — Diff (M)

given by exp(X) = ®%, where ®% € Diff (M) is the flow of the vector field X at
time ¢t ([KM97]).
The tangent bundle of Diff (M) can be identified with the set

T(Diff (M)) :={X € C°(M,TM): npp 0o X € Diff (M)},
where the map
m: T(Diff (M)) — Diff (M), X — wrpo0X

is the bundle projection. Then T,(Diff(M)) := 7 !(¢) is the fiber over the
diffeomorphism .

In view of the natural action of Diff (M) on TM given by v.v := T(¢)).v,
we obtain natural left and right actions of Diff (M) on T'(Diff(M)) by

(p.X)(x) = p(x).X(z), X.@:=Xoop.
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Then
ey o (0. X) =go(nryoX) and 7wy o(Xop) = (mryoX)oyp,

so that the left, resp., right action of Diff (M) on T'(Diff(M)) covers the left, resp.,
right multiplication action of the group Diff (M) on itself. In the following we shall
mostly consider the opposite group Diff(M)°P whose Lie algebra is V(M). The
adjoint action of this group is given by

Ad: Diff(M)°P x V(M) — V(M), (¢, X)— ¢ L(Xop)=¢ (X))

(b) Let J C R be an interval and ¢: J — Diff(M)°P be a smooth curve.
Then for each ¢ € J we obtain a vector field

called the right logarithmic derivative of ¢ in t. We likewise define the left loga-
rithmic derivative by

8 (@)(t) = ' (t) 0 ()" u

Definition 9.2. Let M be a compact smooth manifold and g := V(M) the Lie
algebra of smooth vector fields on M. If V is Fréchet space and a := C*°(M,V)
the space of smooth V -valued functions on M, then (X.f)(p) := df (p) X (p) turns
a into a topological V(M )-module. Note that C*°(M,V) and V(M) are Fréchet
modules of the Fréchet algebra R := C*(M,R).

In the Lie algebra complex (CZ(g,a),dq)pen, formed by the continuous
alternating maps gP — a, we have the subcomplex given by the subspaces
C%(g,a) C CP(g,a) consisting of R-multilinear maps g” — a. Using partitions
of unity, it is easy to see that the elements of C%(g,a) can be identified with
smooth V-valued p-forms, so that Ch(g,a) = QP(M,V) ([Hel78]), and the de
Rham differential coincides with the Lie algebra differential dg to C%(g,a).

We thus obtain natural maps Zig (M, V) — ZP(g,a) and j,: Hig(M,V) —
H?(g,a). [

Lemma 9.3. If M is connected, then V = C(M,V)VM) = a8 consists of the
constant functions M — V. u

Lemma 9.4. The map ji: Hig(M,V) — H}(g,a) is injective.

Proof. Let a € QY(M,V) be a closed V-valued 1-form on M. If ji([a]) =0,
then there exists an element f € a = C*(M,V) with a = dgf, which means that
a = df . Hence a is exact and therefore j; is injective. |
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Lemma 6.1 in [MNO03] implies that we have a smooth action of the group
G = Diff(M)g? on a by ¢.f := f op. The derived action of V(M) on this space
is given by

d

= il 1o J(exp(tX).p) = df (0) X (p)

(X.f)(p) (exp(tX).f)(p)

= dt] t=0

which is compatible with Definition 9.2. We view each smooth V -valued 2-form
wy € Q*(M,V) as an element wy € C%(g,a). In the following we shall obtain
some information on the period map and the flux homomorphism

per,: ma(Diff(M)) — a® =V and F,: m(Diff(M)) — H}(g,a)

which makes it possible to verify the integrability criteria from Sections 6 and 7
in many special cases.

More on the period group

The following proposition is very helpful in verifying the discreteness of the image
of the period map for the group G := Diff(M)y”. In the following we write
(m, g) — g(m) for the canonical right action of G on M.

Proposition 9.5.  Let wy € Z33(M,V) be a closed V -valued 2-form on M,
0:S? — G = Diff(M)? smooth and m € M. Then

per,, ()m) = [ eV =CxLYV)PO,

D
evm oo

where evh: G — M, g — g(m). In particular the period group Il,, = im(per,, )
s contained in the group fm(M) wys of spherical periods of wyy .
Proof. Since a? consists of constant functions M — V| it suffices to calculate
the value of per,, ([o]) € C°°(M,V) in the point m.

We claim that

(9.1 (evPY*wrr = evy, owgyd,

where ev,,: C>*°(M,V) — V is the evaluation in m. First we note that for g € G

we have ev)) o\g = ev]l . Further

devP (1)(X) exp(tX)m=X(m) for X eVM).

~ dt] t=0

For g € G and vector fields X,Y € g = V(M) this leads to
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o(1).X, devh (g)dg(1).Y)
( ). X, d(evE oX,)(1).Y)

X,dev (m)( ).Y)

(9(m))) = (g-(wa(X,))) () = (evm 0ws) (9-X, 9.7,

This proves (9.1). We now obtain

pery,, ([o])(m) :evm/”;q :/evm owg? = /(evg)*wM = war-
' 7 o o evh oo

g
Q
—~ o~~~
3
F-<\_/

)
)
)
)
(

We immediately derive the following sufficient criterion for the discreteness
of im(per,, ).

Corollary 9.6.  If the subgroup fm(M) Wy = {fg wy:o € C°(S2, M)} CV
of spherical periods of wys is discrete, then the image of per,, is discrete. |

Example 9.7. (1) The preceding corollary applies in particular to all manifolds
M for which mo(M)/ tor(ma(M)) is a cyclic group. In fact, for each torsion element
[0] € ma(M) we have [ wy = 0, so that fm(M) wps is the image of the cyclic
group ma(M)/ tor(ma(M)), hence cyclic and therefore discrete.

Examples of such manifolds are spheres and tori:

a(S7) = { {h rd# 2 and w1 2 m®) = {0}, deN.

The only compact connected manifolds M with dim M < 2 and mwe(M)
non-trivial are the 2 sphere S? and the real prOJectlve plane Po(R). This follows
from mo(M) = mwo(M ) for the universal covering M — M and the fact that a
simply connected 2-dimensional manifold is diffeomorphic to S? or R2. Further
all orientable 3-manifolds which are irreducible in the sense of Kneser have trivial
my. In particular the complement of a knot K C S* has trivial 7o (cf. [Mil03,
p.1228]).

(2) For M =S? we have

7o (Diff(M)) = m5(SO3(R)) = {1} and m(S?) = Z.

If wy € Z3z (M, R) is the closed 2-form with [, wy = 1, we have f7r2(M) wy =7
which is larger than Il = im(per,, ) = {0}. ]

Problem 9. Find an example of a closed 2-form wj; for which the group
IL,, = im(per,, ) is discrete and fm(M) wys is not. [
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The flux cocycle

We continue with the setting where M is a compact manifold and G = Diff (M )y”
is the identity component of its diffeomorphism group endowed with the opposite
multiplication. For any Fréchet space V the space Q'(M,V) is a smooth G-
module with respect to (¢, ) — ¢*3. To verify the smoothness of this action,
we can think of Q'(M,V) as a closed subspace of C°°(T'M,V) and observe
that Diff (M) acts smoothly on T'M, so that Lemma 6.1 in [MNO3] applies. The
corresponding derived module of g = V(M) is given by (X, ) — Lx.3, where
Lx = doix +ix od denotes the Lie derivative. The subspace dC>°(M,V) of
exact 1-forms is a closed subspace because

(02)  do*(OLV) = {Fe QOLV): (v € 000(81,1\4))/5:0}

and the linear maps QY(M,V) — V,3 — fv 3 are continuous. We can therefore
form the quotient module

Hin(M,V) = Q' (M, V) /dC=(M,V)
containing Hip (M,V) = Zig (M, V)/dC>(M,V) as a closed subspace.
Lemma 9.8. For each closed V -valued 2-form w € Q*(M,V) the continuous
linear map R

fw: V(M)HHéR(MaV)a X = [Z.XW}
is a Lie algebra 1-cocycle.
Proof. For X,Y € V(M) we use the formulas ijxy] = [Lx,iy] and Lx =
iX Od+dOiX to obtain

Z'[X’y]w =Lxiyw —iyLxw=dixiyw + ixd(iyw) —iy(dixw + ’ixdw)
=dixiyw +ixd(iyw) — iy (dixw).
In view of [Lxiyw] = [dixiyw + ixdiyw] = [ixdiyw] in Hig (M, V), this means
that
fo([X,Y]) = X fu(Y) = Y. fu(X),

ie., f, is a 1-cocycle. [ ]

Definition 9.9. Let gg: G — G denote the universal covering morphism of
G = Diff(M)g® and define the G-action on C*®(M,V), QY(M,V), Hiz(M,V)
etc. by pulling it back by g to G. Then Proposition 3.4 implies that there exists
a smooth 1-cocycle

F,: G— Hy(M,V)=QY (M, V)/dC™®(M,V) with dF,(1)=f..

This cocycle is called the fluz cocycle corresponding to w. Its differential dF,
coincides with the equivariant 1-form f5<. ]
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Remark 9.10. (a)If g€ G and 7: [0,1] — G is a piecewise smooth curve with
¥(0) =1 and ¥(1) = g, then ¥ is the unique lift of v := g5 07: [0,1] — G. The
value of the flux cocycle in g is determined by

1
0

o) = [ aRGEEO) @ = [ EO)F @)
— [0LGO TGV = [ A0-L60 O)d
0 0

1

1
- / () (8 (1) ()t = / ()" sty ey0]

0 0
1
- / lise oy (Y(8)*w)] dt € H (M, V).

Here we have used the relation ¢*(ixw) = iaq(p).x(p*w) for ¢ € Diff(M),
X eV(M) and w € QP(M,V).
(b) For the special case when the curve v: [0,1] — Diff(M) has values in
the subgroup
Sp(M,w) := {¢ € Dif(M): p*w = w},

all vector fields &'(y)(t) are contained in the Lie algebra
sp(M,w) ={X e V(M): Lx.w=0}

(INV03, Lemma 1.4]). For Lxw = 0 we have d(ixw) = Lxw = 0, so that all 1-
forms ixw are closed. This in turn implies that for each ¢ € Diff (M)g the 1-form
Prixw —ixw is exact ([NV03, Lemma 1.3]). For the flux cocycle this leads to the
simpler formula

1
Fu(9) Z/O [i51 () (ryw] dt.

Hence F,(g) is the flux associated to the curve v: [0,1] — Sp(M,w) in the context
of symplectic geometry [MDS98].
(c) If the closed form w is exact, w = df, then

fo(X) = lixw] = [ixdf] = [Lx0] = X.[0]

in I;T(}R(M ,V) implies that f, is a coboundary. Hence it integrates to a group
cocycle given by

F,: Diff (M) — Hi\ (M, V), ¢ [¢0*0 —0). .

On the space f[&R(M, V') the integration maps fl(}R(M, V)=V, [8]~ [.B
for a« € C*(S', M) separate points (cf. (9.2)), so that the element F,(g) €
}AI(%R(M, V) is determined by the integrals [ F,(g) which are evaluated in the
proposition below.
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Proposition 9.11.  For a € C*(S', M) and a smooth curve v: [0,1] — G =
Diff(M)g? with v(0) = idys we consider the smooth map

H:[0,1] xSt = M, (t,s) — y(t)(a(s)).
Let 4:10,1] — G be the smooth lift with 3(0) = 1. Then the value of the fluz
cocycle in 5(1) is determined by the integrals
[rGw= [
« H
Proof. First we note that
0H

5 (6:9) =7 O(a(s) =7'(t) o v(t) " 0 ()(als) = &' (NE(H(t, 9))

and %—Ij(t,s) = v(t).d/(s). Identifying S' with R/Z, we therefore obtain with
Remark 9.10(a) the formula

A&mmlfmwwwww

:/0 /0 wv(t)ﬂ(S)(5l(’7)(t)(’7(t).oz(s))’fy(t)_o/(s))dtds
1,1 OH(t.s SH(t. s
:/0 /0 wH(t,S)< H(;z )(t,s), Ha(t )(t,s)) dt ds

s
H*w:/ w.
[0,1]2 H

The preceding proposition justifies the term ‘flux cocycle’ because it says
that [ F,(5(1)) measures the ‘w-surface area’ of the surface obtained by moving
the loop « by the curve v in Diff (M).

Corollary 9.12. If v(1) = v(0) = ids, then F,(5(1)) € Hiz(M,V), and we
obtain a homomorphism

Foy |y (mite(aryy s T (DIE(M)) — Hig (M, V).
Proof. We keep the notation from Proposition 9.11. If the curve ~ in Diff (M)
is closed and 7 is the corresponding map S' — Diff(M), then H induces a
continuous map H: T2 — M, (t,s) — 5(t).a(s) and

[rGw)= [ o= [ w-muemmy =y

As homotopic curves a7 and as lead to homotopic maps fIl, ﬁg: T2 — M, we
obtain

quwm/zuﬂm

a2
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whenever «; and as are homotopic, and this implies that F,(Y(1)) € Hiz (M, V).

That the restriction of F,, to 71 (Diff(M)) is a homomorphism follows from
the cocycle property of F,, and the fact that 71 (Diff(M)) = ker ¢ acts trivially
on Hl(M,V). "

Let wy € Q2(M,V) be a closed 2-form and identify it with a Lie algebra
2-cocycle wy € Z2(g,a) for g = V(M) and a = C*(M, V). Next we show that
the flux cocycle L

F,,:G— Hl(g,a)

coincides with flux cocycle F,, from Definition 9.9. For that we recall from
Lemma 9.4 that we can view Hz(M,V) as a subspace of H!(g,a) because
Bl(g,a) = dC>(M,V), leads to an embedding

Hin(M.V) — H(g,0) = C}(g,)/Bi (s, 0).
Proposition 9.13.  For a closed 2-form wy € Q?(M,V) we have

F,, =F.,,: G— Hix(M,V)C Hl(g,a).
Proof. We parametrize S! =2 R/Z by the unit interval [0, 1]. Then we have for
any smooth curve v: [0,1] — G = Diff (M) starting in 1 and X € g = V(M):

) = [ixegt= [ epaao.y o
=Avwwwmmm*wa*ﬂmﬁ
:AvaMﬂmewrmﬂm@Mt

:AwMWMXw@*me»wmw

From this formula it is easy to see that I, € Lin(g,a) defines a 1-form on M
whose value in v € T,(M) is given by

1
uwriﬁwmumgwwuwwww@p»w
This means that .
H:—AVWWWmmWU%

which, in view of Remark 9.10, implies that
Fo,(3(1) = [-1,] = Fl,,(3(1)) € Hir(M,V) C H; (g, ).

The remaining assertions now follow from Corollary 9.12. |
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Corollary 9.14.  F,(m1(G)) vanishes if and only if for each smooth loop a: St —
M and each smooth loop ~:S* — Diff(M) we have wa = 0 for the map
H:T? — M,H(t,s) = ~(t).a(s). n

The condition in the preceding corollary is in particular satisfied if the set of
homotopy classes of based maps T? — M or at least the corresponding homology
classes in Ho(M) are trivial.

Remark 9.15. It is interesting to observe that the discreteness of the period map
for w € Q%(M,V) leads to a condition on the group of spherical cycles, i.e., the
image of ma(M) in Hy(M), and the vanishing of F,,(m(G)) leads to a condition
on the larger subgroup of H2(M) generated by the cycles coming from maps
T2 — M. That the latter group contains the former follows from the existence
of a map T? — §?, inducing an isomorphism Hy(T?) — Hy(S?). If M is a Lie
group, then Proposition 6.11 implies that Ho(M) is generated by the homology
classes coming from continuous maps T? — M. ]

Examples

Example 9.16. Let 3 be a Fréchet space, I'z C 3 a discrete subgroup, Z :=3/T'z
and gz : 3 — Z the quotient map, which can also be considered as the exponential
map of the Lie group Z.

Further let q: P — M be a smooth Z-principal bundle over the compact
manifold M, 6 € Q(P,3) a principal connection 1-form and w € Q2(M,3) the
corresponding curvature, i.e., ¢*w = —df. We call a vector field X € V(P)
horizontal if 0(X) = 0. Write V(P)Z for the Lie algebra of Z-invariant vector
fields on P. Then we have a linear bijection

o: V(M) — V(P)Z, = {X e V(P)?: §(X) =0}

which is uniquely determined by ¢.o(X) =X for X € V(M). For two horizontal
vector fields X,Y on P we then have

(W) (X,Y) = —dO(X,Y) =Y .0(X) — X.0(Y) — 6(]Y, X]) = 6([X, Y)).

This means that
(9.3)

w(X,Y) = (¢"w)(0(X),0(Y)) = 0([0(X),0(Y)]) = 0([0(X),o(Y)] — o([X,Y]))
can be viewed as the cocycle of the abelian extension

a:= gau(P) = C%(M,3) — § = V(P)? — g = V(M)

with respect to the section o: g — g.
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On the group level we find that the inverse image G of G = Diff(M)g?

~

in Aut(P)°P is an extension of G by the abelian gauge group A := Gau(P) &
C>°(M, Z) and we have already seen above that its Lie algebra is g =< a @, g.
The exponential function of the abelian Lie group A is given by

expy:a=C%(M,3) = C*(M, Z), §—qzo&.
Its image is the identity component Ay of A. The characteristic map
Oa:mo(A) = [M, Z] — Hi(g,a), [f] — [D(daf)]
considered in Proposition 6.4 can be made more explicit by observing that
(def)g)=9.f —f=Ffog—F

so that
D(daf)(X) = X.f = (df, X)

(cf. Definition A.2). This means that D(dgf) can be identified with the 1-form
df € Hiz(M,3) C H!(g,a). Therefore the homomorphism 64: mo(A) — HZ(g,a)
from Proposition 6.4 is obtained by factorization of the map

A:Coo(Mvz)_)HéR(M’z)v fH[df]

whose kernel is the identity component Ag = gz o C*®°(M,3) of A, to the injective
homomorphism

mo(A) = C*(M, Z)/qz 0 C(M,3) = [M, Z] — Hag(M.3), [f]+~ [df].

According to [Ne02, Prop. 3.9], its image consists of the subspace

H(M,Ty) = {[a] € Hin(M,3): (V7 € C=(S!, M) /a € rz},

2l
so that 3
041 mo(A) — Hig(M,Tz),  [f]~ [df]
is an isomorphism.
In view of Proposition 6.3, the flux homomorphism satisfies F,, = —f4 06,

where ¢: m1(G) — m(A) is the connecting homomorphism corresponding to the
long exact homotopy sequence of the A-bundle G — G. As 64 is an isomorphism,
F,, is essentially the same as 0, and we can view it as a homomorphism

F,: m(G) — HéR(Mv I'z) C HéR(Mva)'

Note that we cannot expect F,,(m1(G)) to vanish because the abelian exten-
sion A — G — G is not an extension by a connected group. u
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Example 9.17. (a) We consider the special case where the manifold M is a
torus: M =T = t/T'r, where t is a finite-dimensional vector space and I'r C t is
a discrete subgroup for which t/T'z is compact.

Then the group T' acts by multiplication maps on itself, and we obtain a ho-
momorphism 7' — G = Diff (M);" which induces a homomorphism nz: m1(T) —
7T1(G).

Let wr € Q2%(T,3) be an invariant j3-valued 2-form on T and w = §; €
Z2%(t,3). Then wr is closed because T is abelian. If ey, ..., e, is an integral basis
of I'r, then the maps

T2 =T, (t,s)—te;+se;+Tp, i<j

dim T

lead to an integral basis of Ho(T) z("2") , so that the period group of wr is
T, := spany w(e;, e;) = spany w(I'p,I'r) C 3.
We assume that I'z C 3 is a discrete subgroup with
w(lp,Ip) CTy

and put Z :=3/T'z.
In view of mo(T") = {0}, we have per,, = 0 by Proposition 9.5. Next we are
making the map

F,onp: m(T)=Tr — Hiz(T,Tz) = Hom(T'r,T'z)

more explicit. For x,y € TI'r and the corresponding loops v, (t) = tx + I'r and
Yy(t) =ty + I'r in T we have for

H: T2 = T, (1, 5) = 72 () + 7 (s) = [tz + 1]

LFMMDzﬂwzwaw

(Propositions 9.11 and 9.13). This means that F,, onp: m(T) — Hom(m1(T),T'2)
can be identified with the map = — i,w.

On the other hand, the existence of a Z-bundle over T with curvature w
implies the existence of an abelian extension

the formula

A:=C=(T,2) T —T,

where T acts on A by (¢t.f)(x) = f(xz+1t) (cf. Example 9.16). The corresponding
Lie algebra cocycle w € Z2(t,C*°(T,3)) is given by (z,y) — w(z,y) € 3 whose
values lie in 3 = a7 .

(b) We now explain how essentially everything said about bundles over tori
can be generalized to bundles over their natural infinite-dimensional generaliza-

tions.
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Let t be a locally convex space, I'r C t a discrete subgroup and consider
the connected abelian Lie group T := t/T'r. Let further 3 be a Mackey complete
locally convex space, I'z C 3 be a discrete subgroup and Z := 3/T'z, considered
as a trivial 7-module. We fix a continuous bilinear map f;: t x t — 3 and define
fz € Z2(,Z) by fz :==qzo f;, where qz: 3 — Z is the quotient map.

Let H := Z Xy, t denote the corresponding central extension of t by Z.
Then Z* := Z x, 'r is a normal subgroup of H because all commutators lie in
Z. Since H/Z* =2 t/T'r = T, we can think of H as an extension

ZV s H —T.

Since Z is divisible and I'y discrete, the central extension Z «— Z f Iy
is trivial if and only if it is an abelian group, which means that its commutator
map I'r x I'r — Z vanishes. The commutator map is given by

(Z7t)(zl7t/)(z7t)_1(z/7t/)_l = (fZ(tvtl)7t+tl>(fZ(tl7t)7t+tl)_1
= (fZ(tvtl) - fZ(tlat)aO)
= (QZ(fz(t7tl) - f;, (tlvt) 70) = (QZ(w(t’t/))7O)

for w(t,t') := f,(t,t') — f,(t',t). Therefore Z* is a trivial extension of 'z if and
only if
(94) w(I‘T,I‘T) g Fz.

The condition for the extistence of a Z-bundle P — T with curvature wp
is also given by (9.4). The necessity of this condition in the infinite-dimensional
case can be seen by restricting to two-dimensional subtori. If (9.4) is satisfied,
then we can view I'p as a subgroup of Z* because there exists a homomorphism

o: 'y — Z% splitting the extension Z% — I'r. Now we form the homogeneous
space P := H/o(I'r) which defines a Z-bundle

Z < P=H/o(l'r) —T=H/Z"
As Z is central in H, the left action of H on P induces a homomorphism
H — Aut(P) = Diff(P)?
restricting to a homomorphism
jz: 28 = Z x4, 'y — Gau(P) = C>(T, %),

where the elements of Z correspond to constant functions. The group I'r acts on
P by
2.(qz(2),y) = (az(z + f3(2,9)),y) = (42(2),y)-fz(2,y),
so that
jz(z,2)(y + I'r) = 2 + fz(z,y).
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Identifying
H&R(Ta FZ) = dCOO(T7 Z)/dCOO(T’ 3) - HéR(T’ 3)

with a subspace of H!(t,a) (cf. Lemma 9.4), we can view F,, as a map

71(T) — Hig(T,Tz) — Hom(m (T),T'z). n

10. The diffeomorphism group of the circle and its
universal covering

In this section we apply the general results from Sections 6 and 7 to the group
Diff(S')o of orientation preserving diffeomorphisms of the circle S' and the mod-
ules Fy of A-densities on S! whose cohomology for the group Diff(S')y has been
determined in [OR98]. We shall also point out how the picture changes if Diff(S!)g
is replaced by its universal covering group.

The diffeomorphism group of the circle

Let G := Diff(S')g? be the group of orientation preserving diffeomorphisms of the
circle St & R/Z. Then its universal covering group G can be identified with the
group _
G :={f € Diff(R)°?: (Vx € R) f(z + 1) = f(z) + 1},

and the covering homomorphism g¢: G — G is given by ¢(f)([z]) = [f(z)], where
[#] = 2 +Z € S' 2 R/Z. The kernel of gg consists of all translations 7,, a € Z,
and since G is an open convex subset of a closed subspace of C*®(R,R), it is a
contractible manifold. In particular, we obtain

m(G)=27Z and m(G)={1} for k#1.

The group G has an import series of representation Fy, A € R, where Fj
is the space of \-densities on the circle S'. As the tangent bundle T'S! is trivial,
we may identify the space Fy with the space C*°(S!,R) of 1-periodic functions
on R with the representation

pa(@)-£ = (&) (€0 )

which corresponds symbolically to ¢*(&(dz)*) = (€0 ) - (¢)* - (dz)*. Note that
Fo = C®(SH,R) is a Fréchet algebra and that, as G-modules,

Fr2YStR) and Fo, =V =g
For the Lie algebra g = V(S!) of G the derived representation of the vector
field X = 5% is given by
(10.1) pA(§)-f = &+ AfE.

This follows directly from py(g).f = (¢’)* - (f o g) and the product rule. In the
following we shall identify g with C°°(S*,R) via {4 — .
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Lemma 10.1. On the Fréchet-Lie group A = C*®(S',R*) = F; we have a
smooth G -action by g.f := fog and the derivative n: G — A, f — f' is a smooth
1-cocycle.

Proof. For g.h € G we have n(gh) = (gh) = (hog) = (Wog)-g =
(g-n(R)) - n(g)- "

Remark 10.2. The representation on Fy has the form pyx(g).f = n(g9)* - (fog)
and the fact that n*: G — A is a cocycle implies that py: G — GL(F)) is a
group homomorphism. [ ]

The cohomology on the Lie algebra level

Proposition 10.3.  The cohomology in degrees 0,1,2 of the g-module F) has
the following structure:

_po_J {0} JorA#0
Hg(g’}—k)_]:?_{ﬂ{l for A =0.

For n € Ny let a, (&) = &™) denote the n-fold derivative. Then
H_(g, Fo) = span{lao], [an]}, H.(g,F1) =Rlao], H;(g,F2) = Rla]
and H}(g, F») vanishes for X # 0,1,2. In degree 2 we have
R?2  for A=0,1,2
H2(g, F\)=2{ R for \=5,7
{0} otherwise.

For A = 0,1,2 the cohomology classes of the following elements form a basis of

Hc2 (ga f)\) ;
1 / /
50(5777) = ‘ 2/ Z/ 5 w0(£777) = /0 5// Z// fOT A= s
wl(f?ﬂ) = ’ gu Z// s Wl(évn) = 2// Z// for A=1,
and
52(677) = ’ g/// Z/// , W2(§a77) = ‘ g/// Z/// for A= 2.

Proof. (cf. [OR98]) We have

FR2{f e C=(S",R): (V¢ € CF(S',R)) &f' + X' f = 0}
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For constant functions £ the differential equation from above reduces to f'§ =0,
so that f is constant, and now A{'f = 0 for each £ implies Af = 0. This proves
the assertion about HY (g, Fy).

According to [Fu86, p.176], we have

3ritr
2

Hi(g,F\) =0 for \¢ { re NO} =1{0,1,2,5,7,12,15,...}.

If r € Ny and Az@,then

HI"(Y(SY),R) for g >r
q o~ sing ) =
Hi(g. Fx) { {0} for g <,

where Y (S') = T? x QS? and QS? is the loop space of S3. The cohomology algebra
H?(g, Fo) =2 HS (Y(SY),R) 2 HS, L (SY,R) ® HS,, (SY,R) @ HE,, (S, R)

sing sing sing sing
is a free anti-commutative real algebra with generators a, b, ¢ satisfying
deg(a) = deg(b) =1, deg(c) =2, a*=0b*=0.
It follows in particular that
H%(g,Fo) =R, Hg,Fo) =Ra+Rb=R?* H2(g,Fy) =Re+ Rab=R%

The structure of H?(g, Fy) is now determined by the fact that it is a free module
of the algebra H*(Y (S'),R) = H?(g, Fo) with one generator in degree r. Here the
algebra structure on HZ2(g, Fy) is obtained from the multiplication on Fy as in
Appendix F, and the multiplication Fy x F) — Fy yields the H?(g, Fo)-module
structure ([, [0]) — [a A B] on H2(g, Fa).

From [Fu86, Th. 2.4.12] we see that generators of H?2(g,Fp) are given by
the classes of ag,a; and wg. Therefore a second basis element of HZ(g, Fy) is
represented by

(a0 A ) (&,m) = ao(§)ar(n) — ao(n)ai(§) = &n' — &'n = To(&, ).

The space H}(g,F\) is non-zero for r = 0,1 which corresponds to \ €
{0,1,2}. For r = 0 it is two-dimensional and for r = 1 it is one-dimensional.
For A =1 a generator is given by [as] ([Fu86, Th. 2.4.12]; there is a misprint in
the formulal). From the H?(g, Fo)-module structure of H?(g,F1) we obtain the
generators of H2(g, F1):

(o Aao) (&) =&y —ng’ =1, (a1 Aas)(&n) =& —n'¢" = w.

Averaging over the rotation group, we see that every cocycle is equivalent to
a rotation invariant one. From that it is easy to verify that for A =2 a generator
of H}(g,F2) is given by [as3], and we obtain for the basis elements of H?2(g, F2):

(o Naz)(&n) =" —n" =Ty, (axANas)(En) =E1" =10 =w,. =

For an explicit description of a basis of H2(g,Fy) for A = 5,7 we refer to
[OR9S).



Abelian extensions of infinite-dimensional Lie groups 145

Integrating Lie algebra cocycles to group cocycles

Now we translate the information on the Lie algebra cohomology HP(g, F)) for
p=0,1,2 (Proposition 10.3) to the group G. Since the group G is connected, we
have

{0} for A#0

0 _ G _ 9 _
HAG 7)) =F _}—*_{RI for A = 0.

In degree 1, we can use Proposition 3.4 to see that we have an exact sequence
0 — H(G, Fa)—"~H/ (g, F2)——F}.

For X # 0 this implies that D: HY(G,F\) — HL(g,F») is an isomorphism. For
A = 0 we have to calculate the period map P. Let t := R1 = R% C g be the
one-dimensional subalgebra corresponding to the rigid rotations of the circle S!
and T'= T C G the corresponding subgroup. Then the inclusion 7" — G induces
an isomorphism 71 (T") — 71 (G), so that we can calculate P by restricting to T'.
Since t corresponds to constant functions, the cocycle «y vanishes on t, and the
cocycle g is non-trivial on t. Hence

HX(G,Fy) = ker P = Rlay].
The group cocycle corresponding to a;(§) =& is 8(p) =log e’ (cf. Lemma 10.1)
because for ¢ = idg +£ we have
O(id +¢&) =log(1+ &) ~ & + ...,
which implies Df = a; . Since the map d: Fy = C°(SH,R) — F; = QY(SLR) is
equivariant, we obtain a group cocycle
f//
= F’
and for ¢ = id +¢ the relation (dof)(id +&) = % directly leads to D(dof) = as.
The Schwarzian derivative

dofc ZHG, F), (dob)(f):=log(f)

1 _ (P 3¥N?
SEZS(GaF2)a S((p)_(@/ 2(30/) )
satisfies DS = a3. We thus have
{0} for A #0,1,2
R[6] for A\ =0

1 —
H. (G, 7)) = Rldof] for A=1

R[S] for A = 2.

On the simply connected covering group qg: G — G we have H! (é, Fi) =
H!(g,F\) (Proposition 3.4), so that we need an additional 1-cocycle for A = 0,
which is given by

L(yp) == ¢ —idg .
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In fact, L(1pp) = L(pot) := porp—1p+1p—idg = ¥* L(p)+ L(v)). Since DL = ay,
we get
HY(G, Fo) = R[L] + R[],

where 0(¢) =log¢’.

Now we turn to the group cohomology in degree 2: In view of 71 (G) & Z
and Theorem 7.2, we have a map

§: Hom(m (G), F) = F{ — HX (G, F), 6(7) = (Fa x G)/T(7),
The kernel of this map coincides with the image of the restriction map
R: HY(G,F») = H}(g, F)) — Hom(m (G), FY) = F¥
and the image of D coincides with the kernel of the map
P: H(g, F) — Hom(m(G), Hy (g, F)) = H (g, Fr)-

The following proposition clarifies the relation between second Lie algebra
and Lie group cohomology for the modules F). We refer to Appendix F for the
definition of the N-product of Lie group cocycles.

Proposition 10.4.  For each A\ € R the map D: H2(G,F\) — HZ2(g, F\) is
injective. It is bijective for X\ & {0,1,2}. For X € {0,1,2} we have

H52<G7]:0) = R[BOL H?(G,fl) = R[BlL Hf(Ga ~7:2) = R[BQ]

for

1
Bo(p,v) := —/0 log((¢op))d(logy’), By:=0N(doh) and By:=60NS.

Proof. (cf. [OR98]) First we show that D is injective for each \. As above, let
T =2 T C G be the subgroup corresponding to t = R1 in g. Since the inclusion
T — G induces an isomorphism 71 (T) — m1(G), we can calculate R by using the
factorization

H(g,Fo) — HX(t, Fo) — Hom(my (T), F§') = FE = Hom(m, (G), FE).

It is clear that the cocycle a; vanishes on t, but aq satisfies per, ([idr]) =1 €
F§. Therefore the restriction map R is surjective for A = 0, which implies § = 0.
For all other values of A the map & vanishes because F{ is trivial. Therefore D
is injective for each .

For A ¢ {0,1,2} the space H}(g, F)) vanishes, so that P =0 and im(D) =
ker(P) imply that D is surjective.
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For A = 0,1,2 the space H2(g,F,) is two-dimensional (Proposition 10.3).
To calculate P in these cases, let

v:[0,1] 5T CG, t—(x—ax+t+7Z)
be the generator of m1(G). We have

—Fw(v)(x)Z/O (iw,‘-qu)(v'(t))dt=/O Y(6)-w(Ad(y ()", 1) dt.

This means that F,, () is the T-equivariant part of the linear map —ijw: g — Fy.
For the cocycle @y (&,7) := &nA D) — neA+1D) we have

(i1@)) (n) = Da(L,m) = Y.

As 1 acts on each F) by & — &', the linear map wy(1,-) is T-equivariant, hence
equal to —F,,(7y), and we obtain

Fo, (1) = [FL()), Fu(m(m) =9, for  A=0,1,2

For wo(§,1m) = [q &' — &' we have wo(1,7m) = 0, so that F,,, = 0, and likewise
wx(l,m) =0 for A=1,2 leads to F,, =0 for A=1,2.
We conclude that for A\ = 0,1,2 the kernel of P is one-dimensional, and
that
im(D) = ker(P) = Rw,].

For A =0 the Thurston-Bott cocycle (for Diff(S')°P)

By € Z3(G.R) C Z3(G. Fo). Bolp. 1) = — / log((4 0 ¢)')d(log ')

satisfies DBy = wg (cf. [GF68]). For A = 1,2, we recall that wy = a1 A ayy1, SO
that Lemma F.3 implies that the cocycles

By :=0N(dof) and By:=6NnS

satisfy DBy = w) . This completes the proof. [ ]

Proposition 10.5.  For the simply connected covering group G of G we have
Hs2(év-7:)\) :R[BA} @R[E)\] ng fOT )\20,1,2,

where o o .
Bo:=LnNn#O, By:=LN(dof), Bs:=LNS,

and By s the pull-back of the corresponding cocycle on G .
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Proof. Since the simply connected covering group G is contractible, the deriva-
tion map

D: H(G,F) — HZ (9, F)

is bijective, so that we obtain larger cohomology spaces of G than for G. For
A=0,1,2 we have Wy = ap A axy1, so that the cocycles Fj, j =0,1,2, satisfy
DB) = wy (Lemma F.3). Combining this with the pull-backs of the cocycles B
from G, the assertion follows. [ ]

A non-trivial abelian extension of SLy(R)

We consider the right action of SLa(R) on the projective line P;(R) = RU {o0}

by
a b\ (a b -1 _dr—b
el .oa )= e 4 e T

In particular the action of the rotation group SO2(R) is given by

cosnmt —sinmwt cosmt-x — sinmt
sinwmt  cosmt sin7t - x + cosmt’

so that

coswt —sinmwt
sinmt  coswt

> 0= —tannt

and the map ¢ +— tanz¢ induces a diffeomorphism R/Z — P;(R). We use this
diffeomorphism to identify S! = R/Z with P;(R) and to obtain a smooth right
action of SL2(R) on S'. Then sl (R) is isomorphic to a 3-dimensional subalgebra
of V(S') and soz(R) corresponds to R1 = t. We put

0 -1
U= ( - )
and observe that this element corresponds to the constant function % From the

relation adU((adU)? +4) = 0 on slx(R) and the formula for commutators in
V(S') we therefore derive

sl (R) = span{1, cos(2nt), sin(27t) }

as a subalgebra of V(S') & C>°(S!). We may therefore pick H, P € sly(R) with
[U,H] = —2P and [U, P] = 2H such that H corresponds to the function cos(2mt)
and P to the function sin(2wt).

The corresponding group homomorphism

o: SLy(R) — Diff(S')gP
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is homotopy equivalent to the twofold covering of T = S', hence induces an
injection

m1(0): 7 (SLa(R)) = Z — 7 (Diff(S')) = Z

onto a subgroup of index 2.
From the action of SLa(R) on S!, we obtain a smooth action on the Fréchet
spaces

Fri=C®(S"R), (g9./)(x) = (a(g)) f(z.9).

By restriction to the subalgebra sl (R) C V(S!), we obtain the 2-cocycle w(&,n) =
&’ =&y in Z2(sla(R), F1). Let y: I — SLa(R), t +— exp(27tU) be the canonical
generator of 71 (SL2(R)). As in the proof of Proposition 10.4, it then follows that

F,: m1(SLa(R)) — H:(sly(R), F)

is given by F,([7]) = [Fu(7)], where F,(7) is the t-invariant part of 2ijw = 0,
hence F, = 0.

Next we show that [w] # 0 in HZ(sly(R), F;). If this is not the case, then
there exists a linear map «: slz(R) — F1 with w = dy, ). Since w is T-
equivariant, we may assume, after averaging over the compact group 7', that « is
also T'-invariant, i.e.,

a([U,z]) = U.a(z), =z € slh(R).

Now
0= iUw = iUds[Z(R)a = ,CUOZ - diUOz = —diUOz

implies
ive = a(U) € Z°(sly(R), F1) = Fi*® = {0}.
We now derive from [H, P] € RU:

w(H, P) = ds,ya(H, P) = H.a(P) — P.a(H) — o([H, P]) = H.a(P) — P.a(H).
Further the equivariance of o implies the existence of a,b € R with
a(P) = acos(2nt) + bsin(27t) and «(H) = %a([U, P)) = %U.O&(P)
= —asin(27t) + bcos(27t).
We further have
H.a(P) = cos(2rt).(a cos(2nt) + bsin(27t)) = (acos?(27t) + bsin(27t) cos(27t))’
and

P.a(H) = sin(27t).(—asin(27t)+bcos(27t)) = (—asin®(27t)+bsin(2rt) cos(2mt))’,



150 Karl-Hermann Neeb

so that
w(H, P) = H.a(P) — P.a(H) = a(cos?(27t) + sin?(27t)) = al’ = 0,
contradicting
w(H, P) = cos(2nt) sin(27t)" —cos(27t)" sin(2rt) = 873 (sin®(2nt)+cos®(27t)) # 0.
Therefore [w] # 0. Since F,, and per,, vanish, and
Hig (SL2(R), F1) = Hig (S, F1) = {0},

there exists a smooth 2-cocycle f € Z2(SLy(R),F;) with Df = w (Proposi-
tion 8.4). Then the group
fl Xr SL2 (R)

is a non-trivial abelian extension of SLy(R).

If V is a trivial sly(R)-module, then the range of each 2-cocycle lies in a 3-
dimensional subspace, hence is a coboundary, because the corresponding assertion
holds for finite-dimensional modules. Therefore all central extensions of SLa(R)
by abelian Lie groups of the form A = a/T'y4 are trivial (Theorem 7.2). The
preceding example shows that H2(slz(R),F;) # {0}, which provides the non-
trivial extension of SLy(R) constructed above.

The choice of the cocycle w above is most natural because one can show
that the cohomology of the sly(R)-modules F) satisfies

0 for A#0,1 0 for A#0,1
dim H?(sly(R), Fa) =< 1 for A=0  dimH!(slo(R),Fy)=¢ 2 for A=0
2 forA=1, 1 for A=1.

For A = 0 the flux homomorphism yields an injective map
(10.2)  HZ(slx(R), Fy) — Hom(m (SL2(R)), H (sl2(R), Fy) = Hl (sla(R), Fy),

so that we only obtain non-trivial abelian extensions of the universal covering
group SLy(R). For A =1 the kernel of (10.2) is one-dimensional and spanned by
[w], so that [w] is, up to scalar multiples, the only non-trivial 2-cohomology class
associated to the modules F, which integrates to a group cocycle on SLy(R).

11. Central extensions of groups of volume pre-
serving diffeomorphisms
In the present section we discuss certain central extensions of the group Diff (M, u)

of diffeomorphisms of a compact connected orientable manifold M preserving a
volume form g, resp., its identity component D(M, u) of Diff (M, u)o. Each closed
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j-valued 2-form w on M defines a central extension of the corresponding Lie
algebra V(M, u) of p-divergence free vector fields because composing integration
over M with respect to p with the C°°(M, 3)-valued cocycle defined by the 2-form
(cf. Section 9) leads to a 3-valued 2-cocycle, the so-called Lichnerowicz cocycle
(cf. [Vi02], [Li74]). We shall see that if mo(M) vanishes, then the only obstruction
to the integrability of the corresponding central extension is given by the flux
homomorphism 71 (D(M, ) — Hlz(M,3). If M is a compact Lie group, we
show that the flux becomes trivial on the covering group B(M, w) of D(M, )

acting on the universal covering manifold M of M , which leads to central Lie
group extensions of D(M, u).

Some facts on the flux homomorphism for volume forms

In this short subsection we collect some facts on the flux homomorphism of a
volume form on a compact connected manifold. These results will be used to show
that each closed 2-form on a compact Lie group G defines a central extension of
the covering D(G, ) of the identity component D(G, i) of the group of volume
preserving diffeomorphisms of G which acts faithfully on the universal covering
group G.

Let M be a smooth compact manifold, 3 a Mackey complete locally convex
space and w € QP(M,3) a closed 3-valued p-form. For a piecewise smooth curve
a: I — Diff (M) we define the flux form

1 1
Fy(a):= / a(t) (is(a)nw) dt = / ia(t)-1.or(y(a(t)*w) dt € QP71 (M, 3).
0 0
Let a: I — Diff(M) be a piecewise smooth path and o: A,y — M a
smooth singular simplex. Further define
aoc: I xA, 1 =M, (tz)— at)o(z).
Then

((ox t,x)( ot Up—1
o(z)) (0/( a:)), a(t).do(z)vy,. .., a(t).do(z)v,_1)
=( () )(0(33))( ()" (t)(o(2)), do(z)vr,...,do(x)v,-1)
= (ia(t)-1.a @ (@(t)'w)) (o(2)) (do(x)v1, . .., do(z)vp—1)
(cf. [NV03, Lemma 1.7]) implies

ool o, foorem [

We thus obtain
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for each singular chain ¥ if we extend the map o — «.0 additively to the group
of piecewise smooth singular chains. If ¥ is a boundary and « is closed, then a.X
is a_boundary, so that the integral vanishes by Stoke’s Theorem, and therefore
Js Fi.() vanishes. We conclude that F,,(a) is a closed (p — 1)-form, so that we
obtain a group homomorphism

Fy: m(Df(M)) — Hig (M.5),  [o] — [Fu(a)]

Lemma 11.1. If M is an oriented compact manifold of dimension n, mg € M,
and p a volume form on M with fM w =1, then the kernel of the corresponding
flux homomorphism

F,: m(Diff(M)) — Hig'(M,R), [a] = [F(a)]
contains the kernel of

Wl(evﬁo): w1 (Diff (M) — w1 (M, myp).

Proof. (We are grateful to Stephan Haller for communicating to us the idea of
the following proof.) To each smooth loop a: St — Diff(M) with a(1) = idys we
associate a locally trivial fiber bundle q,: P, — S? whose underlying topological
space is obtained as follows. We think of S? as a union of two closed discs B; and
By with B; N By = S'. Then we put

Py i= ((Bi x M)U(Bz x M)/ ~,

where
z=x' € 9B UIBy, m=m'

(z,m) ~ (', m'): & { z =1’ € 9B, m = a(x)(m).

Then ¢, ([z,m]) := = defines the structure of a locally trivial fiber bundle with
fiber M over S2.

A section of P, is a pair of two continuous maps ¢;: B; — M, j = 1,2,
such that the restrictions o; := 7; | ap, satisfy oa(z) = a(x)(oi(z)) for all
x € 0B;. This means that o; and oo are contractible loops in M with a.oq1 = o5
Conversely, every pair of contractible loops o1 and o9 in M satisfying a.oq = o9
can be extended to continuous maps B; — M and thus to a section of P,.

If o1 is a contractible loop based in mg, then a.o; is a loop based in mg
homotopic to the loop x +— a(z)(mg). Therefore the existence of a continuous
section of P, is equivalent to [a] € ker 7 (evE) ).

Suppose that [a] € kerm(ev]) ) and that o: S* — P, is a corresponding
section. It follows easily from the construction of P, that the manifold P, is
orientable if M is orientable. Hence the 2-cycle [o] has a Poincaré dual [§] €
H}, o (Pa,Z) whose restriction to a fiber M is the Poincaré dual of the intersec-

(M,Z) ([Bre93,

tion of im(o) with a fiber, hence the fundamental class [u] € HE, o
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p-372]). Therefore the fundamental class of M extends to an n-dimensional coho-
mology class in P, .

On the other hand, we obtain from [Sp66, p.455] the exact Wang cohomology
sequence associated to P,:

.= HY (Py,Z) — H" (M,Z)-25H""2(M,Z) — H'-N(Pa,Z) — ...,

sing sing sing sing

where 0, satisfies
(0a[8], [2]) = ([8], [a.X])

for each (n—1)-cycle ¥ in M, and the kernel of 9, consists of those cohomology
classes extending to P, . As this is the case for the fundamental class of M, it
follows that [a.X] = 0 holds for all (n — 1)-cycles ¥ on M. We conclude that

F,(a) is an exact (n—1)-form if [o] € ker 7y (evD) ). "

Remark 11.2. Suppose that G is a compact Lie group of dimension d. Then
G is orientable and we can identify G with the group A(G) of left translations in
Diff(G). Then

Diff (G) = Diff (G)1 A(G) = Diff (G)1 x G

as smooth manifolds, where Diff (G); denotes the stabilizer of 1 € G in Diff(G).
In particular we have

Wl(lef(G)) = Wl(DlH(G)l) X ’/Tl(G).

If 1 is a normalized biinvariant volume form on G, then Lemma 9.1 implies that
the corresponding flux homomorphism

F,: m(Diff(@)) — Hiz' (G, R)
factors through a homomorphism
Fi: m(G) — Hig (G, R).
Let gg: G — G denote the universal covering homomorphism and
Diff (G) := {& € Diff(G): (3p € Diff(G)) ¢ 0 g = gc 0 &}
Then we have a canonical homomorphism
Qc: Diff(G) — Diff(G), & ¢

whose kernel coincides with the group of deck transformations that is isomorphic
to 71 (G). We endow Diff(G) with the Lie group structure turning Q¢ into a
covering map. We then have

Diff (G) = Diff(G)1G = Diff(G); x G = Diff(G); x G
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as smooth manifolds, so that
71 (DIff(G)) = 71 (Diff(G)1).

The identity component ﬁf(G)o is a covering of Diff(G)g, and since the flux
homomorphism vanishes on its fundamental group (Lemma 9.1), the flux cocycle

fu: V(@) — HEHG,R), X — [ixy]
integrates to a group cocycle
F,: Diff(G)? — H (G, R) = Q4 1(G,R)/dQ2%(G, R)

with DF,, = f,.

Application to central extensions

In this subsection we apply the tools developed in the present paper to central
extensions of groups of volume preserving diffeomorphisms of compact manifolds.

Let M denote an orientable connected compact manifold and p a volume
form on M, normalized by | v b =1. We write

D(M, p) := {p € Diff (M) "1 = pi}o

for the identity component of the group of volume preserving diffeomorphisms of
(M, 1) and
g, =V(M,p) ={X e V(M): Lxp =0}

for its Lie algebra. Further let D(M, u) C Diff (M ) denote the identity component
of the inverse image of D(M, u) in
Diff (M) := {3 € Diff(M): (3p € Diff(M)) ¢ o qrr = qar © 3},

where qpr: M — M denotes a universal covering. Then we have a/_c\(_)lering map
D(M, ) — D(M, ) which need not be universal. We write D(M, ) for the
universal covering group of D(M, i) which also is a covering group of D(M, p).

Let 3 be a Fréchet space. On the space C*°(M,3) of smooth j3-valued

functions on M we then have the integration map
I:C™(M,3) =3 fr / fu.
M

Then I is equivariant for the natural action of D(M, u) on C*°(M,3), where we
consider 3 as a trivial module. On the infinitesimal level this means that

/(X.f),u:() for feC™®(M,R), X eV(M,pu).
M
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Each closed j-valued p-form w € QP(M,3) defines a C°°(M,3)-valued p-
cochain for the action of the Lie algebra g, on C*°(M,3) and since I is g,-
equivariant, we obtain continuous linear maps

B: P (M,5) — C2g,03), Dw)(Xu..., Xp) = [(w(X1,..., X,))

:/ w(X1,..., Xp) p.
M
The equivariance of I implies that ®(dw) = dg,®(w), so that ® induces maps

®: Hip(M,3) — HE(u,3)-
Remark 11.3. If mo(M) = {0} and D(M,p) denotes the simply connected
covering group of D(M, i), then for each closed 2-form w € Z3; (M, 3) the period
map of the corresponding Lie algebra cocycle vanishes (Proposition 9.5), so that,
in view of Theorem 7.2, ® induces a map

—_~—

If, more generally, 'y C 3 is a discrete subgroup with fﬂz( MW CTIz and

Z :=3/Tz, then Theorem 7.2 implies that the Lie algebra cocycle w integrates to
a central extension

—_~—

Z < D(M, ) — D(M, p).

Let
V(M, 1)ex := {X € V(M, p): ixp € d¥~2(M,R)}

denote the Lie algebra of exact divergence free vector fields. It can be shown that
this is the commutator algebra of V(M, ) and even a perfect Lie algebra (cf.
[Li74]). It follows in particular that

He (V(M, p)ex, ) = Hompie ag(V(M, ft)ex, 3) = {0}

for each trivial module 3. Therefore, restricing the cocycles from above to V(M, (4)ex
resp. the corresponding connected subgroup D(M, pt)ex of exact volume preserv-
ing diffeomorphisms leads to a trivial flux homomorphism. Hence fm () @ CTly
implies the existence of a central Z-extension of D(M, pt)ex . We refer to Ismagilov
([1s96]) and Haller-Vizman ([HV04]) for geometric constructions of these central
extensions (for 3 =R, Z =T =R/Z). [

Proposition 11.4. Let G be a compact connected Lie group and p an invariant
normalized volume form on G. Then the flux cocycle restricts to a surjective Lie
algebra homomorphism

fu: V(G ) — H{ZH (G, R)
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whose kernel is the commutator algebra and whose restriction to 3(g) C g C

V(G, ) is bijective. This Lie algebra homomorphism integrates to a homomor-
phism of connected Lie groups

F$: D(G,u) — H{3 (G, R)

whose restriction to Z(G)y € G C D(G,p) is an isomorphism. Moreover, each
Lie algebra homomorphism yg: V(G, ) — a to an abelian Lie algebra integrates

to a group homomorphism pg: E(G, ) — a which factors through FE

Proof. Since f, defines a Lie algebra homomorphism V(G,u) — H{z'(G,R),
the restriction of the flux cocycle F),: Diff(G)y — ﬁj;{l(G,R) to the subgroup
D(G, n) is a group homomorphism

Fy: D(G,p) — Hig (G, R) = H*"}(g, R)

which on the subgroup G of E(G, u) is the Lie group homomorphism obtained
by integrating the Lie algebra quotient homomorphism

g— H Y g,R), @ [iapg),
where pg := pu(1) € C%(g,R). Note that Poincaré Duality implies that
Hi:'(G,R) = Hig(G,R) = Hom(g, R) = 3(g)"

so that Hig'(G,R) = Z(G)o = 3(g) and we can think of the flux homomorphism
as a group homomorphism

FS: D(G, 1) — 3(g).

On the Lie algebra level we have g C V(G, ), [V(G, ), V(G, )] C ker f,,
and f, maps 3(g) isomorphically onto H{z'(G,R). This leads to

V(G’M) = [V(G’ M)7V<G7M)] X 3(9)

with H1(V(G,p)) = 3(g), and we conclude that the flux homomorphism
F f : E(G7 p) — 3(g) is universal in the sense that each Lie algebra homomor-
phism V(G, ) — a, where a is an abelian Lie algebra, integrates to a Lie group
homomorphism l~)(G7 p) — a. [

Theorem 11.5. Let G be a connected compact Lie group, p an invariant
normalized volume form, 3 a Mackey complete locally convex space and w €
0%(G,3) a closed 2-form. Then the Lichnerowicz cocycle on V(G, ) given by

(X,Y) — /Gw(X,Y) »
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integrates to a central Lie group extension

35— D(G, 1) — D(G, p).
Proof.  First we recall that m2(G) = {0} ([Car52]), so that Remark 11.3 implies

that the period map of D(G, 1) vanishes for each closed 2-form w € Q2?(G,3) on
G. Moreover, the flux cocycle is a Lie algebra homomorphism

fut 80 =V(G,p) — H}(g,,3) = Hom(g,,3) = Hom(3(g), 3)

so that Proposition 11.4 implies that the corresponding flux homomorphism van-
ishes on the fundamental group m (D(G,pu)), and Theorem 7.2 implies that w
defines a Lie algebra cocycle in Z2(V(G, 11),3) corresponding to a global central
extension as required. ]

Remark 11.6. In view of

Hip(G,3) = HZ(g,3) = HZ(3(g),3) = Alt*(3(g), 3) = Lin(A*(3(9)),3);

we obtain a universal Lichnerowicz cocycle with values in the space 3 := A%(3(g)) .m

Remark 11.7. The preceding remark applies in particular to the d-dimensional
torus G = T¢ := Rd/Zd. We write z1,...,x4 for the canonical coordinate func-
tions on R% and observe that their differential dx; can also be viewed as 1-forms
on T¢. In this sense we have

Hig(T%R) = @R[dx,» A dx;] = REG).

i<j

Therefore the central extensions of E(Td, u) described above correspond to the
central extensions of the corresponding Cartan type algebras discussed in [Dz92].
We conclude in particular that these cocycle do not integrate to central extensions
of D(T?, ), but that they integrate to central extensions of the covering group

D(T?, ;1) which we consider as a group of diffeomorphisms of R?. [

Appendix A. Differential forms and Alexander—
Spanier cohomology

In this appendix we discuss a smooth version of Alexander—Spanier cohomology for
smooth manifolds and define a homomorphism of chain complexes from the smooth
Alexander—Spanier complex (Cg (M, A),das),n > 1, with values in an abelian
Lie group A with Lie algebra a to the a-valued de Rham complex (Q°*(M,a),d).
In Appendix B this map is used to relate Lie group cohomology to Lie algebra
cohomology. The main point is Proposition A.6 which provides an explicit map
from smooth Alexander—Spanier cohomology to de Rham cohomology.
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Definition A.1. (1) Let M be a smooth manifold and A an abelian Lie group.
For n € Ny let Cig5 (M, A) denote the set of germs of smooth A-valued functions
on the diagonal in M™*!. For n = 0 this is the space C%g ,(M, A) = C>(M, A) of
smooth A-valued functions on M. An element [F] of this space is represented by a
smooth function F': U — A, where U is an open neighborhood of the diagonal in
Mn™+ | and two functions Fj: U; — A, i = 1,2, define the same germ if and only
of their difference vanishes on a neighborhood of the diagonal. The elements of
the space C7g (M, A) are called smooth A-valued Alevander—Spanier n-cochains
on M.
We have a differential

das: Chg (M, A) — CyEL (M, A)

given by

n+1

(dASF)(mO> s 7mn+1) = Z(il)jF(mOa cee 7@3 s amn—i-l)a
7=0

where m; indicates omission of the argument m;. To see that dagF defines a
smooth function on an open neighborhood of the diagonal in M™*+2, consider for
i=0,...,n+1 the projections p;: M"+t2 — M"*! obtained by omitting the i-th
component. Then for each open subset U C M™*! containing the diagonal the
subset (7 p71(U) is an open neighborhood of the diagonal in M™+2 on which
dagsF is defined. It is easy to see that dags is well-defined on germs and that we
thus obtain a differential complex (C%g (M, A),das). Its cohomology groups are
denoted Hjg (M, A).

(2) If M is a smooth manifold, then an atlas for the tangent bundle T'M
is obtained directly from an atlas of M, but we do not consider the cotangent
bundle as a manifold because this requires to choose a topology on the dual
spaces, for which there are many possibilities. Nevertheless, there is a natural
concept of a smooth p-form on M. If V is a locally convex space, then a V -
valued p-form w on M is a function w which associates to each x € M a
k-linear alternating map T,(M)? — V such that in local coordinates the map
(z,v1,...,0p) = w(x)(v1,...,vp) is smooth. We write Q(M, V) for the space of
smooth p-forms on M with values in V.

The de Rham differential d: QP (M, V) — QPTY(M, V) is defined by

P

(dw)(x)(vo, . .., vp) = Z(—l)i(Xi.w(Xo,...,)?Z-,...,Xp))(x)

=0
+ > (D)X, XG) Xo, - X X, X)) (@)

1<J

for vg,...,vp € Tp(M), where Xy, ..., X, are smooth vector fields on a neighbor-
hood of = with X;(z) = v;.
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To see that d defines indeed a map QP(M,V) — QPTL(M,V) one has to
verify that the right hand side of the above expression does not depend on the
choice of the vector fields X; with X;(x) = v; and that it defines an element of
QPFLY(M, V), i.e., in local coordinates the map

(x,v0, ..., 0p) > (dw)(x)(vo, ..., vp)

is smooth, multilinear and alternating in vy, ...,v,. For the proof we refer to (cf.
[KM97]).

Extending d to a linear map on Q(M,V) := P
relation d? = 0. The space

pen, S¥(M, V), we have the
ZgR(Mv V) = ker(d|QP(M7v))

of closed forms therefore contains the space B (M, V) := d(QP~1(M,V)) of exact
forms, and
Hig (M, V) := Zig (M, V)/Big (M, V)

is the V -valued de Rham cohomology space of M . ]

Definition A.2. If M is a smooth manifold, A an abelian Lie group, a its Lie
algebra, f: M — A a smooth function and T f: TM — T A its tangent map, then
we define the logarithmic derivative of f as the a-valued 1-form

df: TM —a, v f(m)""Tf(v), for wve&T,(M).

In terms of the canonical trivialization §: TA — A x a,v +— a "l (for
v € T,(A)) of the tangent bundle of A, this means that
df =pryofoTf: TM — a. ]

Definition A.3. Let My,..., M, besmooth manifolds, A an abelian Lie group,
and
f:Myx...x M, — A

be a smooth function. For n € N we define a function
d"f: TMy x...xTM, —a

as follows. Let q: TM — M be the canonical projection. For vy,...,v, € TM
with ¢(v;) = m; we consider smooth curves v;: | —1,1[— M with ~;(0) = m; and
~i(0) = v; and define
(@ 1) X yim o FO(t), - (tn)
My, ... ,Mp) V1, ., 0,) i= ——— s Ynltn)),
Iyee 1 Oty - Oty | ti=0 71{l1 v
where for n > 2 the iterated higher derivatives are derivatives of a-valued func-
tions in the sense of Definition A.2. One readily verifies that the right hand side
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does not depend on the choice of the curves +; and that it defines for each tuple
(my,...,my) € My X ... x M, a continuous n-linear map

@ fy(ma,...,mp): Ty (My) X ... X Ty, (M) — a.
If X is a smooth vector field on M;, then we also define a smooth function
G(X)f: My x...x My, —a, (my,...,my)—df(my,...,my)0,...,0,X(m;),
0,...,0)

by the partial derivative of f in the direction of the vector field X . For vector
fields X; on M; we then obtain by iteration of this process

(01(X1) -+ 0 (X)) (ma, o ymp) = (A" ) (mas o ym ) (X1 (ma), - Xn(mn))

and
81()(1)-~-8n()(n)jﬁ A4i X ... X A4ﬁ —a

is a smooth function. [

Definition A.4. Let M be a smooth manifold and A an abelian Lie group.
We write A,: M — M"™* L m — (m,...,m) for the diagonal map.
For [F] € Clg (M,A), pe M and vy, ...,v, € Tp(M) we define

T(F)(p)(v1,...,0,) = Z sgn(o) - (d"F)(p,...,p)(0,0501)s- - Vo(n))
ocES,

and observe that 7(F') defines a smooth a-valued n-form on M depending only
on the germ [F] of F'. We thus obtain for n > 1 a group homomorphism

T: CZS,S(M7 A) — Q™(M,a).
If A= a, then we also define 7 for n = 0 as the identical map
7: O (M, A) =2 C®(M, A) — Q°(M,a) = C™(M,a).

If X4,...,X, are smooth vector fields on an open subset V' C M, we have
on V the relation

T(F)(X1,. ., Xn) = > sgn(0) - (01(Xo() -+ On(Xom))-F) 0 Ap.
g€Sy,

As the operators 0;(X) and 9;(Y) commute for ¢ # j and vector fields X and
Y on M, this can also be written as

T(F)(X1,. o Xn) = > 880(0) - (Oo1)(X1) -+ Do) (Xn).F) 0 Ay,
og€eSy

For small n we have in particular the formulas
n=0:7(F)=F (if A=a).
n=1:7(F)(X)=0(X).F.
n=2: 7(F)(X,Y)=01(X)0(Y).F —01(X)5(Y).F. ]
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The following proposition builds on a construction one finds in the appendix
of [EK64]. First we need a combinatorial lemma.

Lemma A.5. Let o € Sp41 be a permutation with k :=o(1) < £:=0(i+1) and

such that the restriction of o defines an increasing map {1,...,n}\{l,i+1} —
{1,...,n}\ {k,£}. Then sgn(c) = (—1)"Tr+L,

Proof. Replacing o by 01 :=coa, where a = (1 4+1 ¢ i—1 ... 32) isa
cycle of length i, we obtain a permutation o; that restricts to an increasing map

{3,4,....n} = {1,...,n}\ {k, (}.

Next we put o9 := Booy, where 3= (123 ... k—1k) is a cycle of length k,
to obtain an increasing map

(3,4,...,n) — {2,....0}\ {£}.

Eventually we put o3 := yo 09, where v = (23 ... £ —1/) is a cycle of length
£ — 1 to obtain an increasing map

{3,4,...,n} — {3,4,...,n},
which implies that o3 fixes all these elements. Further

o3(1) = yfoa(l) = yBo(1) = yB(k) = (1) =1

implies that o3 = id. This implies that
sen(o) = sgn(a) sgn(B) sgn(y) = (-1 (~DF (-1 = (<)L .

The following proposition generalizes an observation of van Est and Kortha-
gen in the Appendix of [EK64]:

Proposition A.6. (van Est—Korthagen) If M is smooth manifold, then the
map
C>®(M,A) forn=0

TICAS,S(MaA)_’ { O (M,a) forn>1

intertwines the Alexander—Spanier differential with the de Rham differential, hence
induces a map
7 Hyg (M, A) — Hir (M, a).
Proof. We have to show that 7(dasF) = dr(F) holds for FF € C*(U, A),
where U is an open neighborhood of the diagonal in M"+!.
From the chain rule we obtain for a vector field Y on M the relation
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(A1) + Z (01(X1) -+ 0:(Y)0:(Xi) - On(X).F) 0 A
i=1
Now let
Fi(iEo, e 71‘n+1) = F(l‘o, e ,(I’I\,L', e ,$n+1).
Then
(A2) Fz o An+1 =Fo An
and dygF = Z?:Ol(—l)iFi. Since the function F; is independent of x;, we have
(A.3) O (X1)+ Onp1(Xpg1).F; =0, i>1.
Therefore

O1(X1) - Ong1(Xng1)-(dasF) = 01(X1) -+ - Ong1 (Xng1) (Fo)
= (00(X1) -+ On(Xny1)F),.
In view of (A.2) and (A.1), this leads to

(51(X1) ce an+1(Xn+1)~(dASF)) o An+1 = (aO(Xl) ce 8n(Xn+1)'F) oAy,
:X1.<(81(X2) . -8n(Xn+1).F)) oA,

= (01(X2) - 0i(X1)0i(Xig1) - On(Xng1).F) 0 Ay,
=1

Alternating the first summand, we get an expression of the form

Z Sgn(U)XU(l)' (81 (X0(2)) T 8n(*Xa(n-i-l))~-F) oA,
0ESn+1

n+1

-3 Sgn(o)Xi.(al(Xg(g))~-~8n(XU(n+1)).F) o A,

i=1 o(1)=i

We write any permutation o € S, 41 with o(1) = ¢ as 0 = «;3, where (1) =1
and «;(1) =4 and «; is the cycle

a=@Gi—1i-2 ... 21).
We further identify S,, with the stabilizer of 1 in S, 1. Then the above sum turns
into

n+1
= Z sgn(ai) Z sgn(ﬁ)Xi. ((91 (Xaiﬁ(2)) cee 8n(Xai,8(n+1))~F) o An
i=1

BESR
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n+
=Y ()X (F) (X, Xy Xng)
i=1
In view of
n+1 ‘ N
d(T(F))(Xla .. 'aXn+1) = Z(il)lilXi'T(F)(Xla s 7Xi7 . 7X7L+1)
i=1
+Z k+£ kaxé]lea---a‘)?k7"'a‘)?ea"'7xn+1)7
k<t
and
DM (P (X X X X, Xy X))
k<t
= Z(_ Yot Z sen(3) (Dpn) [Xk,Xe])6ﬁ<2)(X1)--~5(Xk)~--5(Xz)~-~
k<t BES,

D3 (Xni1).F) 0 Ay,

it remains to show that, as operators on functions on M"*!, alternation of

n

(A.3) D 0 (Xa) - 0:(X1)0i(Xig1) - On(Xng1)

i=1
leads to

Z Dl Z sgn(8)9p1) ([ Xk, Xe])9p2)(X1) - - a(Xk)"'5(Xf)'“aﬁ(")<xn+1)
k<t BES,

=) (DM A A [ X, XA KT A AXG A AKX A A X))
k<t

> (- ’“*“12 D)0 (X, Xe]) 0 OV A ... AD A N, X1 A+ A X
k<t

A AXg Ao A X))

Alternating (A.3) leads to the expression

n

7 sgn(0) Y 01(Xoe) - 0i(Xe1)0i(Xo(irn) On(Xa(ns1))
0ESn41 i=1

n

=Y > sen(0)d (XKo@ 0i([Xaq) Xern)) O (Xo(nan))

i=1o(1)<o(i+1) i=1
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n
1=

D sgn(0) Y 01(Xoe@) - 0i([ Xk, Xe)) -+ On(Xo(nsn))-
=1

1 k<t o()=k
o(i+1)=¢

We can write each permutation o € S, 11 as 0 = 093, where § fixes 1 and i+1,
so that we can identify it with an element of S,,_1, and

00:{2,...,n+1}\{i+1} > {1,....,n+ 1} \ {k, ¢}

is increasing. In view of Lemma A.5, we then have sgn(og) = (—1)"*+¢ for
k=0(1) and £ = o(i + 1). Therefore alternating (A.3) gives

I
HNgE

S (DTN sen(8) Y01 (Xoep) - 0i([Xks Xel) -+ On( Xy p(ns1))
i=1 k<t i=1

BESn-1

(=)0, X g, Xe]) 0 (D1 A ABi A v Ay X2y A+ A X (m1))

|

S
Il
—
E
A
~

(= 1) R (X, X)) (O A8y A Dy Xa A A X A= A Xy

kol
A
~
-
Il
—

M-

Aeoe A Xngt).

This completes the proof of Proposition A.6. |

Appendix B. Cohomology of Lie groups and Lie
algebras

In this appendix we show that for n > 2 there is a natural “derivation map”
Dyn: H}(G,A) — H?(g,0)

from locally smooth Lie group cohomology to continuous Lie algebra cohomology.
For n =1 we have amap D;: Z}(G, A) — Zl(g,a), and if, in addition, A = a/T 4
holds for a discrete subgroup I'4 of a, then this map induces a map between the
cohomology groups.

Definition B.1. Let V be a topological module of the topological Lie algebra
g. For p € Ny, let C?(g,V) denote the space of continuous alternating maps
g? — V, i.e., the Lie algebra p-cochains with values in the module V. Note that
Cl(g,V) = Lin(g, V) is the space of continuous linear maps g — V. We use the
convention C?(g,V) = V. We then obtain a chain complex with the differential

dg: CP(g,V) — CE*(g, V)
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given on f € C?(g,V) by

p
(dgf)(x()w"a Z IEO,... :/I;\jv-”vxp)
Jj=

Z+ ~ o~
+E —1)" £( ([zisz5), 0, Ziy oo Ty ),
1<J

where Z; indicates omission of ;. Note that the continuity of the bracket on g
and the action on V' imply that dgf is continuous.

We thus obtain a subcomplex of the algebraic Lie algebra complex associated
to g and V in [CE48]. Hence d2 = 0, and the space Z2(g,V) := ker(dg [cr(q,v))
of p-cocycles contains the space BP(g,V) = dg(CP7Y(g,V)) of p-coboundaries
(cf. [We95, Cor. 7.7.3]). The quotient

HE(e,V) =29, V)/BL(g, V)

is the p-th continuous cohomology space of g with values in the g-module V. We
write [f] for the cohomology class of the cocycle f in HZ(g,V). [

Definition B.2. Let G be a Lie group and A an abelian Lie group. We call
A a smooth G-module if it is endowed with a G-module structure defined by a
smooth action map G x A — A.

Let A be a smooth G-module. Then we define C™(G, A) to be the space of
all functions F: G"*! — A which are smooth in a neighborhood of the diagonal,
equivariant with respect to the action of G on G"*! given by

9-(90,- -+ 9n) = (990, - - -, 9Gn);

and vanish on all tuples of the form (go,...,9,9,...,9n). As the G-action pre-
serves the diagonal, it preserves the space C7'(G, A). Moreover, the Alexander—
Spanier differential dsg defines a group homomorphism

dag: CT(G, A) — CT(G, A),

and we thus obtain a differential complex (C*(G, A), das).

Let C?(G, A) denote the space of all function f: G™ — A which are smooth
in an identity neighborhood and normalized in the sense that f(g1,...,9n) van-
ishes if g; = 1 holds for some j. We call these functions normalized locally smooth
group cochains. Then the map

q)'n: C;L(Ga A) - ég(GaA)a én(f)(g(% e ugn) = 90~f(96191a9f1927 cee 7gr:i1.gn)

is a linear bijection whose inverse is given by

S (F)(g1,---,90) = F(1,91,9192, - -, 91~ Gn)-
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By
dg =@, 0das o ®,: CIH(G,A) — CIHG, A)

we obtain the differential dg: C?*(G,A) — CP*Y(G, A) turning (C2(G, A),dg)
into a differential complex. We write Z7(G, A) for the corresponding group of
cocycles, BY(G, A) for the subgroup of coboundaries and

is called the n-th Lie cohomology group with values in the smooth module A. m

Lemma B.3. The group differential dg: C*(G,A) — C*1(G, A) is given by
(daf)(90,---,9n) = go-f(91,--- > 9n)

+ Z(—l)jf(go, s 95-195,- - - agn) + (_1)n+1f(goa cee 7gn—1)'
j=1

Proof. In fact, dasF = Z?:Ol(—l)iFi leads with F = ®,(f) to daf —
Z?iol(—l)@;}rl(ﬂ) and hence to

(de)(907 cee 7gn)
n+1

=3 (-1)'Fi(1,90, 9091, -+ 90" - gn)
=0

n+1
= Z(fl)ZF(lngagOgla' -590° " G9i—-1,90" " Gi+1,---590 " gn)
=0

n

= 90-f (G155 90) + D (=1 f (90,91, GiGit 1, Gn)
=1

+(=1)""f(goy -, gn1)-

For n = 0 we have in particular

(daf)(90) = go-f — 1,

and for n =1:

(daf)(90,91) = go-f(91) — f(g091) + f(g0)-

Definition B.4. Let G be a Lie group and a a smooth locally convex G -module,
i.e., a is a locally convex space and the action map p,: G x a — a,(g,a) — g.a is
smooth. We write pq(g): a — a,a — g.a for the corresponding continuous linear
automorphisms of a.
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We call a p-form Q € QP(G,a) equivariant if we have for all g € G the
relation

A€ = pa(g) o Q.

The complex of equivariant differential forms has been introduced in the finite-
dimensional setting by Chevalley and Eilenberg in [CE48].

If a is a trivial module, then an equivariant p-form is a left invariant a-valued
p-form on G. An equivariant p-form is uniquely determined by the corresponding
element Qq € C?(g,a):

(B.1)
Qg(g.21,...,9.2p) = palg) o Q(z1,...,2p), for geG,z; €g=T1(G).

Here GXT(G) — T(G), (g,x) — g.x denotes the natural action of G on its tangent
bundle T(G) obtained by restricting the tangent map of the group multiplication.

Conversely, (B.1) provides for each w € C?(g, a) a unique equivariant p-form
w® on G with wi? =w. L]

Lemma B.5. For each w € C?(g,a) we have d(w®?) = (dgw)®?. In particular,
the evaluation map

evy: QP(G,a)* — CP(g,a), wr—w

defines an isomorphism from the chain complex of equivariant a-valued differential
forms on G to the continuous a-valued Lie algebra cohomology.

Proof. (cf. [CE48, Th. 10.1]) For g € G we have
Xodu® = ANiw™ = d(pa(g) 0 w™) = palg) o (dw),

showing that dw®? is equivariant.

For = € g we write z;(g) = g.z for the corresponding left invariant vector
field on G. Tt suffices to calculate the value of dw®® on (p + 1)-tuples of left
invariant vector fields in the identity element.

In view of
W11, 2p)(9) = palg) w(ze, ..., 2p),
we obtain
(xO,l~weq(xl,ly s axp,l))(l) = xO'w(xl, ceey xp)a

and therefore

p .
(dweq(xo,l, . ,mp,l)) 1) = Z(—l)zxi’l.weq(xo,l, e Tigy e, Zpg) (1)

i=0

) (D) (@i, ) To s Fit e Eds - ) (1)
i<j
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P
= Z(—l)’xi.w(;vo, ces Ty, Tp)
i=0

+ > (D)@, 2], 30, Ty T Tp)

i<j
= (dgw) (o, ..., zp).
This proves our assertion. [ ]

Theorem B.6. The maps
D,: =evioro®,: CI(G,A) — Cl(g,a), n>1,
induce a morphism of chain complezes
D: (CY(G, A),dg)nz1 — (Cl(g,0), dg)n>1
and in particular homomorphisms
D,: H}(G,A) — H}(g,a), n>2.

For A = a these assertions hold for all n € Ny and if A = a/T4 for a
discrete subgroup T4 of a, then Dy also induces a homomorphism

Dy: Hy(G,A) — Hi(g,a), [f] = [df(1)].

Proof. In view of Proposition A.6 and the definition of the group differential
d¢ , the composition

T0®,: CM(G,A) — C(G, A) C C%s,(G, A) — Q"(G,a), n>1,

defines a homomorphism of chain complexes. For A = a this relation also holds
for n > 0.

For f € C*(G,A) the function F := ®,(f): G""1 — A is G-equivariant
with respect to the diagonal action. For g € G let

pg: G"TH = G™ (goy oy gn) — (9905 99n)

and write pa(g)(a) := g.a for a € A. Then the equivariance of F' means that
pol' = F o= pa(g) o F which implies that

pa(g) o 7(F) = 7(palg) o F) = m(py F) = Ag7(F).

This shows that the image of 7o ®,, consists of equivariant a-valued n-forms on
G. According to Lemma B.5, evaluating an equivariant n-form in the identity
intertwines the de Rham differential with the Lie algebra differential dy. This
implies

dgo Dy =Dy odg



Abelian extensions of infinite-dimensional Lie groups 169

for each n € N i.e., the D,, define a morphism of chain complexes (truncated to
n >1). For A= a it also holds for n > 0.

If A2~ a/T4 and n = 1, then D;(BL(G, A)) = Bl(g,a) implies that D,
induces a map H!(G,A) — H!(g,a). If A is not of this form, then we cannot
conclude that D7 maps Bl(G, A) into Bl(g,a). m

To make D, , n > 2, better accessible to calculations, we need a more
concrete formula for the Lie algebra cochain D,, f for f € C?(G,A). As f vanishes
on all tuples of the form (g1,...,1,...,9n), its (n — 1)-jet in 1 vanishes and the
term of order n is the n-linear map

@f,....1): g" =T1(G)" —a

(cf. Definition A.3). In fact, in local coordinates the n-th order term of the Taylor
expansion of f in (1,...,1) is given by a symmetric n-linear map

(dr)a,...,1): (g)" —a

as
1
ﬁ(d[”]f)(l,...J)(:r,...,:r), = (x1,...,2,) € g".
The normalization condition on f implies that (d™ f)(1,...,1) vanishes on all
elements (z!,...,2"), ' = (z}) € g", for which the j-th component (in g) van-

ishes for some j, i.e., x; = 0 for all 4. This implies that (d™ f)(1,...,1)(x,..., )

is a sum of n! terms of the form

@), )0, @1y 5 0), (0, To(2yse 3 0)s ey (04, Ty - - -5 0)).

Since all these terms are equal, we find

1
a(d[”]f)(l,...71)(55,...7:5) = d" ..., 1)((x1,0,...,0),...,(0,...,0,z,))
= (d"f)(A,..., 1) (21, ..., zn).
Lemma B.7. For f € C?(G,A) and x1,...,2, € g we have

(Dnf) (@1, wn) = Y sgn(o)(d" )1, 1) (Zo(1), -+ To(n))-

€Sy
Proof. Recall that on an n-tuple (z1,...,2,) € g" the map d"f can be
calculated by choosing smooth vector fields X,, on an open identity neighborhood
of G with X;(1) = z; via

@A, ) (2, xp) = (01(X7) - O (X)), ..., 1),
For F' = ®,,(f) we now get
(D)1, xn) =7(F) (21, ..., 20)

= Z sgn(o)(d”F)(l, ey 1)(0, :L'U(l), . ama(n))'
oc€eS,,



170 Karl-Hermann Neeb

In view of
F(1,g1,...9n) = f(g1.97 '92, -, 90 19n)

and f(g1,1,...) =0, we have

(al(Xl)F)(]-vlngw <. 7gn) = (al(Xl)f)(17927951937' .. agyzilgn)v

and inductively we obtain

(O1(X1) - 0n(Xn)F)(1,1,...,1) = (B1(X1)...0n(Xn)f)(1,...,1)
= (d"f)(1,...,1)(z1,...,2n).

This implies the assertion. [ ]

For n =1 we obtain (D1 f)(x) =df(1).z, and for n = 2 we have

(D2f)(z,y) = (& f)(1,1)(z,y) = (d*f)(1,1)(y, ).

If (d" £)(1,1) denotes the symmetric n-linear map (g")" — a representing the
n-jet of f, this expression equals

(d®F)(1, 1)((2,0)(0,)) — (@ f)(L,1)((y,0), (0,2)).

Appendix C. Split Lie subgroups

In this appendix we collect some general material on Lie group structures on
groups, (normal) Lie subgroups and quotient groups. In particular Theorem C.2
provides a tool to construct Lie group structures on groups for which a subset
containing the identity is an open 0-neighborhood of a locally convex space such
that the group operations are locally smooth in these coordinates. We also give
a condition on a normal subgroup N < G for the quotient group G/N being a
manifold such that the quotient map ¢: G — G/N defines on G the structure of
a smooth N -principal bundle.

Lemma C.1. Let G be a group and F a filter basis of subsets with (\F = {1}
satisfying:
(U) (VU e FYAV e F) VV C U.
(U2) VU e FY AV e F) VL CU.
(U3) (VU € F)(Vg € G)(IV € F) gVg~ ! CU.

Then there exists a unique group topology on G such that F is a basis of
1 -neighborhoods in G. It is given by {U C G: (Vge U)(AV € F) gV C U}.

Proof. [Bou88, Ch. III, §1.2, Prop. 1] [
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Theorem C.2. Let G be a group and U = U~' a symmetric subset. We further

assume that U is a smooth manifold such that

(L1) there exists an open 1-neighborhood V- C U with V2=V .-V CU such that
the group multiplication py: V xV — U is smooth,

(L2) the inversion map ny: U — U,u — u™' is smooth, and

(L3) for each g € G there exists an open 1-neighborhood Uy, C U with c¢4(Uy) C U
and such that the conjugation map

cg:Ug—U, x+ grg "
is smooth.
Then there exists a unique structure of a Lie group on G for which there
exists an open 1-neighborhood Uy C U such that the inclusion map Uy — G
induces a diffeomorphism onto an open subset of G .

Proof. (cf. [Ch46, §14, Prop. 2] or [Ti83, p.14] for the finite-dimensional case)
First we consider the filter basis

Fi={W CG: W elUy(1)}

of all those subsets of U which are 1-neighborhoods in U. Then (L1) implies
(U1), (L2) implies (U2), and (L3) implies (U3). Moreover, the assumption that U
is Hausdorff implies that (| F = {1}. Therefore Lemma C.1 implies that G carries
a unique structure of a (Hausdorff) topological group for which F is a basis of
1-neighborhoods.

After shrinking V' and U, we may assume that there exists a diffeomorphism
p: U — p(U) C E, where F is a topological K-vector space, ¢(U) an open subset,
that V satisfies V = V~!, V4 C U, and that m: V2 x V2 — U is smooth. For
g € G we consider the maps

g1 gV = E, p4(x)=p(g"'2)

which are homeomorphisms of gV onto (V). We claim that (¢4, gV )geq is an
atlas of G.

Let g1,92 € G and put W:= ¢V NgV.If W # @, then 92_191 eVvv-l=
V2. The smoothness of the map

w = Pg, © (pg_ll ‘gogl(W) PP (W) — Pgo (W)
given by
(1) = g, (0, (1)) = g, (9107 () = (g5 910" ()

follows from the smoothness of the multiplication V2 x V2 — U. This proves
that (¢4, 9U)geq is an atlas of G. Moreover, the construction implies that all left
translations of G are smooth maps.
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The construction also shows that for each g € G' the conjugation ¢;: G — G
is smooth in a neighborhood of 1. Since all left translations are smooth, and

Cg © Az = )‘cg(w) 0 Cqg,

the smoothness of ¢, in a neighborhood of 2 € G follows. Therefore all conju-
gations and hence also all right multiplications are smooth. The smoothness of
the inversion follows from its smoothness on V' and the fact that left and right
multiplications are smooth. Finally the smoothness of the multiplication follows
from the smoothness in 1 x 1 because of

pe (91T, g2y) = G192y = 9192€4 -1 (x)y = 9192#6‘(092—1 (x),9).

The uniqueness of the Lie group structure is clear because each locally diffeomor-
phic bijective homomorphism between Lie groups is a diffeomorphism. ]

Remark C.3. Suppose that the group G in Theorem C.2 is generated by
each 1-neighborhood V in U. Then condition (L3) can be omitted. Indeed, the
construction of the Lie group structure shows that for each g € V' the conjugation
cg: G — G is smooth in a neighborhood of 1. Since the set of all these g is a
submonoid of G containing V', it contains V" for each n € N, hence all of G
because G is generated by V. Therefore all conjugations are smooth, and one can
proceed as in the proof of Theorem C.2. [ ]

Definition C.4. (a) (Split Lie subgroups) Let G be a Lie group. A subgroup
H is called a split Lie subgroup if it carries a Lie group structure for which the
canonical right action of H on G defined by restricting the multiplication map of
G to G x H — G defines a smooth principal bundle, i.e., the coset space G/H is
a smooth manifold and the quotient map 7: G — G/H has smooth local sections.

(b) If G is a Banach-Lie group and exp: g — G its exponential function,
then a closed subgroup H C G is called a Lie subgroup if there exists an open
0-neighborhood U C g such that exp|y: U — exp(U) is a diffeomorphism onto
an open subset of G and the Lie algebra

h:={zreg: exp(Rz) C H}

of H satisfies
Hnexp(U) =exp(UNH). ]

Since the Lie algebra h of a Lie subgroup H of a Banach Lie group G
need not have a closed complement in g, not every Lie subgroup is split. A simple
example is the subgroup H := ¢p(N,R) in G := £*°(N,C) (cf. [We95, Satz IV.6.5]).
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Lemma C.5. If H is a split Lie subgroup of G or a Lie subgroup of the Banach—
Lie group G, then for any smooth manifold X each smooth map f: X — G with
f(X) C H is also smooth as a map X — H . If H is a normal split Lie subgroup,
then the conjugation action of G on H is smooth.

Proof. The condition that H is a split Lie subgroup implies that there exists
an open subset U of some locally convex space V' and a smooth map o: U — G
such that the map

UxH—G, (z,h)—o(x)h

is a diffeomorphism onto an open subset of G. Let p: 0(U)H — U denote the
smooth map given by p(o(z)h) = z. If X is a manifold and f: X — G is a
smooth map with values in H, then f is smooth as a map to o(U)H 2 U x H,
hence smooth as a map X — H.

If H is a Lie subgroup of a Banach-Lie group and f: X — G is a smooth
map with f(X) C H, then we have to see that f is smooth as a map X — H.
To verify smoothness in a neighborhood of some xy € X, it suffices to consider
the map = +— f(z)f(x9)~!, so that we may w.l.o.g. assume that f(zg) = 1. Then
we can use the natural chart of H in 1 given by the exponential function to see
that f is smooth in a neighborhood of xy because any smooth map X — g with
values in § is smooth as a map X — §.

Now suppose that H <G is normal. Then the conjugation map G x H —
G,(g,h) — ghg™!, is smooth with values in H, hence smooth as a map
GxH-— H. ]

Theorem C.6. Let G be a Lie group and N <G a split normal subgroup. Then
the quotient group G/N has a natural Lie group structure such that the quotient
map q: G — G/N defines on G the structure of a principal N -bundle.

Proof. There exists an open subset U of a locally convex space V' and a smooth
map o: U — G such that the map

UxN—G, (u,n)—o(un

is a diffeomorphism onto an open subset W = o(U)N of G. As N is in particular
closed, the quotient group G/N has a natural (Hausdorff) group topology.

Let ¢: G — G/N denote the quotient map. Then ¢(W) = goo(U) is an
open subset of G/N and ¢(W) 2 W/N = (U x N)/N = U. Therefore the map
p:=qoo:U — q(W) is a homeomorphism.

Let K = K~' C q(W) be a symmetric open subset, Ux = ¢ }(K),
and endow K with the manifold structure obtained from the homeomorphism
p: Uk — K.

(L1): Let V C K be an open 1-neighborhood with V2 C K. We identify
V' with the corresponding open subset Uy C U. Then the group multiplication
pwy:V xV — K is given by

o(x)p(y) = o(z)N - o(y)N = o(z)o(y)N = ¢(¢~ (o(z)o(y)N)),
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and since the map p: W — U, o(u)n — u is smooth, the map

(z,y) = ¢~ (o(2)a(y)N) = plo(z)o(y))

is smooth.
(L2): We likewise see that the inversion map K — K corresponds to the
smooth map

v (@) ) = ¢ (o(2)TIN) = plo(@) 7).

(L3): For each ¢ € G we find an open 1-neighborhood K, C K with
cg(Kg4) € K. Then the conjugation map

cg: Ky — K, T — grg

is written in ¢-coordinates as

o(x) — (e go(x)g ' N)) = p(p(go(x)g™"))

and therefore smooth.

Now Theorem C.2 applies and shows that there exists a unique structure of a
Lie group on G/N for which there exists an open 0-neighborhood in U such that
the map ¢: U — G/N induces a diffeomorphism onto an open subset of G/N. =

Appendix D. The exact Inflation-Restriction Se-
quence

In this section G denotes a Lie group, N <G a split normal Lie subgroup (cf. Defi-
nition C.4) and A a smooth G-module. We write ¢: G — G/N for the quotient
map.

Definition D.1. (a) (Inflation and restriction) Restriction of cochains leads for

each p € Ny to a map _
R: CP(G,A) — CP(N, A),

and since Rodg = dyoR, it follows that R(BP(G, A)) C BP(N, A), R(Z?(G, A)) C
ZP(N,A), so that R induces a homomorphism

R: H?(G,A) — H?(N, A).
(b) Since N is a normal subgroup of G, the subgroup
AN :={a € A: (Vn € N) n.a =a}

is a G-submodule of A. If AN is a split Lie subgroup of A, it inherits a natural
structure of a smooth G/N-module (Lemma C.2) but we do not want to make this
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restrictive assumption. We therefore define the chain complex (C$(G/N, AN), dg/n)
as the complex whose cochain space CP(G/N, AM) consists of those functions
f: (G/N)? — AN for which the pull-back

Tf:GP — AN7 (q*f)(gh ce 791)) = f(q<91>7 s 7q<gp))

is an element of C?(G,A). With this definition we do not need a Lie group
structure on the subgroup A" of A. For a cochain f € C?(G/N,AN) we define

I:=q": CP(G/N,AN) — C?(G, A).

Then (C2(G/N,AN),dq /N) becomes a chain complex with the group differential
from Lemma B.3. Moreover, ¢* o dg/n = dg o ¢*, so that ¢*(B?(G/N,AN)) C
BP(G,A), and ¢*(ZP(G/N,AN)) C ZP(G, A), showing that ¢* induces the so
called inflation map

I+ HY(G/N,AY) — HY(G, A), [f]~ [¢"f). u
The restriction and inflation maps
CcP(G/N, AN —Lscr(@, A)-E-cr(N, A)
clearly satisfy R o I =0, which is inherited by the corresponding maps
HP(G/N, AN HP(G, A) LS HP (N, A).

Lemma D.2. The restriction maps R: CP(G, A) — CP(N,A) are surjective.

Proof. Since N is asplit Lie subgroup of G, there exists an open 0-neighborhood
U in a locally convex space V' and a smooth map ¢: U — G with ¢(0) = 1 such
that the map

O: NxU—G, (n,z)— np(x)

is a diffeomorphism onto an open subset Np(U) of G.
Let f € CP(N,A). We extend f to a function f: (Np(U))? — A by

flnip(xr),...,npe(ap)) == f(n1,...,np).

Then f is smooth in an identity neighborhood and vanishes if one argument
nip(x;) is 1, because this implies z; = 0 and n, = 1. Now we extend f to a
function on GP vanishing in all tuples (g1,...,1,...,9p). Then f € CP(G,A)
satisfies R(f) = f. [

Although the the inflation map I is injective on cochains and R is surjective
on cochains, in general there are many cochains with trivial restrictions on N
which are not in the image of the inflation map. Therefore we do not have a short
exact sequence of chain complexes, hence cannot expect a long exact sequence in
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cohomology. In this appendix we discuss what we still can say on the corresponding
maps in low degree. It would be interesting to see if these results can also be
obtained from a generalization of the Hochschild—Serre spectral sequence to Lie
groups. As we shall see below, it is clear that the construction in [HS53] has to be
modified substantially for the locally smooth infinite-dimensional setting.

Lemma D.3. (a) Each cohomology class in HP(G, A) annihilated by R can be
represented by a cocycle in ker R.

(b) We have BP(N,A) C im(R) and therefore [f] € im(R) is equivalent to
feim(R).
Proof. (a) We may w.lo.g. assume that p > 1. If R[f] =0, then R(f) = dya
for some a € CP71(N,A). Let & € CP71(G, A) be an extension of a to G
(Lemma D.2). Then f":= f — dga restricts to R(f) —dya =0 and [f'] = [f].

(b) For a € CP~Y(G, A) we have R(dga) = dyR(e), so that CP~1(N, A) C
im(R) implies that R(BP(G, A)) = BP(N, A).

For f € ZP(N, A) it follows that [f] € im(R) is equivalent to the existence

of a € BP7Y(N, A) with f —dya € im(R), which implies that f € im(R). ]

Lemma D.4. The coboundary operator dy is equivariant with respect to the
action of G on CP(N,A), p € Ny, given by
(9-H)(nn,.. mp) = g.fg7 mg ™" g7 npg).

In particular, this action leaves the space of cochains invariant and induces actions
on the cohomology groups HP(N, A). [

The preceding lemma applies in particular to the case N = G, showing that
the coboundary operator dg is equivariant for the natural action of G on the

spaces CP(G, A).

Definition D.5. In the following we need a refined concept of invariance of
cohomology classes in HP(N, A) under the action of the group G. We call f €
ZP(N, A) smoothly cohomologically invariant if there exists a map

0: G — CP~Y(N,A) with dn(0(g9) =g.f—f forall geG
for which the map
Gx NPt — A (g,n1,...,mp_1) — 0(g)(n1,...,np_1)

is smooth in an identity neighborhood of G x NP~1.

We write ZP(N, A)I¢] for the set of smoothly cohomologically invariant
cocycles in the group ZP(N,A). If f = dyh for some h € CP~1(N, A), then
we may put 6(g) := g.h — h to find

dn(0(g)) = dn(g-h —h) = g.dn(h) —dn(h) = g.f - f,
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and the map

G x NP1 A,
(ganla"'7np—1) — (g'h_h)(nlﬂ"'anl)—l)
= g.h(g_lnlg7 o ,g_lnp,lg) —h(ni,...,np_1)

is smooth in an identity neighborhood. This shows that BP(N, A) C ZP(N, A)[C],
and we define the space of smoothly invariant cohomology classes by

HE(N, A):= z2(N, Al /BE(N, A). =

For a generalization of the following fact to general p for discrete groups and
modules we refer to [HS53] or [Gui80, Chap. I, Prop. 7.1].

Proposition D.6. Let N <G be a split normal Lie subgroup and p € {0,1,2}.
Then the restriction map R maps HP(G, A) into H?(N, A)C]. In particular
(D.1) HP(G,A) = HP(G, A for p=0,1,2.

Proof. In view of the G-equivariance of the restriction map C?(G,A) —
CP(N, A), it suffices to prove the assertion in the case N = G.

For p = 0 we have C%(G,A) = A, and Z%(G,A) = HY(G, A) = AY is the
submodule of G-invariants. Clearly G acts trivially on this space, so that there is
nothing to prove.

For p=1 and a cocycle f € Z1(G, A) we have for g,z € G:

(9.f = (@) =g.flg " xg) — f(x) = g.(g7 " flzg) + flg™h) — f(2)
= flzg)+9.f(g7") — flz
) —

)
=z.f(9) + f(z) = fg) = f(x) = da(f(9))(@).

This shows that
(D.2) g-f — [ =da(f(9)),

so that f € Z2(G, A)[C] follows from the local smoothness of f.
For p=2 and f € Z2(G, A) we have

(g-f - f)(sc,m/
=g.f(9g  wg, g "2'g) — f(x,2)
=—f(g.97 'za'g) + f(g,9 ' wg) + f(zg,9” '2'g) — f(x,2')
=—f(g.97 ' z2'g) + f(g,9 ' wg) — f(z,9) + x.f (9,97 '2'g) + f(x,2'g) — f(x,2")
= —f(g,9  wa'g) + f(9,9 "wg) — f(x,9) +2.f(g,97 " 2'g) —w.f(2', 9) + f(za', g)

and the function

0(9): G— A, 0(g)(x):= flg,9 'xg) — flz,9)
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satisfies

(dab(9))(z,2") = =.0(g)(z") + 0(g)(x) — O(g)(z2")
=xz.f(g,9 ''g) —x.f(2',9) + f(9,9 "xg) — f(z,9)
— flg,g"'aag) + f(aa', g)

= (9.f = f)(@,2").
Since the function G? — A, (g, ) — 0(g)(z) is smooth in an identity neighborhood
of G?, the assertion follows for p = 2. [

Lemma D.7. For each f € ZX(N, A) there exists a € CL(G, A) with

dn(a(g)) =g.f = f, algn) =alg) +9.f(n), g€GneN.

Then dga € B2(G,A) is AN -valued and constant on (N x N)-cosets, hence
factors to a cocycle dga € Z2(G/N, AN). The cohomology class [dga] does not
depend on the choice of f in [f] and the function a, and we thus obtain a group
homomorphism

§: Hi(N, A — HI(G/N,AY),  [f] = [dgal.
Proof. Since N is a split Lie subgroup, there exists an open 0-neighborhood of

some locally convex space V' and a smooth map ¢: U — G with ¢(0) = 1 such
that the multiplication map

N xU — G, (z,n) — ¢(z)n

is a diffeomorphism onto an open subset of G. Let E C G be a set of representa-
tives of the N -cosets containing ¢(U), so that the multiplication map Fx N — G
is bijective.
The requirement f € Z(N, A)I¢] implies the existence of a function a €
CL(G, A) with dy(alg)) = g.f — f. We now define
a: G=EN — A, z-nw— az)+z.f(n).

Then a is smooth on an identity neighborhood because E contains ¢(U). Since
f is a 1-cocycle, we have for z € E and n,n’ € N the relation

a(znn') = a(z) + z.f(nn') = a(z) + z.f(n) + (2n).f(n') = a(zn) + (zn).f(n'),
which means that
a(gn) =a(g) +g.f(n), g€GneN.
In view of (D.2), we have for n € N the relation n.f — f = dny(f(n)), so that
(zn).f = f=w(nf=f)+a.f—f=wdy(f(n)+dy(a(z)) = dy(z.f(n) +a(z))
= dn(a(zn)),
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and hence dy(a(g)) =g.f — f forall g € G.
That the values of the function dga lie in AN follows from

dn(a(g192) = (9192)-f — =g (g2-f = )+ f = f
= g1.dn(a(g2)) + dn(a(g1)) = dn(g1.a(g2) + a(g1))

in C1(N, A). The coboundary dga is a cocycle, hence an element of Z2(G, AN).
We show that dga is constant on the cosets of V. We have

(daa)(g1,92n) = g1.a(gan) + a(g1) — a(gi1g2n)
= g1.a(g2) + g192.f(n) + a(g1) — a(g192) — g192-f(n)
= (dga)(g1,92)

and
(dga)(gin, g2) = gin.a(gz) + a(gin) — a(gingz)
= gin.a(g2) + a(gr) + g1-f(n) — a(9192(95 'nga))
= gin.a(ga) + a(gr) + g1-f(n) — a(g192) — (9192)-f (95 'ng2)
= gin.a(g2) +a(g1) + g1-f(n) — alg1g2) — g1-((g2.f)(n))
= (dga)(g1,92) + g1.(na(g2) — a(g2)) + g1.f(n) — g1.f(n)

— g1.(n.a(g2) — a(gz))
= (dga)(g1,92)

We now define
dga: G/N x G/N — AN (xzN,yN) — (dga)(z,y).

Since dga is a cocycle on G, the function dga is an element of Z2(G/N, AN).
It remains to show that the cohomology class of dga in H2(G/N,AY) does not
depend on the choices of a and f.If ' € C}(G, A) is another function with

dn(a'(9)) = g.f — f, d(gn) =d'(9) +g.f(n), g€G neN,
then dy(a’(g) — a(g)) = 0 implies that
Blg) == d'(9) —alg) € A, g€G.
Moreover,
Blgn) = a'(gn) — a(gn) = d'(9) + 9.f(n) — alg) — g.f(n) = d'(g9) — alg) = B(g),
so that 3 factors through a function v: G/N — AN, and we have

(dg/n7)(@N,yN) = z.8(y) — B(zy) + B(z) = (daB)(z,y) = (dga — dgd)(z, y).
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Moreover, the fact that the quotient map G — G/N defines on G the structure of a
smooth N -principal bundle implies that 7 is smooth in an identity neighborhood
of G/N. Hence the cocycle dga’ is an element of Z2(G/N,AN) and satisfies
dga' = @ — dg/N’}/, so that [dGa] = [d(;a’}.

Now suppose that f' € Z1(N, A) satisfies f' = f + dyc for some c € A. In
view of the G-equivariance of the differential dy, we have

g-(dnc) —dyc=dn(g.c—c) and (dgc)(gn) = (dac)(9) + g-((dac)(n)),

so that the function a’ := a + dgc satisfies
dn(a'(g)) = dn(alg) + g.c—c) =g.f — f +g.dn(c) —dn(c) = g.f = [,

a'(gn) = a'(g) +g.f'(n).

As dgc is a cocycle, we have dga’ = dga, so that we obtain in particular the
same cocycles on G/N. [

With the preceding lemma, we can prove the exactness of the Inflation-
Restriction Sequence:

Proposition D.8. Let A be a smooth G-module and N <G a split normal Lie
subgroup. Then we have the following exact Inflation-Restriction Sequence:

0 — HG/N, AN HY (G, A)-LSHY(N, A)6 2 H2(G/N, AN) - H2(G, A).
Proof.  (see [We95, 6.8.3] or [MacL63, pp.347-354] for the case of abstract
groups)

Exactness in H!(G/N,AN): Let a € Z}(G/N, AN). We have [¢*a] = 0
if and only if there exists an a € A with a(¢N) = g.a —a for all g € G.
That this function is constant on N-cosets implies that a € AV, and hence
that a = dg/ya € BY(G/N, AN). Therefore the inflation map I is injective on
HY(G/N, AN).

Exactness in H!(G, A): That the restriction map R maps into smoothly
G-invariant cohomology classes follows from Proposition D.6 and the G-equiva-
riance of R. The relation Ro I =0 is clear.

To see that ker R Cim I, let f € Z!(G, A) vanishing on N (Lemma D.3).
Then f is constant on the N -cosets because

flgn) = f(g) +g.f(n) = f(g) for geG,neN.
Moreover,
n.f(g) = f(ng) — f(n) = f(ng) = f(99™ 'ng) = f(9)

implies that im(f) € AY. Hence [f] is contained in the image of the inflation
map [.
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Exactness in H!(N, A)IC1: If f € Z1(N, A) is the restriction of a 1-cocycle
a € ZHG, A), then (D.2) implies

(9-F = )(n) = (dn(a(9)))(n),

so that we may take « as the function a in the definition of §. Then dga =
dgo = 0 because « is a cocycle, and hence 6([f]) = 0.

If, conversely, §([f]) = 0, then there exists b € C1(G/N, AN) with dga =
dg/nb, where dga(zN,yN) = (dga)(z,y) is defined as in Lemma D.7. Then the
function a’ ;= a — (bo q) satisfies

da'(gn) =d'(g) +9.f(n), dn(d'(9))=g.f—f ge€GneN,

and, in addition,
dGa' = dGa - dg(q*b) = dGa — q*(dg/Nb) = q*(@ — dg/Nb) =0.

This means that o’ € Z1(G, A), so that a’ |y = a|y = f implies that [f] is in the
image of the restriction map R.
Exactness in H2(G/N,AN): If f € Z1(N, A) has a smoothly invariant

cohomology class and [dga] = 0([f]) as in Lemma D.7, then the image of [dgal
in Z2(G, A) under I is given by dga = ¢*dga, hence a coboundary.

Suppose, conversely, that for a € Z2(G/N, AN) the cocycle ¢*a on G is a
coboundary and 3 € CL(G, A) satisfies ¢*a = dg3. Then dgf3 vanishes on N, so
that f := |y is a cocycle. We have

a(xN,yN) = z.6(y) — B(zy) + B(z) for z,y€eC.
For y € N we obtain from a(zN,N) = «(N,zN) = {0} the relations
Blgn) = Blg) +9.6(n) and  [(ng) = B(n) + n.5(g).

For g € G and n € N we therefore have

(9-f — f)(n) =g.8(g"'ng) — B(n) = B(ng) — B(g) — B(n)
= B(n) +n.B(g) — B(g) — B(n) = n.B(g) — B(g) = dn(B8(g))(n).

This means that [f] is smoothly G-invariant and that §([f]) = [a]. L

Example D.9. The following example shows that the exact Inflation-Restriction
sequence cannot be continued in an exact fashion by the restriction map
R: H%(G,A) — H2(N, A)lE],

For that we consider the group G := R?, N := Z% G/N = T? and the
trivial module A =T =R/Z. Then

H7(G/N,AY) = H}(T*,T) = {0}, HI(G,A)=H:([R*T)=H(R*R) =R,
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and H2(N,A)I¢] = H?*(Z?,T) = T. Now the assertion follows from the fact
that the natural map R: H2(R* T) ® R — H2(Z* R) = T is not injective. It
corresponds to restricting an alternating T-valued bilinear form to the lattice Z2.
If the form is integral on this lattice, the corresponding extension of Z? is abelian,
hence trivial (cf. Example 6.10). [

Remark D.10. If A is a trivial G-module, then the connecting map has a
simpler description. Then we have H!(N, A) = Hom(N, A) = Z!(N, A), and the
condition that a homomorphism f: N — A is invariant under G means that it
vanishes on the normal subgroup [G,N]<N.

The only condition on the function a: G — A that we need to describe 9 is

a(gn) = a(g) + f(n), geGneN.
Then the function (dga)(z,y) = a(y) —a(xy)+a(z) is constant on (N x N)-cosets
and defines a 2-cocycle in Z2(G/N, A). ]

Example D.11. (a) If G is a Lie group, then its identity component Gy is a
split normal subgroup and the quotient group mo(G) is discrete. Therefore the
Inflation-Restriction Sequence yields an exact sequence

0 — H'(mo(G), A%) L HYG, A) L HY (G, )15 H2 (m0(G), A)
L H%(G, A).

(b) Assume that A = a/T'4 for a discrete subgroup T'4 of the Mackey
complete locally convex space a. If G is a connected Lie group, ¢g: G — G its
universal covering and m1(G) its kernel, then 71 (G) is discrete, hence a split Lie
subgroup, and we obtain for any smooth G-module A from Proposition D.8 the
exact sequence

0 — HYG, A)—~HYG, A)"-H (1 (G), 4)19 S H2(G, A H2(G, A).
As 7 (@) acts trivially on A and 7 (G) is central in G, we have
H}(m(G), A) = Hom(m(G), 4), H(m(G), A)1 = Hi(m(G), A)¢
= Hom(m (G), AY).
In view of Corollary 7.3, we may identify H, f(CN}’, A) with the subgroup
{lw] € HZ(g,a): qa o per,, = 0}.

On this subgroup the map [w] — F,, given by the flux homomorphism defines a
homomorphism

Py: HX(G, A) — Hom(m(G), H (g, a)) = Hom(m1 (G), H (G, A))
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whose kernel coincides with the image of I (Theorem 7.2). In Remark 6.9 we have
seen that the image of [w] € H2(G, A) C H2(g,a) in HZ(m(G), A) is given by
the commutator map

C2 (), ) = —Pu(Fu () ()

of the corresponding central extension where P; is defined in Proposition 3.4.
From Example D.9 we know that the vanishing of C' does not imply the vanishing
of F,. [ ]

Remark D.12. Let fy € ZX(N,A)¢] and f € C1(G, A) with

flgn) = f(g) +9-fn(n), dn(f(9)) =g.fv —fn, g€G,neEN.

Then §(fn) = [daf] € Z2(G/N, AN) defines an abelian extension of G/N by AN .
We now describe this abelian extension directly in terms of fn. Here we assume
that A" is a split Lie group (cf. Appendix C).

Using the smooth action of G on A, we can form the semi-direct product
Lie group A x G. Then we consider the map

0:G—=AxG, g—(f(9),9)

In view of f |n = fn € ZL(N,A), the restriction o | y is a homomorphism.
Moreover, for g,¢" € G we have

o(g9)o(g’) = (fl9) +9.f(g"),99) and o(g9') = (f(99) 99,
which implies that
5,(9.9') = 0(g)o(g)a(gg") " = (daf)(g,9"), 1) € AN x {1}.

Therefore the induced map : G — (A/AYN) x G is a group homomorphism, and
the pull-back of the abelian extension

AN 5 A% G — (AJAN) % G

is isomorphic to the abelian extension G = AN Xdgs G defined by dgf €
Z2(G,AN). Since f vanishes on N x G and G x N, the subset {0} x N is a
normal subgroup of G, and G/N = AN X7 G/N. m

Appendix E. A long exact sequence for Lie group
cohomology

Let G be a Lie group and
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be an extension of abelian Lie groups which are smooth G-modules such that ¢;
and ¢o are G-equivariant. We assume that (E.1) is an extension of Lie groups,
i.e., that there exists a section o: A3 — As of g2 which is smooth in an identity
neighborhood. Then the map

Al XA3—>A2, (a,b)n—>a+0(b)

is a local diffeomorphism (not necessarily a group homomorphism). This assump-
tion implies that the natural maps

CLG, Ay) — CY(G, A7) — CY(G, A3)

define a short exact sequence of chain complexes, hence induce a long exact
sequence in cohomology

0 — HY(G,A)) — HY(G, Ay) — HY(G, A3) — HX (G, Ay) — ...

.. — HPY(G, A3)—~HP(G, Ay) — HP(G, As) — HP(G, A3) — ...
The connecting map 6: H?(G, Az) — HPTL(G, A;) is constructed as follows. For
f € ZP(G, As) we first find f; € CP(G, Az) with f = gao fi. Then 0 =dgf =
q2 o dg f1 implies that dgfi is A;-valued, hence an element of ZPT1(G, A;), and

then 0([f]) = [da f1].
For p =0 we have H?(G, A) = A% so that the exact sequence starts with

A s AS — A — HN(G, A) — HNG, Ay) — ...

Remark E.1. A particularly interesting case arises if A is a smooth G-module,
Ay its identity component and 7y(A) := A/Ag. Then my(A) is discrete. Let us
assume, in addition, that G is connected. Then G acts trivially on the discrete
group mo(A). We therefore have an exact sequence

AS < A S (AP NG, Ay) — HYG, A) — HY(G,mo(A)) = 0,

where we use Z1(G,mo(A)) C C*(G,mo(A)) = 0 (Lemma 3.1) to see that
H! (G, my(A)) is trivial. Note that 64 is the characteristic homomorphism of the
smooth G-module A, considered as a map into H!(G, Ap), which we may con-
sider as a subspace of H!(g,a) (Definition 3.6). It follows in particular that the
natural map H!(G, Ag) — H(G, A) is surjective.

Moreover, we obtain an exact sequence

0 — H2(G, Ay) — H2(G, A) — H2(G,m(A)——H3(G, Ag) — ...

Since G is connected and my(A) is a trivial module, the group HZ2(G,mo(A))
classifies the central extensions of G by m(A), which is parametrized by the
abelian group Hom(m1(G), m9(A)) (Theorem 7.2). This leads to an exact sequence

(E2) 0— H2(G,Ay) — H*G,A)— = Hom(m (G), m(A)) — H3(G, Ay),
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where ~y assigns to an extension of G by A the corresponding connecting homo-
morphism 71 (G) — m(A) in the long exact homotopy sequence. For the universal
covering group ¢g: G — G we thus obtain an isomorphism

(E.3) H2(G, Ag) — H2(G, A).

With the results of Section 7 we have determined HZ(G, Ap) in terms of the
topology of G and the Lie algebra cohomology space HZ(g,a). To determine
H2(G,A) in terms of H2(G,Ap) and known data, one has to determine the
image of H2(G, A) in Hom(m (G),mo(A)). Proposition 6.4 shows that for each
f € Z%(G, A) the flux homomorphism fpy satisfies

Fpy = =04 0~([f]).

If A is a trivial G-module, then the divisibility of Ay implies that A =
Ap X mo(A) as Lie groups, hence as G-modules, and we thus obtain

H2(G, A) = H2(G, Ag) x HX(G, mo(A)) = H2(G, Ag) x Hom(m1(G), mo(A)). m

We refer to Example 7.6 for the discussion of a situation, where the relation
between H2(G, Ag) and HZ2(G, A) is more complicated.

Problem E. Calculate HP(G,A) for connected Lie groups G and discrete
abelian groups A. In this case A is a trivial G-module and the cohomology
groups are defined by cochains which are constant 0 in an identity neighbor-
hood. Clearly H?(G,A) = A, H}(G,A) = 0 follows from Proposition 3.4, and
HZ(G, A) = Hom(mi(G), A) = Hg, (G, A) from Theorem 7.2. What happens for
p>37 |

Appendix F. Multiplication in Lie algebra and Lie
group cohomology

In this appendix we collect some information concerning multiplication of Lie
algebra and Lie group cocycles which is used in Section 9.

Multiplication of Lie algebra cochains

Let U, V, W be topological modules of the topological Lie algebra g and m: Ux V —
W, (u,v) +— wu-v a g-equivariant continuous bilinear map, i.e., x.m(u,v) =
m(z.u,v) + m(u,z.v) for all z € g, w € U and v € V. Then we define a product

C(g,U) x Cl(g,V) — CI™(g, W), (a,f)—anp
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by

1
R Y (@)@, T()B@otprays- - Topra)-
" 0€Spiq

For p = q¢ =1 we have in particular
(aAB)(z,y) = a(z) - By) — aly) - B(z).

In the following we write for a p-linear map a: g? — V:

Alt(a) (21, ..., 2p) == Z sgn(o)a(To(rys - - To(p))-
o€S)y

In this sense we have )
aAf=—Alt(a-f),
plq!

where (- B)(x1,. .., Zpiq) == (Z1,...,Zp) - B(Tpt1,. -, Tptq)-
Lemma F.1. For a € C?(g,U) and 3 € Ci(g,V) we have

(F.1) dg(aNfB) =dga NG+ (—1)PaNdgf.

Proof. First we verify that for x € g the insertion map 4, satisfies
(F.2) iz(@AB) =izaAB+ (—1)PaAif.

For p = 0 or ¢ = 0 this formula is a trivial consequence of the definitions. We
may therefore assume p,q > 1. We calculate for zi,...,2,44 € g:

iz (A B) (22, Tprq) = (@ A B) (@1, 22, . .-, Tpiq)

1
= qu' Z sgn(a)oz(xgq(l), ey xo-—l(p))ﬁ(.fg—l(p+1), ce ,.Ta-—l(p_;’_q))
T 0€Sprg
1 1
= @ Z ... + ZTq' Z e
o(1)<p o(1)>p

For o(1) < p we get

Oé(x071(1), s ,x(f*l(p)) = (*1)0(1)+104(.’£1, To=1(1)y--- 7@3 s 7m0*1(p))
= (—1)0(1)+1(iz1Oz)(l‘a—l(l), ce ,a, ce ,.’L'a.—l(p)),

which leads to



Abelian extensions of infinite-dimensional Lie groups 187

Loy

P <y
1 & 4
= qu!Z > sgn(o) (= 1) (ia, @) (To-1(1)s - T Tt ()
=1 og(1)=i

BTo=1(pr1)- - To=1(piq))

1 & , 1 ,
- plg! ZAlt(lma B (2 Tpyg) = [ Alb(ig, - B) (22, - - Tpiq)
i=1

1)
= (iz1a A ﬁ)(‘r27 T ’xijq).

We likewise obtain

S S (L)@ A (1) (@3 Tpt):

ola!
P o(1)>p

This proves (F.2).
We now prove (F.1) by induction on p and ¢. For p =0 we have

(anB)(x1,...,2q) = B(z1,...,24)

=0
+Z( l)iJrja'ﬁ([xzax]]a s Ly 7@; a-rq)
1<J
q
= Z(_l)l(zz Oé) : ﬂ(xo, s L, 7Iq) + « (dgﬁ)(iEo, axq)
=0
and
(dgoe A B) (2o, - -y 2q) =~ sgn(0)(dga)(To(0)) - B(Ta(1)s- -+ To(q))
0ESg+1
1 q
=2 2 sen(@)(@ia) Blaoqy. o)
=0 o(0)=1
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This proves (F.1) for p = 0. A similar argument works for ¢ = 0. We now assume
that p,q > 1 and that (F.1) hold for the pairs (p — 1,¢) and (p,q — 1). Then we
obtain with the Cartan formulas and (F.2) for z € g:

iz (dga A B+ (=1)Pa A dgf3)
= (izdga) A B+ (=1)P dga N igB + (=1)Piga AdgB + a Aiydy3
=z.aAfB—dg(iza) AB+ (=1)P  dga Nig B+ (=1)Piga A dg3
+anz.f—andg(izf)
=xz.(aAB) —dglizanB)+ (1P dy(a NiB)
= z.(a A\ B) = dg(ic(a A B)) = iz(dg(a A B)).
Since z was arbitrary, this proves (F.1). [

The preceding lemma implies that products of two cocycles are cocycles and
that the product of a cocycle with a coboundary is a coboundary, so that we obtain
bilinear maps

HE(g,U) x H(g, V) — HZM(g, W), ([al, [8]) = [a A f]

which can be combined to a product H2(g,U) x H2(g,V) — H2 (g, W).

Multiplication of group cochains

Now let U,V,W be smooth modules of the Lie group G and m: U x V —
W, (u,v) — u-v a G-equivariant biadditive smooth map. Then we define a product

CP(G,U) x C4(G,V) — CPTYG,W), (a,B)— aUp,
where

(@UB)(g15--- agp-i-q) =algr, ... agp) “(g1-- '9p)ﬂ(9p+17 . agp-i-q)

(cf. [Bro82, p.110] up to the different signs which are caused by different signs for
the group differential).

Lemma F.2. For a € C?(G,U) and g € CI(G,V) we have
dg(a U ﬂ) =dqaUp+ (*1)1)0( Udaf.

Proof. For go,...,9p+q € G we have

dG(Oé U 5)(g0a cee 7gp+q)
p+q

= gO-(OZ U ﬁ)(glv e angrq) + Z(_l)z(a U B)(g(% ey Gi—1YGi5 - - >gp+q>
i=1

+ (_1)p+q+1(a U B)(go; - a9p+q—1)
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= (g0-2(91,---+9p)) - (90" 9p)-B(Gp+1>-- -+ Ip+q)

p
+ Z(_l)la(g(h ey 9i—19iy - - - 7917) ~go - 'gp'/B(gp+17 e agp+q)
i=1

p+q

+ Z (_l)ia(gow-wgp—l) '90"'gp—l'ﬁ(gpw"7gi—1gi7"'7gp+q)
i=p+1

+ (=P algo, . gp-1) - (90 Gp—1)-B(Gps - - - Iprg—1)
= (dGa)(QOa cee agp) : (90 e 'gp)'ﬁ(gvala cee vgp+q)

+ (=1)Pa(go, - 9p—1) - (g0~ 9p)-B(Gpt15- - -+ Iptq)
p+q

+a(903"'7gp71) 'gO"'gpr( Z (_1)iﬁ(gp7“'Jgiflg’iw"agp‘l*q)
i=p+1

+ (_1)p+q+1ﬂ(9pa e 79p+q71))
= (deaU B)(go, - - -, Gptq) + (=1)P (@ UdeB) (9o, - - -, Gp+q)-
|

Lemma F.2 implies that products of two cocycles are cocycles and that
the product of a cocycle with a coboundary is a coboundary, so that we obtain
biadditive maps

HE(G,.U) x H{(G,V) — HIT(G, W), ([a].[8]) = [eU ]

The following lemma shows that for Lie groups the multiplication of group
and Lie algebra cochains is compatible with the differentiation map D.

Lemma F.3. If G is a Lie group, U, V and W are smooth modules and
m: U xV — W 14s continuous bilinear and equivariant, then we have for a €

C?(G,U) and B € C1G,V) we have in CP*I(g, W) :
D(aUpB) = Da A Dp.
Proof. In view of Da = Alt(dPa(1,...,1)), we get
1 1
DaADg = I Alt(Da - DB) = }Tq!Alt(Alt(d”a(l, .., 1)) Als(di8(1,...,1)))
= Alt(dPa(1,...,1) - d96(1,...,1)),
so that it remains to see that
(0 UB)(1,... 1) = (@a)(L,.... 1) - (@H)L,..., 1),

but this follows immediately from the normalization of the cocycles and the chain
rule for jets, applied to the multiplication map m. u
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