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Abelian extensions of infinite-dimensional Lie groups

Karl-Hermann Neeb

Abstract

In the present paper we study abelian extensions of a connected Lie group G

modeled on a locally convex space by a smooth G -module A . We parameter-

ize the extension classes by a suitable cohomology group defined by locally

smooth cochains and construct an exact sequence that permits us to calculate

the group cohomology from the corresponding continuous Lie algebra coho-

mology and topological data. The obstructions for the integrability of a Lie

algebra 2-cocycle to a Lie group 2-cocycle are described in terms of a period

and a flux homomorphism. We also characterize the extensions with global

smooth sections, resp., those given by globally smooth cocycles. We apply

the general theory to abelian extensions of diffeomorphism groups, where the

Lie algebra cocycles are given by closed 2-forms on the manifold M . In this

case we show that period and flux homomorphism can be described directly

in terms of M , and for central extensions of groups of volume preserving dif-

feomorphisms corresponding to Lichnerowicz cocycles, this entails that the

flux homomorphism vanishes on an explicitly described covering group. We

also discuss the group cohomology of the diffeomorphism group of the circle

and its universal covering with values in modules of λ -densities.

Introduction

In this paper we undertake a detailed analysis of abelian extensions of Lie groups
which might be infinite-dimensional, a main point being to derive criteria for
abelian extensions of Lie algebras to integrate to extensions of corresponding
connected groups. This is of particular interest in the infinite-dimensional theory
because not every infinite-dimensional Lie algebra can be ‘integrated’ to a global
Lie group.

The concept of a Lie group used here is that a Lie group G is a manifold
modeled on a locally convex space, endowed with a group structure for which the
group operations are smooth (cf. [Mi83]; see also [Gl01] for non-complete model
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spaces). An abelian extension is an exact sequence of Lie groups A ↪→ Ĝ →→ G
which defines a locally trivial smooth principal bundle with the abelian structure
group A over the Lie group G . Then A inherits the structure of a smooth G-
module in the sense that the conjugation action of Ĝ on A factors through a
smooth map G×A→ A . The extension is called central if this action is trivial.

The natural context to deal with abelian extensions of Lie groups is provided
by a suitable Lie group cohomology with values in smooth modules: If G is
a Lie group and A a smooth G -module, then the space Cn

s (G,A) of (locally
smooth) n -cochains consists of maps Gn → A which are smooth in an identity
neighborhood and vanish on all tuples of the form (g1, . . . ,1, . . . , gn). We thus
obtain with the standard group differential dG a cochain complex (C•s (G,A), dG)
with cohomology groups Hn

s (G,A). If G and A are discrete, these groups coincide
with the standard cohomology groups of G with values in A ([EiML47]), but if
G is a finite-dimensional Lie group, they differ in general from the traditionally
considered cohomology groups defined by globally smooth cocycles as in [Gui80]
and [HocMo62]. In the following we assume that the identity component A0 of
A is of the form a/ΓA , where ΓA is a discrete subgroup of the Mackey complete
locally convex space a . Mackey completeness means that Riemann integrals of
smooth curves [0, 1] → a exist ([KM97]), which is needed to ensure the existence
of a -valued period integrals. We write qA : a → A0

∼= a/ΓA for the quotient map
which is a universal covering of A0 .

It is a key feature of Lie theory that one can calculate complicated objects
attached to a Lie group G in terms of linear objects attached to the Lie algebra
and additional topological data. This is exactly what we do in the present paper
with the cohomology groups H1

s (G,A) and H2
s (G,A). Passing to the derived

representation of the Lie algebra g of G on the Lie algebra a of A , we obtain
a module of the Lie algebra g which is topological in the sense that the module
structure is a continuous bilinear map g×a → a . Then the continuous alternating
maps gn → a form the (continuous) Lie algebra cochain complex (C•c (g, a), dg),
and its cohomology spaces are denoted Hn

c (g, a). It is shown in Appendix B that
for n ≥ 2 there is a natural derivation map

(0.1) Dn : Hn
s (G,A) → Hn

c (g, a), [f ] 7→ [Dnf ]

from locally smooth Lie group cohomology to continuous Lie algebra cohomology,
considered first by van Est in [Est53] (see also [Gui80, III.7.7] and [EK64]). This
map is based on the isomorphism

Hn
c (g, a) → Hn

dR,eq(G, a), [ω] 7→ [ωeq]

between Lie algebra cohomology and the de Rham cohomology of the complex
(Ω•dR,eq(G, a), d) of equivariant a -valued differential forms on G , introduced by
Chevalley and Eilenberg for finite-dimensional groups ([CE48]). Here ωeq denotes
the unique equivariant a -valued form on G with ωeq

1 = ω . For n = 1 we only have
a map D1 : Z1

s (G,A) → Z1
c (g, a), and if A is connected, then this map factors to
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a map D1 : H1
s (G,A) → H1

c (g, a) on the cohomology level. Since the Lie algebra
cohomology spaces Hn

c (g, a) are by far better accessible than those of G , it is
important to understand the amount of information lost by the map Dn , i.e., one
is interested in kernel and cokernel of Dn . A determination of the cokernel consists
in describing integrability conditions on cohomology classes [ω] ∈ Hn

c (g, a) which
are necessary for the existence of some f ∈ Zn

s (G,A) with Dnf = ω .

The present paper consists of three main parts. In Sections 1-8 we describe
the classification of abelian extensions of a Lie group G by a smooth G -module
A in terms of the cohomology group H2

s (G,A) and explain how this group can
be calculated in terms of H2

c (g, a) and data related to the first two homotopy
groups π1(G) and π2(G). Sections 9-11 are devoted to applications to several
types of groups of diffeomorphisms of compact manifolds. The remainder of the
paper consists of six appendices in which we prove auxiliary results that are used
either for the analysis of H2

s (G,A) or for the applications to diffeomorphism groups
in Section 9.

We now describe the main results of the paper in some more detail. After
briefly reviewing the relation between abelian extensions of topological Lie algebras
and the continuous cohomology space H2

c (g, a), we show in Section 2 that for a
connected Lie group G and each 2-cocycle f ∈ Z2

s (G,A) the multiplication

(a, g)(a′, g′) := (a+ g.a′ + f(g, g′), gg′)

on the product set A × G defines a Lie group structure, denoted A ×f G . Here
a subtle point is that in general the manifold structure on A ×f G is not the
product manifold structure. Only if f is a smooth function on G × G , we can
simply take the product structure and obtain a smooth multiplication. If A is a
discrete group, then A×f G is a covering group of G . Standard arguments show
that equivalent cocycles lead to equivalent extensions, and we derive that H2

s (G,A)
parameterizes the equivalence classes of Lie group extensions A ↪→ Ĝ →→ G for
which the action of G on A induced by the conjugation action of Ĝ on A coincides
with the original G -module structure. This was our original motivation to study
the (locally smooth) cohomology groups H2

s (G,A). If G is not connected, then an
appropriate subgroup H2

ss(G,A) ⊆ H2
s (G,A) classifies the extensions of G by A .

In Section 3 we briefly discuss the relation between smooth 1-cocycles on
a connected Lie group and the corresponding continuous Lie algebra 1-cocycles.
This is instructive for the understanding of the flux homomorphism occurring
below as an obstruction to the existence of global group extensions. For a Lie
algebra cocycle α ∈ Z1

c (g, a) we define the period homomorphism

P1([α]) = qA ◦ perα : π1(G) → AG, [γ] 7→ qA

( ∫
γ

α
)

=
∫

γ

α+ ΓA.

The first main point in Section 3 is the exactness of the sequence

(0.2) 0 → H1
s (G,A) D1−−→H1

c (g, a) P1−−→Hom(π1(G), AG)
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which is valid for a connected Lie group G if A is connected.
If the connected group G acts on a non-connected smooth module A , then

it acts trivially on the discrete abelian group π0(A) ∼= A/A0 of connected com-
ponents, but to determine the action on A , one needs more information than the
G -action on A0 . As a consequence of the exact sequence (0.2), we show that this
information is contained in the characteristic homomorphism

θA : π0(A) → H1
c (g, a), [a] 7→ D1[dGa].

In Sections 4-7 we determine kernel and cokernel of the map D2 from (0.1).
First we show in Section 4 that each cocycle ω ∈ Z2

c (g, a) determines a period
homomorphism

perω : π2(G) → aG, [σ] 7→
∫

σ

ωeq,

where σ : S2 → G is a (piecewise) smooth representative of the homotopy class,
whose existence has been shown in [Ne02]. In Section 5 we then show that if G
is simply connected and qA ◦ perω vanishes, then [ω] ∈ imD2 . For that we use a
slight adaptation of the method used in [Ne02] for central extensions and originally
inspired by the construction of group cocycles in [Est54] by using the symplectic
area of geodesic triangles (see also [DuGu78] for a similar method).

In Section 6 we eventually turn to the refinements needed for non-simply
connected groups which leads to the flux homomorphism

Fω : π1(G) → H1
c (g, a).

If qG : G̃→ G is the universal covering of G , and we identify π1(G) with ker qG ,
then Fω is the restriction to π1(G) of the flux cocycle,

Fω : G̃→ C1
c (g, a)/dga,

which is a group cocycle whose “derivative” is the Lie algebra cocycle fω(x) =
[ixω]. In general we cannot expect the space C1

c (g, a)/dga to carry any reasonable
Hausdorff topology. Therefore we cannot directly apply the results from Section 3
and thus have to work our way around this problem. For central extensions the flux
homomorphism is much less complicated because it simplifies to a homomorphism
π1(G) → HomLie(g, a) ([Ne02]). The main result of Section 6 is the Integrability
Criterion (Theorem 6.7) which says that, for a connected group A , [ω] ∈ im(D2)
if and only if

(0.3) P2([ω]) := (qA ◦ perω, Fω) = 0.

We also prove a generalization of this criterion for non-connected groups A which
is more complicated because the condition Fω = 0 has to be modified suitably. If G
is smoothly paracompact, then the closed a -valued 2-form ωeq defines a singular
cohomology class in H2

sing(G,A0) ∼= Hom(H2(G), A0), and from a description of
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generators of H2(G) in terms of π2(G) and π1(G), we show that in general the
vanishing of this cohomology class is weaker than P2([ω]) = 0. In Section 7 we
combine the results on the cokernel of D2 with a description of its kernel and get
the following exact sequence (Theorem 7.2):

0 → H1
s (G,A) I−−→H1

s (G̃, A) R−−→H1
(
π1(G), A

)G ∼= Hom
(
π1(G), AG

) δ−−−−→
δ−−−−→H2

s (G,A) D−−−−→H2
c (g, a) P2−−−−→Hom

(
π2(G), A

)
×Hom

(
π1(G),H1

c (g, a)
)
.

(0.4)

Here I and R are the natural inflation and restriction maps and δ assigns to a
group homomorphism γ : π1(G) → AG the quotient of the semi-direct product
A o G̃ by the graph {(γ(d), d) : d ∈ π1(G)} of γ , which is a discrete central
subgroup.

In many situations one would like to know when it is possible to integrate
Lie algebra cocycles to global smooth group cocycles f : G×G→ a . In Section 8
we show that, under the assumption that G is smoothly paracompact, this it is
possible if and only if ωeq is an exact 2-form and Fω vanishes (Proposition 8.4
and Remark 8.5).

Combining the exact sequence from above with the exact Inflation-Restriction
Sequence derived in Appendix D, we obtain for connected groups G and A ∼= a/ΓA

the following commutative diagram with an exact second row (Prop. D.8 and the
subsequent discussion) and exact columns (Proposition 3.4 for H1

s and Theorem
7.2 for H2

s ):

0 0 Hom(π1(G), AG) 0y y yδ

y
H1

s (G, A)
I−−−→ H1

s (G̃, A)
R−−−→Hom(π1(G), AG)

δ−−−→ H2
s (G, A)

I−−−→ H2
s (G̃, A)yD1

yD1

yid

yD2

yD2

H1
c (g,a)

id−−−→ H1
c (g,a)

P1−−−→Hom(π1(G), AG) H2
c (g,a)

id−−−→ H2
c (g,a)yP1

y yP2

yP2

Hom(π1(G), AG) 0
Hom(π2(G),AG)⊕

Hom(π1(G),H1
c (g,a))

Hom(π2(G), AG)

In the remaining Sections 9-11 we apply the general theory to various kinds
of diffeomorphism groups. In Section 9 we turn to the special situation arising
for the group G := Diff(M)op0 of diffeomorphism of a compact manifold, its Lie
algebra g := V(M) (the smooth vector fields on M ), the smooth G -module
A = a = C∞(M,V ) (V a Fréchet space), and the special class of 2-cocycles of
the form ωg(X,Y ) := ωM (X,Y ), where ωM is a closed V -valued 2-form on M .
In this case we explain how information on the period map and the flux cocycle
can be calculated in geometrical terms. The two main results are that that the
period map

perωg
: π2(Diff(M)) → C∞(M,V )V(M) = V
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factors through the evaluation map evD
m0

: Diff(M) →M,ϕ 7→ ϕ(m0) to the map

perωM
: π2(M,m0) → V, [σ] 7→

∫
σ

ωM .

Likewise the flux homomorphism can be interpreted as a map

Fω : π1(Diff(M)) → H1
dR(M,V ) ∼= Hom(π1(M), V ),

that vanishes if and only if all integrals of the 2-form ωM over smooth cycles of
the form H : T2 → M, (s, t) 7→ α(s).β(t) with a loop α in Diff(M) and β in M
vanish.

In Section 10 we consider the important group G = Diff(S1)0 of orientation
preserving diffeomorphisms of the circle and the module a of λ -densities for λ ∈ R .
The corresponding group cocycles have been discussed by Ovsienko and Roger in
[OR98]. Here we extend their results to Lie algebra cocycles not integrable on G

which integrate to group cocycles of the universal covering group G̃ , for which we
provide explicit formulas. As a byproduct of this construction, we obtain a non-
trivial abelian extension of the group SL2(R) by an infinite-dimensional Fréchet
space. Since all finite-dimensional Lie group extensions of SL2(R) by vector spaces
split on the Lie algebra level, this example nicely illustrates the difference between
the finite and infinite-dimensional theory.

If µ is a volume form on the compact manifold M and D(M,µ) :=
Diff(M,µ)op0 the identity component of the group Diff(M,µ) of volume preserving
diffeomorphisms of M with Lie algebra V(M,µ) := {X ∈ V(M) : LXµ = 0} , then
interesting scalar-valued Lie algebra cocycles (Lichnerowicz cocycles) arise from
closed 2-forms ω ∈ Z2

dR(M,R) by

V(M,µ)× V(M,µ) → R, (X,Y ) 7→
∫

M

ω(X,Y )µ.

The existence of corresponding central extensions is addressed in Section 11, where
we use the information on the C∞(M,R)-valued cocycle on the full Lie algebra
V(M) derived in Section 9 to show in particular that if the manifold M is a
compact connected Lie group, then each Lichnerowicz cocycle can be integrated
to a group cocycle on a certain covering group D̃(M,µ) which is an extension of
D(M,µ) by the discrete group π1(M). The main point is to show that the flux
cocycle vanishes on the fundamental group of the covering group D̃(M,µ).

We conclude this paper with several appendices dealing with the relation be-
tween differential forms and Alexander–Spanier cohomology (Appendix A), which
in turn is used in Appendix B to show that the maps Dn from locally smooth
Lie group cochains to Lie algebra cochains intertwine the differentials dG and dg

(cf. [Est53], [EK64]). In Appendix C we describe a general procedure to construct
global Lie groups from local data, which is used in Section 2 and in [Ne04a] to
obtain Lie group structures on group extensions. For calculations of cohomology
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groups, the corresponding exact Inflation-Restriction Sequence for Lie group co-
homology is provided in Appendix D and the long exact sequence in Lie group
cohomology induced from an exact sequence of smooth modules in Appendix E.
The latter sequence is obtained from general homological algebra, whereas the for-
mer contains certain subtleties related to smoothness conditions that are specific
in the Lie theoretic context. Finally we show in Appendix F that multiplication
of Lie group and Lie algebra cocycles is compatible with the differentiation maps
Dn . This has interesting applications in various contexts, in particular in Section
10 and [Ne04b].

If G is simply connected, the criterion for the integrability of a Lie algebra
cocycle ω to a group cocycle is simply that all periods of the equivariant a -
valued 2-form ωeq are contained in ΓA = ker qA ⊆ a . Similar conditions arise in
the theory of abelian principal bundles on smoothly paracompact presymplectic
manifolds (M,ω), i.e., ω is a closed 2-form on M . Here the integrality of the
cohomology class [ω] ∈ H2

sing(M,R) is equivalent to the existence of a T-principal
bundle T ↪→ M̂ →→ M whose first Chern class is [ω] (cf. [Bry93]). If G is
smoothly paracompact, ω ∈ Z2

c (g, a) and A = A0 as above, then the vanishing
of the corresponding cohomology class in H2

sing(G,A), which corresponds to the
“integrality” of the periods, also implies the existence of a corresponding A -bundle
over G , but this does not imply in general that ω corresponds to an extension
of G by A . It might be necessary to consider a non-connected group A′ with
π0(A′) ∼= π1(G) (see Section 6 for more details).

It is instructive to illustrate the difference between abelian and central ex-
tensions of Lie groups in the context of abelian principal bundles. Let q : P →M
be a smooth principal bundle with the abelian structure group Z over the com-
pact connected manifold M . Then the group Diff(P )Z of all diffeomorphisms of P
commuting with Z (the automorphism group of the bundle) is an abelian extension
of an open subgroup of Diff(M) by the gauge group Gau(P ) ∼= C∞(M,Z) of the
bundle. Here the conjugation action of Diff(M) on Gau(P ) is given by composing
functions with diffeomorphisms. In this context central extensions arise as follows.
Let θ ∈ Ω1(P, z) be a principal connection 1-form and ω ∈ Ω2(M, z) its curva-
ture, i.e., q∗ω = −dθ . Then the subgroup Diff(P )Z

θ of Diff(P )Z preserving θ is
a central extension of an open subgroup of Sp(M,ω) := {ϕ ∈ Diff(M) : ϕ∗ω = ω}
by Z . Therefore the passage from Diff(M) to the much smaller subgroup Sp(M,ω)
corresponds to the passage from an abelian extension by C∞(M,Z) to a central
extension by Z . Philosophically this means that diffeomorphism groups have nat-
ural abelian extensions, whereas symplectomorphism groups have natural central
extensions.

This point of view is also crucial in the representation theory of infinite-
dimensional Lie groups, where one is forced to consider Lie groups G acting on a
manifold M on which we have a circle bundle q : P → M with a connection θ ,
but its curvature ω is not G -invariant. Then it might happen that each element
of G can be lifted to a bundle automorphism on P , but this automorphism will
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not preserve the connection 1-form. This leads to the abelian extension of G by
the gauge group C∞(M,Z), instead of the central extension by Z , to which we
may reduce if G preserves the curvature form. Note that each abelian extension
A ↪→ Ĝ →→ G corresponding to a Lie algebra cocycle ω ∈ Z2

c (g, a) is of this
form, because the left translation action of G on itself does not preserve the
equivariant 2-form ωeq , which plays the role of the curvature of the A -bundle
Ĝ → G . We refer to [Mi89] for a detailed discussion of the case where M is a
restricted Graßmannian of a polarized Hilbert space and the groups are restricted
operator groups of Schatten class p > 2, resp., mapping groups C∞(M,K), where
K is finite-dimensional and M is a compact manifold of dimension ≥ 2 (see also
[PS86] for a discussion of related points). It is for the same reason that abelian
extensions of vector field Lie algebras occur naturally in mathematics physics (cf.
[La99] and also [AI95] for more general applications of Lie group cohomology in
physics), and the need for a corresponding global group corresponding to these
abelian extensions arises naturally. One way to get these global groups, which
is complementary to our direct approach, is to use crossed homomorphisms of
Lie groups to pull back central extensions to abelian ones. Y. Billig applied this
method quite successfully in [Bi03], where he introduces for orientable manifolds
natural analogs of the Virasoro group which are abelian extensions of Diff(M).

Another motivation for a general study of abelian extensions comes from the
fact that for the group Diff(M), where M is a compact orientable manifold, one
has natural modules given by tensor densities and spaces of tensors on M . The
corresponding abelian extensions can be used to interprete certain partial differ-
ential equations as geodesic equations on a Lie group, which leads to important
information on the behavior of their solutions ([Vi02], [AK98]).

If the smooth G -module A is trivial and the space H2
c (g, a) is trivial, or if

at least D = 0, then the exact sequence (0.4) leads to

H2
s (G,A) ∼= Hom

(
π1(G), A

)
/Hom

(
G̃, A

)
|π1(G),

a formula which has first been obtained for connected compact Lie groups by
A. Shapiro ([Sh49]). A crucial simplification in the finite-dimensional case is that
extensions of simply connected Lie groups have smooth global sections, so that one
can get along by using only globally smooth cochains. Along these lines many spe-
cific results have been obtained by G. Hochschild ([Ho51]). For finite-dimensional
Lie groups our integrability criterion for Lie algebra 2-cocycles simplifies signifi-
cantly because π2(G) vanishes ([Car52]). This in turn has been used by É. Cartan
to construct central Lie group extensions and thus to derive Lie’s Third Theorem
that each finite-dimensional Lie algebra belongs to a global Lie group. Our char-
acterization of abelian extensions with global smooth sections in Section 8 follows
Cartan’s construction.

Cohomology theories for topological groups with values in topological mod-
ules have been studied from various points of view by several people. In [Se70]
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G. Segal defines cohomology of topological groups as a derived functor. In his con-
text the values lie in an abelian group which is compactly generated and locally
contractible as an abelian group in the category of k -spaces. The corresponding
cohomology groups H2(G,A) classify topological extensions with continuous local
sections. In a similar fashion D. Wigner defines cohomology for topological groups
in terms of Ext-functors and explains how it can be described in terms of group
cocycles.

In [Mo64] C. C. Moore defines group cohomology for second countable locally
compact groups in terms of cochains which are Borel measurable. This is natural
in this context, where group extensions have Borel measurable cross sections
([Ma57]). For finite-dimensional Lie groups measurable cocycles are equivalent to
locally smooth cocycles ([Va85, Th. 7.21]). In [Mo76] Moore also discusses universal
central extensions of finite-dimensional Lie groups and criteria for the triviality of
all central extensions. Universal central extensions of finite-dimensional groups are
also described in [CVLL98], which is a nice survey of central T-extensions of Lie
groups and their role in quantum physics. For infinite-dimensional groups universal
central extensions are constructed in [Ne03b] and for locally convex root graded
Lie algebras in [Ne03a].

Hochschild and Mostow approach in [HocMo62] cohomology of finite-dimen-
sional Lie groups by injective resolutions in a topological and a differentiable
setting, which leads to continuous and differentiable cohomologies H•

c (G,V ) and
H•

d (G,V ) with values in a locally convex space V on which G acts continuously,
resp., differentiably. Under mild assumptions on V (concerning the existence of
V -valued integrals), they show that for a connected finite-dimensional Lie group
G there are isomorphisms

(0.5) H•
c (G,V ) ∼= H•

d (G,V ) ∼= H•(g, k, V ),

where the latter term denotes relative Lie algebra cohomology, and k is the Lie
algebra of a maximal compact subgroup K of G ([HocMo62, Th. 6.1]).

The isomorphism (0.5) generalizes a result of van Est ([Est55]) to infinite-
dimensional modules V (cf. also [Gui80]). In [GW78] A. Guichardet and D. Wigner
give an explicit realization of the isomorphism (0.5) for a semisimple group G by
writing down an explicit map from Hn(G,V ) to Hn(g, k, V ) which is a restriction
of the map Dn in (0.1). Here a main point is that after averaging over the maximal
compact group K , one can represent group cocycles by functions f for which
Dnf is a relative cocycle in Zn(g, k, V ) (cf. also [Est55, Thm. 1]). This averaging
process would not work for locally smooth cochains because they do not form
a translation invariant space of functions. The homogeneous space G/K is a
Riemannian symmetric space of semi-negative curvature, so that two points are
joint by a unique geodesic. This implies that one can assign to each ordered triple
in G/K in a G -equivariant fashion a differentiable 2-simplex, and integrating G -
invariant closed forms leads directly from relative Lie algebra 2-cocycles to smooth
global group cocycles ([DuGu78]). It is interesting to compare this approach with
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our integration method in Section 5, where we choose some G -invariant system
of “line segments” on G , whereas the symmetric space G/K has the natural
G -invariant system consisting of geodesic segments.

In all situations where one wants to apply spectral sequence arguments, one
is forced to assume that the cohomology spaces occurring as target spaces of co-
cycles are finite-dimensional. In [HocMo62] this leads to the assumption that the
topological group G under consideration is of finite homology type, i.e., for each
finite-dimensional topological G -module V the cohomology spaces Hn

c (G,V ) are
finite-dimensional (cf. also [Est58] for similar assumptions). It is clear that for
infinite-dimensional groups such assumptions are only met in very rare circum-
stances. Another important feature of finite-dimensional connected Lie groups G
is that for a maximal compact subgroup K the quotient space G/K is contractible.
Therefore one can combine averaging over K with the smooth contractibility of
G/K , which eventually leads to the van Est Theorem (0.5) above. In [Est53]
van Est studies another spectral sequence relating the cohomology H•

gs(G, a) of
a finite-dimensional connected Lie group G with values in a finite-dimensional
smooth G -module a and defined by globally smooth cochains to the cohomology
of its Lie algebra. The group H2

gs(G,A) ∼= H2
gs(G, a) can be viewed as a subgroup

of H2
s (G,A) corresponding to extensions with smooth global sections, but it might

be quite small if the first two homotopy groups of G are non-trivial and A 6= a
(cf. Remark 8.5).

We emphasize that our results hold for Lie groups which are not necessarily
smoothly paracompact, so that one cannot use smooth partitions of unity to
construct bundles for prescribed curvature forms and de Rham’s Theorem is not
available (cf. [KM97, Th. 16.10]). This point is important because many interesting
Banach–Lie groups are not smoothly paracompact since their model spaces do
not permit smooth bump functions (cf. [KM97]). For smooth loop groups central
extensions are discussed in [PS86], but in this case many difficulties are absent
due to the fact that loop groups are modeled on nuclear Fréchet spaces which
are smoothly regular ([KM97, Th. 16.10]), hence smoothly paracompact because
this holds for every smoothly Hausdorff second countable manifold modeled on a
smoothly regular space ([KM97, 27.4]).

The present paper is a sequel to [Ne02], dealing with central extensions. For-
tunately it was possible to use some of the constructions from [Ne02] quite directly
in the present paper, but the material on the flux homomorphism developed in
Section 6 is completely new. It is quite trivial for central extensions, where it does
not play such an important role. In [Ne04a] the results on abelian extensions are
used to classify general extensions: Let N be a Lie group and Z(N) its center.
Suppose further that Z(N) is an initial Lie subgroup, i.e., that Z(N) carries a
Lie group structure and every smooth map M → N with values in Z(N) de-
fines a smooth map M → Z(N). Then the group H2

ss(G,Z(N)) parameterizes
the equivalence classes of extensions of G by N corresponding to a given smooth
outer action of G on N . We refer to [Ne04a] for more details and the definition
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of a smooth outer action.
In the present paper we give a complete description of kernel and cokernel

of the map D2 for a connected Lie group G and a connected module A ∼= a/ΓA .
We plan to return in a subsequent paper to this problem for non-connected groups
G , which, in view of the present results, means to obtain accessible criteria for the
extendibility of a 2-cocycle on the identity component G0 of G to the whole group
G . For trivial modules A , i.e., central extensions of G0 , this leads to obstructions
in H3(π0(G), A) arising as the characteristic class of a crossed module

1 → A→ Ĝ→ G→ π0(G) → 1

(cf. [Ne04a]). The crossed module structure contains in particular an action of the
whole group G by automorphisms on the central extension Ĝ of G0 . The existence
of this action is closely related to the invariance of the class [ω] ∈ H2

c (g, a) under
the action of π0(G) (see the discussion of automorphisms of extensions in the
appendix of [Ne04a]), and this in turn is related to the question whether H2

ss(G,A)
is strictly smaller than H2

s (G,A).
We are grateful to S. Haller for providing a crucial topological argument

concerning the flux homomorphism for the group of volume preserving diffeomor-
phisms (cf. Section 11). We also thank C. Vizman for many inspiring discussions
on the subject, and G. Segal for suggesting a different type of obstructions to
the integrability of abelian extensions in [Se02]. Many thanks go also to A. Dzhu-
madildaev for asking for global central extensions of groups of volume preserving
diffeomorphisms which correspond to the cocycles he studied on the Lie algebra
level in [Dz92]. This led us to the results in Section 11.

0. Preliminaries and notation

In this paper K ∈ {R,C} denotes the field of real or complex numbers. Let X
and Y be topological K-vector spaces, U ⊆ X open and f : U → Y a map. Then
the derivative of f at x in the direction of h is defined as

df(x)(h) := lim
t→0

1
t

(
f(x+ th)− f(x)

)
whenever the limit exists. The function f is called differentiable at x if df(x)(h)
exists for all h ∈ X . It is called continuously differentiable or C1 if it is continuous,
differentiable at all points of U and

df : U ×X → Y, (x, h) 7→ df(x)(h)

is a continuous map. It is called a Cn -map if f is C1 and df is a Cn−1 -map,
and C∞ (smooth) if it is Cn for all n ∈ N . This is the notion of differentiability
used in [Mil83], and [Gl01], where the latter reference deals with the modifications
necessary for incomplete spaces.
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Since we have a chain rule for C∞ -maps between locally convex spaces
([Gl01]), we can define smooth manifolds M as in the finite-dimensional case. A
Lie group G is a smooth manifold modeled on a locally convex space g for which
the group multiplication mG : G × G → G and the inversion are smooth maps.
We write 1 ∈ G for the identity element, λg(x) = gx for left multiplication,
ρg(x) = xg for right multiplication, and cg(x) := gxg−1 for conjugation. The
tangent map TmG : T (G×G) ∼= TG×TG→ TG defines a Lie group structure on
TG , and the zero section G ↪→ TG realizes G as a subgroup of TG . In this sense
we obtain the natural left and right action of G on TG by restricting TmG . We
write (g, v) 7→ g.v := TmG(g, v) for the left action and (v, g) 7→ v.g := TmG(v, g)
for the right action. In this sense each x ∈ T1(G) corresponds to a unique left
invariant vector field xl(g) = g.x and the space of left invariant vector fields is
closed under the Lie bracket of vector fields, hence inherits a Lie algebra structure.
In this sense we obtain on g := L(G) := T1(G) a continuous Lie bracket which
is uniquely determined by [x, y]l = [xl, yl] . For the right invariant vector fields
xr(g) = x.g we then have [xr, yr] = −[x, y]r .

We call a Lie algebra g which is a topological vector space such that the
Lie bracket is continuous a topological Lie algebra. In this sense the Lie algebra
of a Lie group is a locally convex topological Lie algebra. If G is a connected Lie
group, then we write qG : G̃→ G for its universal covering Lie group and identify
π1(G) with the kernel of qG .

Throughout this paper we write abelian groups A additively with 0 as
identity element. If G is a Lie group, then a smooth G-module is an abelian
Lie group A , endowed with a smooth G -action ρA : G × A → A by group
automorphisms. We sometimes write (A, ρA) to include the notation ρA for the
action map. If a is the Lie algebra of A , then the smooth action induces a smooth
action on a , so that a also is a smooth G -module, hence also a module of the
Lie algebra g of G by the derived representation. In the following we shall mostly
assume that the identity component A0 of A is of the form A0

∼= a/ΓA , where
ΓA ⊆ a is a discrete subgroup of the Mackey complete space a . Then the quotient
map qA : a → A0 is the universal covering map of A0 , and π1(A) ∼= ΓA .

A linear subspace W of a topological vector space V is called (topologically)
split if it is closed and there is a continuous linear map σ : V/W → V for which
the map

W × V/W → V, (w, x) 7→ w + σ(x)

is an isomorphism of topological vector spaces. Note that the closedness of W
guarantees that the quotient topology turns V/W into a Hausdorff space which
is a topological vector space with respect to the induced vector space structure. A
continuous linear map f : V →W between topological vector spaces is said to be
(topologically) split if the subspaces ker(f) ⊆ V and im(f) ⊆W are topologically
split.
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1. Abelian extensions of topological Lie algebras

For the definition of the cohomology of a topological Lie algebra g with values in
a topological g-module a we refer to Appendix B.

Definition 1.1. Let g and n be topological Lie algebras. A topologically split
short exact sequence

n ↪→ ĝ →→ g

is called an extension of g by n . We identify n with its image in ĝ , and write ĝ
as a direct sum ĝ = n⊕ g of topological vector spaces. Then n is a topologically
split ideal of ĝ and the quotient map q : ĝ → g corresponds to (n, x) 7→ x . If n is
abelian, then the extension is called abelian.

Two extensions n ↪→ ĝ1 →→ g and n ↪→ ĝ2 →→ g are called equivalent if there
exists a morphism ϕ : ĝ1 → ĝ2 of topological Lie algebras such that the diagram

n ↪→ ĝ1 →→ gyidn

yϕ

yidg

n ↪→ ĝ2 →→ g

commutes. It is easy to see that this implies that ϕ is an isomorphism of topological
Lie algebras, hence defines an equivalence relation. We write Ext(g, n) for the set
of equivalence classes of extensions of g by n denoted [ĝ] .

We call an extension q : ĝ → g with ker q = n trivial, or say that the
extension splits, if there exists a continuous Lie algebra homomorphism σ : g → ĝ
with q ◦ σ = idg . In this case the map

n oS g → ĝ, (n, x) 7→ n+ σ(x)

is an isomorphism, where the semi-direct sum is defined by the homomorphism

S : g → der(n), S(x)(n) := [σ(x), n].

Definition 1.2. Let a be a topological g-module. To each continuous 2-cocycle
ω ∈ Z2

c (g, a) we associate a topological Lie algebra a ⊕ω g as the topological
product vector space a× g endowed with the Lie bracket

[(a, x), (a′, x′)] := (x.a′ − x′.a+ ω(x, x′), [x, x′]).

The quotient map q : a ⊕ω g → g, (a, x) 7→ x is a continuous homomorphism of
Lie algebras with kernel a , hence defines an a -extension of g . The map σ : g →
a⊕ω g, x 7→ (0, x) is a continuous linear section of q .
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Proposition 1.3. Let (a, ρa) be a topological g-module and write Extρa(g, a)
for the set of all equivalence classes of a-extensions ĝ of g for which the adjoint
action of ĝ on a induces the given g-module structure on a . Then the map

Z2
c (g, a) → Extρa(g, a), ω 7→ [a⊕ω g]

factors through a bijection

H2
c (g, a) → Extρa(g, a), [ω] 7→ [a⊕ω g].

Proof. Suppose that q : ĝ → g is an a -extension of g for which the induced
g-module structure on a coincides with ρa . Let σ : g → ĝ be a continuous linear
section, so that q ◦ σ = idg . Then

ω(x, y) := [σ(x), σ(y)]− σ([x, y])

has values in the subspace a = ker q of ĝ , and the map a×g → ĝ, (a, x) 7→ a+σ(x)
is an isomorphism of topological Lie algebras a⊕ω g → ĝ .

It is easy to verify that a⊕ω g ∼ a⊕η g if and only if ω−η ∈ B2
c (g, a). There-

fore the quotient space H2
c (g, a) classifies the equivalence classes of a -extensions

of g by the assignment [ω] 7→ [a⊕ω g] (cf. [CE48]).

2. Abelian extensions of Lie groups

Let A be a smooth G -module. In this section we explain how to assign to a
cocycle f ∈ Z2

s (G,A) (satisfying some additional smoothness condition if G is
not connected) a Lie group A×f G which is an extension of A by G for which the
induced action of G on A coincides with the original one. We shall see that this
assignment leads to a bijection between a certain subgroup H2

ss(G,A) of H2
s (G,A)

with the set of equivalence classes of extensions of G by the smooth G -module A .
If G is connected, then H2

ss(G,A) = H2
s (G,A). We also show that the assignment

f 7→ A×fG is compatible with the derivation map D : Z2
s (G,A) → Z2

c (g, a) in the
sense that a⊕Df g is the Lie algebra of A×f G (cf. Appendix B for definitions).

Lemma 2.1. Let G be a group, A a G-module and f : G×G→ A a normalized
2-cocycle, i.e.,

f(g,1) = f(1, g) = 0, f(g, g′)+f(gg′, gg′) = g.f(g′, g′′)+f(g, g′g′′), g, g′, g′′ ∈ G.

Then we obtain a group A ×f G by endowing the product set A × G with the
multiplication

(2.1) (a, g)(a′, g′) := (a+ g.a′ + f(g, g′), gg′).

The unit element of this group is (0,1) , inversion is given by

(2.2) (a, g)−1 = (−g−1.(a+ f(g, g−1)), g−1),
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and conjugation by the formula

(2.3) (a, g)(a′, g′)(a, g)−1 =
(
a+g.a′−gg′g−1.a+f(g, g′)−f(gg′g−1, g), gg′g−1

)
.

The map q : A×f G → G, (a, g) 7→ g is a surjective homomorphism whose kernel
A × {1} is isomorphic to A . The conjugation action of A ×f G on the normal
subgroup A factors through the original action of G on A .

Proof. The condition f(1, g) = f(g,1) = 0 implies that (0,1) is an identity
element in A×f G , and the associativity of the multiplication is equivalent to the
cocycle condition. The formula for the inversion is easily verified. Conjugation in
A×f G is given by

(a, g)(a′, g′)(a, g)−1

=
(
a+ g.a′ + f(g, g′), gg′

)(
− g−1.(a+ f(g, g−1)), g−1

)
=

(
a+ g.a′ + f(g, g′)− gg′g−1.(a+ f(g, g−1)) + f(gg′, g−1), gg′g−1

)
.

To simplify this expression, we use

f(g, g−1) = f(g, g−1) + f(1, g) = f(g,1) + g.f(g−1, g) = g.f(g−1, g)

and

f(gg′, g−1) + f(gg′g−1, g) = f(gg′,1) + gg′.f(g−1, g) = gg′.f(g−1, g)

to obtain

(a, g)(a′, g′)(a, g)−1

=
(
a+ g.a′ + f(g, g′)− gg′g−1.a− gg′g−1.f(g, g−1) + f(gg′, g−1), gg′g−1

)
=

(
a+ g.a′ + f(g, g′)− gg′g−1.a− gg′.f(g−1.g) + f(gg′, g−1), gg′g−1

)
=

(
a+ g.a′ + f(g, g′)− gg′g−1.a− f(gg′g−1, g), gg′g−1

)
.

In particular, we obtain

(0, g)(a,1)(0, g)−1 = (g.a,1).

This means that the action of G on A given by q(g).a := gag−1 for g ∈ A×f G
coincides with the given action of G on A .

Definition 2.2. An extension of Lie groups is a surjective morphism q : Ĝ→ G
of Lie groups with a smooth local section for which N := ker q has a natural Lie
group structure such that the map N × Ĝ → Ĝ, (n, g) 7→ ng is smooth. Then
the existence of a smooth local section implies that Ĝ is a smooth N -principal
bundle, so that N is a split Lie subgroup of Ĝ in the sense of Definition C.4.
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We call two extensions N ↪→ Ĝ1 →→ G and N ↪→ Ĝ2 →→ G of the Lie group
G by the Lie group N equivalent if there exists a Lie group morphism ϕ : Ĝ1 → Ĝ2

such that the following diagram commutes:

N ↪→ Ĝ1 →→ GyidN

yϕ

yidG

N ↪→ Ĝ2 →→ G.

It is easy to see that any such ϕ is an isomorphism of groups and that its inverse
is smooth. Thus ϕ is an isomorphism of Lie groups, and we obtain indeed an
equivalence relation. We write Ext(G,N) for the set of equivalence classes of Lie
group extensions of G by N .

Lemma 2.3. If A ↪→ Ĝ1
q1−−→G and A ↪→ Ĝ2

q2−−→G are equivalent abelian
extensions of G by the Lie group A , then the induced actions of G on A coincide.

Proof. An equivalence of extensions yields a morphism of Lie groups ϕ : Ĝ1 →
Ĝ2 with ϕ |A = idA and q2 ◦ ϕ = q1 . For g ∈ G and a ∈ A the extension
Ĝ1 defines an action of G on A by g ∗1 a := g1ag

−1
1 , where q1(g1) = g . We

likewise obtain from the extension Ĝ2 an action of G on A by g ∗2 a := g2ag
−1
2

for q2(g2) = g . We then have

g∗1a = g1ag
−1
1 = ϕ(g1ag−1

1 ) = ϕ(g1)aϕ(g1)−1 = q2(ϕ(g1))∗2a = q1(g1)∗2a = g∗2a.

Definition 2.4. If (A, ρA) is a smooth G -module, then an extension of G by A
is always understood to be an abelian Lie group extension q : Ĝ→ G with kernel A
for which the natural action of G on A induced by the conjugation action coincides
with ρA . In view of Lemma 2.3, it makes sense to write ExtρA

(G,A) ⊆ Ext(G,A)
for the subset of equivalence classes of those extensions of G by A for which the
induced action of G on A coincides with ρA .

Definition 2.5. Let G be a Lie group and A a smooth G -module. For f ∈
Z2

s (G,A) (cf. Definition B.2) and g ∈ G we consider the function

fg : G→ A, fg(g′) := f(g, g′)− f(gg′g−1, g)

and write

Z2
ss(G,A) := {f ∈ Z2

s (G,A) : (∀g ∈ G) fg ∈ C1
s (G,A)}

for those f ∈ Z2
s (G,A) for which, in addition, all functions fg are smooth in an

identity neighborhood of G .



Abelian extensions of infinite-dimensional Lie groups 85

If ` ∈ C1
s (G,A) and f(g, g′) = (dG`)(g, g′) = `(g) + g.`(g′)− `(gg′), then

fg(g′) = `(g) + g.`(g′)− `(gg′)−
(
`(gg′g−1) + (gg′g−1).`(g)− `(gg′)

)
= `(g) + g.`(g′)− `(gg′g−1)− (gg′g−1).`(g)

is smooth in an identity neighborhood of G for each g ∈ G . Therefore B2
s (G,A) ⊆

Z2
ss(G,A) and

H2
ss(G,A) := Z2

ss(G,A)/B2
s (G,A)

is a subgroup of H2
s (G,A).

Proposition 2.6. Let G be a Lie group and (A, ρA) a smooth G-module. Then
for each f ∈ Z2

ss(G,A) the group A×f G carries the structure of a Lie group such
that the map q : A ×f G → G, (a, g) 7→ g is a Lie group extension of G by the
smooth G-module A . Conversely, every Lie group extension of G by the smooth
G-module A is equivalent to one of this form. The assignment

Z2
ss(G,A) → ExtρA

(G,A), f 7→ [A×f G]

factors through a bijection

H2
ss(G,A) → ExtρA

(G,A).

If G is connected, then Z2
ss(G,A) = Z2

s (G,A) and we obtain a bijection

H2
s (G,A) → ExtρA

(G,A).

Proof. (1) Let f ∈ Z2
ss(G,A) and form the group Ĝ := A×f G (Lemma 2.1).

First we construct the Lie group structure on Ĝ . Let UG ⊆ G be an open
symmetric 1 -neighborhood such that f is smooth on UG × UG , and consider
the subset

U := A× UG = q−1(UG) ⊆ Ĝ = A×f G.

Then U = U−1 . We endow U with the product manifold structure from A×UG .
Since the multiplication mG |UG×UG

: UG ×UG → G is continuous, there exists an
open identity neighborhood VG ⊆ UG with VGVG ⊆ UG . Then the set V := A×VG

is an open subset of U such that the multiplication map

V × V → U,
(
(a, x), (a′, x′)

)
→ (a+ x.a′ + f(x, x′), xx′)

is smooth. The inversion

U → U, (a, x) 7→
(
− x−1.(a+ f(x, x−1)), x−1

)
(Lemma 2.1) is also smooth.
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For (a, g) ∈ Ĝ let Vg ⊆ UG be an open identity neighborhood such that the
conjugation map cg(x) = gxg−1 satisfies cg(Vg) ⊆ UG . Then c(a,g)(q−1(Vg)) ⊆ U
and the conjugation map

c(a,g) : q−1(Vg) → U, (a′, g′) 7→ (a+ g.a′ − gg′g−1.a+ fg(g′), gg′g−1)

(Lemma 2.1) is smooth in an identity neighborhood because f ∈ Z2
ss(G,A).

Now Theorem C.2 implies that Ĝ carries a unique Lie group structure for
which the inclusion map U = A× UG ↪→ Ĝ restricts to a diffeomorphism of some
open 1 -neighborhood in A×G to an open 1 -neighborhood in Ĝ . It is clear that
with respect to this Lie group structure on Ĝ , the map q : Ĝ → G defines a
smooth A -principal bundle because the map VG → Ĝ, g 7→ (0, g) defines a section
of q which is smooth on an identity neighborhood in G which might be smaller
than VG .

(2) Assume, conversely, that q : Ĝ→ G is an extension of G by the smooth
G -module A . Then there exists an open 1 -neighborhood UG ⊆ G and a smooth
section σ : UG → Ĝ of the map q : Ĝ → G . We extend σ to a global section
G→ Ĝ which need neither be continuous nor smooth. Then

f(x, y) := σ(x)σ(y)σ(xy)−1

defines a 2-cocycle G×G→ A which is smooth in a neighborhood of (1,1), and
the map

A×f G→ Ĝ, (a, g) 7→ aσ(g)

is an isomorphism of abstract groups. The functions fg : G→ A are given by

fg(g′) = f(g, g′)− f(gg′g−1, g) = σ(g)σ(g′)σ(gg′)−1 − σ(gg′g−1)σ(g)σ(gg′)−1

= σ(g)σ(g′)σ(gg′)−1σ(gg′)σ(g)−1σ(gg′g−1)−1 = σ(g)σ(g′)σ(g)−1σ(gg′g−1)−1,

hence smooth near 1 . This shows that f ∈ Z2
ss(G,A). In view of (1), the group

A×fG carries a Lie group structure for which there exists an identity neighborhood
VG ⊆ G for which the product map

A× VG → A×f G, (a, v) 7→ (a,1)(0, v) = (a, v)

is smooth. This implies that the group isomorphism A ×f G → Ĝ is a local
diffeomorphism, hence an isomorphism of Lie groups.

(3) Step (1) provides a map

Z2
ss(G,A) → ExtρA

(G,A), f 7→ [A×f G],

and (2) shows that it is surjective. Assume that two extensions of the form A×fiG
for f1, f2 ∈ Z2

ss(G,A) are equivalent as Lie group extensions. An isomorphism
A×f1 G→ A×f2 G inducing an equivalence of abelian extensions must be of the
form

(2.4) (a, g) 7→ (a+ h(g), g),
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where h ∈ C1
s (G,A). The condition that (2.4) is a group homomorphism implies

that

(h(gg′) + f1(g, g′), gg′) = (h(g), g)(h(g′), g′) = (h(g) + g.h(g′) + f2(g, g′), gg′),

which means that

(2.5) (f1 − f2)(g.g′) = g.h(g′)− h(gg′) + h(g) = (dGh)(g, g′),

so that f1 − f2 ∈ B2
s (G,A).

If, conversely, h ∈ C1
s (G,A) and f1 − f2 = dGh , then it is easily verified

that (2.4) defines a group isomorphism for which there exists an open identity
neighborhood mapped diffeomorphically onto its image. Hence (2.5) is an isomor-
phism of Lie groups. We conclude that the map Z2

ss(G,A) → ExtρA
(G,A) factors

through a bijection H2
ss(G,A) → ExtρA

(G,A).
(4) Assume now that G is connected and that f ∈ Z2

s (G,A). In the context
of (1), the conjugation map c(a,g) : q−1(Vg) → U is smooth in an identity neigh-
borhood if and only if the function fg is smooth in an identity neighborhood. As
f ∈ Z2

s (G,A), the set W of all g ∈ G for which this condition is satisfied is an
identity neighborhood. On the other hand, the set W is closed under multiplica-
tion. In view of the connectedness of G , we have G =

⋃
n∈N W

n = W . This means
that f ∈ Z2

ss(G,A), and therefore that Z2
s (G,A) = Z2

ss(G,A).

Problem 2. Do the two spaces Z2
s (G,A) and Z2

ss(G,A) also coincide if G is
not connected?

The following lemma shows that the derivation map

D : Z2
s (G,A) → Z2

c (g, a), (Df)(x, y) = d2f(1,1)(x, y)− d2f(1,1)(y, x)

from Theorem B.6 and Lemma B.7 is compatible with the construction in Proposi-
tion 2.6. In the following proof we use the notation d2f introduced in Appendix A.

Lemma 2.7. Let A ∼= a/ΓA , where ΓA ⊆ a is a discrete subgroup, f ∈ Z2
ss(G,A)

and Ĝ = A ×f G the corresponding extension of G by A . Then the Lie algebra
cocycle Df satisfies ĝ ∼= g⊕Df a .

Proof. Let Ua ⊆ a be an open 0-neighborhood such that the restriction
ϕA : Ua → Ua + ΓA ⊆ A of the quotient map qA : a → A is a diffeomorphism
onto an open identity neighborhood in A and ϕG : Ug → G a local chart of G ,
where Ug ⊆ g is an open 0-neighborhood, ϕG(0) = 1 and dϕG(0) = idg . After
shrinking Ug further, we obtain a chart of A×f G by the map

ϕ : Ua × Ug → A×f G, (a, x) 7→ (ϕA(a), ϕG(x)).

Moreover, we may assume that Ug is so small that f(ϕG(Ug) × ϕG(Ug)) ⊆
ϕA(Ua)), which implies that there exists a smooth function fa : Ug × Ug → Ua

with ϕA ◦ fa = f ◦ (ϕG × ϕG).
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Writing x ∗ x′ := ϕ−1
G (ϕG(x)ϕG(x′)) for x, x′ ∈ Ug with ϕG(x)ϕG(x′) ∈

ϕG(Ug), the multiplication

(a, g)(a′, g′) = (a+ g.a′ + f(g, g′), gg′)

in A ×f G can be expressed in local coordinates for sufficiently small a, a′ ∈
a, x, x′ ∈ g by

ϕ(a, x)ϕ(a′, x′) = (ϕA(a) + ϕG(x).ϕA(a′) + f(ϕG(x), ϕG(x′)), ϕG(x)ϕG(x′))
= (ϕA(a+ ϕG(x).a′ + fa(x, x′)), ϕG(x ∗ x′))
= ϕ(a+ ϕG(x).a′ + fa(x, x′), x ∗ x′).

Here the identity element has the coordinates (0, 0) ∈ a× g .
For the multiplication in G we have

x ∗ x′ = x+ x′ + b(x, x′) + · · ·

where · · · stands for the terms of order at least three in the Taylor expansion of
the product map and the quadratic term b(x, x′) is bilinear. The Lie bracket in g
is given by

[x, x′] = b(x, x′)− b(x′, x)

([Mil83, p.1036]). Therefore the Lie bracket in the Lie algebra L(A×fG) of A×fG
can be obtained from

(a+ ϕG(x).a′ + fa(x, x′), x ∗ x′)
= (a+ a′ + x.a′ + d2fa(0, 0)(x, x′) + · · · , x+ x′ + b(x, x′) + · · · )
= (a+ a′ + x.a′ + d2f(1,1)(x, x′) + · · · , x+ x′ + b(x, x′) + · · · ),

which leads to

[(a, x), (a′, x′)] = (x.a′ − x′.a+Df(x, x′), [x, x′]).

3. Locally smooth 1-cocycles

Let G be a Lie group and A a smooth G -module. In this section we take a closer
look at the space Z1

s (G,A) of locally smooth A -valued 1-cocycles on G . We know
from Appendix B that there is a natural map

D1 : Z1
s (G,A) → Z1

c (g, a), D1(f)(x) := df(1)(x).

If A ∼= a/ΓA holds for a discrete subgroup ΓA of a and qA : a → A is the quotient
map, then we have for a ∈ a the relation

D1(dG(qA(a))) = dg(a)
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and thus D1(B1
s (G,A)) = B1

c (g, a). Hence D1 induces a map

D1 : H1
s (G,A) → H1

c (g, a),

and it is of fundamental importance to have a good description of kernel and
cokernel of D1 on the level of cocycles and cohomology classes.

We shall see that the integration problem for Lie algebra 1-cocycles has a
rather simple solution, the only obstruction coming from π1(G).

Lemma 3.1. Each f ∈ Z1
s (G,A) is a smooth function and its differential df ∈

Ω1(G, a) is an equivariant 1-form.

Proof. Let g ∈ G . In view of

(3.1) f(gh) = g.f(h) + f(g),

the smoothness of f in an identity neighborhood implies the smoothness in a
neighborhood of g .

Formula (3.1) means that f ◦ λg = ρA(g) ◦ f + f(g), so that df satisfies
λ∗gdf = ρA(g) ◦ df, i.e., df is equivariant.

Lemma 3.2. Let G be a Lie group with identity component G0 and A a smooth
G-module. Then for a smooth function f : G → A with f(1) = 0 the following
are equivalent:
(1) df is an equivariant a-valued 1-form on G .
(2) f(gn) = f(g) + g.f(n) for g ∈ G and n ∈ G0 .

If, in addition, G is connected, then df is equivariant if and only if f is a
cocycle.

Proof. We write g.a = ρa(g).a for the action of G on a and g.a = ρA(g).a for
the action of G on A .

(1) ⇒ (2): Let g ∈ G . In view of d(ρA(g) ◦ f) = ρa(g) ◦ df, we have

d(f ◦ λg − ρA(g) ◦ f − f(g)) = λ∗gdf − ρa(g) ◦ df.

Hence (1) implies that all the functions f ◦λg−ρA(g)◦f−f(g) are locally constant.
Since the value of these functions in 1 is 0, they are are constant 0 on G0 , which
is (2).

(2) ⇒ (1): If (2) is satisfied, then df(g)dλg(1) = ρa(g)◦df(1) holds for each
g ∈ G , and this means that df is equivariant.

Definition 3.3. Suppose that a is Mackey complete. If α ∈ Z1
c (g, a) and αeq

is the corresponding closed equivariant 1-form on G (cf. Definition B.4), then we
obtain a morphism of abelian groups, called the period map of α :

perα : π1(G) → a, [γ] 7→
∫

γ

αeq =
∫ 1

0

αeq
γ(t)(γ

′(t)) dt =
∫ 1

0

γ(t).α(γ(t)−1.γ′(t)) dt,
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where γ : [0, 1] → G is a piecewise smooth loop based in 1 . The map

C∞(S1, G) → a, γ 7→
∫

γ

αeq

is locally constant, so that the connectedness of G implies in particular that for
g ∈ G the curves γ and λg ◦ γ are homotopic, and we get∫

γ

αeq =
∫

λg◦γ
αeq =

∫
γ

λ∗gα
eq = ρa(g).

∫
γ

αeq

which leads to
im(perα) ⊆ aG.

If ΓA ⊆ aG is a discrete subgroup, then A := a/ΓA is a smooth G -module
with respect to the induced action. Let qA : a → A denote the quotient map. We
then obtain a group homomorphism

P1 : Z1
c (g, a) → Hom(π1(G), AG), P1(α) := qA ◦ perα .

Proposition 3.4. If G is a connected Lie group and A0
∼= a/ΓA , where

ΓA ⊆ aG is a discrete subgroup and a is Mackey complete, then the sequence

(3.2) 0 → Z1
s (G,A) D1−−→Z1

c (g, a) P1−−→Hom(π1(G), AG)

is exact. If, in addition, A ∼= a/ΓA , then it induces an exact sequence

(3.3) 0 → H1
s (G,A) D1−−→H1

c (g, a) P1−−→Hom(π1(G), AG).

Proof. If f ∈ Z1
s (G,A) satisfies D1f = 0, then Lemma 3.2 implies that

df = 0 because df is equivariant, and hence that f is constant, so that f(g) =
f(1) = 0 for each g ∈ G . Therefore D1 is injective on Z1

s (G,A). The kernel of
P1 : Z1

c (g, a) → Hom(π1(G), A) consists of those 1-cocycles α for which αeq is the
differential of a smooth function f : G → A with f(1) = 0 ([Ne02, Prop. 3.9]),
which means that α = D1f for some f ∈ Z1

s (G,A) (Lemma 3.2). This proves the
exactness of the first sequence.

Now we assume that A ∼= a/ΓA . If α ∈ B1
c (g, a), then αeq is exact

(Lemma B.5), so that P1(α) = 0. Therefore P1 factors through a map H1
c (g, a) →

Hom(π1(G), a). The exactness of (3.3) now follows from D1(B1
s (G,A)) = D1dGA =

dga = B1
c (g, a) and the exactness of (3.2).

Remark 3.5. For each α ∈ Z1
c (g, a) the corresponding equivariant 1-form αeq

is closed, and it is exact if α ∈ B1
c (g, a), so that we obtain a map

H1
c (g, a) → H1

dR(G, a), [α] 7→ [αeq].
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Proposition 3.4, applied to A := a now means that the sequence

0 → H1
s (G, a) D1−−→H1

c (g, a)−−→H1
dR(G, a)

is exact. Let ΓA ⊆ a be a discrete subgroup and consider A := a/ΓA . For

H1
dR(G,ΓA) :=

{
[α] ∈ H1

dR(G, a) : (∀γ ∈ C∞(S1, G))
∫

γ

α ∈ ΓA

}
,

we then have
H1

dR(G,ΓA) = dC∞(G,A)/dC∞(G, a)

([Ne02, Prop. 3.9]), and we obtain an exact sequence

0 → H1
s (G,A) D1−−→H1

c (g, a)−−→Ω1(G, a)/dC∞(G,A)
∼= (Ω1(G, a)/dC∞(G, a))/H1

dR(G,ΓA),(3.4)

because for α ∈ Z1
c (g, a) the condition [αeq] ∈ dC∞(G,A) is equivalent to

P1([α]) = 0 (Proposition 3.4).

In the remainder of this section we address the question how to classify the
smooth G -modules A with a given identity component (as G -module). We shall
see that the crucial data is given by a homomorphism θA : π0(A) → H1

c (g, a).

Definition 3.6. Let A be a smooth G -module for the connected Lie group G
and assume that A0

∼= a/ΓA holds for the identity component of A . Then for each
a ∈ A we obtain a smooth cocycle

d′G(a) ∈ Z1
s (G,A0), d′G(a)(g) := g.a− a.

Taking derivatives in 1 leads to homomorphisms

θA := D1 ◦ d′G : A→ Z1
c (g, a) and θA : π0(A) → H1

c (g, a).

The map θA is called the characteristic homomorphism of the G-module A . It
can be viewed as an obstruction for the existence of a derivation map H1

s (G,A) →
H1

c (g, a).

Remark 3.7. The characteristic homomorphism clearly defines an action of
π0(A) on H1

c (g, a), and we have in this sense

H1
c (g, a)/π0(A) ∼= coker θA = coker θA.

If G̃ is the simply connected covering group of G , then Proposition 3.4 shows that
the map D1 : Z1

s (G̃, A) → Z1
c (g, a) is bijective, so that

H1
s (G̃, A) = Z1

s (G̃, A)/dG̃(A) ∼= H1
c (g, a)/π0(A).

The following lemma shows how the characteristic homomorphism classifies
all smooth G -modules for which the module structure on the identity component
is given.
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Lemma 3.8. Let A and B be smooth modules of the connected Lie group G and
assume that A0 = B0

∼= a/ΓA as G-modules, where ΓA ⊆ a is a discrete subgroup.
Then there exists an isomorphism ψ : A → B of G-modules with ψ |A0 = idA0

if and only if there exists an isomorphism γ : π0(A) → π0(B) such that the
characteristic homomorphisms of A and B are related by

θB ◦ γ = θA.

Proof. If ψ : A→ B is an isomorphism of G -modules restricting to the identity
on A0 , then ψ induces an isomorphism γ := π0(ψ) : π0(A) → π0(B), and it follows
directly from the definitions that θB ◦ γ = θA.

Suppose, conversely, that γ : π0(A) → π0(B) is an isomorphism with θB◦γ =
θA . Since A0 is an open divisible subgroup of A , we have A ∼= A0 × π0(A)
as abelian Lie groups, and likewise B ∼= A0 × π0(B). For each homomorphism
ϕ0 : π0(A) → A0 we then obtain a Lie group isomorphism

(3.5) ϕ : A→ B, (a0, a1) 7→ (a0 + ϕ0(a1), γ(a1)).

Since G acts on A ∼= A0 × π0(A) by

g.(a0, a1) = (g.a0 + d′G(a1)(g), a1),

the isomorphism ϕ is G -equivariant if and only if

(3.6) ϕ0(a1) + d′G(a1)(g) = g.ϕ0(a1) + d′G(γ(a1))(g)

for g ∈ G , a1 ∈ π0(A), which means that

dG(ϕ0(a1)) = d′G(a1)− d′G(γ(a1)) =: β(a1).

To see that a homomorphism ϕ0 with the required properties exists, we first ob-
serve that our assumption implies that β is a homomorphism π0(A) → Z1

s (G,A0)
with im(D1 ◦ β) ⊆ dga . In view of the divisibility of a , there exists a homomor-
phism δ : π0(A) → a with D1 ◦ β = dg ◦ δ = D1 ◦ dG ◦ qA ◦ δ . Since D1 is injective
on cocycles (Proposition 3.4), we obtain β = dG ◦ qA ◦ δ . We may therefore put
ϕ0 := qA ◦ δ to obtain an isomorphism ϕ of G -modules as in (3.5).

4. The period homomorphism

In this section G denotes a connected Lie group, a is a smooth Mackey complete
G -module, and ω ∈ Z2

c (g, a) is a continuous Lie algebra cocycle. We shall define
the period homomorphism

perω : π2(G) → a, perω([σ]) :=
∫

σ

ωeq,
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where σ is a (piecewise) smooth representative in the homotopy class.
If q : Ĝ → G is an extension of G by the smooth G -module A whose Lie

algebra is isomorphic to a ⊕ω g and A0
∼= a/ΓA holds for a discrete subgroup

ΓA of a . Then we show that the period map is, up to sign, the connecting map
π2(G) → π1(A) ∼= ΓA of the long exact homotopy sequence of the principal A -
bundle A ↪→ Ĝ→→ G .

Definition 4.1. In the following ∆p = {(x1, . . . , xp) ∈ Rp : xi ≥ 0,
∑

j xj ≤ 1}
denotes the p-dimensional standard simplex in Rp . We also write 〈v0, . . . , vp〉 for
the affine simplex in a vector space spanned by the points v0, . . . , vp . In this sense
∆p = 〈0, e1, . . . , ep〉 , where ei denotes the i-th canonical basis vector in Rp .

Let Y be a smooth manifold. A continuous map f : ∆p → Y is called
a C1 -map if it is differentiable in the interior int(∆p) and in each local chart
of Y all directional derivatives x 7→ df(x)(v) of f extend continuously to the
boundary ∂∆p of ∆p . For k ≥ 2 we call f a Ck -map if it is C1 and all maps
x 7→ df(x)(v) are Ck−1 . We say that f is smooth if f is Ck for every k ∈ N . We
write C∞(∆p, Y ) for the set of smooth maps ∆p → Y .

If Σ is a simplicial complex, then we call a map f : Σ → Y piecewise smooth
if it is continuous and its restrictions to all simplices in Σ are smooth. We write
C∞pw(Σ, Y ) for the set of piecewise smooth maps Σ → Y . There is a natural
topology on this space inherited from the natural embedding of C∞pw(Σ, Y ) into
the space

∏
S⊆Σ C

∞
pw(S, Y ), where S runs through all simplices of Σ and the

topology on C∞pw(S, Y ) is defined as in [Ne02, Def. A.3.5] as the topology of uniform
convergence of all directional derivatives of arbitrarily high order.

The equivariant form ωeq is a closed a -valued 2-form on G , and we obtain
with [Ne02, Lemma 5.7] a period map

perω : π2(G) → a

which is given on piecewise smooth representatives σ : S2 → G of free homotopy
classes by the integral

perω([σ]) =
∫

S2
σ∗ωeq =

∫
σ

ωeq.

If ω is a coboundary, then Lemma B.5 implies that ωeq is exact, so that the period
map is trivial by Stoke’s Theorem. We therefore obtain a homomorphism

H2
c (g, a) → Hom(π2(G), a), [ω] 7→ perω .

The image Πω := perω(π2(G)) is called the period group of ω . Since the group G
is connected, the group π0(C∞(S2, G)) of connected components of the Lie group
C∞(S2, G) is isomorphic to π2(G), and we may think of perω as the map on
π2(G) obtained by factorization of the locally constant map

C∞(S2, G) → a, σ 7→
∫

σ

ωeq
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to π0(C∞(S2, G)) ∼= π2(G) ([Ne02, Lemma 5.7]).

Lemma 4.2. The image of the period map is fixed pointwise by G , i.e., Πω ⊆ aG .

Proof. In view of [Ne02, Th. A.3.7], each homotopy class in π2(G) has a
smooth representative σ : S2 → G . Since G is connected, and the map G →
C∞(S2, G), g 7→ λg ◦ σ is continuous, we have for each g ∈ G :

perω([σ]) =
∫

S2
σ∗ωeq =

∫
S2
σ∗λ∗gω

eq =
∫

S2
σ∗(ρa(g) ◦ ωeq) = ρa(g).perω([σ]).

We conclude that the image of perω is fixed pointwise by G .

Let A ↪→ Ĝ
q−−→G be an abelian Lie group extension of A . Then the Lie

algebra ĝ of Ĝ has the form a ⊕ω g because the existence of a smooth local
section implies that ĝ → g has a continuous linear section (Proposition 1.3). In
this subsection we show that the period homomorphism perω coincides up to
sign with the connecting homomorphism δ : π2(G) → π1(A) from the long exact
homotopy sequence of the bundle A ↪→ Ĝ

q−−→G .

Definition 4.3. We recall the definition of relative homotopy groups. Let In :=
[0, 1]n denote the n -dimensional cube. Then the boundary ∂In of In can be
written as In−1 ∪ Jn−1 , where In−1 is called the initial face and Jn−1 is the
union of all other faces of In .

Let X be a topological space, Y ⊆ X a subspace, and x0 ∈ Y . A map

f : (In, In−1, Jn−1) → (X,Y, x0)

of space triples is a continuous map f : In → X satisfying f(In−1) ⊆ Y and
f(Jn−1) = {x0} . We write Fn(X,Y, x0) for the set of all such maps and πn(X,Y, x0)
for the homotopy classes of such maps, i.e., the arc-components of the topological
space Fn(X,Y, x0) endowed with the compact open topology (cf. [Ste51]). We de-
fine Fn(X,x0) := Fn(X, {x0}, x0) and πn(X,x0) := πn(X, {x0}, x0) and observe
that we have a canonical map

∂ : πn(X,Y, x0) → πn−1(Y, x0), [f ] 7→ [f |In−1 ].

Remark 4.4. Let q : P → M be a (locally trivial) H -principal bundle, y0 ∈ P
a base point, x0 := q(y0), and identity H with the fiber q−1(x0). Then the maps

q∗ : πk(P,H) := πk(P,H, y0) → πk(M) := πk(M,x0), [f ] 7→ [q ◦ f ]

are isomorphisms ([Ste51, Cor. 17.2]), so that we obtain connecting homomor-
phisms

δ := ∂ ◦ (q∗)−1 : πk(M) → πk−1(H).

The so obtained sequence
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. . .→ πk(P ) → πk(M) → πk−1(H) → . . .→ π1(P ) → π1(M) → π0(H) → π0(P )

→→ π0(M)

is exact, where the last two maps cannot be considered as group homomorphisms.
This is the long exact homotopy sequence of the principal bundle P →M .

Proposition 4.5. Let q : Ĝ → G be an abelian extension of not necessarily
connected Lie groups with kernel A satisfying A0

∼= a/ΓA , where a is a Mackey
complete locally convex space. Then q defines in particular the structure of an A-
principal bundle on Ĝ . If ω ∈ Z2

c (g, a) is a Lie algebra 2-cocycle with ĝ ∼= a⊕ω g ,
then δ : π2(G) → π1(A) and the period map perω : π2(G) → a are related by

δ = −perω : π2(G) → π1(A) ⊆ a.

Proof. We consider the action of Ĝ on A given by g.a := q(g).a . Then q∗ωeq is
an equivariant closed 2-form on Ĝ with (q∗ωeq)1 = L(q)∗ω. Let pa : ĝ ∼= a⊕ω g →
a, (a, x) 7→ x denote the projection onto a . Then

dgpa((a, x), (a′, x′)) = (a, x).pa(a′, x′)− (a′, x′).pa(a, x)− pa([(a, x), (a′, x′)])
= x.a′ − x′.a− (x.a′ − x′.a+ ω(x, x′)) = −ω(x, x′)
= −(L(q)∗ω)((a, x), (a′, x′)).

In view of Lemma B.5, this implies

d(peq
a ) = (dgpa)eq = −(L(q)∗ω)eq = −q∗ωeq.

We conclude Θ := peq
a ∈ Ω1(Ĝ, a) is a 1-form for which Θ |A is the Maurer-

Cartan form on A . Therefore [Ne02, Prop. 5.11] and q∗ωeq = −dΘ imply that
δ = −perΩ .

Remark 4.6. Let A ↪→ Ĝ→→ G be an abelian extension of connected Lie groups
and assume that A ∼= a/ΓA holds for a discrete subgroup ΓA ⊆ a that we identify
with π1(A). In view of π2(A) ∼= π2(a) = 0 , the long exact homotopy sequence of
the bundle Ĝ→ G leads to an exact sequence

0 → π2(Ĝ) ↪→ π2(G)
perω−−−−→π1(A) → π1(Ĝ) →→ π1(G) → 0.

This implies that

π2(Ĝ) ∼= ker perω ⊆ π2(G) and π1(G) ∼= π1(Ĝ)/ coker perω .

These relations show how the period homomorphism controls how the first two
homotopy groups of G and Ĝ are related.
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5. From Lie algebra cocycles to group cocycles

In Sections V and VI we describe the image of the map

D := D2 : H2
s (G,A) → H2

c (g, a), [f ] 7→ [Df ], Df(x, y) = d2f(1,1)(x, y)

−d2f(1,1)(y, x)

for a connected Lie group G and an abelian Lie group A of the form a/ΓA . In
the present section we deal with the special case where, in addition, G is simply
connected.

Let G be a connected simply connected Lie group and a a Mackey complete
locally convex smooth G -module. Further let ΓA ⊆ aG be a subgroup and write
A := a/ΓA for the quotient group, that carries a natural G -module structure. We
write qA : a → A for the quotient map. If, in addition, ΓA is discrete, then A
carries a natural Lie group structure and the action of G on A is smooth, but we
won’t make this assumption a priori.

Let ω ∈ Z2
c (g, a) and Πω ⊆ aG be the corresponding period group (Lem-

ma 4.2). In the following we shall assume that

Πω ⊆ ΓA.

The main result of the present section is the existence of a locally smooth group
cocycle f ∈ Z2

s (G,A) with Df = ω if ΓA is discrete (Corollary 5.3).
A special case of the following construction has also been used in [Ne02] in the

context of central extensions. For g ∈ G we choose a smooth path α1,g : [0, 1] → G
from 1 to g . We thus obtain a left invariant system of smooth arcs αg,h :=
λg◦α1,g−1h from g to h , where λg(x) = gx denotes left translation. For g, h, u ∈ G
we then obtain a singular smooth cycle

αg,h,u := αg,h + αh,u − αg,u,

that corresponds to the piecewise smooth map αg,h,u ∈ C∞pw(∂∆2, G) with

αg,h,u(s, t) =

 αg,h(s), for t = 0
αh,u(1− s), for s+ t = 1
αg,u(t), for s = 0.

For a simplicial complex Σ we write Σ(j) for the j -th barycentric subdivision
of Σ. According to [Ne02, Prop. 5.6], each map αg,h,u is the restriction of a
piecewise smooth map σ : (∆2)(1) → G . Let σ′ : (∆2)(1) → G be another piecewise
smooth map with the same boundary values as σ . We claim that

∫
σ
ωeq−

∫
σ′
ωeq ∈

Πω . In fact, we consider the sphere S2 as an oriented simplicial complex Σ
obtained by gluing two copies D and D′ of ∆2 along their boundary, where
the inclusion of D is orientation preserving and the inclusion on D′ reverses
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orientation. Then σ and σ′ combine to a piecewise smooth map γ : Σ → G with
γ |D = σ and γ |D′ = σ′ , and we get with [Ne02, Lemma 5.7]∫

σ

ωeq −
∫

σ′
ωeq =

∫
γ

ωeq ∈ Πω ⊆ ΓA.

We thus obtain a well-defined map

F : G3 → A, (g, h, u) 7→ qA

( ∫
σ

ωeq
)
,

where σ ∈ C∞pw((∆2)(1), G) is a piecewise smooth map whose boundary values
coincide with αg,h,u .

Lemma 5.1. The function

f : G2 → A, (g, h) 7→ F (1, g, gh)

is a group cocycle with respect to the action of G on A .

Proof. First we show that for g, h ∈ G we have

f(g,1) = F (1, g, g) = 0 and f(1, h) = F (1,1, h) = 0.

If g = h or h = u , then we can choose the map σ : ∆2 → G extending αg,h,u in
such a way that rk(dσ) ≤ 1 in every point, so that σ∗ωeq = 0. In particular, we
obtain F (g, h, u) = 0 in these cases.

From αg,h,u = λg◦α1,g−1h,g−1u we see that for every extensions σ : (∆2)(1) →
G of α1,g−1h,g−1u , the map λg ◦ σ is an extension of αg,h,u . In view of λ∗gω

eq =
ρa(g) ◦ ωeq , we obtain∫

S2
(λg ◦ σ)∗ωeq =

∫
S2
σ∗λ∗gω

eq = ρa(g).
∫

S2
σ∗ωeq,

and therefore

(5.1) F (g, h, u) = ρA(g).F (1, g−1h, g−1u).

Let ∆3 ⊆ R3 be the standard 3-simplex. Then we define a piecewise smooth
map γ of its 1-skeleton to G by

γ(t, 0, 0) = α1,g(t), γ(0, t, 0) = α1,gh(t), γ(0, 0, t) = α1,ghu(t)

and

γ(1− t, t, 0) = αg,gh(t), γ(0, 1− t, t) = αgh,ghu(t), γ(1− t, 0, t) = αg,ghu(t).

As G is simply connected, we obtain with [Ne02, Prop. 5.6] for each face ∆j
3 ,

j = 0, . . . , 3, of ∆3 a piecewise smooth map γj of the first barycentric subdivision
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to G , extending the given map on the 1-skeleton. These maps combine to a
piecewise smooth map γ : (∂∆3)(1) → G . Modulo the period group Πω , we now
have ∫

γ

ωeq =
∫

∂∆3

γ∗ωeq =
3∑

i=0

∫
γi

ωeq

= F (g, gh, ghu)− F (1, gh, ghu) + F (1, g, ghu)− F (1, g, gh)
= ρA(g).f(h, u)− f(gh, u) + f(g, hu)− f(g, h).

Since
∫

γ
ωeq ∈ Πω , this proves that f is a group cocycle.

In the next lemma we show that for an appropriate choice of paths from
1 to group elements close to 1 the cocycle f will be smooth in an identity
neighborhood. The following lemma is a slight generalization of Lemma 6.2 in
[Ne02].

Lemma 5.2. Let U ⊆ g be an open convex 0-neighborhood and ϕ : U → G a
chart of G with ϕ(0) = 1 and dϕ(0) = idg . We define the arcs αϕ(x)(t) := ϕ(tx) .
Let V ⊆ U be an open convex 0-neighborhood with ϕ(V )ϕ(V ) ⊆ ϕ(U) and define
x ∗ y := ϕ−1(ϕ(x)ϕ(y)) for x, y ∈ V . If we define σx,y := ϕ ◦ γx,y with

γx,y : ∆2 → U, (t, s) 7→ t(x ∗ sy) + s(x ∗ (1− t)y),

then for any closed 2-form Ω ∈ Ω2(G, a) , a a Mackey complete locally convex
space, the function

fV : V × V → a, (x, y) 7→
∫

σx,y

Ω

is smooth with d2fV (0, 0)(x, y) = 1
2Ω1(x, y) (see the end of Appendix B for the

notation).

Proof. First we note that the function V × V → U, (x, y) 7→ x ∗ y is smooth.
We consider the cycle

α1,ϕ(x),ϕ(x)ϕ(y) = α1,ϕ(x),ϕ(x∗y) = α1,ϕ(x) + αϕ(x),ϕ(x∗y) − α1,ϕ(x∗y).

The arc connecting x to x ∗ y is given by s 7→ x ∗ sy , so that we may define
σx,y := ϕ ◦ γx,y with γx,y as above. Then

fV : V × V → a, (x, y) 7→
∫

ϕ◦γx,y

Ω =
∫

∆2

γ∗x,yϕ
∗Ω,

and

(5.2) fV (x, y) =
∫

∆2

(ϕ∗Ω)
(
ϕ(γx,y(t, s))

)( ∂

∂t
γx,y(t, s),

∂

∂s
γx,y(t, s)

)
dt ds



Abelian extensions of infinite-dimensional Lie groups 99

implies that fV is a smooth function in V × V .
The map γ : (x, y) 7→ γx,y satisfies
(1) γ0,y(t, s) = sy and γx,0(t, s) = (t+ s)x .
(2) ∂

∂tγx,y ∧ ∂
∂sγx,y = 0 for x = 0 or y = 0.

In particular we obtain fV (x, 0) = fV (0, y) = 0. Therefore the second order
Taylor polynomial

T2(fV )(x, y) = fV (0, 0)+dfV (0, 0)(x, 0)+dfV (0, 0)(0, y)+
1
2
d[2]fV (0, 0)

(
(x, y), (x, y)

)
of fV in (0, 0) is bilinear and given by

T2(fV )(x, y) =
1
2
d[2]fV (0, 0)

(
(x, 0), (0, y)

)
+

1
2
d[2]fV (0, 0)

(
(0, y), (x, 0)

)
= d2fV (0, 0)(x, y)

(see the end of Appendix B).
Next we observe that (1) implies that ∂

∂tγx,y and ∂
∂sγx,y vanish in (0, 0).

Therefore the chain rule for Taylor expansions and (1) imply that for each pair
(t, s) the second order term of

(ϕ∗Ω)(γx,y(t, s))
( ∂

∂t
γx,y(t, s),

∂

∂s
γx,y(t, s)

)
is given by

(ϕ∗Ω)(γ0,0(t, s))(x, y) = (dϕ(0)∗Ω1)(x, y) = Ω1(x, y),

and eventually

d2fV (0, 0)(x, y) = T2(fV )(x, y) =
∫

∆2

dt ds · Ω1(x, y) =
1
2
Ω1(x, y).

Corollary 5.3. Suppose that ΓA is discrete with Πω ⊆ ΓA and construct for
ω ∈ Z2

c (g, a) the group cocycle f ∈ Z2(G,A) as above from the closed 2-form
ωeq ∈ Ω2(G, a) . If the paths α1,g for g ∈ ϕ(U) are chosen as in Lemma 5.2, then
f ∈ Z2

s (G,A) with D(f) = ω .

Proof. In the notation of Lemma 5.2 we have for x, y ∈ V the relation

f(ϕ(x), ϕ(y)) = qA(fV (x, y)),

so that f is smooth on ϕ(V )× ϕ(V ), and further

Df(x, y) = d2fV (1,1)(x, y)− d2fV (1,1)(y, x) = ω(x, y).

The outcome of this section is the following result:
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Theorem 5.4. Let G be a connected simply connected Lie group and A a smooth
G-module of the form a/ΓA , where ΓA ⊆ a is a discrete subgroup of the Mackey
complete space a . Let ω ∈ Z2

c (g, a) be a continuous 2-cocycle and Πω ⊆ aG its
period group. Then the following assertions are equivalent:
(1) The Lie algebra extension a ↪→ ĝ := a ⊕ω g →→ g can be integrated to a Lie

group extension A ↪→ Ĝ→→ G .
(2) [ω] ∈ im(D) .
(3) ω ∈ im(D) .
(4) Πω ⊆ ΓA .
(5) If qA : a → A is the quotient map, then qA ◦ perω = 0 .

Proof. (1) ⇒ (2): If Ĝ is an extension of G by A corresponding to the Lie
algebra extension ĝ = a⊕ω g , then we can write Ĝ as A×f G (Proposition 2.6),
and Lemma 2.7 implies that D[f ] = [Df ] = [ω] .

(2) ⇒ (3): If [ω] = D[f ] = [Df ] for some f ∈ Z2
s (G,A), then there exists

an α ∈ C1
c (g, a) with Df − ω = dgα . The 2-form (dgα)eq = dαeq ∈ Ω2(G, a) is

exact (Lemma B.5), so that its period group is trivial, and Corollary 5.3 implies
the existence of h ∈ Z2

s (G,A) with Dh = dgα . Then f1 := f − h ∈ Z2
s (G,A)

satisfies D(f − h) = Df −Dh = ω.

(3) ⇒ (1): If Df = ω , then the Lie group extension A×f G→ G (Proposi-
tion 2.6) corresponds to the Lie algebra extension a⊕Df g = a⊕ω g → g (Lemma
2.7).

(1) ⇒ (4) follows from Proposition 4.5, which implies that if Ĝ exists,
then the period map coincides up to sign with the connecting homomorphism
δ : π2(G) → π1(A) ∼= ΓA ⊆ a in the long exact homotopy sequence of the principal
A -bundle Ĝ .

(4) ⇒ (3) follows from Corollary 5.3.
(4) ⇔ (5) is a trivial consequence of the definitions.

6. Abelian extensions of non-simply connected
groups

We have seen in the preceding section that for a simply connected Lie group G and
a smooth G -module of the form A = a/ΓA the image of the map D : H2

s (G,A) →
H2

c (g, a) consists of the classes [ω] of those cocycles ω ∈ Z2
c (g, a) for which

Πω ⊆ ΓA .
In this section we drop the assumption that G is simply connected. We write

qG : G̃→ G for the simply connected covering group of G and identify π1(G) with
the discrete central subgroup ker qG of G̃ .

Let ω ∈ Z2
c (g, a). In the following we write ρA for the action of G on A , ρa

for the action of G on a and ρ̇a for the derived representation of g on a .
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Remark 6.1. (a) To a 2-cocycle ω ∈ Z2
c (g, a) we associate the linear map

f̃ω : g → C1
c (g, a) = Lin(g, a), x 7→ ixω.

We consider Lin(g, a) as a g-module with respect to the action

(x.α)(y) := ρ̇a(x).α(y)− α([x, y]).

We do not consider any topology on this space of maps. The corresponding Lie
algebra differential dg : C1(g,Lin(g, a)) → C2(g,Lin(g, a)) then satisfies

(dgf̃ω)(x, y)(z) = (x.iyω − y.ixω − i[x,y]ω)(z)
= x.ω(y, z)− ω(y, [x, z])− y.ω(x, z) + ω(x, [y, z])− ω([x, y], z)
= −z.ω(x, y) = −dg(ω(x, y))(z).

Since the subspace B1
c (g, a) = dga ⊆ C1

c (g, a) is g-invariant, we can also form the
quotient g-module

Ĥ1
c (g, a) := C1

c (g, a)/B1
c (g, a).

We then obtain a linear map

fω : g → Ĥ1
c (g, a), x 7→ [ixω],

and the preceding calculation shows that this map is a 1-cocycle. We call fω the
infinitesimal flux cocycle. In the following we are concerned with integrating this
cocycle to a group cocycle

Fω : G̃→ Ĥ1
c (g, a).

This is problematic because the right hand side does not carry a natural topology,
so that we cannot directly apply Proposition 3.4.

(b) The injective map

Eq: Cp(g, a) → Ωp(G, a), α 7→ αeq

satisfies with respect to the natural action of G on Cp(g, a) by

(g.α)(x1, . . . , xp) := g.α(Ad(g)−1.x1, . . . ,Ad(g)−1.xp)

for h ∈ G and y ∈ g = T1(G) the relation

(g.α)eq(h.y1, . . . , h.yp) = h.((g.α)(y1, . . . , yp)) = hg.α(Ad(g)−1.y1, . . . ,Ad(g)−1.yp)
= αeq(h.y1.g, . . . , h.yp.g) = (ρ∗gα

eq)(h.y1, . . . , h.yp).

This means that Eq is equivariant with respect to the action of G on Ω•(G, a) by
g.α := ρ∗gα . The corresponding derived action of the Lie algebra g on Ω•(G, a) is
given by X.α := Lxl

.α , where Lxl
= d ◦ ixl

+ ixl
◦ d denotes the Lie derivative as

an operator on differential forms.
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For the linear map

Eq ◦f̃ω : g → Ω1(G, a), x 7→ (ixω)eq

we obtain for h ∈ G and y ∈ g :

(ixω)eq(h.y) = h.(ixω(y)) = h.ω(x, y) = ωeq(h.x, h.y) = ωeq(xl(h), h.y),

which means that (ixω)eq = ixl
ωeq . With respect to the natural action of g on

Ω1(G, a) by Lxl
we then obtain a Lie algebra cocycle

f̂ω := Eq ◦fω : g → Ĥ1
dR(G, a) := Ω1(G, a)/dC∞(G, a), x 7→ [ixl

ωeq]

(cf. Lemma 9.8).
(c) Next we derive some formulas that will be useful in the following. The

equivariance of ωeq leads to

Lxr
.ωeq = ρ̇a(x) ◦ ωeq

([Ne02, Lemma A.2.4]). In view of the closedness of ωeq , this leads to

(6.1) d(ixrω
eq) = Lxr .ω

eq − ixrdω
eq = ρ̇a(x) ◦ ωeq.

Further [Lxr
, iyr

] = i[xr,yr] = −i[x,y]r implies

i[x,y]rω
eq = iyr

Lxr
ωeq − Lxr

iyr
ωeq = iyr

(ρ̇a(x) ◦ ωeq)− (ixr
◦ d+ d ◦ ixr

)iyr
ωeq

= ρ̇a(x) ◦ iyr
ωeq − ρ̇a(y) ◦ ixr

ωeq − d(ixr
iyr
ωeq).

This means that the a -valued 1-form

(6.2) ρ̇a(x) ◦ iyrω
eq − ρ̇a(y) ◦ ixrω

eq − i[x,y]rω
eq = d(ixr iyrω

eq)

is exact.

A first step to integrate the Lie algebra cocycle fω is to translate matters
from the Lie algebra to vector fields and differential forms on G . On the formal
level, without worrying about topologies on the target space, the linear map
f̃ω : g → Lin(g, a), x 7→ ixω defines an equivariant Lin(g, a)-valued 1-form f̃ eq

ω

on G . For each x ∈ g , evaluation evx in x is a linear map evx : Lin(g, a) →
a, α 7→ α(x) and evx ◦f̃ eq

ω ∈ Ω1(G, a) is an a -valued smooth 1-form on G , a
well-defined object, satisfying for g ∈ G and y ∈ g :

(evx ◦f̃ eq
ω )(g.y) = evx(g.f̃ω(y)) = g.f̃ω(y)(Ad(g)−1.x) = g.ω(y, g−1.x.g)

= ωeq(g.y, xr(g)),

which leads to
evx ◦f̃ eq

ω = −ixr
ωeq.

Having this formula in mind, the definition in Lemma 6.2 below is natural.
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Lemma 6.2. Let γ : [0, 1] → G be a piecewise smooth path. Then we obtain a
continuous linear map

F̃ω(γ) ∈ Lin(g, a), F̃ω(γ)(x) := −
∫

γ
ixr
ωeq =

∫ 1

0
γ(t).ω(γ(t)−1γ′(t),

Ad(γ(t))−1.x) dt

with the following properties:
(1) If γ(1)−1γ(0) is contained in Z(G) and acts trivially on a , then F̃ω(γ) ∈

Z1
c (g, a) .

(2) If γ1 and γ2 are homotopic with fixed endpoints, then F̃ω(γ1) − F̃ω(γ2) is a
coboundary.

(3) For a piecewise smooth curve η : [0, 1] → G we have∫
η

F̃ω(γ)eq =
∫

H

ωeq

for the piecewise smooth map H : [0, 1]2 → G, (t, s) 7→ η(s) · γ(t).
(4) For a differentiable curve γ : [0, 1] → G with γ(0) = 1 and γ′(0) = y we have

pointwise in Lin(g, a) :

d

dt t=0
F̃ω(γ |[0,t]) = iyω = f̃ω(y).

Proof. In view of formula (6.2) above, we find for x, y ∈ g the relation

dg(F̃ω(γ))(x, y)

= x.F̃ω(γ)(y)− y.F̃ω(γ)(x)− F̃ω(γ)([x, y])

= −
∫

γ

ρ̇a(x) ◦ iyr
ωeq − ρ̇a(y) ◦ ixr

ωeq − i[x,y]rω
eq = −

∫
γ

d(ixr
iyr
ωeq)

= ωeq(γ(0))
(
yr(γ(0)), xr(γ(0))

)
− ωeq(γ(1))

(
yr(γ(1)), xr(γ(1))

)
= γ(0).ω(Ad(γ(0))−1.y,Ad(γ(0))−1.x)− γ(1).ω(Ad(γ(1))−1.y,Ad(γ(1))−1.x).

(1) If γ(1)−1γ(0) ∈ Z(G) = kerAd acts trivially on a , then the above
formula implies that dg

(
F̃ω(γ)

)
= 0, i.e., that F̃ω(γ) ∈ Z1

c (g, a).
(2) For g ∈ G we first observe that

F̃ω(g · γ)(x) = −
∫

λg◦γ
ixr
.ωeq =

∫ 1

0

gγ(t).ω(γ(t)−1.γ′(t),Ad(gγ(t))−1.x) dt

= g.

∫ 1

0

γ(t).ω(γ(t)−1.γ′(t),Ad(γ(t))−1 Ad(g)−1.x) dt

= g.F̃ω(γ)(Ad(g)−1.x) = (g.F̃ω(γ))(x).
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For the natural action of G on Lin(g, a) by (g.ϕ)(x) := g.ϕ(Ad(g)−1.x) and
the left translation action on the space C1

pw(I,G) of piecewise smooth maps
I := [0, 1] → G , the preceding calculation implies that the map

F̃ω : C1
pw(I,G) → Lin(g, a) = C1

c (g, a)

is equivariant.
For the composition

(γ1]γ2)(t) :=
{
γ1(2t) for 0 ≤ t ≤ 1

2
γ1(1)γ2(0)−1γ2(2t− 1) for 1

2 ≤ t ≤ 1

of paths we thus obtain the composition formula

(6.3) F̃ω(γ1]γ2) = F̃ω(γ1)+ F̃ω(γ1(1)γ2(0)−1γ2) = F̃ω(γ1)+γ1(1)γ2(0)−1.F̃ω(γ2).

For the inverse path γ−(t) := γ(1− t) we trivially get F̃ω(γ−) = −F̃ω(γ) from the
transformation formula for one-dimensional integrals. If the two paths γ1 and γ2

have the same start and endpoints, then the path γ1]γ
−
2 is closed, and we derive

with (1) that

F̃ω(γ1)− F̃ω(γ2) = F̃ω(γ1) + γ1(1)γ−2 (0)−1.F̃ω(γ−2 ) = F̃ω(γ1]γ
−
2 ) ∈ Z1

c (g, a).

That two paths γ1 and γ2 with the same endpoints are homotopic with fixed
endpoints implies that the loop γ := γ1]γ

−
2 is contractible. It therefore has a closed

piecewise smooth lift γ̃ : [0, 1] ∼= ∂∆2 → G̃ with qG ◦ γ̃ = γ . Using Proposition 4.6
in [Ne02], we find a piecewise smooth map σ̃ : ∆2 → G̃ such that σ̃ |∂∆2 = γ̃ . Let
σ := qG ◦ σ̃ . Then σ |∂∆2 = γ , so that Stoke’s Theorem and formula (6.1) lead to

−F̃ω(γ)(x) =
∫

γ

ixr
ωeq =

∫
∂∆2

σ∗(ixr
ωeq) =

∫
∆2

σ∗d(ixr
ωeq)

=
∫

σ

d(ixr
ωeq) =

∫
σ

ρ̇a(x) ◦ ωeq = ρ̇a(x).
∫

σ

ωeq.

Therefore F̃ω(γ) ∈ B1
c (g, a), and (2) follows.

(3) We have∫
η

F̃ω(γ)eq =
∫ 1

0

η(s).F̃ω(γ)(η(s)−1.η′(s)) ds

=
∫ 1

0

∫ 1

0

η(s)γ(t).ω(γ(t)−1.γ′(t),Ad(γ(t)−1) ◦ η(s)−1.η′(s)) dt ds

=
∫ 1

0

∫ 1

0

H(t, s).ω(H(t, s)−1η(s).γ′(t),H(t, s)−1.(η′(s).γ(t))) dt ds

=
∫ 1

0

∫ 1

0

H(t, s).ω
(
H(t, s)−1.

∂H(t, s)
∂t

,H(t, s)−1.
∂H(t, s)
∂s

)
dt ds
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=
∫

[0,1]2
H∗ωeq =

∫
H

ωeq.

(4) For ηt(s) := γ(ts) we have

F̃ω(γ |[0,t])(x) =
∫ t

0

γ(s).ω(γ(s)−1.γ′(s),Ad(γ(s))−1.x) ds

=
∫ 1

0

γ(st).ω(γ(st)−1.γ′(st),Ad(γ(st))−1.x) tds = tF̃ω(ηt)(x).

Therefore

d

dt t=0
F̃ω(γ |[0,t])(x) = lim

t→0

∫ 1

0

γ(st).ω(γ(st)−1.γ′(st),Ad(γ(st))−1.x) ds

=
∫ 1

0

γ(0).ω(γ(0)−1.γ′(0),Ad(γ(0))−1.x) ds

= ω(y, x) = (iyω)(x).

Proposition 6.3. We have a well-defined map

Fω : G̃→ Ĥ1
c (g, a) = Lin(g, a)/B1

c (g, a), g 7→ [F̃ω(qG◦γg)] := F̃ω(qG◦γg)+B1
c (g, a),

where γg : [0, 1] → G̃ is piecewise smooth with γg(0) = 1 and γg(1) = g . The map
Fω is a 1-cocycle with respect to the natural action of G̃ on Ĥ1

c (g, a) . Moreover,
we obtain by restriction a group homomorphism Z(G̃) ∩ ker ρa → H1

c (g, a), [γ] 7→
[F̃ω(γ)] and further by restriction to π1(G) a homomorphism

Fω : π1(G) → H1
c (g, a).

Proof. That Fω is well-defined follows from Lemma 6.1(2) because two different
choices of paths γg and ηg lead to paths qG ◦ γg and qG ◦ ηg in G which are
homotopic with fixed endpoints. Next we note that for paths γgi

, i = 1, 2, from 1
to gi in G̃ the composed path γg1]γg2 connects 1 to g1g2 . Hence the composition
formula (6.3) leads to

Fω(g1g2) = F̃ω(γg1]γg2) = F̃ω(γg1) + g1.F̃ω(γg2) = Fω(g1) + g1.Fω(g2),

showing that the map Fω is a 1-cocycle.
Since Z(G̃) ∩ ker ρa acts trivially on g and a , hence on Lin(g, a), the

restriction of Fω to this subgroup is a group homomorphism, and Lemma 6.2(1)
shows that its values lie in the subspace H1

c (g, a) of Ĥ1
c (g, a).
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We call Fω : G̃ → Ĥ1
c (g, a) the flux cocycle and its restriction to π1(G) the

flux homomorphism for reasons that will become clear in Definition 9.9 below.
Composing with the map

Eq: Ĥ1
c (g, a) → Ĥ1

dR(G, a),

we obtain a group cocycle

F̂ω := Eq ◦Fω : G̃→ Ĥ1
dR(G, a), i.e., F̂ω(g1g2) = F̂ω(g1) + ρ∗g1

F̂ω(g2).

Since the elements of the target space are uniquely determined by their integrals
over loops, Lemma 6.2(3) completely determines F̂ω .

We now relate the flux homomorphism to group extensions. Although the
following proposition is quite technical, it contains a lot of interesting information,
even for non-connected groups A .

Proposition 6.4. Let A be an abelian Lie group whose identity component
satisfies A0

∼= a/ΓA , where ΓA ⊆ a is a discrete subgroup. Further let q : Ĝ→ G
be a Lie group extension of the connected Lie group G by A corresponding to the
Lie algebra cocycle ω ∈ Z2

c (g, a) , so that its Lie algebra is ĝ ∼= a ⊕ω g . In these
terms we write the adjoint action of Ĝ on ĝ as

(6.4) Ad(g).(a, x) = (g.a− θ(g)(g.x), g.x), g ∈ Ĝ, a ∈ a, x ∈ g,

where g.x = Ad(q(g)).x and

θ : Ĝ→ C1
c (g, a) = Lin(g, a)

is a 1-cocycle with respect to the action of Ĝ on Lin(g, a) by (g.α)(x) := g.α(g−1.x) .
Its restriction θA := θ |A is a homomorphism given by

θA(a) = D(dG(a)) with (dGa)(g) := g.a−a and D(dGa)(x) := x.a :=
(
d(dGa)(1)

)
(x).

This 1-cocycle maps A0 to B1
c (g, a) and factors through a 1-cocycle

θ : Ĝ/A0 → Ĥ1
c (g, a) = Lin(g, a)/B1

c (g, a), q(g) 7→ [θ(g)].

The map q : Ĝ/A0 → G, gA0 7→ q(g) is a covering of G , so that there is a unique
covering morphism q̂G : G̃→ Ĝ/A0 with q ◦ q̂G = qG , and the following assertions
hold:
(1) The coadjoint action of Ĝ on ĝ and the flux cocycle are related by Fω =

−θ ◦ q̂G .
(2) If δ : π1(G) → π0(A) ⊆ Ĝ/A0 is the connecting homomorphism from the long

exact homotopy sequence of the principal A-bundle q : Ĝ→ G , then

Fω = −θA ◦ δ : π1(G) → H1
c (g, a),
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where θA : π0(A) → H1
c (g, a) is the characteristic homomorphism of the

smooth G-module A .
(3) The induced map

Fω : π1(G) → H1
c (g, a)/π0(A)

vanishes, and if A is connected, then Fω(π1(G)) = {0} .
Proof. From the description of the Lie algebra ĝ as a⊕ω g , it is clear that there
exists a function θ : Ĝ→ Lin(g, a) for which the map (g, x) 7→ θ(g)(x) is smooth
and the adjoint action of Ĝ on g is given by (6.4). Since Ad is a representation
of G , we have θ(1, x) = 0 and

(6.5) θ(g1g2)(g1g2.x) = g1.θ(g2)(g2.x) + θ(g1)(g1g2.x), g1, g2 ∈ Ĝ, x ∈ g,

which means that
θ(g1g2) = g1.θ(g2) + θ(g1),

i.e., θ is a 1-cocycle. As A acts trivially on a and g , the restriction θA = θ |A is
a homomorphism

θA : A→ Z1
c (g, a) with Ad(b).(a, x) = (a− θA(b)(x), x), b ∈ A, a ∈ a, x ∈ g.

The relation θ(b) ∈ Z1
c (g, a) follows directly from Ad(b) ∈ Aut(ĝ).

For ĝ ∈ Ĝ with q(ĝ) = g and b ∈ A we have bĝb−1 = (bĝb−1ĝ−1)ĝ =
(b− g.b) · ĝ, which leads to

Ad(b).(a, x) = (a− x.b, x)

and therefore to θA(b)(x) = x.b . For a ∈ a and b = qA(a) we have x.b = x.a , so
that θ(A0) = B1

c (g, a). Hence θ factors through a 1-cocycle θ : Ĝ/A0 → Ĥ1
c (g, a)

whose restriction θA to π0(A) = A/A0 is given by

θA : π0(A) ∼= A/A0 → H1
c (g, a), [a] 7→ [θA(a)] = [D(dGa)].

(1) For a fixed x ∈ g the cocycle condition (6.5) implies for the smooth
functions θx : Ĝ→ a, g 7→ θ(g)(x) the relation

θx(gh) = g.θg−1.x(h) + θx(g).

For the differentials we thus obtain

(6.6) dθx(g)dλg(1) = ρa(g) ◦ dθg−1.x(1).

From formula (6.4) for the adjoint action, we get in view of θ(1) = 0 the formula

(x′.a− x.a′ + ω(x′, x), [x′, x]) = ad(a′, x′)(a, x) = (x′.a− dθx(1)(a′, x′), [x′, x]),

so that θ and the corresponding Lie algebra cocycle are related by

dθx(1)(a′, x′) = ω(x, x′) + x.a′.

With (6.6) this further leads to
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dθx(g)dλg(1)(a′, x′) = g.
(
ω(g−1.x, x′) + (g−1.x).a′

)
= ωeq(xr(q(g)), dλq(g)(1).x′)

+x.(g.a′).

In Ω1(Ĝ, a) we therefore have the relation

dθx = ρ̇a(x) ◦ peq
a + q∗(ixr

ωeq),

where pa(a′, x′) = a′ is the projection of ĝ onto a and peq
a the corresponding

equivariant 1-form on Ĝ .
Let γ : [0, 1] → G be any piecewise smooth loop based in 1 . Then there

exists a piecewise smooth map γ̂ : [0, 1] → Ĝ with q ◦ γ̂ = γ and γ̂(0) = 1 , so that
γ̃ := q̂G ◦ γ̂ : [0, 1] → G̃ is the unique lift of γ to a piecewise smooth path in G̃
starting in 1 . We now have

−F̃ω(γ)(x) =
∫

γ

ixr
ωeq =

∫
[0,1]

γ∗(ixr
ωeq) =

∫
[0,1]

γ̂∗q∗(ixr
ωeq)

=
∫

γ̂

q∗(ixr
ωeq) =

∫
γ̂

dθx − ρa(x) ◦ peq
a

= θx(γ̂(1))− θx(γ̂(0))− ρa(x).
∫

γ̂

peq
a = θ(γ̂(1))(x)− ρa(x).

∫
γ̂

peq
a .

This means that

Fω(γ̃(1)) = [F̃ω(γ)] = −[θ(γ̂(1))] = −θ(q̂G(γ̃(1)))

and therefore that Fω = −θ ◦ q̂G because γ was arbitrary.
(2) If γ : [0, 1] → G is a piecewise smooth loop based in 1 , then γ̂(1) ∈

ker q = A and δ([γ]) = [γ̂(1)] , as an element of π0(A). This means that δ can be
considered as the restriction of q̂G : G̃ → Ĝ/A0 to the subgroup π1(G) = ker qG .
Therefore (2) follows from (1) by restriction.

(3) This follows directly from (2) because H1
c (g, a)/π0(A) = coker θA (Defi-

nition 3.6).

Corollary 6.5. If, in addition to the assumptions of Proposition 6.4, the group
G is simply connected, then G is isomorphic to the identity component of the
group Ĝ/A0 , and in this sense

Fω = −θ : G→ Ĥ1
c (g, a).

On the subgroup A] := q−1(Z(G) ∩ ker ρA) of Ĝ the cocycle θ restricts to a
homomorphism

(6.7) θ] : A] → Z1
c (g, a), a 7→ D(dG(a)),
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where for each a ∈ A] the smooth cocycle dG(a) ∈ Z1
s (G,A) is defined by

dG(a)(q(g)) := gag−1a−1 . For two piecewise smooth curves γ, η : [0, 1] → G with
γ(0) = η(0) = 1 and γ(1), η(1) ∈ A] we have for H : I2 → G,H(t, s) = γ(t)η(s)
the formula

(6.8) γ(1)η(1)γ(1)−1η(1)−1 = −qA
( ∫

γ

F̃ω(η)eq
)

= qA

( ∫
H

ωeq
)
.

Proof. To derive the first part from Propositions 6.3 and 6.4, we only have
to observe that for a ∈ A] the condition ρA(a) = idA implies that dG(a) is
well-defined on G by dG(a)(q(g)) = gag−1a−1 , and that this is an element of A
because q(a) ∈ Z(G) implies dG(a) ∈ ker q .

For (6.8) we first observe that for x ∈ a and qA(x) = x+ ΓA ∈ A the map
dGqA(x) : G→ A satisfies

0 = ρA(γ(1))(qA(x))− qA(x) = (dGqA(x))(γ(1)) =
∫

γ

d(dG(qA(x))) + ΓA

=
∫

γ

(D(dGqA(x)))eq + ΓA =
∫

γ

(dgx)eq + ΓA,

so that the integration along γ yields a well-defined map Ĥ1
c (g, a) → A, [α] 7→

qA

( ∫
γ
αeq

)
. We therefore get with Proposition 6.4, Lemma 6.2(3) (note the sign

change) and −θ = Fω on the identity component G of Ĝ/A0 :

γ(1)η(1)γ(1)−1η(1)−1 = dG(η(1))(γ(1)) =
∫

γ

d(dG(η(1))) + ΓA

=
∫

γ

D(dG(η(1)))eq + ΓA

=
∫

γ

θ](η(1))eq + ΓA = −
∫

γ

Fω(η(1))eq + ΓA = −
∫

γ

F̃ω(η)eq + ΓA

=
∫

H

ωeq + ΓA.

Corollary 6.6. Suppose that A ∼= a/ΓA , that qG : G̃ → G is a universal
covering homomorphism, let q : Ĝ → G̃ be an A-extension of G̃ corresponding
to ω ∈ Z2

c (g, a) , and π̂1(G) := q−1(π1(G)) . Then the following are equivalent:
(1) Fω(π1(G)) = {0} .
(2) θ(π̂1(G)) ⊆ B1

c (g, a) = θ(A) .
(3) π̂1(G) = A+ ker(θ |π̂1(G)) .
(4) q(ker(θ |π̂1(G))) = π1(G) .
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(5) There exists a group homomorphism σ : π1(G) → ker(θ |π̂1(G)) = π̂1(G)∩Z(Ĝ)
with q ◦ σ = idπ1(G) .

Proof. The equivalence of (1) and (2) follows from Corollary 6.5, and (2) is
clearly equivalent to (3), which in turn is equivalent to (4) because ker q = A .

That (5) implies (4) is trivial. If (4) is satisfied, then we first observe that
ker(θ |π̂1(G)) = π̂1(G) ∩ Z(Ĝ), so that (3) implies that π̂1(G) is abelian. Further
(6.7) in Corollary 6.5 leads to

ker(θ |π̂1(G)) ∩ ker q = ker(θ |A) = qA(ag),

which is a divisible group. Hence the extension qA(ag) ↪→ ker(θ |π̂1(G)) →→ π1(G)
splits, which is (5).

The following theorem is a central result of this paper.

Theorem 6.7. (Integrability Criterion) Let G be a connected Lie group and A
be a smooth G-module with A0

∼= a/ΓA , where ΓA is a discrete subgroup of the
Mackey complete locally convex space a . For ω ∈ Z2

c (g, a) the abelian Lie algebra
extension a ↪→ ĝ := a×ω g →→ g integrates to a Lie group extension A ↪→ Ĝ→→ G
if and only if
(1) Πω ⊆ ΓA , and
(2) there exists a homomorphism γ : π1(G) → π0(A) such that the flux homomor-

phism
Fω : π1(G) → H1

c (g, a)

is related to the characteristic homomorphism θA : π0(A) → H1
c (g, a) by

Fω = θA ◦ γ.

If, in addition, A is connected, then (2) is equivalent to Fω = 0 .

Proof. Suppose first that Ĝ is a Lie group extension of G by A corresponding to
the Lie algebra cocycle ω . According to Proposition 4.5, −perω is the connecting
map π2(G) → π1(A) ∼= ΓA . This implies (1). That (2) is satisfied follows from
Proposition 6.4(2) with γ = −δ .

Conversely, suppose that (1) and (2) hold. Let qG : G̃ → G denote the
simply connected covering group of G and recall that π2(qG) is an isomorphism
π2(G̃) → π2(G). We may therefore identify the period maps perω of G and G̃

and likewise for all quotients of G̃ by subgroups of π1(G).
From the case of simply connected groups (Proposition 5.3), we know that

there exists an A0 -extension q] : G] → G̃ , where A carries the natural G̃ -module
structure induced by the G -module structure. The Lie algebra of G] is ĝ =
a ⊕ω g . Let G1 := G̃/ ker γ and observe that π1(G1) ∼= ker γ . Condition (2)
implies π1(G1) = ker γ ⊆ kerFω , so that Corollary 6.6 implies that there exists a
homomorphism

σ : π1(G1) → ker(θ |π̂1(G)) ⊆ Z(G])
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with q] ◦ σ = idπ1(G1) . Then the image of σ is a discrete central subgroup of G] ,
and therefore

Ĝ1 := G]/σ(π1(G1))

defines an abelian extension A0 ↪→ Ĝ1
q1−−→G1 corresponding to the given Lie

algebra extension a⊕ω g → g .
If q1 : G1 → G is the quotient map with kernel π1(G)/ ker γ ∼= im γ ⊆ π0(A),

then B := q−1
1 (π1(G)/ ker γ) is a subgroup of Ĝ1 with B0 = A0 and π0(B) =

B/B0
∼= im(γ) ⊆ π0(A). Let A1 ⊆ A denote the open subgroup whose image

in π0(A) is im(γ). Then B ∼= B0 × π0(B) ∼= A0 × im(γ) ∼= A1 as abelian Lie
groups. As γ factors through an isomorphism γ : π0(B) → im γ ⊆ π0(A1) and the
characteristic maps θA : π0(A) → H1

c (g, a) and θB : π0(B) → H1
c (g, a) satisfy

θA ◦ γ = θB

(Proposition 6.4, Corollary 6.5), Lemma 3.8 implies that A1
∼= B as smooth G -

modules. Therefore Ĝ1 is an A1 -extension of G . Write Ĝ1 = A1 ×f G for some
f ∈ Z2

ss(G,A1) ⊆ Z2
ss(G,A) (Proposition 2.6). Then Ĝ := A×f G is an extension

of G by A containing Ĝ1 as an open subgroup.

Remark 6.8. The condition (2) in the preceding theorem reduces to the simple
condition Fω = 0 if A is connected, but if A is not connected, it can become quite
involved. From the short exact sequence of abelian groups

0 → ker θA → π0(A) →→ im(θA) → 0

and the corresponding long exact cohomology sequence we obtain an exact se-
quence

Hom(π1(G), π0(A)) → Hom(π1(G), im θA) → H2(π1(G), ker θA).

Clearly im(Fω) ⊆ im(θA) is necessary for (2), but if this condition is satisfied,
then the obstruction for the existence of γ : π1(G) → π0(A) as in (2) is the
image of Fω in H2(π1(G), ker θA). This cohomology class can be interpreted as a
central extension of π1(G) by the discrete group im(θA) (see also the discussion
in Example D.11).

Remark 6.9. (a) Suppose that only (1) in Theorem 6.7 is satisfied. Consider the
corresponding extension q] : G] → G̃ of G̃ by A0

∼= a/ΓA . Then G ∼= G]/π̂1(G),
where π̂1(G) := (q])−1(π1(G)) is a central A0 -extension of π1(G), hence 2-step
nilpotent Lie group with Lie algebra a .

If π̂1(G) is abelian, then we have an abelian Lie group extension

1 → π̂1(G) ↪→ G] → G→ 1
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of G by the abelian group π̂1(G), and the corresponding Lie algebra extension is

0 → a ↪→ ĝ ∼= a⊕ω g →→ g → 0.

(b) We have seen in the proof of Theorem 6.7 that whenever an A -extension
Ĝ of G corresponding to ω ∈ Z2

c (g, a) exists, then its identity component is a
quotient of G] by a subgroup σ(π1(G)), where σ : π1(G) → Z(G]) ∩ π̂1(G) is
a splitting homomorphism for π̂1(G). This implies in particular that π̂1(G) is
abelian.

Let us take a closer look at the nilpotent group π̂1(G). If this group is
abelian, then the divisibility of A0

∼= a/ΓA implies that π̂1(G) splits as an A0 -
extension of π1(G). Clearly this condition is weaker than the requirement that it
splits by a homomorphism σ : π1(G) → π̂1(G) ∩ Z(G]) with values in the center
of G] .

That π̂1(G) is abelian is equivalent to the triviality of the induced commu-
tator map

CA
ω : π1(G)× π1(G) → A0 ⊆ A.

According to Corollary 6.5,

(6.9) CA
ω ([γ], [η]) = −qA

( ∫
γ

F̃ω(η)eq
)

= −P1(Fω([η]))([γ]) = −
∫

γ

F̂ω([η]),

where P1 : H1
c (g, a) → Hom(π1(G), A), P1([α])([γ]) := qA

( ∫
γ
αeq

)
as in Proposi-

tion 3.4. Therefore the commutator map vanishes if and only if

(6.10) P1 ◦ Fω(π1(G)) = {0},

which means that F̂ω(π1(G)) = {0} . This means that for all smooth loops
γ, η : S1 → G and H : T2 → G, (t, s) 7→ γ(t)η(s) we have

qA

( ∫
T2
H∗ωeq

)
= P1(Fω([η]))([γ]) = 0.

In view of Proposition 3.4, Condition (6.10) is equivalent to

(6.11) Fω(π1(G)) ⊆ kerP1 = im(D1) ∼= H1
s (G,A0) ⊆ H1

c (g, a),

i.e., that the image of the flux homomorphism consists of classes of integrable
1-cocycles, so that we may view Fω as a homomorphism

Fω : π1(G) → H1
s (G,A0).

In Corollary 6.5 we have seen that we have a homomorphism

θ] = D1 ◦ dG̃ : π̂1(G) → Z1
c (g, a)
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which factors through the (negative) flux homomorphism −Fω : π1(G) → H1
c (g, a).

The group π̂1(G) is a smooth G̃ -module which is abelian if and only π1(G) acts
trivially, which in turn is (6.11). If this is the case, then

−Fω : π0(π̂1(G)) ∼= π1(G) → H1
c (g, a)

is the characteristic homomorphism of the smooth G -module π̂1(G). In view of
Lemma 3.8, it vanishes if and only if the identity component π̂1(G)0 ∼= A0 has a
G -invariant complement in π̂1(G).

Below we describe a typical example where the commutator map CA
ω van-

ishes and the flux homomorphism Fω : π1(G) → H1
c (g, a) is non-zero (see also

Example D.11(b)).

Example 6.10. Let G := T2 = R2/Z2 with universal covering group qG : G̃ ∼=
R2 → G . We consider Z := T = R/Z as a trivial G -module and write qZ : z ∼=
R → Z for the quotient map. Then

ω(x, y) := x1y2 − x2y1

defines a Lie algebra cocycle in Z2
c (g, z). Since π2(G) ∼= π2(R2) vanishes, we have

perω = 0. The corresponding central extension of G̃ is given by

G] := Z ×f G̃ = T×f R2, f(x, y) = qZ(x1y2) = x1y2 + Z.

Note that the biadditivity of f implies that it is a group cocycle, and clearly
D2f = ω .

Since the differential dg on C•(g, z) vanishes, we have Ĥ1
c (g, z) = Lin(g, z) =

H1
c (g, z). The flux cocycle, which actually is a homomorphism, is given by

Fω : G̃ ∼= R2 → Ĥ1
c (g, z) ∼= Lin(g,R) ∼= g∗, x 7→ ixω.

It is a bijective linear map and in particular non-zero.
The kernel of the map

P1 : H1
c (g, z) ∼= Lin(g, z) → Hom(π1(G), Z) = Hom(Z2,T) ∼= T2,

α 7→ (qZ(α(e1)), qZ(α(e2)))

is the additive subgroup Hom(Z2,Z) of Lin(R2,R). Therefore ω(Z2 × Z2) ⊆ Z
leads to

P1 ◦ Fω(π1(G)) = P1(iZ2ω) = {0},

which corresponds to the triviality of the extension π̂1(G) := Z ×f Z2 = Z × Z2 .
We conclude that there is no Lie group extension Z ↪→ Ĝ→→ G correspond-

ing to the Lie algebra cocycle ω . Another reason for such an extension not to exist
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is that any such extension would be central, but for all central extensions of tori by
connected Lie groups the corresponding Lie algebra cocycle vanishes (cf. [Ne02]).

We now consider the smooth G -module A := C∞(G,Z) with the action
(g.f)(x) := f(g + x) and note that a = C∞(G, z). We identify Z ⊆ A with the
subgroup consisting of constant functions. Then ω is an element of Z2

c (g, a). A
linear functional α : g → a is determined by the pair (f1, f2) := (α(e1), α(e2)),
and the cocycle condition means that

∂f1
∂x2

=
∂f2
∂x1

,

i.e., f1dx1 + f2dx2 ∈ Ω1(G, z) is a closed 1-form. This implies that

H1
c (g, a) ∼= Z1

dR(G, z)/dC∞(G, z) ∼= H1
dR(G, z) = R[dx1]⊕ R[dx2].

In this sense the flux homomorphism is given by

Fω : Z2 ∼= π1(G) → H1
c (g, a), Fω(n,m) = n[ie1ω] +m[ie2ω] = n[dx2]−m[dx1].

For a smooth function f : T2 → T we have d′G(f)(g) = (g.f)f−1 and therefore
θA(f) = D1(d′Gf) = f−1df , so that the characteristic homomorphism

θA : π0(A) → H1
c (g, a) ∼= H1

dR(T2,R), [f ] 7→ [f−1df ]

is an injective homomorphism onto the discrete subgroup of integral cohomology
classes. The map

γ : π1(G) ∼= Z2 → π0(A), (n,m) 7→ [qG(x1, x2) 7→ qZ(nx2 −mx1)]

is an isomorphism of groups satisfying

θA ◦ γ(n,m) = [ndx2 −mdx1] = Fω(n,m),

so that the assumptions of the integrability criterion Theorem 6.7 are satisfied.
With the cocycle f ∈ Z2

s (G̃, Z) ⊆ Z2
s (G̃, A) from above, we obtain a group

extension
Ĝ := A0 ×f G̃ = A0 ×f R2, f(x, y) = qZ(x1y2),

whose restriction to π1(G) is the abelian group

π̂1(G) := A0 ×f Z2 ∼= A0 × Z2 ∼= A.

For (n,m) ∈ Z2 we have in Ĝ

(0, (x, y))(0, (n,m))(0, (−x,−y)) = (f((x, y), (n,m)), (n,m)) = (qZ(xm), (n,m)),

showing that Z(Ĝ) = Z , and there is no section π1(G) → π̂1(G) with central
values. Nevertheless, the existence of γ implies that π̂1(G) ∼= A as smooth G -
modules, so that

A ∼= π̂1(G) ↪→ Ĝ→→ G

is an A -extension of G whose Lie algebra cocycle is ω .
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In Example 9.17 we shall discuss a generalization of the setting used in
Example 6.10 for the two-dimensional torus.

If G is a smoothly paracompact group, then each closed a -valued differential
form defines a singular A -valued cohomology class, and it is instructive to compare
the condition that the period map qA◦perω and the flux homomorphism Fω vanish
with the condition that the corresponding cohomology class in

H2
sing(G,A) ∼= Hom(H2(G), A)

vanishes (the equality follows from the Universal Coefficient Theorem). To evaluate
this cohomology classes, it is crucial to have a good description of the generators
of the group H2(G).

Proposition 6.11. Let G be a topological group, S2(G) ⊆ H2(G) the subgroup
of spherical 2-cycles, i.e., the image of π2(G) under the Hurewicz homomorphism
π2(G) → H2(G) , and Λ2(G) := H2(G)/S2(G) the quotient group. Then Λ2(G) is
generated by the images of cycles defined by maps of the form

α ∗ β : T2 → G, (t, s) 7→ α(t)β(s),

where α, β : T → G are loops in G .

Proof. First we recall that the group H2(G) is generated by the cycles defined
by continuous maps F : Σ → G , where Σ is a compact orientable surface of genus
g ∈ N0 (this comes from the fact that the cone over each connected compact 1-
manifold is a disc). We may assume that g > 0, otherwise Σ ∼= S2 , and there is
nothing to show.

We recall that Σ can be described as a CW-complex by starting with a
bouquet

A2g
∼= S1 ∨ S1 ∨ . . . ∨ S1︸ ︷︷ ︸

2g

of 2g -circles. Let x0 ∈ S1 be the base point in S1 and a0 the base point in
A2g . We write a1, a2, . . . , a2g−1, a2g : S1 → A2g for the corresponding generators
of the fundamental group of A2g which is a free group on 2g generators. Then we
consider the continuous map γ : S1 → A2g corresponding to

(6.12) [a1, a2] · · · [a2g−1, a2g] ∈ π1(A2g),

where [x, y] := xyx−1y−1 denotes a commutator. Now Σ is homeomorphic to
the space obtained by identifying the points in ∂B2 ∼= S1 (the boundary of the
2-dimensional unit disc B2 ) with their images in A2g under γ , i.e.,

Σ ∼= A2g ∪γ B2.

In this sense we can identify A2g with a subset of Σ. Let fj : A2g → S1 be the
pointed map for which fj ◦αj = idS1 and for i 6= j the map fj ◦αi is constant x0 .
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Then fj extends to a continuous map fj : Σ → S1 because it maps the commutator
(6.12) to a contractible loop in S1 .

For a continuous map F : Σ → G we now consider the continuous map

F1 := (F ◦ α1 ◦ f1) · · · (F ◦ α2g ◦ f2g)

and observe that for each j we have F ◦αj = F1◦αj , i.e., F and F1 coincide on the
subset A2g of Σ. Therefore the map F2 := F−1

1 · F : Σ → G is a continuous map
mapping A2g to 1 , so that it induces a map Σ/A2g

∼= S2 → G . Hence F = F1 ·F2 ,
where F1 factors through the continuous map f = (f1, . . . , f2g) : Σ → T2g and
F2 factors through the quotient map Σ → S2 collapsing A2g to a point. We thus
obtain a factorization of F into maps

Σ → T2g × S2 → G×G
mG−−−−−−→G,

where mG is the group multiplication. Since the homology groups of S2 and T2g

are free, the Künneth Theorem yields

H•(S2 × T2g) ∼= H•(S2)⊗H•(T2g)

as graded abelian groups, and in particular

H2(S2 × T2g) ∼= H2(S2)⊕H2(T2g).

This implies that H2(F ) : H2(Σ) ∼= Z → H2(G) maps the fundamental class [Σ] ∈
H2(Σ) to the sum of two homology classes in the image of H2(F1) and H2(F2).
Since im(H2(F1)) ∈ S2(G), it remains to consider the image of H2(F ) of maps
F : T2g → G . As H2(T2g) is generated by the classes of the

(
2g
2

)
2-dimensional

sub-tori obtained by the coordinatewise inclusions T2 → T2g , everything reduces
to maps F : T2 → G . Writing F , as above, as F1 · F2 , we obtain a factorization
of F into maps

T2 → (T× T)× S2 (F◦α1◦f1,F◦α2◦f2,F2)−−−−−−−−−−−−−−→ G3 mG◦(mG×idG)−−−−−−−−−→ G.

Now H2(T2 × S2) ∼= H2(T2) ⊕ H2(S2) permits us to reduce matters to maps
F1 : T2 → G of the form α ∗ β . This completes the proof.

Remark 6.12. We apply the preceding proposition to Lie groups. Let G be a
smoothly paracompact Lie group. Then de Rham’s Theorem ([KM97, Thm. 34.7])
implies that the map

H2
dR(G, a) → Hom(H2(G), a) ∼= H2

sing(G, a)

is an isomorphism of vector spaces. According to Proposition 6.11, H2(G) is
generated by S2(G) and the classes of the maps α ∗ β . Therefore we obtain an
injective map

Φ: H2
dR(G, a) → Hom(π2(G), a)⊕Hom(π1(G)⊗ π1(G), a),
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with first component Φ1([Ω]) = perΩ and

Φ2([Ω])([α]⊗ [β]) =
∫

α∗β
Ω,

where α, β : S1 → G are piecewise smooth representatives of their homotopy
classes. That the second component is well-defined follows from the fact that mG

induces a map

π1(G)⊗ π1(G) → H1(G)⊗H1(G) → H2(G×G)
H2(mG)−−−−−−→H2(G)

mapping [α]⊗ [β] onto H2(α ∗ β)([T2]) ∈ H2(G).
For an equivariant 2-form ωeq we conclude in particular that the corre-

sponding cohomology class in H2
sing(G,A) vanishes if and only if

qA ◦ perω = 0 and CA
ω = 0

(cf. Remark 6.9). This condition is weaker than P1([ω]) = (qA ◦ perω, Fω) = 0
(Example 6.10), but it already implies the existence of an abelian extension of G
by the abelian group π̂1(G), even though A might not be isomorphic to π̂1(G) as
G -modules (cf. Remark 6.9).

Remark 6.13. With similar arguments as in Section 4, resp. Section 5 of [Ne02],
we can define a toroidal period map by observing that the integration map

p̃erT
ω : C∞(T2, G) → aG, [σ] 7→

∫
σ

ωeq

is constant on the connected components, hence defines a map

perT
ω : π0(C∞(T2, G)) ∼= [T2, G] ∼= π1(G)× π1(G)× π2(G) → a

(cf. [MN03, Remark 1.11(b)], [Ne02, Th. A.3.7]). The restriction to π2(G), which
corresponds to homotopy classes of maps vanishing on (T × {1}) ∪ ({1} × T), is
the period map perω : π2(G) → a . The elements of the subgroup

π1(G)× π1(G) ⊆ π0(C∞(T2, G))

are represented by maps of the form α ∗ β with α, β ∈ C∞(T, G), and from the
proof of Proposition 6.11 we know that

π1(G)× π1(G) → a, ([α], [β]) 7→ perT
ω([α ∗ β])

is biadditive. This implies in particular that, in general, perT
ω is not a group

homomorphism. The condition qA ◦ perT
ω = 0 means that qA ◦ perω = 0 and

the commutator map CA
ω vanish, which, for smoothly paracompact groups G , is

equivalent to the vanishing of the cohomology class in H2
sing(G,A) defined by the

closed 2-form ωeq .
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Remark 6.14. If A ∼= a/ΓA , then aG = ag is a closed subspace of a containing
ΓA . Therefore

A/AG ∼= b := a/aG

is a locally convex space which carries a natural smooth G -module structure.
Note that the quotient space b need not be sequentially complete if a has this
property. Nevertheless the construction in Section 5 leads to a group cocycle
f ∈ Z2

s (G, a/Πω) and since Πω is always contained in aG (Lemma 4.2), we obtain
a group cocycle

f1 ∈ Z2
s (G, b) with Df1 = ωb := qb ◦ ω,

where qb : a → b is the quotient map (Corollary 5.3). This leads to a Lie group
extension

b ↪→ Ĝ→→ G̃

with ĝ ∼= b⊕ωb g . Note that

b = a/aG ∼= B1
c (g, a) ⊆ Z1

c (g, a),

so that we may identify the quotient map qb with the coboundary map dg : a →
B1

c (g, a). This makes it easier to identify the corresponding flux cocycle.
In Proposition 10.4 we shall encounter examples of modules a with ag = {0}

for which the flux cocycle is non-trivial (this is the case for the module F1 of
Diff(S1)0 ). Therefore one cannot expect Fωb

to vanish.

7. An exact sequence for abelian Lie group exten-
sions

Let G be a connected Lie group and A a smooth G -module of the form A ∼= a/ΓA ,
where ΓA ⊆ a is a discrete subgroup. The main result of the present section is an
exact sequence relating the group homomorphism

D := D2 : H2
s (G,A) → H2

c (g, a)

to the exact Inflation-Restriction Sequence associated to the normal subgroup
π1(G) ∼= ker qG of G̃ , where qG : G̃ → G is the universal covering map (cf.
Appendix D). The crucial information on im(D) has already been obtained in
Theorem 6.7, so that it essentially remains to show that kerD coincides with the
image of the connecting homomorphism δ : Hom(π1(G), AG) → H2

s (G,A).
In the following we shall always consider A as a G̃ -module, where g ∈ G̃

acts on A by g.a := qG(g).a , so that π1(G) acts trivially.
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Proposition 7.1. Let G be a connected Lie group. For an abelian Lie group
extension A ↪→ Ĝ

q−−→G the following conditions are equivalent:
(1) There exists an open identity neighborhood U ⊆ G and a smooth section

σU : U → Ĝ of q with σU (xy) = σU (x)σU (y) for x, y, xy ∈ U .
(2) Ĝ ∼= A×f G , where f ∈ Z2

s (G,A) is constant 0 on an identity neighborhood
in G×G .

(3) There exists a homomorphism γ : π1(G) → AG and an isomorphism
Φ: (A o G̃)/Γ(γ) → Ĝ with q

(
Φ([1, x])

)
= qG(x) for x ∈ G̃ , where Γ(γ) =

{(γ(d), d) : d ∈ π1(G)} is the graph of γ .
Proof. (1) ⇔ (2) follows directly from the definitions and Proposition 2.6.

(1) ⇒ (3): We may w.l.o.g. assume that U is connected, U = U−1 , and that
there exists a smooth section σ̃ : U → G̃ of the universal covering map qG . Then

σU ◦ qG |σ̃(U) : σ̃(U) → Ĝ

extends uniquely to a smooth homomorphism ϕ : G̃ → Ĝ with ϕ ◦ σ̃ = σU and
q ◦ ϕ = qG ([Ne02, Lemma 2.1]; see also [HofMo98, Cor. A.2.26]). We define
ψ : Ao G̃→ Ĝ, (a, g) 7→ aϕ(g). Then ψ is a smooth group homomorphism which
is a local diffeomorphism because

ψ(a, σ̃(x)) = aϕ(σ̃(x)) = aσU (x) for x ∈ U, a ∈ A.

We conclude that ψ is a covering homomorphism. Moreover, ψ is surjective
because its range is a subgroup of Ĝ containing A and mapped surjectively by q
onto G . This proves that

Ĝ ∼= (Ao G̃)/ kerψ, kerψ = {(−ϕ(g), g) : g ∈ ϕ−1(A)}.

On the other hand, ϕ−1(A) = ker(q ◦ ϕ) = ker qG = π1(G), so that

kerψ = {(γ(d), d) : d ∈ π1(G)} = Γ(γ) for γ := −ϕ |π1(G).

(3) ⇒ (1) follows directly from the fact that the map A o G̃ → Ĝ is a
covering morphism.

For the following theorem we recall the definition of the period map perω

(Section 4) and the flux homomorphism Fω : π1(G) → H1
c (g, a) associated to

ω ∈ Z2
s (g, a) (Proposition 6.3).

Theorem 7.2. Let G be a connected Lie group, A a smooth G-module of the
form A ∼= a/ΓA , where ΓA ⊆ a is a discrete subgroup of the Mackey complete
locally convex space a and qA : a → A the quotient map. Then the map

P̃ : Z2
c (g, a) → Hom

(
π2(G), A

)
×Hom

(
π1(G),H1

c (g, a)
)
, P̃ (ω) = (qA◦perω, Fω)

factors through a homomorphism

P : H2
c (g, a) → Hom

(
π2(G), A

)
×Hom

(
π1(G),H1

c (g, a)
)
, P ([ω]) = (qA◦perω, Fω)

and the following sequence is exact:
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0 → H1
s (G,A) I−−→H1

s (G̃, A) R−−→H1
(
π1(G), A

)G ∼= Hom
(
π1(G), AG

) δ−−−−→
δ−−−−→H2

s (G,A) D−−−−→H2
c (g, a) P−−−−→Hom

(
π2(G), A

)
×Hom

(
π1(G),H1

c (g, a)
)
.

Here the map δ assigns to a group homomorphism γ : π1(G) → AG the quotient
of the semi-direct product Ao G̃ by the graph {(γ(d), d) : d ∈ π1(G)} of γ , which
is a discrete central subgroup.

Proof. First we verify that P̃ vanishes on B2
c (g, a), so that the map P is well-

defined. In Theorem 6.7 we have seen that [ω] ∈ im(D) is equivalent to P̃ (ω) = 0.
If [ω] = 0, then a⊕ωg ∼= aog and the semi-direct product AoG is a corresponding
extension of G by A , so that Theorem 6.7 leads to P̃ (ω) = 0. As P̃ is a group
homomorphism, it factors to a homomorphism P on H2

c (g, a).
The exactness of the sequence in H1

s (G,A), H1
s (G̃, A) and Hom(π1(G), AG)

follows from Example D.11(b) and the exactness in H2
c (g, a) from Theorem 6.7.

It therefore remains to verify the exactness in H2
s (G,A).

First we need a more concrete interpretation of the map δ in terms of abelian
extensions. Let γ ∈ Hom(π1(G), AG) and f ∈ C1

s (G̃, A) as in Lemma D.7, applied
with N = π1(G) with f(gd) = f(g) + γ(d) for g ∈ G̃, d ∈ π1(G). Then the
arguments in Remark D.10 show that the map

Φ: A×dG̃f G̃→ Ao G̃, (a, g) 7→ (a+ f(g), g)

is a bijective group homomorphism. Since, in addition, Φ is a local diffeomorphism,
it also is an isomorphism of Lie groups, and therefore the cocycle δ(f) := dG̃f ∈
Z2

s (G,A) satisfies

A×δ(f) G ∼= (A×dG̃f G̃)/({0} × π1(G)) ∼= (Ao G̃)/Φ({0} × π1(G))

∼= (Ao G̃)/{(d, γ(d)) : d ∈ π1(G)}.

Now the inclusion im(δ) ⊆ ker(D) follows from Proposition 7.1 because for a
cocycle f ∈ Z2

s (G,A) vanishing in an identity neighborhood we clearly have
Df = 0.

Conversely, let f ∈ Z2
s (G,A) be a locally smooth group cocycle for which

ω := Df is a coboundary and let q : Ĝ = A ×f G → G be a corresponding Lie
group extension (Proposition 2.6). Then the Lie algebra extension ĝ ∼= a⊕ω g → g
splits, and there exists a continuous projection pa : ĝ → a whose kernel is a closed
subalgebra isomorphic to g . Considering pa as an element of C1

c (ĝ, a), we have

(dgpa)(x, y) = x.pa(y)− y.pa(x)− pa([x, y]) = pa([x− pa(x), pa(y)− y]) = 0,

for x, y ∈ ĝ , so that pa ∈ Z1
c (ĝ, a). Let qĜ : G] → Ĝ denote the universal

covering group of Ĝ . Then the corresponding equivariant 1-form peq
a on G] is

closed (Lemma B.5), so that we find with [Ne02, Prop. 3.9] a smooth function

ϕ : G] → a with ϕ(1) = 0 and dϕ = peq
a ,
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and Lemma 3.2 implies that ϕ ∈ Z1
s (Ĝ, a) is a group cocycle.

Using the local description of Ĝ , resp., G] by a 2-cocycle, we see that
the inclusion map A0 ↪→ Ĝ of the identity component of A lifts to a Lie group
morphism ηa : a → G] whose differential is the inclusion a ↪→ ĝ . Since pa |a = ida

and the image of ηa acts trivially on a , the composition ϕ ◦ ηa : a → a is a
morphism of Lie groups whose differential is ida , which implies that ϕ ◦ ηa = ida .
Moreover, the cocycle condition implies that

(7.1) ϕ(ag) = ϕ(a) + ϕ(g), a ∈ ηa(a), g ∈ G].

Let U ⊆ G be a connected open identity neighborhood on which there exists
a smooth section σ : U → G] of the quotient map q] := q ◦ qĜ : G] → G . We then
obtain another smooth map by

σ1 : U → G], x 7→ ηa(ϕ(σ(x))−1)σ(x).

In view of (7.1), this map is also a section of q] . Moreover, im(σ1) ⊆ ϕ−1(0).
From the description of Ĝ with the cocycle f it follows that there exists an

open 1 -neighborhood in G] of the form

U ] := ηa(Ua)σ1(U),

where Ua ⊆ a is an open 0-neighborhood. Restricting ϕ to U ] , we see that
σ1(U) = ϕ−1(0) ∩ U ]. Since ϕ−1(0) is a subgroup of G] , we have

(σ1(U)σ1(U)) ∩ U ] ⊆ σ1(U).

Let V ⊆ U be an open connected symmetric 1-neighborhood in G such that there
exists a smooth section σV : V → G̃ of the universal covering map qG : G̃→ G and,
in addition, V V ⊆ U and σ1(V )σ1(V ) ⊆ U ] . For x, y ∈ V we then have xy ∈ U ,
and σ1(x)σ1(y) ∈ U ] implies the existence of z ∈ U with σ1(z) = σ1(x)σ1(y).
Applying q] to both sides leads to

z = q]σ1(z) = q](σ1(x)σ1(y)) = xy.

We therefore have

σ1(xy) = σ1(x)σ1(y) for x, y ∈ V.

Hence there exists a unique group homomorphism f : G̃ → G] with f ◦ σV = σ1

([HofMo98, Cor. A.2.26]). Composing f with the covering map qĜ : G] → Ĝ ,
we obtain a smooth homomorphism f̂ : G̃ → Ĝ with q ◦ f̂ = qG . According
to Proposition 7.1, this implies that Ĝ is isomorphic to a group of the type
(Ao G̃)/Γ(γ), where γ : π1(G) → AG is a group homomorphism.

Since the fundamental group π1(G̃) vanishes, we obtain in particular:
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Corollary 7.3. The map D2 : H2
s (G̃, A) → H2

s (g, a) is injective.

Remark 7.4. In view of Corollary 7.3, we may identify H2
s (G̃, A) with a sub-

group of H2
c (g, a). Then the inflation map

I : H2
s (G,A) → H2

s (G̃, A) satisfies D̃G̃
2 ◦ I = DG

2 : H2
s (G,A) → H2

c (g, a).

Remark 7.5. At first sight, the following argument seems to be more natural to
show in the proof of Theorem 7.2 that kerD ⊆ im δ : If the group Ĝ is regular (cf.
[Mil83]), then the Lie algebra morphism σ : g → ĝ whose existence is guaranteed
by [Df ] = 0 can be integrated to a Lie group morphism G̃ → Ĝ , and we can
argue as above. Unfortunately this argument requires the regularity of the group
Ĝ , which is not needed for the argument given above.

Although the following example is concerned with a finite-dimensional group
G , it demonstrates quite nicely the difficulties arising for smooth modules with
are neither connected nor simply connected.

Example 7.6. Let G be a connected finite-dimensional Lie group, z a Fréchet
space, ΓZ ⊆ z a discrete subgroup and Z := z/ΓZ . Then a := C∞(G, z) also
is a Fréchet space and (g.f)(x) := f(xg) defines a smooth action of G on a
([Ne01, Th. III.5]; note that C∞(G, z) is Fréchet and therefore metrizable, which
is needed for the proof in loc. cit., although it is not stated there explicitly).
We endow the abelian group A := C∞(M,Z) with the Lie group structure for
which A0 := qZ ◦C∞(M, z) is an open subgroup isomorphic to the quotient group
a/ΓZ = C∞(M, z)/ΓZ , which is a Lie group because ΓZ is discrete in the closed
subspace z of a , hence also discrete in a . It is clear from the construction that G
acts smoothly on the identity component A0 of A and further that each element
of G acts as a smooth automorphism on the whole group A . To see that G acts
smoothly on A , it remains to show that all orbit maps are smooth in the identity.
For f ∈ A and g ∈ G the connectedness of G implies that g.f−f = f◦ρg−f ∈ A0 ,
so that we have to verify that the map G → A0, g 7→ g.f − f is smooth. Let
δl(f) := f−1.df denote the left logarithmic derivative of f , which is a closed
z-valued 1-form on G with periods in ΓZ , so that we may write

(g.f−f)(x) = f(xg)−f(x) = qZ

( ∫ gx

x

δl(f)
)

= qZ

( ∫ 1

0

δl(f)(xγg(t))(x.γ′g(t)) dt
)

where γg : [0, 1] → G is a smooth path from 1 to g . Locally we may choose γg

in such a way that it depends smoothly on g (cf. Lemma 5.2), which implies that
the orbit map of f is smooth in 1 and hence that G acts smoothly on A .

Since g → V(G), x 7→ xl (xl(g) = g.x) is a homomorphism of Lie algebras,
the map

Φ: Ωp(G, z) → Cp
c (g, a), Φ(α)(x1, . . . , xp) := α(x1,l, . . . , xp,l), xl(g) = g.x
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is a morphism of chain complexes, i.e., dg◦Φ = Φ◦d . On the other hand, we obtain
from each a -valued p -form α on G a z-valued p -form eva

1 ◦α by composing it
with the evaluation map eva

1 : a → z, f 7→ f(1). Then

Ψ := eva
1 ◦Eq: Cp

c (g, a) → Ωp(G, z)

satisfies

Ψ(α)(x1,l, . . . , xp,l)(h) = eva
1 ◦αeq(x1,l, . . . , xp,l)(h) = eva

1

(
h.α(x1, . . . , xp)

)
= eva

1

(
α(x1, . . . , xp) ◦ ρh

)
= α(x1, . . . , xp)(h),

which leads to Ψ ◦ Φ = id and Φ ◦Ψ = id . Therefore Ψ induces isomorphisms

(7.2) Ψ: Hp
c (g, a) → Hp

dR(G, z),

indentifying a -valued Lie algebra cohomology with z-valued de Rham cohomology.
For g ∈ G , α ∈ Cp

c (g, a) and αG := Ψ(α) ∈ Ωp(G, z) we have the relation

λ∗gαG = eva
g ◦αeq,

which follows directly from

(λ∗gαG)(x1,l, . . . , xp,l)(h) = (αG(x1,l, . . . , xp,l))(gh) = eva
g(h.α(x1, . . . , xp))

= eva
g ◦αeq(x1,l, . . . , xp,l)(h).

If M is a smooth oriented p -dimensional compact manifold, then we thus obtain
for a smooth map γ : M → G and α ∈ Zp

c (g, a):( ∫
γ

αeq
)
(g) =

∫
M

eva
g ◦γ∗αeq =

∫
M

(λg ◦ γ)∗αG =
∫

λg◦γ
αG =

∫
γ

αG ∈ z = aG.

This shows that the period map perα : πp(G) → aG of α coincides with the period
map perαG

of the closed z-valued p -form αG . With Proposition 3.4 we now obtain

(7.3) H1
s (G,A0) ∼= kerP1

∼= H1
dR(G,ΓZ) ∼= Hom(π1(G),ΓZ) ∼= H1

sing(G,ΓZ).

The characteristic homomorphism of A is given by

θA : π0(A) = [G,Z] → H1
c (g, a) ∼= H1

dR(G, z), [f ] 7→ D1[dGf ] = [δl(f)] = [f−1df ].

It is injective with image kerP1 = H1
dR(G,ΓZ). This implies that Z1

s (G,A0) =
Z1

s (G,A) ⊆ dGA , and therefore

(7.4) H1
s (G,A) = 0.

We now turn to H2
s (G,A). Since π2(G) vanishes ([Car52]), Proposition 6.11

shows that H2(G) is generated by homology classes defined by maps T2 → G of



124 Karl-Hermann Neeb

the form [α] ∗ [β] := [α ∗ β] , where α, β : T → G are piecewise smooth loops. For
ω ∈ Z2

c (g, a) and the corresponding closed z-valued 2-form ωG = Ψ(ω) the flux
homomorphism Fω : π1(G) → H1

c (g, a) ∼= H1
dR(G, z) satisfies

(7.5) Fω([α])([β]) = −Ca
ω([β], [α]) = Ca

ω([α], [β]) =
∫

β∗α
ωeq =

∫
β∗α

ωG.

In view of

Hom(π1(G),H1
c (g, a)) ∼= Hom(π1(G),H1

dR(G, z)) ∼= Hom(π1(G),Hom(π1(G), z))
∼= Hom(π1(G)⊗ π1(G), z),

this shows that the map

P2 : H2
c (g, a) ∼= H2

dR(G, z) ∼= Hom(H2(G), z) → Hom(π1(G),H1
c (g, a)), [ω] 7→ Fω

is injective because the alternating biadditive map

π1(G)⊗ π1(G) → H2(G), [α]⊗ [β] 7→ [α ∗ β]

is surjective. This in turn implies that D2(H2
s (G,A0)) = {0} , so that the sequence

H1
s (G̃, A0) → Hom(π1(G), AG) = Hom(π1(G), Z) → H2

s (G,A0) → 0

is exact (Theorem 7.2). From

H1
s (G̃, A0) ∼= H1

c (g, a) ∼= H1
dR(G, z) ∼= Hom(π1(G), z)

we thus get

H2
s (G,A0) ∼= Hom(π1(G), Z)/qZ ◦Hom(π1(G), z) ∼= Extab(π1(G),ΓZ)

because the divisibility of z implies Extab(π1(G), z) = 0 .
To calculate H2

s (G,A), we use the exact sequence from Appendix E:
(7.6)
H1

s (G, π0(A)) → H2
s (G,A0) → H2

s (G,A) → H2
s (G, π0(A)) → H3

s (G,A0) → . . . .

Since G is connected, Z1
s (G, π0(A)) is trivial and thus H1

s (G, π0(A)) vanishes,
so that we have an injection H2

s (G,A0) ↪→ H2
s (G,A). From our description of

H2
s (G,A0), it follows that the image of this injection coincides with the image of

the connecting map H1(π1(G), A)[G] = Hom(π1(G), Z) → H2
s (G,A). We likewise

have H1
s (G̃, π0(A)) = 0 , and Theorem 7.2 implies that

H2
s (G, π0(A)) ∼= Hom(π1(G), π0(A)) ∼= Hom(π1(G),Hom(π1(G),ΓZ))

∼= Hom(π1(G)⊗ π1(G),ΓZ).



Abelian extensions of infinite-dimensional Lie groups 125

If q : Ĝ → G is an A -extension of G , then Ĝ/A0 is the corresponding ex-
tension of G by π0(A), which is a covering, hence given by a homomorphism
π1(G) → π0(A), which coincides with the corresponding connecting homomor-
phism in the long exact homotopy sequence of the A -principal bundle Ĝ . There-
fore the map H2

s (G,A) → H2
s (G, π0(A)) ∼= Hom(π1(G), π0(A)) assigns to an A -

extension the corresponding connecting map δ , which satisfies Fω = −θA ◦ δ if
ω ∈ Z2

c (g, a) is the corresponding Lie algebra cocycle (Proposition 6.2(2)).
Next we use the Integrability Criterion from Theorem 6.7. Since the char-

acteristic homomorphism θA is injective, for ω ∈ Z2
c (g, a) ∼= H2

dR(G, z) there
exists a homomorphism γ : π1(G) → π0(A) with Fω = θA ◦ γ if and only if
im(Fω) ⊆ im(θA) = H1

dR(G,ΓZ), and in this case −Fω , considered as a map
π1(G) → π0(A), is the connecting map of the corresponding extension (Proposi-
tion 6.2(2)). In view of (7.5), this means that the Lie algebra cocycle ω is integrable
if and only if ωG ∈ H2

dR(G,ΓZ) in the sense that all periods of the 2-form ωG are
contained in ΓZ . Identifying Hom(π1(G), π0(A)) with Hom(π1(G)⊗ π1(G),ΓZ),
the corresponding connecting map corresponds to the commutator map Ca

ω ,
which is alternating. We conclude that a homomorphism π1(G) ⊗ π1(G) → ΓZ

is a connecting map of an A -extension of G if and only if it factors through
∗ : π1(G)⊗ π1(G) → H2(G) to a homomorphism H2(G) → ΓZ given by integrat-
ing against a closed 2-form with periods in ΓZ . Combining all this, we get an
exact sequence

0 → Extab(π1(G),ΓZ) → H2
s (G,A) → Hom(H2(G),ΓZ) → 0.

From [Ne02, Rem. 9.5(e)] we know that discrete subgroups of separable lo-
cally convex spaces are free. Therefore ΓZ is free if z is separable. If this is the case,
then the fact that H2(G) is finitely generated implies that Hom(H2(G),ΓZ) ∼=
Γb2(G)

Z is also free, so that the above sequence splits, and we get from the Univer-
sal Coefficient Theorem

(7.7) H2
s (G,A) ∼= Extab(π1(G),ΓZ)⊕Hom(H2(G),ΓZ) ∼= H2

sing(G,ΓZ).

Finally we observe that the homomorphism

Hom(H2(G),ΓZ) → Hom(π1(G)⊗ π1(G),ΓZ) ∼= H2
s (G, π0(A))

is not surjective, which is due to the fact that the map π1(G) ⊗ π1(G) → H2(G)
is alternating. This implies that the map

Hom(π1(G)⊗ π1(G),ΓZ) → H3
s (G,A0)

obtained from (7.6) is non-zero.
To make this more explicit, let K ⊆ G be a maximal compact subgroup.

Then there exists a torus T with K ∼= (K,K) o T and d := dimT = dimZ(K).
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Since the inclusion K ↪→ G is a homotopy equivalence and all homology groups
of T are free, we derive from the Künneth Theorem

H2(G) ∼= H2(K) ∼= H2(T )⊕H1(T )⊗H1((K,K))⊕H2((K,K)),

where the latter two summands are finite groups. Likewise π1(G) ∼= π1(T ) ⊕
π1((K,K)) ∼= π1(T ) ⊕ H1((K,K)). Therefore H1(T ) ∼= Zd and H2(T ) ∼= Z(d

2)

lead to
Hom(H2(G),ΓZ) = Hom(H2(T ),ΓZ) ∼= Γ(d

2)
Z

and
Hom(π1(G)⊗ π1(G),ΓZ) = Hom(π1(T )⊗ π1(T ),ΓZ) ∼= Γd2

Z .

We therefore obtain an injection

Γ(d+1
2 )

Z ↪→ H3
s (G,A0).

It would be interesting to calculate the higher cohomology groups Hn
s (G,A)

and Hn
s (G,A0) explicitly, but for that one needs different tools. With van Est’s

Theorem, in the version of [HocMo62], one gets

Hn
gs(G, a) ∼= Hn

c (g, k, a) ∼= Hn
dR(G/K, z) = 0

for n > 0, where Hn
gs(G, a) denotes the cohomology defined by the globally smooth

cochains, but this provides not enough information on the groups Hn
s (G, a) defined

by the locally smooth cochains.

8. Abelian extensions with smooth global sections

In this subsection we discuss the existence of a smooth cross section for an abelian
Lie group extension A ↪→ Ĝ→→ G which is equivalent to the existence of a smooth
global cocycle f : G × G → A with Ĝ ∼= G ×f A . Moreover, we will show that
for simply connected groups, it is equivalent to the exactness of the equivariant
2-form ωeq on G , where ω = Df .

The following lemma will be helpful in the proof of Proposition 8.2.

Lemma 8.1. Let G be a connected Lie group, A a smooth G-module and
f ∈ Z2

s (G,A) such that all functions fg : G → A, x 7→ f(g, x) are smooth. Then
f : G×G→ A is a smooth function.

Proof. We write the cocycle condition as

f(xy, z) = f(x, yz) + ρA(x).f(y, z)− f(x, y), x, y, z ∈ G.

For x fixed, this function is smooth as a function of the pair (y, z) in a neigh-
borhood of (1,1). This implies that f is smooth on a neighborhood of the points
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(x,1), x ∈ G . Fixing x and z shows that there exists a 1 -neighborhood V ⊆ G
(independent of x) such that the functions f(·, z), z ∈ V , are smooth in a neigh-
borhood of x . Since x ∈ G was arbitrary, we conclude that the functions f(·, z),
z ∈ V , are smooth. Now

f(·, yz) = f(·y, z)− ρA(·).f(y, z) + f(·, y)

shows that the same holds for the functions f(·, u), u ∈ V 2 . Iterating this process,
using G =

⋃
n∈N V

n , we derive that all functions f(·, x), x ∈ G , are smooth.
Finally we see that the function

(x, y) 7→ f(x, yz) = f(xy, z)− ρA(x).f(y, z) + f(x, y)

is smooth in a neighborhood of each point (x0,1), hence that f is smooth in each
point (x0, z0), and this proves that f is smooth on G×G .

Proposition 8.2. Let G be a connected Lie group, a a Mackey complete lo-
cally convex smooth G-module, ω ∈ Z2

c (g, a) a continuous 2-cocycle, and ωeq ∈
Ω2(G, a) the corresponding equivariant 2-form on G with ωeq

1 = ω . We assume
that
(1) ωeq = dθ for some θ ∈ Ω1(G, a) and
(2) for each g ∈ G the closed 1-form λ∗gθ − ρa(g) ◦ θ is exact.

Then the product manifold Ĝ := a × G carries a Lie group structure which
is given by a smooth 2-cocycle f ∈ Z2

s (G, a) with D[f ] = [ω] via

(a, g)(a′, g′) := (a+ g.a′ + f(g, g′), gg′).

Proof. For each g ∈ G the relation ρa(g) ◦ ωeq = λ∗gω
eq implies

d
(
ρa(g) ◦ θ − λ∗gθ

)
= ρa(g) ◦ ωeq − λ∗gω

eq = 0.

In view of (2), for each g ∈ G there exists a smooth function fg : G → a with
fg(1) = 0 and

dfg = λ∗gθ − ρa(g) ◦ θ.
Observe that f1 = 0. For g, h ∈ G this leads to

dfgh = λ∗ghθ − ρa(gh) ◦ θ = λ∗h(λ∗gθ − ρa(g) ◦ θ) + λ∗h(ρa(g) ◦ θ)− ρa(gh) ◦ θ
= λ∗hdfg + ρa(g)(λ∗hθ − ρa(h) ◦ θ) = λ∗hdfg + ρa(g) ◦ dfh

= d(fg ◦ λh + ρa(g) ◦ fh).

Comparing values of both functions in 1 , we get

(8.1) fgh = fg ◦ λh + ρa(g) ◦ fh − fg(h).

Now we define f : G×G→ a by f(x, y) := fx(y). Then (8.1) means that

f(gh, u) = f(g, hu) + ρa(g).f(h, u)− f(g, h), g, h, u ∈ G,
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i.e., f is a group cocycle.
Moreover, the concrete local formula for fx in the Poincaré Lemma ([Ne02,

Lemma 3.3]) and the smooth dependence of the integral on x imply that f is
smooth on a neighborhood of (1,1), so that Lemma 8.1 implies that f : G×G→ a

is a smooth function. We therefore obtain on the space Ĝ := a × G a Lie group
structure with the multiplication given by

(a, g)(a′, g′) := (a+ g.a′ + f(g, g′), gg′)

(Lemma 2.1), and Lemma 2.7 implies that the corresponding Lie bracket is given
by

[(a, x), (a′, x′)] =
(
x.a′ − x′.a+ d2f(1,1)(x, x′)− d2f(1,1)(x′, x), [x, x′]

)
.

Now we relate this formula to the Lie algebra cocycle ω . The relation
dfg = λ∗gθ − ρa(g) ◦ θ leads to

df(g,1)(0, y) = dfg(1)y = (λ∗gθ − ρa(g) ◦ θ)1(y) = 〈θ, yl〉(g)− ρa(g).θ1(y),

where yl denotes the left invariant vector field with yl(1) = y . Taking second
derivatives, we further obtain for x ∈ g :

d2f(1,1)(x, y) = xl(〈θ, yl〉)(1)− x.θ1(y) = (dθ)(xl, yl)(1) + yl(〈θ, xl〉)(1)
+ θ([xl, yl])(1)− x.θ1(y)

= ω(x, y) + yl(〈θ, xl〉)(1) + θ1([x, y])− x.θ1(y),

Subtracting d2f(1,1)(y, x) = yl(〈θ, xl〉)(1)− y.θ1(x), leads to

(Df)(x, y) = ω(x, y) + θ1([x, y])− x.θ1(y) + y.θ1(x) = ω(x, y)− (dgθ1)(x, y).

Since this cocycle is equivalent to ω , the assertion follows.

Using the methods developed in [NV02], it is not hard to show that condition
(2) in Proposition 8.2 is equivalent to:
(2’) for each x ∈ g the closed 1-form Lxr

θ − ρ̇a(x) ◦ θ is exact.
In view of Lxrθ = dixrθ + ixrω

eq , this means that [ixrω
eq] = [ρ̇a(x) ◦ θ] in

Ĥ1
dR(G, a).

Corollary 8.3. If G is simply connected and ωeq is exact, then there exists a
smooth cocycle f : G×G→ a with D[f ] = [ω] , so that Ĝ := a×f G is a Lie group
with Lie algebra ĝ = a⊕ω g .

Proof. Since π1(G) is trivial, condition (2) in Proposition 8.2 is automatically
satisfied.
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For central extensions of finite-dimensional groups, the construction de-
scribed in Proposition 8.2 is due to E. Cartan, who used it to construct a central
extension of a simply connected finite-dimensional Lie group G by the group a .
Since in this case

H2
dR(G, a) ∼= Hom(π2(G), a) = 0 and H1

dR(G, a) ∼= Hom(π1(G), a) = 0,

(cf. [God71]), the requirements of the construction are satisfied for every Lie
algebra cocycle ω ∈ Z2

c (g, a).

Proposition 8.4. If G is a connected Lie group which is smoothly paracompact,
then the conclusion of Proposition 8.2 remains valid under the assumptions:
(1) ωeq is an exact 2-form, and
(2) Fω = 0 .
Proof. In view of (1), we can apply Proposition 8.2 to the universal covering
group qG : G̃→ G of G , which leads to an a -extension

q] : G] := a×f G̃→ G̃, (a, g) 7→ g,

where f ∈ Z2
s (G̃, a) is a smooth cocycle with D[f ] = [ω] . In view of Corollary 6.5,

the vanishing of Fω implies the existence of a homomorphism γ : π1(G) → Z(G])
with q] ◦ γ = idπ1(G) . Then im(γ) is a discrete central subgroup of G] , so that
Ĝ := G]/ im(γ) is a Lie group, and we obtain an a -extension of G by

q : Ĝ→ G, g im(γ) 7→ qG ◦ q](g).

As Ĝ is a principal a -bundle over G , its fibers are affine spaces whose
translation group is a . If G is smoothly paracompact, we can therefore use a
smooth partition of unity subordinated to a trivializing open cover of the a -
bundle Ĝ→ G to patch smooth local sections together to a global smooth section
σ : G→ Ĝ . Then the map

a×fG
G→ Ĝ, (a, g) 7→ aσ(g)

is an isomorphism of Lie groups, where fG ∈ Z2
s (G, a), (g, g′) 7→ σ(g)σ(g′)σ(gg′)−1

is a globally smooth cocycle.

Remark 8.5. Let G be a connected Lie group and A a smooth G -module of
the form a/ΓA . Let Z2

gs(G,A) denote the group of smooth 2-cocycles G×G→ A
and B2

gs(G,A) ⊆ Z2
gs(G,A) the cocycles of the form dGh , where h ∈ C∞(G,A)

is a smooth function with h(1) = 0. Then one can show that we have an injection

H2
gs(G,A) := Z2

gs(G,A)/B2
gs(G,A) ↪→ H2

s (G,A),

the space H2
gs(G,A) classifies those A -extensions of G with a smooth global

section, and we have an exact sequence

Hom(π1(G), aG) δ−−→H2
gs(G,A) D−−→H2

c (g, a)
P−−−−→H2

dR(G, a)×Hom
(
π1(G),H1

c (g, a)
)
,
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where P ([ω]) = ([ωeq], Fω). The proof is an easy adaptation from the correspond-
ing arguments for central extensions in Section 8 of [Ne02].

9. Applications to diffeomorphism groups

In the present section we apply the general results of this paper to the diffeomor-
phism group G of a compact manifold M . In this case the Lie algebra g is the
Frécht–Lie algebra V(M) of smooth vector fields on M and we obtain interesting
Lie algebra 2-cocycles with values in the space C∞(M,V ) of smooth V -valued
functions from closed V -valued 2-forms on M . In this case the period map and
the flux cocycle can be made more concrete in geometric terms which makes it
possible to evaluate the obstructions to the existence of abelian extensions in many
concrete examples, even if π1(Diff(M)) and π2(Diff(M)) are not known.

The diffeomorphism group as a Lie group

Definition 9.1. Let M be a compact manifold.
(a) We write Diff(M) for the group of all diffeomorphisms of M and V(M)

for the Lie algebra of smooth vector fields on M , i.e., the set of all smooth maps
X : M → TM with πTM ◦ X = idM , where πTM : TM → M is the bundle
projection of the tangent bundle. We define the Lie algebra structure on V(M)
in such a way that [X,Y ].f = X.(Y.f) − Y.(X.f) holds for X,Y ∈ V(M) and
f ∈ C∞(M,R).

Then Diff(M) is a Lie group whose Lie algebra is V(M)op (the same space
with the apposite bracket (X,Y ) 7→ −[X,Y ]) and we have a smooth exponential
function

exp: V(M) → Diff(M)

given by exp(X) = Φ1
X , where Φt

X ∈ Diff(M) is the flow of the vector field X at
time t ([KM97]).

The tangent bundle of Diff(M) can be identified with the set

T (Diff(M)) := {X ∈ C∞(M,TM) : πTM ◦X ∈ Diff(M)},

where the map

π : T (Diff(M)) → Diff(M), X 7→ πTM ◦X

is the bundle projection. Then Tϕ(Diff(M)) := π−1(ϕ) is the fiber over the
diffeomorphism ϕ .

In view of the natural action of Diff(M) on TM given by ψ.v := T (ψ).v ,
we obtain natural left and right actions of Diff(M) on T (Diff(M)) by

(ϕ.X)(x) = ϕ(x).X(x), X.ϕ := X ◦ ϕ.
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Then

πTM ◦ (ϕ.X) = ϕ ◦ (πTM ◦X) and πTM ◦ (X ◦ ϕ) = (πTM ◦X) ◦ ϕ,

so that the left, resp., right action of Diff(M) on T (Diff(M)) covers the left, resp.,
right multiplication action of the group Diff(M) on itself. In the following we shall
mostly consider the opposite group Diff(M)op whose Lie algebra is V(M). The
adjoint action of this group is given by

Ad: Diff(M)op × V(M) → V(M), (ϕ,X) 7→ ϕ−1.(X ◦ ϕ) = ϕ−1.(X.ϕ).

(b) Let J ⊆ R be an interval and ϕ : J → Diff(M)op be a smooth curve.
Then for each t ∈ J we obtain a vector field

δr(ϕ)(t) := ϕ(t)−1.ϕ′(t)

called the right logarithmic derivative of ϕ in t . We likewise define the left loga-
rithmic derivative by

δl(ϕ)(t) := ϕ′(t) ◦ ϕ(t)−1.

Definition 9.2. Let M be a compact smooth manifold and g := V(M) the Lie
algebra of smooth vector fields on M . If V is Fréchet space and a := C∞(M,V )
the space of smooth V -valued functions on M , then (X.f)(p) := df(p)X(p) turns
a into a topological V(M)-module. Note that C∞(M,V ) and V(M) are Fréchet
modules of the Fréchet algebra R := C∞(M,R).

In the Lie algebra complex (Cp
c (g, a), dg)p∈N0 formed by the continuous

alternating maps gp → a , we have the subcomplex given by the subspaces
Cp

R(g, a) ⊆ Cp
c (g, a) consisting of R -multilinear maps gp → a . Using partitions

of unity, it is easy to see that the elements of Cp
R(g, a) can be identified with

smooth V -valued p -forms, so that Cp
R(g, a) ∼= Ωp(M,V ) ([Hel78]), and the de

Rham differential coincides with the Lie algebra differential dg to Cp
R(g, a).

We thus obtain natural maps Zp
dR(M,V ) → Zp

c (g, a) and jp : Hp
dR(M,V ) →

Hp
c (g, a).

Lemma 9.3. If M is connected, then V ∼= C∞(M,V )V(M) = ag consists of the
constant functions M → V .

Lemma 9.4. The map j1 : H1
dR(M,V ) → H1

c (g, a) is injective.

Proof. Let α ∈ Ω1(M,V ) be a closed V -valued 1-form on M . If j1([α]) = 0,
then there exists an element f ∈ a = C∞(M,V ) with α = dgf , which means that
α = df . Hence α is exact and therefore j1 is injective.
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Lemma 6.1 in [MN03] implies that we have a smooth action of the group
G := Diff(M)op0 on a by ϕ.f := f ◦ ϕ . The derived action of V(M) on this space
is given by

(X.f)(p) =
d

dt t=0
(exp(tX).f)(p) =

d

dt t=0
f(exp(tX).p) = df(p)X(p)

which is compatible with Definition 9.2. We view each smooth V -valued 2-form
ωM ∈ Ω2(M,V ) as an element ωg ∈ C2

c (g, a). In the following we shall obtain
some information on the period map and the flux homomorphism

perω : π2(Diff(M)) → ag ∼= V and Fω : π1(Diff(M)) → H1
c (g, a)

which makes it possible to verify the integrability criteria from Sections 6 and 7
in many special cases.

More on the period group

The following proposition is very helpful in verifying the discreteness of the image
of the period map for the group G := Diff(M)op0 . In the following we write
(m, g) 7→ g(m) for the canonical right action of G on M .

Proposition 9.5. Let ωM ∈ Z2
dR(M,V ) be a closed V -valued 2-form on M ,

σ : S2 → G = Diff(M)op0 smooth and m ∈M . Then

perωg
([σ])(m) =

∫
evD

m ◦σ
ωM ∈ V ∼= C∞(M,V )V(M),

where evD
m : G → M, g 7→ g(m) . In particular the period group Πωg = im(perωg

)
is contained in the group

∫
π2(M)

ωM of spherical periods of ωM .

Proof. Since ag consists of constant functions M → V , it suffices to calculate
the value of perωg

([σ]) ∈ C∞(M,V ) in the point m .
We claim that

(9.1) (evD
m)∗ωM = evm ◦ωeq

g ,

where evm : C∞(M,V ) → V is the evaluation in m . First we note that for g ∈ G
we have evD

m ◦λg = evD
g(m) . Further

d evD
m(1)(X) =

d

dt t=0
exp(tX).m = X(m) for X ∈ V(M).

For g ∈ G and vector fields X,Y ∈ g = V(M) this leads to



Abelian extensions of infinite-dimensional Lie groups 133

((evD
m)∗ωM )(g.X, g.Y )

= ωM (g(m))(d evD
m(g)dλg(1).X, d evD

m(g)dλg(1).Y )
= ωM (g(m))(d(evD

m ◦λg)(1).X, d(evD
m ◦λg)(1).Y )

= ωM (g(m))(d evD
g(m)(1).X, d evD

g(m)(1).Y )

= ωM (g(m))(X(g(m)), Y (g(m))) =
(
g.

(
ωg(X,Y )

))
(m) = (evm ◦ωeq

g )(g.X, g.Y ).

This proves (9.1). We now obtain

perωg
([σ])(m) = evm

∫
σ

ωeq
g =

∫
σ

evm ◦ωeq
g =

∫
σ

(evD
m)∗ωM =

∫
evD

m ◦σ
ωM .

We immediately derive the following sufficient criterion for the discreteness
of im(perωg

).

Corollary 9.6. If the subgroup
∫

π2(M)
ωM := {

∫
σ
ωM : σ ∈ C∞(S2,M)} ⊆ V

of spherical periods of ωM is discrete, then the image of perωg
is discrete.

Example 9.7. (1) The preceding corollary applies in particular to all manifolds
M for which π2(M)/ tor(π2(M)) is a cyclic group. In fact, for each torsion element
[σ] ∈ π2(M) we have

∫
σ
ωM = 0, so that

∫
π2(M)

ωM is the image of the cyclic
group π2(M)/ tor(π2(M)), hence cyclic and therefore discrete.

Examples of such manifolds are spheres and tori:

π2(Sd) ∼=
{
{0} for d 6= 2
Z for d = 2 and π2(Td) ∼= π2(Rd) = {0}, d ∈ N.

The only compact connected manifolds M with dimM ≤ 2 and π2(M)
non-trivial are the 2-sphere S2 and the real projective plane P2(R). This follows
from π2(M) ∼= π2(M̃) for the universal covering M̃ → M and the fact that a
simply connected 2-dimensional manifold is diffeomorphic to S2 or R2 . Further
all orientable 3-manifolds which are irreducible in the sense of Kneser have trivial
π2 . In particular the complement of a knot K ⊆ S3 has trivial π2 (cf. [Mil03,
p.1228]).

(2) For M = S2 we have

π2(Diff(M)) ∼= π2(SO3(R)) = {1} and π2(S2) ∼= Z.

If ωM ∈ Z2
dR(M,R) is the closed 2-form with

∫
M
ωM = 1, we have

∫
π2(M)

ωM = Z
which is larger than Πωg = im(perωg

) = {0} .

Problem 9. Find an example of a closed 2-form ωM for which the group
Πωg = im(perωg

) is discrete and
∫

π2(M)
ωM is not.
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The flux cocycle

We continue with the setting where M is a compact manifold and G = Diff(M)op0
is the identity component of its diffeomorphism group endowed with the opposite
multiplication. For any Fréchet space V the space Ω1(M,V ) is a smooth G -
module with respect to (ϕ, β) 7→ ϕ∗β . To verify the smoothness of this action,
we can think of Ω1(M,V ) as a closed subspace of C∞(TM,V ) and observe
that Diff(M) acts smoothly on TM , so that Lemma 6.1 in [MN03] applies. The
corresponding derived module of g = V(M) is given by (X,β) 7→ LX .β , where
LX = d ◦ iX + iX ◦ d denotes the Lie derivative. The subspace dC∞(M,V ) of
exact 1-forms is a closed subspace because

(9.2) dC∞(M,V ) =
{
β ∈ Ω1(M,V ) : (∀γ ∈ C∞(S1,M))

∫
γ

β = 0
}

and the linear maps Ω1(M,V ) → V, β 7→
∫

γ
β are continuous. We can therefore

form the quotient module

Ĥ1
dR(M,V ) := Ω1(M,V )/dC∞(M,V )

containing H1
dR(M,V ) = Z1

dR(M,V )/dC∞(M,V ) as a closed subspace.

Lemma 9.8. For each closed V -valued 2-form ω ∈ Ω2(M,V ) the continuous
linear map

fω : V(M) → Ĥ1
dR(M,V ), X 7→ [iXω]

is a Lie algebra 1-cocycle.
Proof. For X,Y ∈ V(M) we use the formulas i[X,Y ] = [LX , iY ] and LX =
iX ◦ d+ d ◦ iX to obtain

i[X,Y ]ω = LX iY ω − iY LXω = diX iY ω + iXd(iY ω)− iY (diXω + iXdω)
= diX iY ω + iXd(iY ω)− iY (diXω).

In view of [LX iY ω] = [diX iY ω + iXdiY ω] = [iXdiY ω] in Ĥ1
dR(M,V ), this means

that
fω([X,Y ]) = X.fω(Y )− Y.fω(X),

i.e., fω is a 1-cocycle.

Definition 9.9. Let qG : G̃ → G denote the universal covering morphism of
G = Diff(M)op0 and define the G̃ -action on C∞(M,V ), Ω1(M,V ), Ĥ1

dR(M,V )
etc. by pulling it back by qG to G̃ . Then Proposition 3.4 implies that there exists
a smooth 1-cocycle

Fω : G̃→ Ĥ1
dR(M,V ) = Ω1(M,V )/dC∞(M,V ) with dFω(1) = fω.

This cocycle is called the flux cocycle corresponding to ω . Its differential dFω

coincides with the equivariant 1-form f eq
ω .
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Remark 9.10. (a) If g ∈ G̃ and γ̃ : [0, 1] → G̃ is a piecewise smooth curve with
γ̃(0) = 1 and γ̃(1) = g , then γ̃ is the unique lift of γ := qG ◦ γ̃ : [0, 1] → G . The
value of the flux cocycle in g is determined by

Fω(g) =
∫ 1

0

dFω(γ̃(t))(γ̃′(t)) dt =
∫ 1

0

(f eq
ω )(γ̃(t))(γ̃′(t)) dt

=
∫ 1

0

γ(t).fω(γ̃(t)−1.γ̃′(t)) dt =
∫ 1

0

γ(t).fω(γ(t)−1.γ′(t)) dt

=
∫ 1

0

γ(t).fω(δl(γ)(t)) dt =
∫ 1

0

[γ(t)∗.iδl(γ)(t)ω] dt

=
∫ 1

0

[iδr(γ)(t)(γ(t)∗ω)] dt ∈ Ĥ1
dR(M,V ).

Here we have used the relation ϕ∗(iXω) = iAd(ϕ).X(ϕ∗ω) for ϕ ∈ Diff(M),
X ∈ V(M) and ω ∈ Ωp(M,V ).

(b) For the special case when the curve γ : [0, 1] → Diff(M) has values in
the subgroup

Sp(M,ω) := {ϕ ∈ Diff(M) : ϕ∗ω = ω},

all vector fields δl(γ)(t) are contained in the Lie algebra

sp(M,ω) := {X ∈ V(M) : LX .ω = 0}

([NV03, Lemma 1.4]). For LXω = 0 we have d(iXω) = LXω = 0, so that all 1-
forms iXω are closed. This in turn implies that for each ϕ ∈ Diff(M)0 the 1-form
ϕ∗iXω− iXω is exact ([NV03, Lemma 1.3]). For the flux cocycle this leads to the
simpler formula

Fω(g) =
∫ 1

0

[iδl(γ)(t)ω] dt.

Hence Fω(g) is the flux associated to the curve γ : [0, 1] → Sp(M,ω) in the context
of symplectic geometry [MDS98].

(c) If the closed form ω is exact, ω = dθ , then

fω(X) = [iXω] = [iXdθ] = [LXθ] = X.[θ]

in Ĥ1
dR(M,V ) implies that fω is a coboundary. Hence it integrates to a group

cocycle given by

Fω : Diff(M)op → Ĥ1
dR(M,V ), ϕ 7→ [ϕ∗θ − θ].

On the space Ĥ1
dR(M,V ) the integration maps Ĥ1

dR(M,V ) → V, [β] 7→
∫

α
β

for α ∈ C∞(S1,M) separate points (cf. (9.2)), so that the element Fω(g) ∈
Ĥ1

dR(M,V ) is determined by the integrals
∫

α
Fω(g) which are evaluated in the

proposition below.
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Proposition 9.11. For α ∈ C∞(S1,M) and a smooth curve γ : [0, 1] → G =
Diff(M)op0 with γ(0) = idM we consider the smooth map

H : [0, 1]× S1 →M, (t, s) 7→ γ(t)(α(s)).

Let γ̃ : [0, 1] → G̃ be the smooth lift with γ̃(0) = 1 . Then the value of the flux
cocycle in γ̃(1) is determined by the integrals∫

α

Fω(γ̃(1)) =
∫

H

ω.

Proof. First we note that
∂H

∂t
(t, s) = γ′(t)(α(s)) = γ′(t) ◦ γ(t)−1 ◦ γ(t)(α(s)) = δl(γ)(t)(H(t, s))

and ∂H
∂s (t, s) = γ(t).α′(s). Identifying S1 with R/Z , we therefore obtain with

Remark 9.10(a) the formula∫
α

Fω(γ̃(1)) =
∫

α

∫ 1

0

[γ(t)∗.iδl(γ)(t)ω] dt

=
∫ 1

0

∫ 1

0

ωγ(t).α(s)(δl(γ)(t)(γ(t).α(s)), γ(t).α′(s)) dt ds

=
∫ 1

0

∫ 1

0

ωH(t,s)

(∂H(t, s)
∂t

(t, s),
∂H(t, s)
∂s

(t, s)
)
dt ds

=
∫

[0,1]2
H∗ω =

∫
H

ω.

The preceding proposition justifies the term ‘flux cocycle’ because it says
that

∫
α
Fω(γ̃(1)) measures the ‘ω -surface area’ of the surface obtained by moving

the loop α by the curve γ in Diff(M).

Corollary 9.12. If γ(1) = γ(0) = idM , then Fω(γ̃(1)) ∈ H1
dR(M,V ) , and we

obtain a homomorphism

Fω |π1(Diff(M)) : π1(Diff(M)) → H1
dR(M,V ).

Proof. We keep the notation from Proposition 9.11. If the curve γ in Diff(M)
is closed and γ̃ is the corresponding map S1 → Diff(M), then H induces a
continuous map H̃ : T2 →M, (t, s) 7→ γ̃(t).α(s) and∫

α

Fω(γ̃(1)) =
∫

H

ω =
∫

H̃

ω = H̃∗[ω] ∈ H2(T2, V ) ∼= V.

As homotopic curves α1 and α2 lead to homotopic maps H̃1, H̃2 : T2 → M , we
obtain ∫

α1

Fω(γ̃(1)) =
∫

α2

Fω(γ̃(1))
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whenever α1 and α2 are homotopic, and this implies that Fω(γ̃(1)) ∈ H1
dR(M,V ).

That the restriction of Fω to π1(Diff(M)) is a homomorphism follows from
the cocycle property of Fω and the fact that π1(Diff(M)) = ker qG acts trivially
on Ĥ1

dR(M,V ).

Let ωM ∈ Ω2(M,V ) be a closed 2-form and identify it with a Lie algebra
2-cocycle ωg ∈ Z2

c (g, a) for g = V(M) and a = C∞(M,V ). Next we show that
the flux cocycle

Fωg : G̃→ Ĥ1
c (g, a)

coincides with flux cocycle FωM
from Definition 9.9. For that we recall from

Lemma 9.4 that we can view H1
dR(M,V ) as a subspace of H1

c (g, a) because
B1

c (g, a) = dC∞(M,V ), leads to an embedding

Ĥ1
dR(M,V ) ↪→ Ĥ1

c (g, a) := C1
c (g, a)/B1

c (g, a).

Proposition 9.13. For a closed 2-form ωM ∈ Ω2(M,V ) we have

Fωg = FωM
: G̃→ Ĥ1

dR(M,V ) ⊆ Ĥ1
c (g, a).

Proof. We parametrize S1 ∼= R/Z by the unit interval [0, 1]. Then we have for
any smooth curve γ : [0, 1] → G = Diff(M)op0 starting in 1 and X ∈ g = V(M):

Iγ(X) :=
∫

γ

iXrω
eq
g =

∫ 1

0

ωeq
g (Xγ(t), γ′(t)) dt

=
∫ 1

0

γ(t).ωg(Ad(γ(t))−1.X, γ(t)−1γ′(t)) dt

=
∫ 1

0

γ(t).ωM (γ(t).(X ◦ γ(t)−1), δl(γ)(t)) dt

=
∫ 1

0

ωM

(
γ(t).(X ◦ γ(t)−1), δl(γ)(t)

)
◦ γ(t) dt.

From this formula it is easy to see that Iγ ∈ Lin(g, a) defines a 1-form on M
whose value in v ∈ Tp(M) is given by

Iγ(v) =
∫ 1

0

(ωM )γ(t).p

(
γ(t).v, δl(γ)(t)(γ(t).p)

)
dt.

This means that

Iγ = −
∫ 1

0

γ(t)∗
(
iδl(γ)(t)ωM

)
dt,

which, in view of Remark 9.10, implies that

Fωg(γ̃(1)) = [−Iγ ] = FωM
(γ̃(1)) ∈ Ĥ1

dR(M,V ) ⊆ Ĥ1
c (g, a).

The remaining assertions now follow from Corollary 9.12.
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Corollary 9.14. Fω(π1(G)) vanishes if and only if for each smooth loop α : S1 →
M and each smooth loop γ : S1 → Diff(M) we have

∫
H
ω = 0 for the map

H : T2 →M,H(t, s) = γ(t).α(s).

The condition in the preceding corollary is in particular satisfied if the set of
homotopy classes of based maps T2 →M or at least the corresponding homology
classes in H2(M) are trivial.

Remark 9.15. It is interesting to observe that the discreteness of the period map
for ω ∈ Ω2(M,V ) leads to a condition on the group of spherical cycles, i.e., the
image of π2(M) in H2(M), and the vanishing of Fω(π1(G)) leads to a condition
on the larger subgroup of H2(M) generated by the cycles coming from maps
T2 → M . That the latter group contains the former follows from the existence
of a map T2 → S2 , inducing an isomorphism H2(T2) → H2(S2). If M is a Lie
group, then Proposition 6.11 implies that H2(M) is generated by the homology
classes coming from continuous maps T2 →M .

Examples

Example 9.16. Let z be a Fréchet space, ΓZ ⊆ z a discrete subgroup, Z := z/ΓZ

and qZ : z → Z the quotient map, which can also be considered as the exponential
map of the Lie group Z .

Further let q : P → M be a smooth Z -principal bundle over the compact
manifold M , θ ∈ Ω1(P, z) a principal connection 1-form and ω ∈ Ω2(M, z) the
corresponding curvature, i.e., q∗ω = −dθ . We call a vector field X ∈ V(P )
horizontal if θ(X) = 0. Write V(P )Z for the Lie algebra of Z -invariant vector
fields on P . Then we have a linear bijection

σ : V(M) → V(P )Z
hor := {X ∈ V(P )Z : θ(X) = 0}

which is uniquely determined by q∗σ(X) = X for X ∈ V(M). For two horizontal
vector fields X̃, Ỹ on P we then have

(q∗ω)(X̃, Ỹ ) = −dθ(X̃, Ỹ ) = Ỹ .θ(X̃)− X̃.θ(Ỹ )− θ([Ỹ , X̃]) = θ([X̃, Ỹ ]).

This means that
(9.3)
ω(X,Y ) = (q∗ω)(σ(X), σ(Y )) = θ([σ(X), σ(Y )]) = θ([σ(X), σ(Y )]− σ([X,Y ]))

can be viewed as the cocycle of the abelian extension

a := gau(P ) ∼= C∞(M, z) ↪→ ĝ := V(P )Z →→ g = V(M)

with respect to the section σ : g → ĝ .
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On the group level we find that the inverse image Ĝ of G = Diff(M)op0
in Aut(P )op is an extension of G by the abelian gauge group A := Gau(P ) ∼=
C∞(M,Z) and we have already seen above that its Lie algebra is ĝ ∼= a⊕ω g .

The exponential function of the abelian Lie group A is given by

expA : a = C∞(M, z) → C∞(M,Z), ξ 7→ qZ ◦ ξ.

Its image is the identity component A0 of A . The characteristic map

θA : π0(A) ∼= [M,Z] → H1
c (g, a), [f ] 7→ [D(dGf)]

considered in Proposition 6.4 can be made more explicit by observing that

(dGf)(g) = g.f − f = f ◦ g − f,

so that
D(dGf)(X) = X.f = 〈df,X〉

(cf. Definition A.2). This means that D(dGf) can be identified with the 1-form
df ∈ H1

dR(M, z) ⊆ H1
c (g, a). Therefore the homomorphism θA : π0(A) → H1

c (g, a)
from Proposition 6.4 is obtained by factorization of the map

A = C∞(M,Z) → H1
dR(M, z), f 7→ [df ]

whose kernel is the identity component A0 = qZ ◦C∞(M, z) of A , to the injective
homomorphism

π0(A) ∼= C∞(M,Z)/qZ ◦ C∞(M, z) ∼= [M,Z] → H1
dR(M, z), [f ] 7→ [df ].

According to [Ne02, Prop. 3.9], its image consists of the subspace

H1
dR(M,ΓZ) :=

{
[α] ∈ H1

dR(M, z) : (∀γ ∈ C∞(S1,M))
∫

γ

α ∈ ΓZ

}
,

so that
θA : π0(A) → H1

dR(M,ΓZ), [f ] 7→ [df ]

is an isomorphism.
In view of Proposition 6.3, the flux homomorphism satisfies Fω = −θA ◦ δ ,

where δ : π1(G) → π0(A) is the connecting homomorphism corresponding to the
long exact homotopy sequence of the A -bundle Ĝ→ G . As θA is an isomorphism,
Fω is essentially the same as δ , and we can view it as a homomorphism

Fω : π1(G) → H1
dR(M,ΓZ) ⊆ H1

dR(M, z).

Note that we cannot expect Fω(π1(G)) to vanish because the abelian exten-
sion A ↪→ Ĝ→ G is not an extension by a connected group.
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Example 9.17. (a) We consider the special case where the manifold M is a
torus: M = T = t/ΓT , where t is a finite-dimensional vector space and ΓT ⊆ t is
a discrete subgroup for which t/ΓT is compact.

Then the group T acts by multiplication maps on itself, and we obtain a ho-
momorphism T ↪→ G = Diff(M)op0 which induces a homomorphism ηT : π1(T ) →
π1(G).

Let ωT ∈ Ω2(T, z) be an invariant z-valued 2-form on T and ω = Ω1 ∈
Z2

c (t, z). Then ωT is closed because T is abelian. If e1, . . . , en is an integral basis
of ΓT , then the maps

T2 → T, (t, s) 7→ tei + sej + ΓT , i < j

lead to an integral basis of H2(T ) ∼= Z(dim T
2 ) , so that the period group of ωT is

Γω := spanZ ω(ei, ej) = spanZ ω(ΓT ,ΓT ) ⊆ z.

We assume that ΓZ ⊆ z is a discrete subgroup with

ω(ΓT ,ΓT ) ⊆ ΓZ

and put Z := z/ΓZ .
In view of π2(T ) = {0} , we have perω = 0 by Proposition 9.5. Next we are

making the map

Fω ◦ ηT : π1(T ) = ΓT → H1
dR(T,ΓZ) ∼= Hom(ΓT ,ΓZ)

more explicit. For x, y ∈ ΓT and the corresponding loops γx(t) = tx + ΓT and
γy(t) = ty + ΓT in T we have for

H : T2 → T, (t, s) 7→ γx(t) + γy(s) = [tx+ sy]

the formula ∫
γy

Fω([γx]) =
∫

H

ω = ω(x, y)

(Propositions 9.11 and 9.13). This means that Fω ◦ ηT : π1(T ) → Hom(π1(T ),ΓZ)
can be identified with the map x 7→ ixω .

On the other hand, the existence of a Z -bundle over T with curvature ω
implies the existence of an abelian extension

A := C∞(T,Z) ↪→ T̂ →→ T,

where T acts on A by (t.f)(x) = f(x+ t) (cf. Example 9.16). The corresponding
Lie algebra cocycle ω ∈ Z2

c (t, C∞(T, z)) is given by (x, y) 7→ ω(x, y) ∈ z whose
values lie in z ∼= aT .

(b) We now explain how essentially everything said about bundles over tori
can be generalized to bundles over their natural infinite-dimensional generaliza-
tions.
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Let t be a locally convex space, ΓT ⊆ t a discrete subgroup and consider
the connected abelian Lie group T := t/ΓT . Let further z be a Mackey complete
locally convex space, ΓZ ⊆ z be a discrete subgroup and Z := z/ΓZ , considered
as a trivial T -module. We fix a continuous bilinear map fz : t× t → z and define
fZ ∈ Z2

s (t, Z) by fZ := qZ ◦ fz , where qZ : z → Z is the quotient map.
Let H := Z ×fZ

t denote the corresponding central extension of t by Z .
Then Z] := Z ×fZ

ΓT is a normal subgroup of H because all commutators lie in
Z . Since H/Z] ∼= t/ΓT = T , we can think of H as an extension

Z] ↪→ H →→ T.

Since Z is divisible and ΓT discrete, the central extension Z ↪→ Z] →→ ΓT

is trivial if and only if it is an abelian group, which means that its commutator
map ΓT × ΓT → Z vanishes. The commutator map is given by

(z, t)(z′, t′)(z, t)−1(z′, t′)−1 = (fZ(t, t′), t+ t′)(fZ(t′, t), t+ t′)−1

= (fZ(t, t′)− fZ(t′, t), 0)
= (qZ(fz(t, t′)− fz(t′, t)), 0) = (qZ(ω(t, t′)), 0)

for ω(t, t′) := fz(t, t′) − fz(t′, t). Therefore Z] is a trivial extension of ΓT if and
only if

(9.4) ω(ΓT ,ΓT ) ⊆ ΓZ .

The condition for the extistence of a Z -bundle P → T with curvature ωT

is also given by (9.4). The necessity of this condition in the infinite-dimensional
case can be seen by restricting to two-dimensional subtori. If (9.4) is satisfied,
then we can view ΓT as a subgroup of Z] because there exists a homomorphism
σ : ΓT → Z] splitting the extension Z] →→ ΓT . Now we form the homogeneous
space P := H/σ(ΓT ) which defines a Z -bundle

Z ↪→ P = H/σ(ΓT ) →→ T ∼= H/Z].

As Z is central in H , the left action of H on P induces a homomorphism

H → Aut(P ) = Diff(P )Z

restricting to a homomorphism

jZ : Z] ∼= Z ×fZ
ΓT → Gau(P ) ∼= C∞(T,Z),

where the elements of Z correspond to constant functions. The group ΓT acts on
P by

x.(qZ(z), y) = (qZ(z + fz(x, y)), y) = (qZ(z), y).fZ(x, y),

so that
jZ(z, x)(y + ΓT ) = z + fZ(x, y).
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Identifying
H1

dR(T,ΓZ) ∼= dC∞(T,Z)/dC∞(T, z) ⊆ H1
dR(T, z)

with a subspace of H1
c (t, a) (cf. Lemma 9.4), we can view Fω as a map

π1(T ) → H1
dR(T,ΓZ) ↪→ Hom(π1(T ),ΓZ).

10. The diffeomorphism group of the circle and its
universal covering

In this section we apply the general results from Sections 6 and 7 to the group
Diff(S1)0 of orientation preserving diffeomorphisms of the circle S1 and the mod-
ules Fλ of λ -densities on S1 whose cohomology for the group Diff(S1)0 has been
determined in [OR98]. We shall also point out how the picture changes if Diff(S1)0
is replaced by its universal covering group.

The diffeomorphism group of the circle

Let G := Diff(S1)op0 be the group of orientation preserving diffeomorphisms of the
circle S1 ∼= R/Z . Then its universal covering group G̃ can be identified with the
group

G̃ := {f ∈ Diff(R)op : (∀x ∈ R) f(x+ 1) = f(x) + 1},
and the covering homomorphism qG : G̃→ G is given by q(f)([x]) = [f(x)], where
[x] = x+ Z ∈ S1 ∼= R/Z . The kernel of qG consists of all translations τa , a ∈ Z ,
and since G̃ is an open convex subset of a closed subspace of C∞(R,R), it is a
contractible manifold. In particular, we obtain

π1(G) ∼= Z and πk(G) = {1} for k 6= 1.

The group G has an import series of representation Fλ , λ ∈ R , where Fλ

is the space of λ -densities on the circle S1 . As the tangent bundle TS1 is trivial,
we may identify the space Fλ with the space C∞(S1,R) of 1-periodic functions
on R with the representation

ρλ(ϕ).ξ = (ϕ′)λ · (ξ ◦ ϕ)

which corresponds symbolically to ϕ∗(ξ(dx)λ) = (ξ ◦ ϕ) · (ϕ′)λ · (dx)λ. Note that
F0 = C∞(S1,R) is a Fréchet algebra and that, as G -modules,

F1
∼= Ω1(S1,R) and F−1

∼= V(S1) = g.

For the Lie algebra g = V(S1) of G the derived representation of the vector
field X = ξ d

dx is given by

(10.1) ρλ(ξ).f = ξf ′ + λfξ′.

This follows directly from ρλ(g).f = (g′)λ · (f ◦ g) and the product rule. In the
following we shall identify g with C∞(S1,R) via ξ d

dt 7→ ξ .
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Lemma 10.1. On the Fréchet–Lie group A := C∞(S1,R×) = F×0 we have a
smooth G-action by g.f := f ◦g and the derivative η : G→ A, f 7→ f ′ is a smooth
1-cocycle.

Proof. For g, h ∈ G we have η(gh) = (gh)′ = (h ◦ g)′ = (h′ ◦ g) · g′ =
(g.η(h)) · η(g).

Remark 10.2. The representation on Fλ has the form ρλ(g).f = η(g)λ · (f ◦ g)
and the fact that ηλ : G → A is a cocycle implies that ρλ : G → GL(Fλ) is a
group homomorphism.

The cohomology on the Lie algebra level

Proposition 10.3. The cohomology in degrees 0, 1, 2 of the g-module Fλ has
the following structure:

H0
c (g,Fλ) = Fg

λ =
{
{0} for λ 6= 0
R1 for λ = 0.

For n ∈ N0 let αn(ξ) = ξ(n) denote the n-fold derivative. Then

H1
c (g,F0) = span{[α0], [α1]}, H1

c (g,F1) = R[α2], H1
c (g,F2) = R[α3]

and H1
c (g,Fλ) vanishes for λ 6= 0, 1, 2 . In degree 2 we have

H2
c (g,Fλ) ∼=

 R2 for λ = 0, 1, 2
R for λ = 5, 7
{0} otherwise.

For λ = 0, 1, 2 the cohomology classes of the following elements form a basis of
H2

c (g,Fλ) :

ω0(ξ, η) :=
∣∣∣∣ ξ η
ξ′ η′

∣∣∣∣ , ω0(ξ, η) :=
∫ 1

0

∣∣∣∣ ξ′ η′

ξ′′ η′′

∣∣∣∣ for λ = 0,

ω1(ξ, η) :=
∣∣∣∣ ξ η
ξ′′ η′′

∣∣∣∣ , ω1(ξ, η) :=
∣∣∣∣ ξ′ η′

ξ′′ η′′

∣∣∣∣ for λ = 1,

and

ω2(ξ, η) :=
∣∣∣∣ ξ η
ξ′′′ η′′′

∣∣∣∣ , ω2(ξ, η) :=
∣∣∣∣ ξ′ η′

ξ′′′ η′′′

∣∣∣∣ for λ = 2.

Proof. (cf. [OR98]) We have

Fg
λ
∼= {f ∈ C∞(S1,R) : (∀ξ ∈ C∞(S1,R)) ξf ′ + λξ′f = 0}.
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For constant functions ξ the differential equation from above reduces to f ′ξ = 0,
so that f is constant, and now λξ′f = 0 for each ξ implies λf = 0. This proves
the assertion about H0

c (g,Fλ).
According to [Fu86, p.176], we have

Hq
c (g,Fλ) = 0 for λ 6∈

{3r2 ± r

2
: r ∈ N0

}
= {0, 1, 2, 5, 7, 12, 15, . . .}.

If r ∈ N0 and λ = 3r2±r
2 , then

Hq
c (g,Fλ) ∼=

{
Hq−r

sing (Y (S1),R) for q ≥ r

{0} for q < r,

where Y (S1) = T2×ΩS3 and ΩS3 is the loop space of S3 . The cohomology algebra

H•
c (g,F0) ∼= H•

sing(Y (S1),R) ∼= H•
sing(S1,R)⊗H•

sing(S1,R)⊗H•
sing(ΩS3,R)

is a free anti-commutative real algebra with generators a, b, c satisfying

deg(a) = deg(b) = 1, deg(c) = 2, a2 = b2 = 0.

It follows in particular that

H0
c (g,F0) = R, H1

c (g,F0) = Ra+ Rb ∼= R2, H2
c (g,F0) = Rc+ Rab ∼= R2.

The structure of H•
c (g,Fλ) is now determined by the fact that it is a free module

of the algebra H•(Y (S1),R) ∼= H•
c (g,F0) with one generator in degree r . Here the

algebra structure on H•
c (g,F0) is obtained from the multiplication on F0 as in

Appendix F, and the multiplication F0 × Fλ → Fλ yields the H•
c (g,F0)-module

structure ([α], [β]) 7→ [α ∧ β] on H•
c (g,Fλ).

From [Fu86, Th. 2.4.12] we see that generators of H•
c (g,F0) are given by

the classes of α0, α1 and ω0 . Therefore a second basis element of H2
c (g,F0) is

represented by

(α0 ∧ α1)(ξ, η) = α0(ξ)α1(η)− α0(η)α1(ξ) = ξη′ − ξ′η = ω0(ξ, η).

The space H1
c (g,Fλ) is non-zero for r = 0, 1 which corresponds to λ ∈

{0, 1, 2} . For r = 0 it is two-dimensional and for r = 1 it is one-dimensional.
For λ = 1 a generator is given by [α2] ([Fu86, Th. 2.4.12]; there is a misprint in
the formula!). From the H•

c (g,F0)-module structure of H•
c (g,F1) we obtain the

generators of H2
c (g,F1):

(α0 ∧ α2)(ξ, η) = ξη′′ − ηξ′′ = ω1, (α1 ∧ α2)(ξ, η) = ξ′η′′ − η′ξ′′ = ω1.

Averaging over the rotation group, we see that every cocycle is equivalent to
a rotation invariant one. From that it is easy to verify that for λ = 2 a generator
of H1

c (g,F2) is given by [α3] , and we obtain for the basis elements of H2
c (g,F2):

(α0 ∧ α3)(ξ, η) = ξη′′′ − ηξ′′′ = ω2, (α1 ∧ α3)(ξ, η) = ξ′η′′′ − η′ξ′′′ = ω2.

For an explicit description of a basis of H2
c (g,Fλ) for λ = 5, 7 we refer to

[OR98].
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Integrating Lie algebra cocycles to group cocycles

Now we translate the information on the Lie algebra cohomology Hp
c (g,Fλ) for

p = 0, 1, 2 (Proposition 10.3) to the group G . Since the group G is connected, we
have

H0
s (G,Fλ) = FG

λ = Fg
λ =

{
{0} for λ 6= 0
R1 for λ = 0.

In degree 1, we can use Proposition 3.4 to see that we have an exact sequence

0 → H1
s (G,Fλ) D−−→H1

c (g,Fλ) P−−→Fg
λ .

For λ 6= 0 this implies that D : H1
s (G,Fλ) → H1

c (g,Fλ) is an isomorphism. For
λ = 0 we have to calculate the period map P . Let t := R1 ∼= R d

dx ⊆ g be the
one-dimensional subalgebra corresponding to the rigid rotations of the circle S1

and T ∼= T ⊆ G the corresponding subgroup. Then the inclusion T ↪→ G induces
an isomorphism π1(T ) → π1(G), so that we can calculate P by restricting to T .
Since t corresponds to constant functions, the cocycle α1 vanishes on t , and the
cocycle α0 is non-trivial on t . Hence

H1
s (G,F0) ∼= kerP = R[α1].

The group cocycle corresponding to α1(ξ) = ξ′ is θ(ϕ) = logϕ′ (cf. Lemma 10.1)
because for ϕ = idR +ξ we have

θ(id+ξ) = log(1 + ξ′) ∼ ξ′ + . . . ,

which implies Dθ = α1 . Since the map d : F0
∼= C∞(S1,R) → F1

∼= Ω1(S1,R) is
equivariant, we obtain a group cocycle

d ◦ θ ∈ Z1
s (G,F1), (d ◦ θ)(f) := log(f ′)′ =

f ′′

f ′
,

and for ϕ = id+ξ the relation (d◦θ)(id+ξ) = ξ′′

1+ξ′ directly leads to D(d◦θ) = α2.
The Schwarzian derivative

S ∈ Z1
s (G,F2), S(ϕ) :=

(ϕ′′′
ϕ′

− 3
2

(ϕ′′
ϕ′

)2)
satisfies DS = α3 . We thus have

H1
s (G,Fλ) =


{0} for λ 6= 0, 1, 2
R[θ] for λ = 0
R[d ◦ θ] for λ = 1
R[S] for λ = 2.

On the simply connected covering group qG : G̃→ G we have H1
s (G̃,Fλ) ∼=

H1
c (g,Fλ) (Proposition 3.4), so that we need an additional 1-cocycle for λ = 0,

which is given by
L(ϕ) := ϕ− idR .
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In fact, L(ψϕ) = L(ϕ◦ψ) := ϕ◦ψ−ψ+ψ−idR = ψ∗L(ϕ)+L(ψ). Since DL = α0 ,
we get

H1
s (G̃,F0) = R[L] + R[θ],

where θ(ϕ) = logϕ′ .

Now we turn to the group cohomology in degree 2: In view of π1(G) ∼= Z
and Theorem 7.2, we have a map

δ : Hom(π1(G),FG
λ ) ∼= FG

λ → H2
s (G,Fλ), δ(γ) = (Fλ o G̃)/Γ(γ).

The kernel of this map coincides with the image of the restriction map

R : H1
s (G̃,Fλ) ∼= H1

c (g,Fλ) → Hom(π1(G),FG
λ ) ∼= FG

λ

and the image of D coincides with the kernel of the map

P : H2
c (g,Fλ) → Hom(π1(G),H1

c (g,Fλ)) ∼= H1
c (g,Fλ).

The following proposition clarifies the relation between second Lie algebra
and Lie group cohomology for the modules Fλ . We refer to Appendix F for the
definition of the ∩-product of Lie group cocycles.

Proposition 10.4. For each λ ∈ R the map D : H2
s (G,Fλ) → H2

c (g,Fλ) is
injective. It is bijective for λ 6∈ {0, 1, 2} . For λ ∈ {0, 1, 2} we have

H2
s (G,F0) = R[B0], H2

s (G,F1) = R[B1], H2
s (G,F2) = R[B2]

for

B0(ϕ,ψ) := −
∫ 1

0

log((ψ ◦ ϕ)′)d(logϕ′), B1 := θ ∩ (d ◦ θ) and B2 := θ ∩ S.

Proof. (cf. [OR98]) First we show that D is injective for each λ . As above, let
T ∼= T ⊆ G be the subgroup corresponding to t = R1 in g . Since the inclusion
T ↪→ G induces an isomorphism π1(T ) → π1(G), we can calculate R by using the
factorization

H1
s (g,F0) → H1

s (t,F0) → Hom(π1(T ),FG
0 ) ∼= FG

0
∼= Hom(π1(G),FG

0 ).

It is clear that the cocycle α1 vanishes on t , but α0 satisfies perα0
([idT ]) = 1 ∈

FG
0 . Therefore the restriction map R is surjective for λ = 0, which implies δ = 0.

For all other values of λ the map δ vanishes because FG
λ is trivial. Therefore D

is injective for each λ .
For λ 6∈ {0, 1, 2} the space H1

c (g,Fλ) vanishes, so that P = 0 and im(D) =
ker(P ) imply that D is surjective.
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For λ = 0, 1, 2 the space H2
c (g,Fλ) is two-dimensional (Proposition 10.3).

To calculate P in these cases, let

γ : [0, 1] → T ⊆ G, t 7→ (x 7→ x+ t+ Z)

be the generator of π1(G). We have

−F̃ω(γ)(x) =
∫ 1

0

(ixr
.ωeq)(γ′(t)) dt =

∫ 1

0

γ(t).ω
(
Ad(γ(t))−1.x, 1

)
dt.

This means that F̃ω(γ) is the T -equivariant part of the linear map −i1ω : g → Fλ.

For the cocycle ωλ(ξ, η) := ξη(λ+1) − ηξ(λ+1) we have(
i1ωλ

)
(η) = ωλ(1, η) = η(λ+1).

As 1 acts on each Fλ by ξ 7→ ξ′ , the linear map ωλ(1, ·) is T -equivariant, hence
equal to −F̃ω(γ), and we obtain

Fωλ
(1) = [F̃ω(γ)], F̃ω(γ)(η) = η(λ+1), for λ = 0, 1, 2.

For ω0(ξ, η) :=
∫

S1 ξ
′η′′−ξ′′η′ we have ω0(1, η) = 0, so that Fω0 = 0, and likewise

ωλ(1, η) = 0 for λ = 1, 2 leads to Fωλ
= 0 for λ = 1, 2.

We conclude that for λ = 0, 1, 2 the kernel of P is one-dimensional, and
that

im(D) = ker(P ) = R[ωλ].

For λ = 0 the Thurston–Bott cocycle (for Diff(S1)op )

B0 ∈ Z2
s (G,R) ⊆ Z2

s (G,F0), B0(ϕ,ψ) = −
∫ 1

0

log((ψ ◦ ϕ)′)d(logϕ′)

satisfies DB0 = ω0 (cf. [GF68]). For λ = 1, 2, we recall that ωλ = α1 ∧ αλ+1 , so
that Lemma F.3 implies that the cocycles

B1 := θ ∩ (d ◦ θ) and B2 := θ ∩ S

satisfy DBλ = ωλ . This completes the proof.

Proposition 10.5. For the simply connected covering group G̃ of G we have

H2
s (G̃,Fλ) = R[Bλ]⊕ R[Bλ] ∼= R2 for λ = 0, 1, 2,

where
B0 := L ∩ θ, B1 := L ∩ (d ◦ θ), B2 := L ∩ S,

and Bλ is the pull-back of the corresponding cocycle on G .
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Proof. Since the simply connected covering group G̃ is contractible, the deriva-
tion map

D : H2
s (G̃,Fλ) → H2

c (g,Fλ)

is bijective, so that we obtain larger cohomology spaces of G̃ than for G . For
λ = 0, 1, 2 we have ωλ = α0 ∧ αλ+1, so that the cocycles Bj , j = 0, 1, 2, satisfy
DBλ = ωλ (Lemma F.3). Combining this with the pull-backs of the cocycles Bλ

from G , the assertion follows.

A non-trivial abelian extension of SL2(R)

We consider the right action of SL2(R) on the projective line P1(R) = R ∪ {∞}
by

x.

(
a b
c d

)
:=

(
a b
c d

)−1

.x :=
dx− b

−cx+ a
.

In particular the action of the rotation group SO2(R) is given by(
cosπt − sinπt
sinπt cosπt

)
.x =

cosπt · x− sinπt
sinπt · x+ cosπt

,

so that (
cosπt − sinπt
sinπt cosπt

)
.0 = − tanπt

and the map t 7→ tanπt induces a diffeomorphism R/Z → P1(R). We use this
diffeomorphism to identify S1 = R/Z with P1(R) and to obtain a smooth right
action of SL2(R) on S1 . Then sl2(R) is isomorphic to a 3-dimensional subalgebra
of V(S1) and so2(R) corresponds to R1 = t . We put

U :=
(

0 −1
1 0

)
and observe that this element corresponds to the constant function 1

π . From the
relation adU((adU)2 + 4) = 0 on sl2(R) and the formula for commutators in
V(S1) we therefore derive

sl2(R) = span{1, cos(2πt), sin(2πt)}

as a subalgebra of V(S1) ∼= C∞(S1). We may therefore pick H,P ∈ sl2(R) with
[U,H] = −2P and [U,P ] = 2H such that H corresponds to the function cos(2πt)
and P to the function sin(2πt).

The corresponding group homomorphism

σ : SL2(R) → Diff(S1)op0
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is homotopy equivalent to the twofold covering of T ∼= S1 , hence induces an
injection

π1(σ) : π1(SL2(R)) ∼= Z → π1(Diff(S1)) ∼= Z

onto a subgroup of index 2.
From the action of SL2(R) on S1 , we obtain a smooth action on the Fréchet

spaces
Fλ := C∞(S1,R), (g.f)(x) :=

(
σ(g)′

)λ
f(x.g).

By restriction to the subalgebra sl2(R) ⊆ V(S1), we obtain the 2-cocycle ω(ξ, η) =
ξ′η′′−ξ′′η′ in Z2

c (sl2(R),F1). Let γ : I → SL2(R), t 7→ exp(2πtU) be the canonical
generator of π1(SL2(R)). As in the proof of Proposition 10.4, it then follows that

Fω : π1(SL2(R)) → H1
c (sl2(R),F1)

is given by Fω([γ]) = [F̃ω(γ)] , where F̃ω(γ) is the t -invariant part of 2i1ω = 0,
hence Fω = 0.

Next we show that [ω] 6= 0 in H2
c (sl2(R),F1). If this is not the case, then

there exists a linear map α : sl2(R) → F1 with ω = dsl2(R)α . Since ω is T -
equivariant, we may assume, after averaging over the compact group T , that α is
also T -invariant, i.e.,

α([U, x]) = U.α(x), x ∈ sl2(R).

Now
0 = iUω = iUdsl2(R)α = LUα− diUα = −diUα

implies
iUα = α(U) ∈ Z0(sl2(R),F1) = Fsl2(R)

1 = {0}.

We now derive from [H,P ] ∈ RU :

ω(H,P ) = dsl2(R)α(H,P ) = H.α(P )− P.α(H)− α([H,P ]) = H.α(P )− P.α(H).

Further the equivariance of α implies the existence of a, b ∈ R with

α(P ) = a cos(2πt) + b sin(2πt) and α(H) =
1
2
α([U,P ]) =

1
2
U.α(P )

= −a sin(2πt) + b cos(2πt).

We further have

H.α(P ) = cos(2πt).(a cos(2πt) + b sin(2πt)) = (a cos2(2πt) + b sin(2πt) cos(2πt))′

and

P.α(H) = sin(2πt).(−a sin(2πt)+b cos(2πt)) = (−a sin2(2πt)+b sin(2πt) cos(2πt))′,
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so that

ω(H,P ) = H.α(P )− P.α(H) = a(cos2(2πt) + sin2(2πt))′ = a1′ = 0,

contradicting

ω(H,P ) = cos(2πt)′ sin(2πt)′′−cos(2πt)′′ sin(2πt)′ = 8π3(sin3(2πt)+cos3(2πt)) 6= 0.

Therefore [ω] 6= 0. Since Fω and perω vanish, and

H2
dR(SL2(R),F1) ∼= H2

dR(S1,F1) = {0},

there exists a smooth 2-cocycle f ∈ Z2
s (SL2(R),F1) with Df = ω (Proposi-

tion 8.4). Then the group
F1 ×f SL2(R)

is a non-trivial abelian extension of SL2(R).
If V is a trivial sl2(R)-module, then the range of each 2-cocycle lies in a 3-

dimensional subspace, hence is a coboundary, because the corresponding assertion
holds for finite-dimensional modules. Therefore all central extensions of SL2(R)
by abelian Lie groups of the form A = a/ΓA are trivial (Theorem 7.2). The
preceding example shows that H2

c (sl2(R),F1) 6= {0} , which provides the non-
trivial extension of SL2(R) constructed above.

The choice of the cocycle ω above is most natural because one can show
that the cohomology of the sl2(R)-modules Fλ satisfies

dimH2
c (sl2(R),Fλ) =

 0 for λ 6= 0, 1
1 for λ = 0
2 for λ = 1,

dimH1
c (sl2(R),Fλ) =

 0 for λ 6= 0, 1
2 for λ = 0
1 for λ = 1.

For λ = 0 the flux homomorphism yields an injective map

(10.2) H2
c (sl2(R),Fλ) → Hom(π1(SL2(R)),H1

c (sl2(R),Fλ) ∼= H1
c (sl2(R),Fλ),

so that we only obtain non-trivial abelian extensions of the universal covering
group S̃L2(R). For λ = 1 the kernel of (10.2) is one-dimensional and spanned by
[ω] , so that [ω] is, up to scalar multiples, the only non-trivial 2-cohomology class
associated to the modules Fλ which integrates to a group cocycle on SL2(R).

11. Central extensions of groups of volume pre-
serving diffeomorphisms

In the present section we discuss certain central extensions of the group Diff(M,µ)
of diffeomorphisms of a compact connected orientable manifold M preserving a
volume form µ , resp., its identity component D(M,µ) of Diff(M,µ)0 . Each closed
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z-valued 2-form ω on M defines a central extension of the corresponding Lie
algebra V(M,µ) of µ-divergence free vector fields because composing integration
over M with respect to µ with the C∞(M, z)-valued cocycle defined by the 2-form
(cf. Section 9) leads to a z-valued 2-cocycle, the so-called Lichnerowicz cocycle
(cf. [Vi02], [Li74]). We shall see that if π2(M) vanishes, then the only obstruction
to the integrability of the corresponding central extension is given by the flux
homomorphism π1(D(M,µ)) → H1

dR(M, z). If M is a compact Lie group, we
show that the flux becomes trivial on the covering group D̃(M,µ) of D(M,µ)
acting on the universal covering manifold M̃ of M , which leads to central Lie
group extensions of D̃(M,µ).

Some facts on the flux homomorphism for volume forms

In this short subsection we collect some facts on the flux homomorphism of a
volume form on a compact connected manifold. These results will be used to show
that each closed 2-form on a compact Lie group G defines a central extension of
the covering D̃(G,µ) of the identity component D(G,µ) of the group of volume
preserving diffeomorphisms of G which acts faithfully on the universal covering
group G̃ .

Let M be a smooth compact manifold, z a Mackey complete locally convex
space and ω ∈ Ωp(M, z) a closed z-valued p -form. For a piecewise smooth curve
α : I → Diff(M) we define the flux form

F̃ω(α) :=
∫ 1

0

α(t)∗
(
iδl(α)(t)ω

)
dt =

∫ 1

0

iα(t)−1.α′(t)(α(t)∗ω) dt ∈ Ωp−1(M, z).

Let α : I → Diff(M) be a piecewise smooth path and σ : ∆p−1 → M a
smooth singular simplex. Further define

α.σ : I ×∆p−1 →M, (t, x) 7→ α(t).σ(x).

Then

((α.σ)∗ω)(t, x)
( ∂

∂t
, v1, . . . , vp−1

)
= ω(α(t).σ(x))

(
α′(t)(σ(x)), α(t).dσ(x)v1, . . . , α(t).dσ(x)vp−1)

= (α(t)∗ω)(σ(x))
(
α(t)−1.α′(t)(σ(x)), dσ(x)v1, . . . , dσ(x)vp−1)

=
(
iα(t)−1.α′(t)

(
α(t)∗ω

))
(σ(x))

(
dσ(x)v1, . . . , dσ(x)vp−1)

(cf. [NV03, Lemma 1.7]) implies∫
α.σ

ω =
∫

I×∆p−1

(α.σ)∗ω =
∫

σ

F̃ω(α).

We thus obtain ∫
α.Σ

ω =
∫

Σ

F̃ω(α)
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for each singular chain Σ if we extend the map σ 7→ α.σ additively to the group
of piecewise smooth singular chains. If Σ is a boundary and α is closed, then α.Σ
is a boundary, so that the integral vanishes by Stoke’s Theorem, and therefore∫
Σ
F̃ω(α) vanishes. We conclude that F̃ω(α) is a closed (p − 1)-form, so that we

obtain a group homomorphism

Fω : π1(Diff(M)) → Hp−1
dR (M, z), [α] 7→ [F̃ω(α)].

Lemma 11.1. If M is an oriented compact manifold of dimension n , m0 ∈M ,
and µ a volume form on M with

∫
M
µ = 1 , then the kernel of the corresponding

flux homomorphism

Fµ : π1(Diff(M)) → Hn−1
dR (M,R), [α] 7→ [F̃µ(α)]

contains the kernel of

π1(evD
m0

) : π1(Diff(M)) → π1(M,m0).

Proof. (We are grateful to Stephan Haller for communicating to us the idea of
the following proof.) To each smooth loop α : S1 → Diff(M) with α(1) = idM we
associate a locally trivial fiber bundle qα : Pα → S2 whose underlying topological
space is obtained as follows. We think of S2 as a union of two closed discs B1 and
B2 with B1 ∩B2 = S1 . Then we put

Pα :=
(
(B1 ×M)∪̇(B2 ×M)

)
/ ∼,

where

(x,m) ∼ (x′,m′) : ⇔
{
x = x′ 6∈ ∂B1 ∪ ∂B2, m = m′

x = x′ ∈ ∂B1,m
′ = α(x)(m).

Then qα([x,m]) := x defines the structure of a locally trivial fiber bundle with
fiber M over S2 .

A section of Pα is a pair of two continuous maps σ̃j : Bj → M , j = 1, 2,
such that the restrictions σj := σ̃j | ∂Bj satisfy σ2(x) = α(x)(σ1(x)) for all
x ∈ ∂Bj . This means that σ1 and σ2 are contractible loops in M with α.σ1 = σ2 .
Conversely, every pair of contractible loops σ1 and σ2 in M satisfying α.σ1 = σ2

can be extended to continuous maps Bj →M and thus to a section of Pα .
If σ1 is a contractible loop based in m0 , then α.σ1 is a loop based in m0

homotopic to the loop x 7→ α(x)(m0). Therefore the existence of a continuous
section of Pα is equivalent to [α] ∈ kerπ1(evD

m0
).

Suppose that [α] ∈ kerπ1(evD
m0

) and that σ : S2 → Pα is a corresponding
section. It follows easily from the construction of Pα that the manifold Pα is
orientable if M is orientable. Hence the 2-cycle [σ] has a Poincaré dual [β] ∈
Hn

sing(Pα,Z) whose restriction to a fiber M is the Poincaré dual of the intersec-
tion of im(σ) with a fiber, hence the fundamental class [µ] ∈ Hn

sing(M,Z) ([Bre93,
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p.372]). Therefore the fundamental class of M extends to an n -dimensional coho-
mology class in Pα .

On the other hand, we obtain from [Sp66, p.455] the exact Wang cohomology
sequence associated to Pα :

. . .→ Hn
sing(Pα,Z) → Hn

sing(M,Z) ∂α−−→Hn−1
sing (M,Z) → Hn−1

sing (Pα,Z) → . . . ,

where ∂α satisfies
〈∂α[β], [Σ]〉 = 〈[β], [α.Σ]〉

for each (n− 1)-cycle Σ in M , and the kernel of ∂α consists of those cohomology
classes extending to Pα . As this is the case for the fundamental class of M , it
follows that [α.Σ] = 0 holds for all (n − 1)-cycles Σ on M . We conclude that
F̃µ(α) is an exact (n− 1)-form if [α] ∈ kerπ1(evD

m0
).

Remark 11.2. Suppose that G is a compact Lie group of dimension d . Then
G is orientable and we can identify G with the group λ(G) of left translations in
Diff(G). Then

Diff(G) = Diff(G)1λ(G) ∼= Diff(G)1 ×G

as smooth manifolds, where Diff(G)1 denotes the stabilizer of 1 ∈ G in Diff(G).
In particular we have

π1(Diff(G)) ∼= π1(Diff(G)1)× π1(G).

If µ is a normalized biinvariant volume form on G , then Lemma 9.1 implies that
the corresponding flux homomorphism

Fµ : π1(Diff(G)) → Hd−1
dR (G,R)

factors through a homomorphism

F ]
µ : π1(G) → Hd−1

dR (G,R).

Let qG : G̃→ G denote the universal covering homomorphism and

D̃iff(G) := {ϕ̃ ∈ Diff(G̃) : (∃ϕ ∈ Diff(G)) ϕ ◦ qG = qG ◦ ϕ̃}.

Then we have a canonical homomorphism

QG : D̃iff(G) → Diff(G), ϕ̃ 7→ ϕ

whose kernel coincides with the group of deck transformations that is isomorphic
to π1(G). We endow D̃iff(G) with the Lie group structure turning QG into a
covering map. We then have

D̃iff(G) = D̃iff(G)1G̃ ∼= D̃iff(G)1 o G̃ ∼= Diff(G)1 o G̃
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as smooth manifolds, so that

π1(D̃iff(G)) ∼= π1(Diff(G)1).

The identity component D̃iff(G)0 is a covering of Diff(G)0 , and since the flux
homomorphism vanishes on its fundamental group (Lemma 9.1), the flux cocycle

fµ : V(G) → Ĥd−1
dR (G,R), X 7→ [iXµ]

integrates to a group cocycle

Fµ : D̃iff(G)op0 → Ĥd−1
dR (G,R) = Ωd−1(G,R)/dΩd−2(G,R)

with DFµ = fµ .

Application to central extensions

In this subsection we apply the tools developed in the present paper to central
extensions of groups of volume preserving diffeomorphisms of compact manifolds.

Let M denote an orientable connected compact manifold and µ a volume
form on M , normalized by

∫
M
µ = 1. We write

D(M,µ) := {ϕ ∈ Diff(M)op : ϕ∗µ = µ}0

for the identity component of the group of volume preserving diffeomorphisms of
(M,µ) and

gµ := V(M,µ) := {X ∈ V(M) : LXµ = 0}

for its Lie algebra. Further let D̃(M,µ) ⊆ Diff(M̃) denote the identity component
of the inverse image of D(M,µ) in

D̃iff(M) := {ϕ̃ ∈ Diff(M̃) : (∃ϕ ∈ Diff(M)) ϕ ◦ qM = qM ◦ ϕ̃},

where qM : M̃ → M denotes a universal covering. Then we have a covering map
D̃(M,µ) → D(M,µ) which need not be universal. We write D̃(M,µ) for the
universal covering group of D(M,µ) which also is a covering group of D̃(M,µ).

Let z be a Fréchet space. On the space C∞(M, z) of smooth z-valued
functions on M we then have the integration map

I : C∞(M, z) → z, f 7→
∫

M

fµ.

Then I is equivariant for the natural action of D(M,µ) on C∞(M, z), where we
consider z as a trivial module. On the infinitesimal level this means that∫

M

(X.f)µ = 0 for f ∈ C∞(M,R), X ∈ V(M,µ).
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Each closed z-valued p -form ω ∈ Ωp(M, z) defines a C∞(M, z)-valued p -
cochain for the action of the Lie algebra gµ on C∞(M, z) and since I is gµ -
equivariant, we obtain continuous linear maps

Φ: Ωp(M, z) → Cp
c (gµ, z), Φ(ω)(X1, . . . , Xp) := I(ω(X1, . . . , Xp))

=
∫

M

ω(X1, . . . , Xp)µ.

The equivariance of I implies that Φ(dω) = dgµ
Φ(ω), so that Φ induces maps

Φ: Hp
dR(M, z) → Hp

c (gµ, z).

Remark 11.3. If π2(M) = {0} and D̃(M,µ) denotes the simply connected
covering group of D(M,µ), then for each closed 2-form ω ∈ Z2

dR(M, z) the period
map of the corresponding Lie algebra cocycle vanishes (Proposition 9.5), so that,
in view of Theorem 7.2, Φ induces a map

Φ: H2
dR(M, z) → H2

s (D̃(M,µ), z).

If, more generally, ΓZ ⊆ z is a discrete subgroup with
∫

π2(M)
ω ⊆ ΓZ and

Z := z/ΓZ , then Theorem 7.2 implies that the Lie algebra cocycle ω integrates to
a central extension

Z ↪→ D̂(M,µ) →→ ˜D(M,µ).

Let
V(M,µ)ex := {X ∈ V(M,µ) : iXµ ∈ dΩp−2(M,R)}

denote the Lie algebra of exact divergence free vector fields. It can be shown that
this is the commutator algebra of V(M,µ) and even a perfect Lie algebra (cf.
[Li74]). It follows in particular that

H1
c (V(M,µ)ex, z) = HomLie alg(V(M,µ)ex, z) = {0}

for each trivial module z . Therefore, restricing the cocycles from above to V(M,µ)ex ,
resp. the corresponding connected subgroup D(M,µ)ex of exact volume preserv-
ing diffeomorphisms leads to a trivial flux homomorphism. Hence

∫
π2(M)

ω ⊆ ΓZ

implies the existence of a central Z -extension of D(M,µ)ex . We refer to Ismagilov
([Is96]) and Haller-Vizman ([HV04]) for geometric constructions of these central
extensions (for z = R, Z = T = R/Z).

Proposition 11.4. Let G be a compact connected Lie group and µ an invariant
normalized volume form on G . Then the flux cocycle restricts to a surjective Lie
algebra homomorphism

fµ : V(G,µ) → Hd−1
dR (G,R)
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whose kernel is the commutator algebra and whose restriction to z(g) ⊆ g ⊆
V(G,µ) is bijective. This Lie algebra homomorphism integrates to a homomor-
phism of connected Lie groups

FG
µ : D̃(G,µ) → Hd−1

dR (G,R)

whose restriction to Z(G̃)0 ⊆ G̃ ⊆ D̃(G,µ) is an isomorphism. Moreover, each
Lie algebra homomorphism ϕg : V(G,µ) → a to an abelian Lie algebra integrates
to a group homomorphism ϕG : D̃(G,µ) → a which factors through FG

µ .

Proof. Since fµ defines a Lie algebra homomorphism V(G,µ) → Hd−1
dR (G,R),

the restriction of the flux cocycle Fµ : D̃iff(G)0 → Ĥd−1
dR (G,R) to the subgroup

D̃(G,µ) is a group homomorphism

Fµ : D̃(G,µ) → Hd−1
dR (G,R) ∼= Hd−1(g,R)

which on the subgroup G̃ of D̃(G,µ) is the Lie group homomorphism obtained
by integrating the Lie algebra quotient homomorphism

g → Hd−1(g,R), x 7→ [ixµg],

where µg := µ(1) ∈ Cd(g,R). Note that Poincaré Duality implies that

Hd−1
dR (G,R) ∼= H1

dR(G,R) ∼= Hom(g,R) ∼= z(g)∗

so that Hd−1
dR (G,R) ∼= Z(G̃)0 ∼= z(g) and we can think of the flux homomorphism

as a group homomorphism

FG
µ : D̃(G,µ) → z(g).

On the Lie algebra level we have g ⊆ V(G,µ), [V(G,µ),V(G,µ)] ⊆ ker fµ,
and fµ maps z(g) isomorphically onto Hd−1

dR (G,R). This leads to

V(G,µ) = [V(G,µ),V(G,µ)] o z(g)

with H1(V(G,µ)) ∼= z(g), and we conclude that the flux homomorphism
FG

µ : D̃(G,µ) → z(g) is universal in the sense that each Lie algebra homomor-
phism V(G,µ) → a , where a is an abelian Lie algebra, integrates to a Lie group
homomorphism D̃(G,µ) → a .

Theorem 11.5. Let G be a connected compact Lie group, µ an invariant
normalized volume form, z a Mackey complete locally convex space and ω ∈
Ω2(G, z) a closed 2-form. Then the Lichnerowicz cocycle on V(G,µ) given by

(X,Y ) 7→
∫

G

ω(X,Y ) · µ
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integrates to a central Lie group extension

z → D̂(G,µ) → D̃(G,µ).

Proof. First we recall that π2(G) = {0} ([Car52]), so that Remark 11.3 implies
that the period map of D̃(G,µ) vanishes for each closed 2-form ω ∈ Ω2(G, z) on
G . Moreover, the flux cocycle is a Lie algebra homomorphism

fω : gµ = V(G,µ) → H1
c (gµ, z) ∼= Hom(gµ, z) ∼= Hom(z(g), z)

so that Proposition 11.4 implies that the corresponding flux homomorphism van-
ishes on the fundamental group π1(D̃(G,µ)), and Theorem 7.2 implies that ω
defines a Lie algebra cocycle in Z2

c (V(G,µ), z) corresponding to a global central
extension as required.

Remark 11.6. In view of

H2
dR(G, z) ∼= H2

c (g, z) = H2
c (z(g), z) = Alt2(z(g), z) = Lin(Λ2(z(g)), z),

we obtain a universal Lichnerowicz cocycle with values in the space z := Λ2(z(g)).

Remark 11.7. The preceding remark applies in particular to the d -dimensional
torus G = Td := Rd/Zd . We write x1, . . . , xd for the canonical coordinate func-
tions on Rd and observe that their differential dxj can also be viewed as 1-forms
on Td . In this sense we have

H2
dR(Td,R) ∼=

⊕
i<j

R[dxi ∧ dxj ] ∼= R(d
2).

Therefore the central extensions of D̃(Td, µ) described above correspond to the
central extensions of the corresponding Cartan type algebras discussed in [Dz92].
We conclude in particular that these cocycle do not integrate to central extensions
of D(Td, µ), but that they integrate to central extensions of the covering group
D̃(Td, µ) which we consider as a group of diffeomorphisms of Rd .

Appendix A. Differential forms and Alexander–
Spanier cohomology

In this appendix we discuss a smooth version of Alexander–Spanier cohomology for
smooth manifolds and define a homomorphism of chain complexes from the smooth
Alexander–Spanier complex (Cn

AS,s(M,A), dAS), n ≥ 1, with values in an abelian
Lie group A with Lie algebra a to the a -valued de Rham complex (Ω•(M, a), d).
In Appendix B this map is used to relate Lie group cohomology to Lie algebra
cohomology. The main point is Proposition A.6 which provides an explicit map
from smooth Alexander–Spanier cohomology to de Rham cohomology.



158 Karl-Hermann Neeb

Definition A.1. (1) Let M be a smooth manifold and A an abelian Lie group.
For n ∈ N0 let Cn

AS,s(M,A) denote the set of germs of smooth A -valued functions
on the diagonal in Mn+1 . For n = 0 this is the space C0

AS,s(M,A) ∼= C∞(M,A) of
smooth A -valued functions on M . An element [F ] of this space is represented by a
smooth function F : U → A , where U is an open neighborhood of the diagonal in
Mn+1 , and two functions Fi : Ui → A , i = 1, 2, define the same germ if and only
of their difference vanishes on a neighborhood of the diagonal. The elements of
the space Cn

AS,s(M,A) are called smooth A-valued Alexander–Spanier n-cochains
on M .

We have a differential

dAS : Cn
AS,s(M,A) → Cn+1

AS,s(M,A)

given by

(dASF )(m0, . . . ,mn+1) :=
n+1∑
j=0

(−1)jF (m0, . . . , m̂j , . . . ,mn+1),

where m̂j indicates omission of the argument mj . To see that dASF defines a
smooth function on an open neighborhood of the diagonal in Mn+2 , consider for
i = 0, . . . , n+1 the projections pi : Mn+2 →Mn+1 obtained by omitting the i-th
component. Then for each open subset U ⊆ Mn+1 containing the diagonal the
subset

⋂n+1
i=0 p

−1
i (U) is an open neighborhood of the diagonal in Mn+2 on which

dASF is defined. It is easy to see that dAS is well-defined on germs and that we
thus obtain a differential complex (C•AS,s(M,A), dAS). Its cohomology groups are
denoted Hn

AS,s(M,A).
(2) If M is a smooth manifold, then an atlas for the tangent bundle TM

is obtained directly from an atlas of M , but we do not consider the cotangent
bundle as a manifold because this requires to choose a topology on the dual
spaces, for which there are many possibilities. Nevertheless, there is a natural
concept of a smooth p -form on M . If V is a locally convex space, then a V -
valued p-form ω on M is a function ω which associates to each x ∈ M a
k -linear alternating map Tx(M)p → V such that in local coordinates the map
(x, v1, . . . , vp) 7→ ω(x)(v1, . . . , vp) is smooth. We write Ωp(M,V ) for the space of
smooth p -forms on M with values in V .

The de Rham differential d : Ωp(M,V ) → Ωp+1(M,V ) is defined by

(dω)(x)(v0, . . . , vp) :=
p∑

i=0

(−1)i
(
Xi.ω(X0, . . . , X̂i, . . . , Xp)

)
(x)

+
∑
i<j

(−1)i+jω([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xp)(x)

for v0, . . . , vp ∈ Tx(M), where X0, . . . , Xp are smooth vector fields on a neighbor-
hood of x with Xi(x) = vi .
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To see that d defines indeed a map Ωp(M,V ) → Ωp+1(M,V ) one has to
verify that the right hand side of the above expression does not depend on the
choice of the vector fields Xi with Xi(x) = vi and that it defines an element of
Ωp+1(M,V ), i.e., in local coordinates the map

(x, v0, . . . , vp) 7→ (dω)(x)(v0, . . . , vp)

is smooth, multilinear and alternating in v0, . . . , vp . For the proof we refer to (cf.
[KM97]).

Extending d to a linear map on Ω(M,V ) :=
⊕

p∈N0
Ωp(M,V ), we have the

relation d2 = 0. The space

Zp
dR(M,V ) := ker(d |Ωp(M,V ))

of closed forms therefore contains the space Bp
dR(M,V ) := d(Ωp−1(M,V )) of exact

forms, and
Hp

dR(M,V ) := Zp
dR(M,V )/Bp

dR(M,V )

is the V -valued de Rham cohomology space of M .

Definition A.2. If M is a smooth manifold, A an abelian Lie group, a its Lie
algebra, f : M → A a smooth function and Tf : TM → TA its tangent map, then
we define the logarithmic derivative of f as the a -valued 1-form

df : TM → a, v 7→ f(m)−1.T f(v), for v ∈ Tm(M).

In terms of the canonical trivialization θ : TA → A × a, v 7→ a−1.v (for
v ∈ Ta(A)) of the tangent bundle of A , this means that

df = pr2 ◦θ ◦ Tf : TM → a.

Definition A.3. Let M1, . . . ,Mn be smooth manifolds, A an abelian Lie group,
and

f : M1 × . . .×Mn → A

be a smooth function. For n ∈ N we define a function

dnf : TM1 × . . .× TMn → a

as follows. Let q : TM → M be the canonical projection. For v1, . . . , vn ∈ TM
with q(vi) = mi we consider smooth curves γi : ]−1, 1[→M with γi(0) = mi and
γ′i(0) = vi and define

(dnf)(m1, . . . ,mn)(v1, . . . , vn) :=
∂n

∂t1 · · · ∂tn ti=0
f(γ1(t1), . . . , γn(tn)),

where for n ≥ 2 the iterated higher derivatives are derivatives of a -valued func-
tions in the sense of Definition A.2. One readily verifies that the right hand side
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does not depend on the choice of the curves γi and that it defines for each tuple
(m1, . . . ,mn) ∈M1 × . . .×Mn a continuous n -linear map

(dnf)(m1, . . . ,mn) : Tm1(M1)× . . .× Tmn(Mn) → a.

If X is a smooth vector field on Mi , then we also define a smooth function

∂i(X)f : M1 × . . .×Mn → a, (m1, . . . ,mn) 7→ df(m1, . . . ,mn)(0, . . . , 0, X(mi),

0, . . . , 0)

by the partial derivative of f in the direction of the vector field X . For vector
fields Xi on Mi we then obtain by iteration of this process(
∂1(X1) · · · ∂n(Xn)f

)
(m1, . . . ,mn) = (dnf)(m1, . . . ,mn)(X1(m1), . . . , Xn(mn))

and
∂1(X1) · · · ∂n(Xn)f : M1 × . . .×Mn → a

is a smooth function.

Definition A.4. Let M be a smooth manifold and A an abelian Lie group.
We write ∆n : M →Mn+1,m 7→ (m, . . . ,m) for the diagonal map.

For [F ] ∈ Cn
AS,s(M,A), p ∈M and v1, . . . , vn ∈ Tp(M) we define

τ(F )(p)(v1, . . . , vn) :=
∑

σ∈Sn

sgn(σ) · (dnF )(p, . . . , p)(0, vσ(1), . . . , vσ(n))

and observe that τ(F ) defines a smooth a -valued n -form on M depending only
on the germ [F ] of F . We thus obtain for n ≥ 1 a group homomorphism

τ : Cn
AS,s(M,A) → Ωn(M, a).

If A = a , then we also define τ for n = 0 as the identical map

τ : C0
AS,s(M,A) ∼= C∞(M,A) → Ω0(M, a) ∼= C∞(M, a).

If X1, . . . , Xn are smooth vector fields on an open subset V ⊆ M , we have
on V the relation

τ(F )(X1, . . . , Xn) =
∑

σ∈Sn

sgn(σ) ·
(
∂1(Xσ(1)) · · · ∂n(Xσ(n)).F

)
◦∆n.

As the operators ∂i(X) and ∂j(Y ) commute for i 6= j and vector fields X and
Y on M , this can also be written as

τ(F )(X1, . . . , Xn) =
∑

σ∈Sn

sgn(σ) ·
(
∂σ(1)(X1) · · · ∂σ(n)(Xn).F

)
◦∆n.

For small n we have in particular the formulas
n = 0: τ(F ) = F (if A = a).
n = 1: τ(F )(X) = ∂1(X).F .
n = 2: τ(F )(X,Y ) = ∂1(X)∂2(Y ).F − ∂1(X)∂2(Y ).F .
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The following proposition builds on a construction one finds in the appendix
of [EK64]. First we need a combinatorial lemma.

Lemma A.5. Let σ ∈ Sn+1 be a permutation with k := σ(1) < ` := σ(i+1) and
such that the restriction of σ defines an increasing map {1, . . . , n} \ {1, i+ 1} →
{1, . . . , n} \ {k, `}. Then sgn(σ) = (−1)i+k+l.

Proof. Replacing σ by σ1 := σ ◦ α , where α = (i + 1 i i − 1 . . . 3 2) is a
cycle of length i , we obtain a permutation σ1 that restricts to an increasing map

{3, 4, . . . , n} → {1, . . . , n} \ {k, `}.

Next we put σ2 := β ◦ σ1 , where β = (1 2 3 . . . k − 1 k) is a cycle of length k ,
to obtain an increasing map

{3, 4, . . . , n} → {2, . . . , n} \ {`}.

Eventually we put σ3 := γ ◦ σ2 , where γ = (2 3 . . . ` − 1 `) is a cycle of length
`− 1 to obtain an increasing map

{3, 4, . . . , n} → {3, 4, . . . , n},

which implies that σ3 fixes all these elements. Further

σ3(1) = γβσα(1) = γβσ(1) = γβ(k) = γ(1) = 1

implies that σ3 = id. This implies that

sgn(σ) = sgn(α) sgn(β) sgn(γ) = (−1)i−1(−1)k−1(−1)` = (−1)i+k+`.

The following proposition generalizes an observation of van Est and Kortha-
gen in the Appendix of [EK64]:

Proposition A.6. (van Est–Korthagen) If M is smooth manifold, then the
map

τ : Cn
AS,s(M,A) →

{
C∞(M,A) for n = 0
Ωn(M, a) for n ≥ 1

intertwines the Alexander–Spanier differential with the de Rham differential, hence
induces a map

τ : Hn
AS,s(M,A) → Hn

dR(M, a).

Proof. We have to show that τ(dASF ) = dτ(F ) holds for F ∈ C∞(U,A),
where U is an open neighborhood of the diagonal in Mn+1 .

From the chain rule we obtain for a vector field Y on M the relation
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Y.
((
∂1(X1) · · · ∂n(Xn).F

)
◦∆n

)
=

(
∂0(Y )∂1(X1) · · · ∂n(Xn).F

)
◦∆n

+
n∑

i=1

(
∂1(X1) · · · ∂i(Y )∂i(Xi) · · · ∂n(Xn).F

)
◦∆n.(A.1)

Now let
Fi(x0, . . . , xn+1) := F (x0, . . . , x̂i, . . . , xn+1).

Then

(A.2) Fi ◦∆n+1 = F ◦∆n

and dASF =
∑n+1

i=0 (−1)iFi . Since the function Fi is independent of xi , we have

(A.3) ∂1(X1) · · · ∂n+1(Xn+1).Fi = 0, i ≥ 1.

Therefore

∂1(X1) · · · ∂n+1(Xn+1).(dASF ) = ∂1(X1) · · · ∂n+1(Xn+1)(F0)

=
(
∂0(X1) · · · ∂n(Xn+1)F

)
0
.

In view of (A.2) and (A.1), this leads to(
∂1(X1) · · · ∂n+1(Xn+1).(dASF )

)
◦∆n+1 =

(
∂0(X1) · · · ∂n(Xn+1).F

)
◦∆n

=X1.
((
∂1(X2) · · · ∂n(Xn+1).F

))
◦∆n

−
n∑

i=1

(
∂1(X2) · · · ∂i(X1)∂i(Xi+1) · · · ∂n(Xn+1).F

)
◦∆n.

Alternating the first summand, we get an expression of the form∑
σ∈Sn+1

sgn(σ)Xσ(1).
(
∂1(Xσ(2)) · · · ∂n(Xσ(n+1)).F

)
◦∆n

=
n+1∑
i=1

∑
σ(1)=i

sgn(σ)Xi.
(
∂1(Xσ(2)) · · · ∂n(Xσ(n+1)).F

)
◦∆n.

We write any permutation σ ∈ Sn+1 with σ(1) = i as σ = αiβ , where β(1) = 1
and αi(1) = i and αi is the cycle

αi = (i i− 1 i− 2 . . . 2 1).

We further identify Sn with the stabilizer of 1 in Sn+1 . Then the above sum turns
into

=
n+1∑
i=1

sgn(αi)
∑

β∈Sn

sgn(β)Xi.
(
∂1(Xαiβ(2)) · · · ∂n(Xαiβ(n+1)).F

)
◦∆n
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=
n+1∑
i=1

(−1)i−1Xi.τ(F )(Xαi(2), . . . , Xαi(n+1))

=
n+1∑
i=1

(−1)i−1Xi.τ(F )(X1, . . . , X̂i, . . . , Xn+1).

In view of

d(τ(F ))(X1, . . . , Xn+1) =
n+1∑
i=1

(−1)i−1Xi.τ(F )(X1, . . . , X̂i, . . . , Xn+1)

+
∑
k<`

(−1)k+`τ(F )([Xk, X`], X1, . . . , X̂k, . . . , X̂`, . . . , Xn+1),

and

−
∑
k<`

(−1)k+`τ(F )([Xk, X`], X1, . . . , X̂k, . . . , . . . , X̂`, . . . Xn+1)

=
∑
k<`

(−1)k+`+1
∑

β∈Sn

sgn(β)
(
∂β(1)([Xk, X`])∂β(2)(X1) · · · ∂̂(Xk) · · · ∂̂(X`) · · ·

∂β(n)(Xn+1).F
)
◦∆n,

it remains to show that, as operators on functions on Mn+1 , alternation of

(A.3)
n∑

i=1

∂1(X2) · · · ∂i(X1)∂i(Xi+1) · · · ∂n(Xn+1)

leads to∑
k<`

(−1)k+`+1
∑

β∈Sn

sgn(β)∂β(1)([Xk, X`])∂β(2)(X1) · · · ∂̂(Xk) · · · ∂̂(X`) . . . ∂β(n)(Xn+1)

=
∑
k<`

(−1)k+`+1〈∂1 ∧ . . . ∧ ∂n, [Xk, X`] ∧X1 ∧ · · · ∧ X̂k ∧ · · · ∧ X̂` ∧ · · · ∧Xn+1〉

=
∑
k<`

(−1)k+`+1
n∑

i=1

(−1)i+1∂i([Xk, X`]) ◦ 〈∂1 ∧ . . . ∧ ∂̂i ∧ . . . ∧ ∂n, X1 ∧ · · · ∧ X̂k

∧ · · · ∧ X̂` ∧ · · · ∧Xn+1〉.

Alternating (A.3) leads to the expression

∑
σ∈Sn+1

sgn(σ)
n∑

i=1

∂1(Xσ(2)) · · · ∂i(Xσ(1))∂i(Xσ(i+1)) · · · ∂n(Xσ(n+1))

=
n∑

i=1

∑
σ(1)<σ(i+1)

sgn(σ)
n∑

i=1

∂1(Xσ(2)) · · · ∂i([Xσ(1), Xσ(i+1)]) · · · ∂n(Xσ(n+1))
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=
n∑

i=1

∑
k<`

∑
σ(1)=k

σ(i+1)=`

sgn(σ)
n∑

i=1

∂1(Xσ(2)) · · · ∂i([Xk, X`]) · · · ∂n(Xσ(n+1)).

We can write each permutation σ ∈ Sn+1 as σ = σ0β , where β fixes 1 and i+1,
so that we can identify it with an element of Sn−1 , and

σ0 : {2, . . . , n+ 1} \ {i+ 1} → {1, . . . , n+ 1} \ {k, `}

is increasing. In view of Lemma A.5, we then have sgn(σ0) = (−1)i+k+` for
k = σ(1) and ` = σ(i+ 1). Therefore alternating (A.3) gives

=
n∑

i=1

∑
k<`

(−1)i+k+`
∑

β∈Sn−1

sgn(β)
n∑

i=1

∂1(Xσ0β(2)) · · · ∂i([Xk, X`]) · · · ∂n(Xσ0β(n+1))

=
n∑

i=1

∑
k<`

(−1)i+k+`∂i([Xk, X`]) ◦ 〈∂1 ∧ · · · ∧ ∂̂i ∧ · · · ∧ ∂n, Xσ0(2) ∧ · · · ∧Xσ0(n+1)〉

=
∑
k<`

n∑
i=1

(−1)i+k+`∂i([Xk, X`])〈∂1 ∧ · · · ∂̂i · · · ∧ ∂n, X2 ∧ · · · ∧ X̂k ∧ · · · ∧ X̂`

∧ · · · ∧Xn+1〉.

This completes the proof of Proposition A.6.

Appendix B. Cohomology of Lie groups and Lie
algebras

In this appendix we show that for n ≥ 2 there is a natural “derivation map”

Dn : Hn
s (G,A) → Hn

c (g, a)

from locally smooth Lie group cohomology to continuous Lie algebra cohomology.
For n = 1 we have a map D1 : Z1

s (G,A) → Z1
c (g, a), and if, in addition, A ∼= a/ΓA

holds for a discrete subgroup ΓA of a , then this map induces a map between the
cohomology groups.

Definition B.1. Let V be a topological module of the topological Lie algebra
g . For p ∈ N0 , let Cp

c (g, V ) denote the space of continuous alternating maps
gp → V , i.e., the Lie algebra p-cochains with values in the module V . Note that
C1

c (g, V ) = Lin(g, V ) is the space of continuous linear maps g → V . We use the
convention C0

c (g, V ) = V . We then obtain a chain complex with the differential

dg : Cp
c (g, V ) → Cp+1

c (g, V )
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given on f ∈ Cp
c (g, V ) by

(dgf)(x0, . . . , xp) :=
p∑

j=0

(−1)jxj .f(x0, . . . , x̂j , . . . , xp)

+
∑
i<j

(−1)i+jf([xi, xj ], x0, . . . , x̂i, . . . , x̂j , . . . , xp),

where x̂j indicates omission of xj . Note that the continuity of the bracket on g
and the action on V imply that dgf is continuous.

We thus obtain a subcomplex of the algebraic Lie algebra complex associated
to g and V in [CE48]. Hence d2

g = 0, and the space Zp
c (g, V ) := ker(dg |Cp

c (g,V ))
of p-cocycles contains the space Bp

c (g, V ) := dg(Cp−1
c (g, V )) of p-coboundaries

(cf. [We95, Cor. 7.7.3]). The quotient

Hp
c (g, V ) := Zp

c (g, V )/Bp
c (g, V )

is the p-th continuous cohomology space of g with values in the g-module V . We
write [f ] for the cohomology class of the cocycle f in Hp

c (g, V ).

Definition B.2. Let G be a Lie group and A an abelian Lie group. We call
A a smooth G-module if it is endowed with a G -module structure defined by a
smooth action map G×A→ A .

Let A be a smooth G -module. Then we define C̃n
s (G,A) to be the space of

all functions F : Gn+1 → A which are smooth in a neighborhood of the diagonal,
equivariant with respect to the action of G on Gn+1 given by

g.(g0, . . . , gn) := (gg0, . . . , ggn),

and vanish on all tuples of the form (g0, . . . , g, g, . . . , gn). As the G -action pre-
serves the diagonal, it preserves the space C̃n

s (G,A). Moreover, the Alexander–
Spanier differential dAS defines a group homomorphism

dAS : C̃n
s (G,A) → C̃n+1

s (G,A),

and we thus obtain a differential complex (C̃•s (G,A), dAS).
Let Cn

s (G,A) denote the space of all function f : Gn → A which are smooth
in an identity neighborhood and normalized in the sense that f(g1, . . . , gn) van-
ishes if gj = 1 holds for some j . We call these functions normalized locally smooth
group cochains. Then the map

Φn : Cn
s (G,A) → C̃n

s (G,A), Φn(f)(g0, . . . , gn) := g0.f(g−1
0 g1, g

−1
1 g2, . . . , g

−1
n−1gn)

is a linear bijection whose inverse is given by

Φ−1
n (F )(g1, . . . , gn) := F (1, g1, g1g2, . . . , g1 · · · gn).
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By
dG := Φ−1

n+1 ◦ dAS ◦ Φn : Cn
s (G,A) → Cn+1

s (G,A)

we obtain the differential dG : Cn
s (G,A) → Cn+1

s (G,A) turning (C•s (G,A), dG)
into a differential complex. We write Zn

s (G,A) for the corresponding group of
cocycles, Bn

s (G,A) for the subgroup of coboundaries and

Hn
s (G,A) := Zn

s (G,A)/Bn
s (G,A)

is called the n-th Lie cohomology group with values in the smooth module A .

Lemma B.3. The group differential dG : Cn
s (G,A) → Cn+1

s (G,A) is given by

(dGf)(g0, . . . , gn) = g0.f(g1, . . . , gn)

+
n∑

j=1

(−1)jf(g0, . . . , gj−1gj , . . . , gn) + (−1)n+1f(g0, . . . , gn−1).

Proof. In fact, dASF =
∑n+1

i=0 (−1)iFi leads with F = Φn(f) to dGf =∑n+1
i=0 (−1)iΦ−1

n+1(Fi) and hence to

(dGf)(g0, . . . , gn)

=
n+1∑
i=0

(−1)iFi(1, g0, g0g1, . . . , g0 · · · gn)

=
n+1∑
i=0

(−1)iF (1, g0, g0g1, . . . , g0 · · · gi−1, g0 · · · gi+1, . . . , g0 · · · gn)

= g0.f(g1, . . . , gn) +
n∑

i=1

(−1)if(g0, g1, . . . , gigi+1, . . . , gn)

+ (−1)n+1f(g0, . . . , gn−1).

For n = 0 we have in particular

(dGf)(g0) = g0.f − f,

and for n = 1:
(dGf)(g0, g1) = g0.f(g1)− f(g0g1) + f(g0).

Definition B.4. Let G be a Lie group and a a smooth locally convex G-module,
i.e., a is a locally convex space and the action map ρa : G× a → a, (g, a) 7→ g.a is
smooth. We write ρa(g) : a → a, a 7→ g.a for the corresponding continuous linear
automorphisms of a .
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We call a p -form Ω ∈ Ωp(G, a) equivariant if we have for all g ∈ G the
relation

λ∗gΩ = ρa(g) ◦ Ω.

The complex of equivariant differential forms has been introduced in the finite-
dimensional setting by Chevalley and Eilenberg in [CE48].

If a is a trivial module, then an equivariant p -form is a left invariant a -valued
p -form on G . An equivariant p -form is uniquely determined by the corresponding
element Ω1 ∈ Cp

c (g, a):
(B.1)

Ωg(g.x1, . . . , g.xp) = ρa(g) ◦ Ω1(x1, . . . , xp), for g ∈ G, xi ∈ g ∼= T1(G).

Here G×T (G) → T (G), (g, x) 7→ g.x denotes the natural action of G on its tangent
bundle T (G) obtained by restricting the tangent map of the group multiplication.

Conversely, (B.1) provides for each ω ∈ Cp
c (g, a) a unique equivariant p -form

ωeq on G with ωeq
1 = ω .

Lemma B.5. For each ω ∈ Cp
c (g, a) we have d(ωeq) = (dgω)eq . In particular,

the evaluation map

ev1 : Ωp(G, a)eq → Cp
c (g, a), ω 7→ ω1

defines an isomorphism from the chain complex of equivariant a-valued differential
forms on G to the continuous a-valued Lie algebra cohomology.

Proof. (cf. [CE48, Th. 10.1]) For g ∈ G we have

λ∗gdω
eq = dλ∗gω

eq = d(ρa(g) ◦ ωeq) = ρa(g) ◦ (dωeq),

showing that dωeq is equivariant.
For x ∈ g we write xl(g) = g.x for the corresponding left invariant vector

field on G . It suffices to calculate the value of dωeq on (p + 1)-tuples of left
invariant vector fields in the identity element.

In view of

ωeq(x1,l, . . . , xp,l)(g) = ρa(g).ω(x1, . . . , xp),

we obtain (
x0,l.ω

eq(x1,l, . . . , xp,l)
)
(1) = x0.ω(x1, . . . , xp),

and therefore(
dωeq(x0,l, . . . , xp,l

))
(1) =

p∑
i=0

(−1)ixi,l.ω
eq(x0,l, . . . , x̂i,l, . . . , xp,l)(1)

+
∑
i<j

(−1)i+jωeq([xi,l, xj,l], x0,l, . . . , x̂i,l, . . . , x̂j,l, . . . , xp,l)(1)
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=
p∑

i=0

(−1)ixi.ω(x0, . . . , x̂i, . . . , xp)

+
∑
i<j

(−1)i+jω([xi, xj ], x0, . . . , x̂i, . . . , x̂j , . . . , xp)

= (dgω)(x0, . . . , xp).

This proves our assertion.

Theorem B.6. The maps

Dn : = ev1 ◦τ ◦ Φn : Cn
s (G,A) → Cn

c (g, a), n ≥ 1,

induce a morphism of chain complexes

D : (Cn
s (G,A), dG)n≥1 → (Cn

c (g, a), dg)n≥1

and in particular homomorphisms

Dn : Hn
s (G,A) → Hn

c (g, a), n ≥ 2.

For A = a these assertions hold for all n ∈ N0 and if A ∼= a/ΓA for a
discrete subgroup ΓA of a , then D1 also induces a homomorphism

D1 : H1
s (G,A) → H1

c (g, a), [f ] 7→ [df(1)].

Proof. In view of Proposition A.6 and the definition of the group differential
dG , the composition

τ ◦ Φn : Cn
s (G,A) → C̃n

s (G,A) ⊆ Cn
AS,s(G,A) → Ωn(G, a), n ≥ 1,

defines a homomorphism of chain complexes. For A = a this relation also holds
for n ≥ 0.

For f ∈ Cn
s (G,A) the function F := Φn(f) : Gn+1 → A is G -equivariant

with respect to the diagonal action. For g ∈ G let

µg : Gn+1 → Gn+1, (g0, . . . , gn) 7→ (gg0, . . . , ggn)

and write ρA(g)(a) := g.a for a ∈ A . Then the equivariance of F means that
µ∗gF = F ◦ µg = ρA(g) ◦ F which implies that

ρA(g) ◦ τ(F ) = τ(ρA(g) ◦ F ) = τ(µ∗gF ) = λ∗gτ(F ).

This shows that the image of τ ◦ Φn consists of equivariant a -valued n -forms on
G . According to Lemma B.5, evaluating an equivariant n -form in the identity
intertwines the de Rham differential with the Lie algebra differential dg . This
implies

dg ◦Dn = Dn+1 ◦ dG
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for each n ∈ N , i.e., the Dn define a morphism of chain complexes (truncated to
n ≥ 1). For A = a it also holds for n ≥ 0.

If A ∼= a/ΓA and n = 1, then D1(B1
s (G,A)) = B1

c (g, a) implies that D1

induces a map H1
s (G,A) → H1

c (g, a). If A is not of this form, then we cannot
conclude that D1 maps B1

s (G,A) into B1
c (g, a).

To make Dn , n ≥ 2, better accessible to calculations, we need a more
concrete formula for the Lie algebra cochain Dnf for f ∈ Cn

s (G,A). As f vanishes
on all tuples of the form (g1, . . . ,1, . . . , gn), its (n− 1)-jet in 1 vanishes and the
term of order n is the n -linear map

(dnf)(1, . . . ,1) : gn = T1(G)n → a

(cf. Definition A.3). In fact, in local coordinates the n -th order term of the Taylor
expansion of f in (1, . . . ,1) is given by a symmetric n -linear map

(d[n]f)(1, . . . ,1) : (gn)n → a

as
1
n!

(d[n]f)(1, . . . ,1)(x, . . . , x), x = (x1, . . . , xn) ∈ gn.

The normalization condition on f implies that (d[n]f)(1, . . . ,1) vanishes on all
elements (x1, . . . , xn), xi = (xi

l) ∈ gn , for which the j -th component (in g) van-
ishes for some j , i.e., xi

j = 0 for all i . This implies that (d[n]f)(1, . . . ,1)(x, . . . , x)
is a sum of n! terms of the form

(d[n]f)(1, . . . ,1)((0, . . . , xσ(1), . . . , 0), (0, . . . , xσ(2), . . . , 0), . . . , (0, . . . , xσ(n), . . . , 0)).

Since all these terms are equal, we find

1
n!

(d[n]f)(1, . . . ,1)(x, . . . , x) = (d[n]f)(1, . . . ,1)((x1, 0, . . . , 0), . . . , (0, . . . , 0, xn))

= (dnf)(1, . . . ,1)(x1, . . . , xn).

Lemma B.7. For f ∈ Cn
s (G,A) and x1, . . . , xn ∈ g we have

(Dnf)(x1, . . . , xn) =
∑

σ∈Sn

sgn(σ)(dnf)(1, . . . ,1)(xσ(1), . . . , xσ(n)).

Proof. Recall that on an n -tuple (x1, . . . , xn) ∈ gn the map dnf can be
calculated by choosing smooth vector fields Xn on an open identity neighborhood
of G with Xi(1) = xi via

(dnf)(1, . . . ,1)(x1, . . . , xn) := (∂1(X1) · · · ∂n(Xn).f)(1, . . . ,1).

For F = Φn(f) we now get

(Dnf)(x1, . . . , xn) = τ(F )(x1, . . . , xn)

=
∑

σ∈Sn

sgn(σ)(dnF )(1, . . . ,1)(0, xσ(1), . . . , xσ(n)).
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In view of
F (1, g1, . . . , gn) = f(g1, g−1

1 g2, . . . , g
−1
n−1gn)

and f(g1,1, . . .) = 0, we have

(∂1(X1)F )(1,1, g2, . . . , gn) = (∂1(X1)f)(1, g2, g−1
2 g3, . . . , g

−1
n−1gn),

and inductively we obtain

(∂1(X1) · · · ∂n(Xn)F )(1,1, . . . ,1) = (∂1(X1) . . . ∂n(Xn)f)(1, . . . ,1)
= (dnf)(1, . . . ,1)(x1, . . . , xn).

This implies the assertion.

For n = 1 we obtain (D1f)(x) = df(1).x, and for n = 2 we have

(D2f)(x, y) = (d2f)(1,1)(x, y)− (d2f)(1,1)(y, x).

If (d[n]f)(1,1) denotes the symmetric n -linear map (gn)n → a representing the
n -jet of f , this expression equals

(d[2]f)(1,1)((x, 0)(0, y))− (d[2]f)(1,1)((y, 0), (0, x)).

Appendix C. Split Lie subgroups

In this appendix we collect some general material on Lie group structures on
groups, (normal) Lie subgroups and quotient groups. In particular Theorem C.2
provides a tool to construct Lie group structures on groups for which a subset
containing the identity is an open 0-neighborhood of a locally convex space such
that the group operations are locally smooth in these coordinates. We also give
a condition on a normal subgroup N / G for the quotient group G/N being a
manifold such that the quotient map q : G→ G/N defines on G the structure of
a smooth N -principal bundle.

Lemma C.1. Let G be a group and F a filter basis of subsets with
⋂
F = {1}

satisfying:
(U1) (∀U ∈ F)(∃V ∈ F) V V ⊆ U.

(U2) (∀U ∈ F)(∃V ∈ F) V −1 ⊆ U.

(U3) (∀U ∈ F)(∀g ∈ G)(∃V ∈ F) gV g−1 ⊆ U.

Then there exists a unique group topology on G such that F is a basis of
1-neighborhoods in G . It is given by {U ⊆ G : (∀g ∈ U)(∃V ∈ F) gV ⊆ U}.
Proof. [Bou88, Ch. III, §1.2, Prop. 1]
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Theorem C.2. Let G be a group and U = U−1 a symmetric subset. We further
assume that U is a smooth manifold such that
(L1) there exists an open 1-neighborhood V ⊆ U with V 2 = V · V ⊆ U such that

the group multiplication µV : V × V → U is smooth,
(L2) the inversion map ηU : U → U, u 7→ u−1 is smooth, and
(L3) for each g ∈ G there exists an open 1-neighborhood Ug ⊆ U with cg(Ug) ⊆ U

and such that the conjugation map

cg : Ug → U, x 7→ gxg−1

is smooth.
Then there exists a unique structure of a Lie group on G for which there

exists an open 1-neighborhood U1 ⊆ U such that the inclusion map U1 → G
induces a diffeomorphism onto an open subset of G .

Proof. (cf. [Ch46, §14, Prop. 2] or [Ti83, p.14] for the finite-dimensional case)
First we consider the filter basis

F := {W ⊆ G : W ∈ UU (1)}

of all those subsets of U which are 1 -neighborhoods in U . Then (L1) implies
(U1), (L2) implies (U2), and (L3) implies (U3). Moreover, the assumption that U
is Hausdorff implies that

⋂
F = {1} . Therefore Lemma C.1 implies that G carries

a unique structure of a (Hausdorff) topological group for which F is a basis of
1 -neighborhoods.

After shrinking V and U , we may assume that there exists a diffeomorphism
ϕ : U → ϕ(U) ⊆ E , where E is a topological K-vector space, ϕ(U) an open subset,
that V satisfies V = V −1 , V 4 ⊆ U , and that m : V 2 × V 2 → U is smooth. For
g ∈ G we consider the maps

ϕg : gV → E, ϕg(x) = ϕ(g−1x)

which are homeomorphisms of gV onto ϕ(V ). We claim that (ϕg, gV )g∈G is an
atlas of G .

Let g1, g2 ∈ G and put W := g1V ∩ g2V . If W 6= Ø, then g−1
2 g1 ∈ V V −1 =

V 2 . The smoothness of the map

ψ := ϕg2 ◦ ϕ−1
g1
|ϕg1 (W ) : ϕg1(W ) → ϕg2(W )

given by

ψ(x) = ϕg2(ϕ
−1
g1

(x)) = ϕg2(g1ϕ
−1(x)) = ϕ(g−1

2 g1ϕ
−1(x))

follows from the smoothness of the multiplication V 2 × V 2 → U . This proves
that (ϕg, gU)g∈G is an atlas of G . Moreover, the construction implies that all left
translations of G are smooth maps.
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The construction also shows that for each g ∈ G the conjugation cg : G→ G
is smooth in a neighborhood of 1 . Since all left translations are smooth, and

cg ◦ λx = λcg(x) ◦ cg,

the smoothness of cg in a neighborhood of x ∈ G follows. Therefore all conju-
gations and hence also all right multiplications are smooth. The smoothness of
the inversion follows from its smoothness on V and the fact that left and right
multiplications are smooth. Finally the smoothness of the multiplication follows
from the smoothness in 1× 1 because of

µG(g1x, g2y) = g1xg2y = g1g2cg−1
2

(x)y = g1g2µG(cg−1
2

(x), y).

The uniqueness of the Lie group structure is clear because each locally diffeomor-
phic bijective homomorphism between Lie groups is a diffeomorphism.

Remark C.3. Suppose that the group G in Theorem C.2 is generated by
each 1 -neighborhood V in U . Then condition (L3) can be omitted. Indeed, the
construction of the Lie group structure shows that for each g ∈ V the conjugation
cg : G → G is smooth in a neighborhood of 1 . Since the set of all these g is a
submonoid of G containing V , it contains V n for each n ∈ N , hence all of G
because G is generated by V . Therefore all conjugations are smooth, and one can
proceed as in the proof of Theorem C.2.

Definition C.4. (a) (Split Lie subgroups) Let G be a Lie group. A subgroup
H is called a split Lie subgroup if it carries a Lie group structure for which the
canonical right action of H on G defined by restricting the multiplication map of
G to G×H → G defines a smooth principal bundle, i.e., the coset space G/H is
a smooth manifold and the quotient map π : G→ G/H has smooth local sections.

(b) If G is a Banach–Lie group and exp: g → G its exponential function,
then a closed subgroup H ⊆ G is called a Lie subgroup if there exists an open
0-neighborhood U ⊆ g such that exp |U : U → exp(U) is a diffeomorphism onto
an open subset of G and the Lie algebra

h := {x ∈ g : exp(Rx) ⊆ H}

of H satisfies
H ∩ exp(U) = exp(U ∩ h).

Since the Lie algebra h of a Lie subgroup H of a Banach Lie group G
need not have a closed complement in g , not every Lie subgroup is split. A simple
example is the subgroup H := c0(N,R) in G := `∞(N,C) (cf. [We95, Satz IV.6.5]).



Abelian extensions of infinite-dimensional Lie groups 173

Lemma C.5. If H is a split Lie subgroup of G or a Lie subgroup of the Banach–
Lie group G , then for any smooth manifold X each smooth map f : X → G with
f(X) ⊆ H is also smooth as a map X → H . If H is a normal split Lie subgroup,
then the conjugation action of G on H is smooth.
Proof. The condition that H is a split Lie subgroup implies that there exists
an open subset U of some locally convex space V and a smooth map σ : U → G
such that the map

U ×H → G, (x, h) 7→ σ(x)h

is a diffeomorphism onto an open subset of G . Let p : σ(U)H → U denote the
smooth map given by p(σ(x)h) = x . If X is a manifold and f : X → G is a
smooth map with values in H , then f is smooth as a map to σ(U)H ∼= U ×H ,
hence smooth as a map X → H .

If H is a Lie subgroup of a Banach–Lie group and f : X → G is a smooth
map with f(X) ⊆ H , then we have to see that f is smooth as a map X → H .
To verify smoothness in a neighborhood of some x0 ∈ X , it suffices to consider
the map x 7→ f(x)f(x0)−1 , so that we may w.l.o.g. assume that f(x0) = 1 . Then
we can use the natural chart of H in 1 given by the exponential function to see
that f is smooth in a neighborhood of x0 because any smooth map X → g with
values in h is smooth as a map X → h .

Now suppose that H / G is normal. Then the conjugation map G × H →
G, (g, h) 7→ ghg−1 , is smooth with values in H , hence smooth as a map
G×H → H .

Theorem C.6. Let G be a Lie group and N /G a split normal subgroup. Then
the quotient group G/N has a natural Lie group structure such that the quotient
map q : G→ G/N defines on G the structure of a principal N -bundle.
Proof. There exists an open subset U of a locally convex space V and a smooth
map σ : U → G such that the map

U ×N → G, (u, n) 7→ σ(u)n

is a diffeomorphism onto an open subset W = σ(U)N of G . As N is in particular
closed, the quotient group G/N has a natural (Hausdorff) group topology.

Let q : G → G/N denote the quotient map. Then q(W ) = q ◦ σ(U) is an
open subset of G/N and q(W ) ∼= W/N ∼= (U × N)/N ∼= U . Therefore the map
ϕ := q ◦ σ : U → q(W ) is a homeomorphism.

Let K = K−1 ⊆ q(W ) be a symmetric open subset, UK := ϕ−1(K),
and endow K with the manifold structure obtained from the homeomorphism
ϕ : UK → K .

(L1): Let V ⊆ K be an open 1 -neighborhood with V 2 ⊆ K . We identify
V with the corresponding open subset UV ⊆ U . Then the group multiplication
µV : V × V → K is given by

ϕ(x)ϕ(y) = σ(x)N · σ(y)N = σ(x)σ(y)N = ϕ(ϕ−1(σ(x)σ(y)N)),
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and since the map p : W → U, σ(u)n→ u is smooth, the map

(x, y) 7→ ϕ−1(σ(x)σ(y)N) = p(σ(x)σ(y))

is smooth.
(L2): We likewise see that the inversion map K → K corresponds to the

smooth map

x 7→ ϕ−1(ϕ(x)−1) = ϕ−1(σ(x)−1N) = p(σ(x)−1).

(L3): For each g ∈ G we find an open 1 -neighborhood Kg ⊆ K with
cg(Kg) ⊆ K . Then the conjugation map

cg : Kg → K, x 7→ gxg−1

is written in ϕ -coordinates as

ϕ(x) 7→ ϕ(ϕ−1(gσ(x)g−1N)) = ϕ(p(gσ(x)g−1))

and therefore smooth.
Now Theorem C.2 applies and shows that there exists a unique structure of a

Lie group on G/N for which there exists an open 0-neighborhood in U such that
the map ϕ : U → G/N induces a diffeomorphism onto an open subset of G/N .

Appendix D. The exact Inflation-Restriction Se-
quence

In this section G denotes a Lie group, N /G a split normal Lie subgroup (cf. Defi-
nition C.4) and A a smooth G -module. We write q : G → G/N for the quotient
map.

Definition D.1. (a) (Inflation and restriction) Restriction of cochains leads for
each p ∈ N0 to a map

R̃ : Cp
s (G,A) → Cp

s (N,A),

and since R◦dG = dN◦R , it follows that R̃(Bp(G,A)) ⊆ Bp(N,A), R̃(Zp
s (G,A)) ⊆

Zp
s (N,A), so that R̃ induces a homomorphism

R : Hp
s (G,A) → Hp

s (N,A).

(b) Since N is a normal subgroup of G , the subgroup

AN := {a ∈ A : (∀n ∈ N) n.a = a}

is a G -submodule of A . If AN is a split Lie subgroup of A , it inherits a natural
structure of a smooth G/N -module (Lemma C.2) but we do not want to make this
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restrictive assumption. We therefore define the chain complex (C•s (G/N,AN ), dG/N )
as the complex whose cochain space Cp

s (G/N,AN ) consists of those functions
f : (G/N)p → AN for which the pull-back

q∗f : Gp → AN , (q∗f)(g1, . . . , gp) := f(q(g1), . . . , q(gp))

is an element of Cp
s (G,A). With this definition we do not need a Lie group

structure on the subgroup AN of A . For a cochain f ∈ Cp
s (G/N,AN ) we define

Ĩ := q∗ : Cp
s (G/N,AN ) → Cp

s (G,A).

Then (C•s (G/N,AN ), dG/N ) becomes a chain complex with the group differential
from Lemma B.3. Moreover, q∗ ◦ dG/N = dG ◦ q∗ , so that q∗(Bp

s (G/N,AN )) ⊆
Bp

s (G,A), and q∗(Zp
s (G/N,AN )) ⊆ Zp

s (G,A), showing that q∗ induces the so
called inflation map

I : Hp
s (G/N,AN ) → Hp

s (G,A), [f ] 7→ [q∗f ].

The restriction and inflation maps

Cp
s (G/N,AN ) I−−→Cp

s (G,A) R−−→Cp
s (N,A)

clearly satisfy R ◦ I = 0, which is inherited by the corresponding maps

Hp
s (G/N,AN ) I−−→Hp

s (G,A) R−−→Hp
s (N,A).

Lemma D.2. The restriction maps R̃ : Cp
s (G,A) → Cp

s (N,A) are surjective.

Proof. Since N is a split Lie subgroup of G , there exists an open 0-neighborhood
U in a locally convex space V and a smooth map ϕ : U → G with ϕ(0) = 1 such
that the map

Φ: N × U → G, (n, x) 7→ nϕ(x)

is a diffeomorphism onto an open subset Nϕ(U) of G .
Let f ∈ Cp

s (N,A). We extend f to a function f̃ : (Nϕ(U))p → A by

f̃(n1ϕ(x1), . . . , npϕ(xp)) := f(n1, . . . , np).

Then f̃ is smooth in an identity neighborhood and vanishes if one argument
niϕ(xi) is 1 , because this implies xi = 0 and ni = 1 . Now we extend f̃ to a
function on Gp vanishing in all tuples (g1, . . . ,1, . . . , gp). Then f̃ ∈ Cp

s (G,A)
satisfies R̃(f̃) = f .

Although the the inflation map I is injective on cochains and R is surjective
on cochains, in general there are many cochains with trivial restrictions on N
which are not in the image of the inflation map. Therefore we do not have a short
exact sequence of chain complexes, hence cannot expect a long exact sequence in
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cohomology. In this appendix we discuss what we still can say on the corresponding
maps in low degree. It would be interesting to see if these results can also be
obtained from a generalization of the Hochschild–Serre spectral sequence to Lie
groups. As we shall see below, it is clear that the construction in [HS53] has to be
modified substantially for the locally smooth infinite-dimensional setting.

Lemma D.3. (a) Each cohomology class in Hp
s (G,A) annihilated by R can be

represented by a cocycle in ker R̃ .
(b) We have Bp

s (N,A) ⊆ im(R̃) and therefore [f ] ∈ im(R) is equivalent to
f ∈ im(R̃) .

Proof. (a) We may w.l.o.g. assume that p ≥ 1. If R[f ] = 0, then R̃(f) = dNα
for some α ∈ Cp−1

s (N,A). Let α̃ ∈ Cp−1
s (G,A) be an extension of α to G

(Lemma D.2). Then f ′ := f − dGα̃ restricts to R̃(f)− dNα = 0 and [f ′] = [f ] .
(b) For α ∈ Cp−1

s (G,A) we have R̃(dGα) = dN R̃(α), so that Cp−1
s (N,A) ⊆

im(R̃) implies that R̃(Bp
s (G,A)) = Bp

s (N,A).
For f ∈ Zp

s (N,A) it follows that [f ] ∈ im(R) is equivalent to the existence
of α ∈ Bp−1

s (N,A) with f − dNα ∈ im(R̃), which implies that f ∈ im(R̃).

Lemma D.4. The coboundary operator dN is equivariant with respect to the
action of G on Cp

s (N,A) , p ∈ N0 , given by

(g.f)(n1, . . . , np) := g.f(g−1n1g
−1, . . . , g−1npg).

In particular, this action leaves the space of cochains invariant and induces actions
on the cohomology groups Hp

s (N,A) .

The preceding lemma applies in particular to the case N = G , showing that
the coboundary operator dG is equivariant for the natural action of G on the
spaces Cp

s (G,A).

Definition D.5. In the following we need a refined concept of invariance of
cohomology classes in Hp

s (N,A) under the action of the group G . We call f ∈
Zp

s (N,A) smoothly cohomologically invariant if there exists a map

θ : G→ Cp−1
s (N,A) with dN (θ(g)) = g.f − f for all g ∈ G

for which the map

G×Np−1 → A, (g, n1, . . . , np−1) → θ(g)(n1, . . . , np−1)

is smooth in an identity neighborhood of G×Np−1 .
We write Zp

s (N,A)[G] for the set of smoothly cohomologically invariant
cocycles in the group Zp

s (N,A). If f = dNh for some h ∈ Cp−1
s (N,A), then

we may put θ(g) := g.h− h to find

dN (θ(g)) = dN (g.h− h) = g.dN (h)− dN (h) = g.f − f,
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and the map

G×Np−1 → A,

(g, n1, . . . , np−1) 7→ (g.h− h)(n1, . . . , np−1)
= g.h(g−1n1g, . . . , g

−1np−1g)− h(n1, . . . , np−1)

is smooth in an identity neighborhood. This shows that Bp
s (N,A) ⊆ Zp

s (N,A)[G] ,
and we define the space of smoothly invariant cohomology classes by

Hp
s (N,A)[G] := Zp

s (N,A)[G]/Bp
s (N,A).

For a generalization of the following fact to general p for discrete groups and
modules we refer to [HS53] or [Gui80, Chap. I, Prop. 7.1].

Proposition D.6. Let N /G be a split normal Lie subgroup and p ∈ {0, 1, 2} .
Then the restriction map R maps Hp

s (G,A) into Hp
s (N,A)[G] . In particular

(D.1) Hp
s (G,A) = Hp

s (G,A)[G] for p = 0, 1, 2.

Proof. In view of the G -equivariance of the restriction map Cp
s (G,A) →

Cp
s (N,A), it suffices to prove the assertion in the case N = G .

For p = 0 we have C0
s (G,A) = A , and Z0

s (G,A) = H0
s (G,A) = AG is the

submodule of G -invariants. Clearly G acts trivially on this space, so that there is
nothing to prove.

For p = 1 and a cocycle f ∈ Z1
s (G,A) we have for g, x ∈ G :

(g.f − f)(x) = g.f(g−1xg)− f(x) = g.(g−1.f(xg) + f(g−1))− f(x)
= f(xg) + g.f(g−1)− f(x)
= x.f(g) + f(x)− f(g)− f(x) = dG(f(g))(x).

This shows that

(D.2) g.f − f = dG(f(g)),

so that f ∈ Z2
s (G,A)[G] follows from the local smoothness of f .

For p = 2 and f ∈ Z2
s (G,A) we have

(g.f − f)(x, x′)
= g.f(g−1xg, g−1x′g)− f(x, x′)
= −f(g, g−1xx′g) + f(g, g−1xg) + f(xg, g−1x′g)− f(x, x′)
= −f(g, g−1xx′g) + f(g, g−1xg)− f(x, g) + x.f(g, g−1x′g) + f(x, x′g)− f(x, x′)
= −f(g, g−1xx′g) + f(g, g−1xg)− f(x, g) + x.f(g, g−1x′g)− x.f(x′, g) + f(xx′, g)

and the function

θ(g) : G→ A, θ(g)(x) := f(g, g−1xg)− f(x, g)
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satisfies

(dGθ(g))(x, x′) = x.θ(g)(x′) + θ(g)(x)− θ(g)(xx′)
= x.f(g, g−1x′g)− x.f(x′, g) + f(g, g−1xg)− f(x, g)

− f(g, g−1xx′g) + f(xx′, g)
= (g.f − f)(x, x′).

Since the function G2 → A, (g, x) 7→ θ(g)(x) is smooth in an identity neighborhood
of G2 , the assertion follows for p = 2.

Lemma D.7. For each f ∈ Z1
s (N,A)[G] there exists a ∈ C1

s (G,A) with

dN (a(g)) = g.f − f, a(gn) = a(g) + g.f(n), g ∈ G,n ∈ N.

Then dGa ∈ B2
s (G,A) is AN -valued and constant on (N × N)-cosets, hence

factors to a cocycle dGa ∈ Z2
s (G/N,AN ) . The cohomology class [dGa] does not

depend on the choice of f in [f ] and the function a , and we thus obtain a group
homomorphism

δ : H1
s (N,A)[G] → H2

s (G/N,AN ), [f ] 7→ [dGa].

Proof. Since N is a split Lie subgroup, there exists an open 0-neighborhood of
some locally convex space V and a smooth map ϕ : U → G with ϕ(0) = 1 such
that the multiplication map

N × U → G, (x, n) 7→ ϕ(x)n

is a diffeomorphism onto an open subset of G . Let E ⊆ G be a set of representa-
tives of the N -cosets containing ϕ(U), so that the multiplication map E×N → G
is bijective.

The requirement f ∈ Z1
s (N,A)[G] implies the existence of a function α ∈

C1
s (G,A) with dN (α(g)) = g.f − f . We now define

a : G = EN → A, x · n 7→ α(x) + x.f(n).

Then a is smooth on an identity neighborhood because E contains ϕ(U). Since
f is a 1-cocycle, we have for x ∈ E and n, n′ ∈ N the relation

a(xnn′) = a(x) + x.f(nn′) = a(x) + x.f(n) + (xn).f(n′) = a(xn) + (xn).f(n′),

which means that

a(gn) = a(g) + g.f(n), g ∈ G,n ∈ N.

In view of (D.2), we have for n ∈ N the relation n.f − f = dN (f(n)), so that

(xn).f − f = x.(n.f − f) + x.f − f = x.dN (f(n)) + dN (a(x)) = dN (x.f(n) + a(x))

= dN (a(xn)),
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and hence dN (a(g)) = g.f − f for all g ∈ G .
That the values of the function dGa lie in AN follows from

dN (a(g1g2)) = (g1g2).f − f = g1.(g2.f − f) + g1.f − f

= g1.dN (a(g2)) + dN (a(g1)) = dN (g1.a(g2) + a(g1))

in C1
s (N,A). The coboundary dGa is a cocycle, hence an element of Z2

s (G,AN ).
We show that dGa is constant on the cosets of N . We have

(dGa)(g1, g2n) = g1.a(g2n) + a(g1)− a(g1g2n)
= g1.a(g2) + g1g2.f(n) + a(g1)− a(g1g2)− g1g2.f(n)
= (dGa)(g1, g2)

and

(dGa)(g1n, g2) = g1n.a(g2) + a(g1n)− a(g1ng2)
= g1n.a(g2) + a(g1) + g1.f(n)− a(g1g2(g−1

2 ng2))
= g1n.a(g2) + a(g1) + g1.f(n)− a(g1g2)− (g1g2).f(g−1

2 ng2)
= g1n.a(g2) + a(g1) + g1.f(n)− a(g1g2)− g1.((g2.f)(n))
= (dGa)(g1, g2) + g1.(na(g2)− a(g2)) + g1.f(n)− g1.f(n)

− g1.(n.a(g2)− a(g2))
= (dGa)(g1, g2)

We now define

dGa : G/N ×G/N → AN , (xN, yN) 7→ (dGa)(x, y).

Since dGa is a cocycle on G , the function dGa is an element of Z2
s (G/N,AN ).

It remains to show that the cohomology class of dGa in H2
s (G/N,AN ) does not

depend on the choices of a and f . If a′ ∈ C1
s (G,A) is another function with

dN (a′(g)) = g.f − f, a′(gn) = a′(g) + g.f(n), g ∈ G,n ∈ N,

then dN (a′(g)− a(g)) = 0 implies that

β(g) := a′(g)− a(g) ∈ AN , g ∈ G.

Moreover,

β(gn) = a′(gn)− a(gn) = a′(g) + g.f(n)− a(g)− g.f(n) = a′(g)− a(g) = β(g),

so that β factors through a function γ : G/N → AN , and we have

(dG/Nγ)(xN, yN) = x.β(y)− β(xy) + β(x) = (dGβ)(x, y) = (dGa− dGa
′)(x, y).
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Moreover, the fact that the quotient map G→ G/N defines on G the structure of a
smooth N -principal bundle implies that γ is smooth in an identity neighborhood
of G/N . Hence the cocycle dGa′ is an element of Z2

s (G/N,AN ) and satisfies
dGa′ = dGa− dG/Nγ , so that [dGa] = [dGa′] .

Now suppose that f ′ ∈ Z1
s (N,A) satisfies f ′ = f + dNc for some c ∈ A . In

view of the G -equivariance of the differential dN , we have

g.(dNc)− dNc = dN (g.c− c) and (dGc)(gn) = (dGc)(g) + g.((dGc)(n)),

so that the function a′ := a+ dGc satisfies

dN (a′(g)) = dN (a(g) + g.c− c) = g.f − f + g.dN (c)− dN (c) = g.f ′ − f ′,

a′(gn) = a′(g) + g.f ′(n).

As dGc is a cocycle, we have dGa
′ = dGa , so that we obtain in particular the

same cocycles on G/N .

With the preceding lemma, we can prove the exactness of the Inflation-
Restriction Sequence:

Proposition D.8. Let A be a smooth G-module and N /G a split normal Lie
subgroup. Then we have the following exact Inflation-Restriction Sequence:

0 → H1
s (G/N,AN ) I−−→H1

s (G,A) R−−→H1
s (N,A)[G] δ−−→H2

s (G/N,AN ) I−−→H2
s (G,A).

Proof. (see [We95, 6.8.3] or [MacL63, pp.347–354] for the case of abstract
groups)

Exactness in H1
s (G/N,AN ) : Let α ∈ Z1

s (G/N,AN ). We have [q∗α] = 0
if and only if there exists an a ∈ A with α(gN) = g.a − a for all g ∈ G .
That this function is constant on N -cosets implies that a ∈ AN , and hence
that α = dG/Na ∈ B1

s (G/N,AN ). Therefore the inflation map I is injective on
H1

s (G/N,AN ).
Exactness in H1

s (G,A) : That the restriction map R̃ maps into smoothly
G -invariant cohomology classes follows from Proposition D.6 and the G -equiva-
riance of R . The relation R ◦ I = 0 is clear.

To see that kerR ⊆ im I , let f ∈ Z1
s (G,A) vanishing on N (Lemma D.3).

Then f is constant on the N -cosets because

f(gn) = f(g) + g.f(n) = f(g) for g ∈ G,n ∈ N.

Moreover,
n.f(g) = f(ng)− f(n) = f(ng) = f(gg−1ng) = f(g)

implies that im(f) ⊆ AN . Hence [f ] is contained in the image of the inflation
map I .
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Exactness in H1
s (N,A)[G] : If f ∈ Z1

s (N,A) is the restriction of a 1-cocycle
α ∈ Z1

s (G,A), then (D.2) implies

(g.f − f)(n) = (dN (α(g)))(n),

so that we may take α as the function a in the definition of δ . Then dGa =
dGα = 0 because α is a cocycle, and hence δ([f ]) = 0.

If, conversely, δ([f ]) = 0, then there exists b ∈ C1
s (G/N,AN ) with dGa =

dG/Nb , where dGa(xN, yN) = (dGa)(x, y) is defined as in Lemma D.7. Then the
function a′ := a− (b ◦ q) satisfies

a′(gn) = a′(g) + g.f(n), dN (a′(g)) = g.f − f, g ∈ G,n ∈ N,

and, in addition,

dGa
′ = dGa− dG(q∗b) = dGa− q∗(dG/Nb) = q∗(dGa− dG/Nb) = 0.

This means that a′ ∈ Z1
s (G,A), so that a′ |N = a |N = f implies that [f ] is in the

image of the restriction map R .
Exactness in H2

s (G/N,AN ) : If f ∈ Z1
s (N,A) has a smoothly invariant

cohomology class and [dGa] = δ([f ]) as in Lemma D.7, then the image of [dGa]
in Z2

s (G,A) under I is given by dGa = q∗dGa , hence a coboundary.
Suppose, conversely, that for α ∈ Z2

s (G/N,AN ) the cocycle q∗α on G is a
coboundary and β ∈ C1

s (G,A) satisfies q∗α = dGβ . Then dGβ vanishes on N , so
that f := β |N is a cocycle. We have

α(xN, yN) = x.β(y)− β(xy) + β(x) for x, y ∈ G.

For y ∈ N we obtain from α(xN,N) = α(N,xN) = {0} the relations

β(gn) = β(g) + g.β(n) and β(ng) = β(n) + n.β(g).

For g ∈ G and n ∈ N we therefore have

(g.f − f)(n) = g.β(g−1ng)− β(n) = β(ng)− β(g)− β(n)
= β(n) + n.β(g)− β(g)− β(n) = n.β(g)− β(g) = dN (β(g))(n).

This means that [f ] is smoothly G -invariant and that δ([f ]) = [α].

Example D.9. The following example shows that the exact Inflation-Restriction
sequence cannot be continued in an exact fashion by the restriction map
R : H2

s (G,A) → H2
s (N,A)[G] .

For that we consider the group G := R2 , N := Z2 , G/N = T2 and the
trivial module A = T = R/Z . Then

H2
s (G/N,AN ) = H2

s (T2,T) = {0}, H2
s (G,A) = H2

s (R2,T) ∼= H2
c (R2,R) ∼= R,



182 Karl-Hermann Neeb

and H2
s (N,A)[G] = H2(Z2,T) ∼= T . Now the assertion follows from the fact

that the natural map R : H2
s (R2,T) ∼= R → H2

s (Z2,R) ∼= T is not injective. It
corresponds to restricting an alternating T-valued bilinear form to the lattice Z2 .
If the form is integral on this lattice, the corresponding extension of Z2 is abelian,
hence trivial (cf. Example 6.10).

Remark D.10. If A is a trivial G -module, then the connecting map has a
simpler description. Then we have H1

s (N,A) = Hom(N,A) = Z1
s (N,A), and the

condition that a homomorphism f : N → A is invariant under G means that it
vanishes on the normal subgroup [G,N ] / N .

The only condition on the function a : G→ A that we need to describe δ is

a(gn) = a(g) + f(n), g ∈ G,n ∈ N.

Then the function (dGa)(x, y) = a(y)−a(xy)+a(x) is constant on (N×N)-cosets
and defines a 2-cocycle in Z2

s (G/N,A).

Example D.11. (a) If G is a Lie group, then its identity component G0 is a
split normal subgroup and the quotient group π0(G) is discrete. Therefore the
Inflation-Restriction Sequence yields an exact sequence

0 → H1(π0(G), AG0) I−−→H1
s (G,A) R−−→H1

s (G0, A)[G] δ−−→H2(π0(G), AG0)
I−−→H2

s (G,A).

(b) Assume that A ∼= a/ΓA for a discrete subgroup ΓA of the Mackey
complete locally convex space a . If G is a connected Lie group, qG : G̃ → G its
universal covering and π1(G) its kernel, then π1(G) is discrete, hence a split Lie
subgroup, and we obtain for any smooth G -module A from Proposition D.8 the
exact sequence

0 → H1
s (G,A) I−−→H1

s (G̃, A) R−−→H1
s (π1(G), A)[G] δ−−→H2

s (G,A) I−−→H2
s (G̃, A).

As π1(G) acts trivially on A and π1(G) is central in G̃ , we have

H1
s (π1(G), A) = Hom(π1(G), A), H1

s (π1(G), A)[G] = H1
s (π1(G), A)G

= Hom(π1(G), AG).

In view of Corollary 7.3, we may identify H2
s (G̃, A) with the subgroup

{[ω] ∈ H2
c (g, a) : qA ◦ perω = 0}.

On this subgroup the map [ω] 7→ Fω given by the flux homomorphism defines a
homomorphism

P̃2 : H2
s (G̃, A) → Hom(π1(G),H1

c (g, a)) ∼= Hom(π1(G),H1
s (G̃, A))
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whose kernel coincides with the image of I (Theorem 7.2). In Remark 6.9 we have
seen that the image of [ω] ∈ H2

s (G̃, A) ⊆ H2
c (g, a) in H2

s (π1(G), A) is given by
the commutator map

CA
ω ([γ], [η]) = −P1(Fω([γ]))([η])

of the corresponding central extension where P1 is defined in Proposition 3.4.
From Example D.9 we know that the vanishing of C does not imply the vanishing
of Fω .

Remark D.12. Let fN ∈ Z1
s (N,A)[G] and f ∈ C1

s (G,A) with

f(gn) = f(g) + g.fN (n), dN (f(g)) = g.fN − fN , g ∈ G,n ∈ N.

Then δ(fN ) = [dGf ] ∈ Z2
s (G/N,AN ) defines an abelian extension of G/N by AN .

We now describe this abelian extension directly in terms of fN . Here we assume
that AN is a split Lie group (cf. Appendix C).

Using the smooth action of G on A , we can form the semi-direct product
Lie group AoG . Then we consider the map

σ : G→ AoG, g 7→ (f(g), g).

In view of f |N = fN ∈ Z1
s (N,A), the restriction σ |N is a homomorphism.

Moreover, for g, g′ ∈ G we have

σ(g)σ(g′) = (f(g) + g.f(g′), gg′) and σ(gg′) = (f(gg′), gg′),

which implies that

δσ(g, g′) := σ(g)σ(g′)σ(gg′)−1 = ((dGf)(g, g′),1) ∈ AN × {1}.

Therefore the induced map σ : G→ (A/AN ) oG is a group homomorphism, and
the pull-back of the abelian extension

AN ↪→ AoG→→ (A/AN ) oG

is isomorphic to the abelian extension Ĝ := AN ×dGf G defined by dGf ∈
Z2

s (G,AN ). Since f vanishes on N × G and G × N , the subset {0} × N is a
normal subgroup of Ĝ , and Ĝ/N ∼= AN ×dGf G/N .

Appendix E. A long exact sequence for Lie group
cohomology

Let G be a Lie group and

(E.1) 0 → A1
q1−−→A2

q2−−→A3 → 0



184 Karl-Hermann Neeb

be an extension of abelian Lie groups which are smooth G -modules such that q1
and q2 are G -equivariant. We assume that (E.1) is an extension of Lie groups,
i.e., that there exists a section σ : A3 → A2 of q2 which is smooth in an identity
neighborhood. Then the map

A1 ×A3 → A2, (a, b) 7→ a+ σ(b)

is a local diffeomorphism (not necessarily a group homomorphism). This assump-
tion implies that the natural maps

Cp
s (G,A1) → Cp

s (G,A2) → Cp
s (G,A3)

define a short exact sequence of chain complexes, hence induce a long exact
sequence in cohomology

0 → H0
s (G,A1) → H0

s (G,A2) → H0
s (G,A3) → H1

s (G,A1) → . . .

. . .→ Hp−1
s (G,A3)

δ−−→Hp
s (G,A1) → Hp

s (G,A2) → Hp
s (G,A3) → . . .

The connecting map δ : Hp
s (G,A3) → Hp+1

s (G,A1) is constructed as follows. For
f ∈ Zp

s (G,A3) we first find f1 ∈ Cp
s (G,A2) with f = q2 ◦ f1 . Then 0 = dGf =

q2 ◦ dGf1 implies that dGf1 is A1 -valued, hence an element of Zp+1
s (G,A1), and

then δ([f ]) = [dGf1] .
For p = 0 we have H0

s (G,A) = AG , so that the exact sequence starts with

AG
1 ↪→ AG

2 → AG
3 → H1

s (G,A1) → H1
s (G,A2) → . . . .

Remark E.1. A particularly interesting case arises if A is a smooth G -module,
A0 its identity component and π0(A) := A/A0 . Then π0(A) is discrete. Let us
assume, in addition, that G is connected. Then G acts trivially on the discrete
group π0(A). We therefore have an exact sequence

AG
0 ↪→ AG → π0(A) θA−−→H1

s (G,A0) → H1
s (G,A) → H1

s (G, π0(A)) = 0,

where we use Z1
s (G, π0(A)) ⊆ C∞(G, π0(A)) = 0 (Lemma 3.1) to see that

H1
s (G, π0(A)) is trivial. Note that θA is the characteristic homomorphism of the

smooth G -module A , considered as a map into H1
s (G,A0), which we may con-

sider as a subspace of H1
c (g, a) (Definition 3.6). It follows in particular that the

natural map H1
s (G,A0) → H1

s (G,A) is surjective.
Moreover, we obtain an exact sequence

0 → H2
s (G,A0) → H2

s (G,A) → H2
s (G, π0(A)) δ−−→H3

s (G,A0) → . . .

Since G is connected and π0(A) is a trivial module, the group H2
s (G, π0(A))

classifies the central extensions of G by π0(A), which is parametrized by the
abelian group Hom(π1(G), π0(A)) (Theorem 7.2). This leads to an exact sequence

(E.2) 0 → H2
s (G,A0) → H2

s (G,A)
γ−−→Hom(π1(G), π0(A)) → H3

s (G,A0),
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where γ assigns to an extension of G by A the corresponding connecting homo-
morphism π1(G) → π0(A) in the long exact homotopy sequence. For the universal
covering group qG : G̃→ G we thus obtain an isomorphism

(E.3) H2
s (G̃, A0) → H2

s (G̃, A).

With the results of Section 7 we have determined H2
s (G,A0) in terms of the

topology of G and the Lie algebra cohomology space H2
c (g, a). To determine

H2
s (G,A) in terms of H2

s (G,A0) and known data, one has to determine the
image of H2

s (G,A) in Hom(π1(G), π0(A)). Proposition 6.4 shows that for each
f ∈ Z2

s (G,A) the flux homomorphism fDf satisfies

FDf = −θA ◦ γ([f ]).

If A is a trivial G -module, then the divisibility of A0 implies that A ∼=
A0 × π0(A) as Lie groups, hence as G -modules, and we thus obtain

H2
s (G,A) ∼= H2

s (G,A0)×H2
s (G, π0(A)) ∼= H2

s (G,A0)×Hom(π1(G), π0(A)).

We refer to Example 7.6 for the discussion of a situation, where the relation
between H2

s (G,A0) and H2
s (G,A) is more complicated.

Problem E. Calculate Hp
s (G,A) for connected Lie groups G and discrete

abelian groups A . In this case A is a trivial G -module and the cohomology
groups are defined by cochains which are constant 0 in an identity neighbor-
hood. Clearly H0

s (G,A) = A , H1
s (G,A) = 0 follows from Proposition 3.4, and

H2
s (G,A) ∼= Hom(π1(G), A) ∼= H1

sing(G,A) from Theorem 7.2. What happens for
p ≥ 3?

Appendix F. Multiplication in Lie algebra and Lie
group cohomology

In this appendix we collect some information concerning multiplication of Lie
algebra and Lie group cocycles which is used in Section 9.

Multiplication of Lie algebra cochains

Let U, V,W be topological modules of the topological Lie algebra g and m : U× V →
W, (u, v) 7→ u · v a g-equivariant continuous bilinear map, i.e., x.m(u, v) =
m(x.u, v) +m(u, x.v) for all x ∈ g , u ∈ U and v ∈ V . Then we define a product

Cp
c (g, U)× Cq

c (g, V ) → Cp+q
c (g,W ), (α, β) 7→ α ∧ β
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by

(α∧β)(x1, . . . , xp+q) :=
1
p!q!

∑
σ∈Sp+q

sgn(σ)α(xσ(1), . . . , xσ(p))β(xσ(p+1), . . . , xσ(p+q)).

For p = q = 1 we have in particular

(α ∧ β)(x, y) = α(x) · β(y)− α(y) · β(x).

In the following we write for a p -linear map α : gp → V :

Alt(α)(x1, . . . , xp) :=
∑

σ∈Sp

sgn(σ)α(xσ(1), . . . , xσ(p)).

In this sense we have
α ∧ β =

1
p!q!

Alt(α · β),

where (α · β)(x1, . . . , xp+q) := α(x1, . . . , xp) · β(xp+1, . . . , xp+q).

Lemma F.1. For α ∈ Cp
c (g, U) and β ∈ Cq

c (g, V ) we have

(F.1) dg(α ∧ β) = dgα ∧ β + (−1)pα ∧ dgβ.

Proof. First we verify that for x ∈ g the insertion map ix satisfies

(F.2) ix(α ∧ β) = ixα ∧ β + (−1)pα ∧ ixβ.

For p = 0 or q = 0 this formula is a trivial consequence of the definitions. We
may therefore assume p, q ≥ 1. We calculate for x1, . . . , xp+q ∈ g :

ix1(α ∧ β)(x2, . . . , xp+q) = (α ∧ β)(x1, x2, . . . , xp+q)

=
1
p!q!

∑
σ∈Sp+q

sgn(σ)α(xσ−1(1), . . . , xσ−1(p))β(xσ−1(p+1), . . . , xσ−1(p+q))

=
1
p!q!

∑
σ(1)≤p

. . .+
1
p!q!

∑
σ(1)>p

. . . .

For σ(1) ≤ p we get

α(xσ−1(1), . . . , xσ−1(p)) = (−1)σ(1)+1α(x1, xσ−1(1), . . . , x̂1, . . . , xσ−1(p))

= (−1)σ(1)+1(ix1α)(xσ−1(1), . . . , x̂1, . . . , xσ−1(p)),

which leads to
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1
p!q!

∑
σ(1)≤p

. . .

=
1
p!q!

p∑
i=1

∑
σ(1)=i

sgn(σ)(−1)i+1(ix1α)(xσ−1(1), . . . , x̂1, . . . , xσ−1(p))

β(xσ−1(p+1), . . . , xσ−1(p+q))

=
1
p!q!

p∑
i=1

Alt(ix1α · β)(x2, . . . , xp+q) =
1

(p− 1)!q!
Alt(ix1α · β)(x2, . . . , xp+q)

= (ix1α ∧ β)(x2, . . . , xp+q).

We likewise obtain

1
p!q!

∑
σ(1)>p

. . . = (−1)p(α ∧ (ix1β))(x2, . . . , xp+q).

This proves (F.2).
We now prove (F.1) by induction on p and q . For p = 0 we have

(α ∧ β)(x1, . . . , xq) = α · β(x1, . . . , xq)

and

dg(α ∧ β)(x0, . . . , xq) =
q∑

i=0

(−1)ixi.(α · β)(x0, . . . , x̂i, . . . , xq)

+
∑
i<j

(−1)i+jα · β([xi, xj ], . . . , x̂i, . . . , x̂j , . . . , xq)

=
q∑

i=0

(−1)i(xi.α) · β(x0, . . . , x̂i, . . . , xq) + α · (dgβ)(x0, . . . , xq)

and

(dgα ∧ β)(x0, . . . , xq) =
1
q!

∑
σ∈Sq+1

sgn(σ)(dgα)(xσ(0)) · β(xσ(1), . . . , xσ(q))

=
1
q!

q∑
i=0

∑
σ(0)=i

sgn(σ)(xi.α) · β(xσ(1), . . . , xσ(q))

=
1
q!

q∑
i=0

(−1)i(xi.α) ·Alt(β)(x0, . . . , x̂i, . . . , xq)

=
q∑

i=0

(−1)i(xi.α) · β(x0, . . . , x̂i, . . . , xq).
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This proves (F.1) for p = 0. A similar argument works for q = 0. We now assume
that p, q ≥ 1 and that (F.1) hold for the pairs (p− 1, q) and (p, q − 1). Then we
obtain with the Cartan formulas and (F.2) for x ∈ g :

ix(dgα ∧ β + (−1)pα ∧ dgβ)
= (ixdgα) ∧ β + (−1)p+1dgα ∧ ixβ + (−1)pixα ∧ dgβ + α ∧ ixdgβ

= x.α ∧ β − dg(ixα) ∧ β + (−1)p+1dgα ∧ ixβ + (−1)pixα ∧ dgβ

+ α ∧ x.β − α ∧ dg(ixβ)
= x.(α ∧ β)− dg(ixα ∧ β) + (−1)p+1dg(α ∧ ixβ)
= x.(α ∧ β)− dg(ix(α ∧ β)) = ix(dg(α ∧ β)).

Since x was arbitrary, this proves (F.1).

The preceding lemma implies that products of two cocycles are cocycles and
that the product of a cocycle with a coboundary is a coboundary, so that we obtain
bilinear maps

Hp
c (g, U)×Hq

c (g, V ) → Hp+q
c (g,W ), ([α], [β]) 7→ [α ∧ β]

which can be combined to a product H•
c (g, U)×H•

c (g, V ) → H•
c (g,W ).

Multiplication of group cochains

Now let U, V,W be smooth modules of the Lie group G and m : U × V →
W, (u, v) 7→ u·v a G -equivariant biadditive smooth map. Then we define a product

Cp
s (G,U)× Cq

s (G,V ) → Cp+q
s (G,W ), (α, β) 7→ α ∪ β,

where

(α ∪ β)(g1, . . . , gp+q) := α(g1, . . . , gp) · (g1 · · · gp).β(gp+1, . . . , gp+q)

(cf. [Bro82, p.110] up to the different signs which are caused by different signs for
the group differential).

Lemma F.2. For α ∈ Cp
s (G,U) and β ∈ Cq

s (G,V ) we have

dG(α ∪ β) = dGα ∪ β + (−1)pα ∪ dGβ.

Proof. For g0, . . . , gp+q ∈ G we have

dG(α ∪ β)(g0, . . . , gp+q)

= g0.(α ∪ β)(g1, . . . , gp+q) +
p+q∑
i=1

(−1)i(α ∪ β)(g0, . . . , gi−1gi, . . . , gp+q)

+ (−1)p+q+1(α ∪ β)(g0, . . . , gp+q−1)
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= (g0.α(g1, . . . , gp)) · (g0 · · · gp).β(gp+1, . . . , gp+q)

+
p∑

i=1

(−1)iα(g0, . . . , gi−1gi, . . . , gp) · g0 · · · gp.β(gp+1, . . . , gp+q)

+
p+q∑

i=p+1

(−1)iα(g0, . . . , gp−1) · g0 · · · gp−1.β(gp, . . . , gi−1gi, . . . , gp+q)

+ (−1)p+q+1α(g0, . . . , gp−1) · (g0 · · · gp−1).β(gp, . . . , gp+q−1)
= (dGα)(g0, . . . , gp) · (g0 · · · gp).β(gp+1, . . . , gp+q)
+ (−1)pα(g0, . . . , gp−1) · (g0 · · · gp).β(gp+1, . . . , gp+q)

+ α(g0, . . . , gp−1) · g0 · · · gp−1.
( p+q∑

i=p+1

(−1)iβ(gp, . . . , gi−1gi, . . . , gp+q)

+ (−1)p+q+1β(gp, . . . , gp+q−1)
)

= (dGα ∪ β)(g0, . . . , gp+q) + (−1)p(α ∪ dGβ)(g0, . . . , gp+q).

Lemma F.2 implies that products of two cocycles are cocycles and that
the product of a cocycle with a coboundary is a coboundary, so that we obtain
biadditive maps

Hp
s (G,U)×Hq

s (G,V ) → Hp+q
s (G,W ), ([α], [β]) 7→ [α ∪ β].

The following lemma shows that for Lie groups the multiplication of group
and Lie algebra cochains is compatible with the differentiation map D .

Lemma F.3. If G is a Lie group, U , V and W are smooth modules and
m : U × V → W is continuous bilinear and equivariant, then we have for α ∈
Cp(G,U) and β ∈ Cq(G,V ) we have in Cp+q

c (g,W ) :

D(α ∪ β) = Dα ∧Dβ.
Proof. In view of Dα = Alt(dpα(1, . . . ,1)), we get

Dα ∧Dβ =
1
p!q!

Alt(Dα ·Dβ) =
1
p!q!

Alt(Alt(dpα(1, . . . ,1)) ·Alt(dqβ(1, . . . ,1)))

= Alt(dpα(1, . . . ,1) · dqβ(1, . . . ,1)),

so that it remains to see that

dp+q(α ∪ β)(1, . . . ,1) = (dpα)(1, . . . ,1) · (dqβ)(1, . . . ,1),

but this follows immediately from the normalization of the cocycles and the chain
rule for jets, applied to the multiplication map m .
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