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A Counter Example of Invariant Deformation Quantization

by Xiang Tang

Abstract

In this note, we will give an example of an Hamiltonian Lie algebra
action which has no invariant star product.

1 Introduction

Quantization of a Hamiltonian system with symmetries is an important and diffi-
cult problem in physics and mathematics. In the deformation quantization formu-
lation [4], this problem can be phrased as follows: given a Hamiltonian Lie group
action on a symplectic manifold, does there exist a star product compatible (see
Definition 1.3) with the group action?

Since the very early time of deformation quantization, Lichnerowicz has con-
sidered this question(see [18] and references therein). Lichnerowicz in [17] showed
that each homogeneous space admitting an invariant linear connection admits an
invariant Vey star product.

In the literature, there are various definitions of a star product. We fix our
star product to be the following one:

Definition 1.1 Let (M, ω) be a symplectic manifold. A star product on M is an
associative product ? on C∞(M)[[~]] with the following properties:

1. the coefficients ck(x) of the product

c(x, ~) = a(x, ~) ? b(x, ~) =
∞∑

k=0

~rCr(a, b),

where Cr are locally bidifferential operators.

2. the leading term c0(x) is equal to the usual commutative product of functions
a0(x)b0(x).

3. the star product satisfies

[a, b] = a ? b− b ? a = −i~{a0, b0}+ · · · ,

where { , } means the Poisson bracket of functions and the dots mean higher
order terms of ~.
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In this note, we will write a star product as f ? g =
∑∞

r=0 ~rCr(f, g), where
Cr is a local bidifferential operator. Next we recall the definition of a Vey star
product.

Definition 1.2 Let ∇ be a symplectic connection on (M, ω). A star product is
called a Veyn-product if the principal symbol of the differential operator Cr is
identical to

P r
∇(f, g) = ωi1j1 · · ·ωirjr∇i1 · · ·∇irf∇j1 · · ·∇jrg, for all f, g ∈ C∞(M),

for all r ≤ n.

At the beginning of this section, when describing the question of quantization
with symmetries, we have been very vague by using the word “being compatible”.
In the literature, there are several related notions of invariant and covariant star
products. In this paper, we will focus on the following invariant star product from
[2].

Definition 1.3 For a Hamiltonian Lie group G action on a symplectic manifold
(M, ω), a star product is called (geometrically) G invariant∗ if:

x · (f ? g) = (x · f) ? (x · g), for all x ∈ G, f, g ∈ C∞(M).

Looking at the infinitesimal Lie algebra g action and J : g → C∞(M) the dual
of the momentum map, we have

{J(X), f ? g} = {J(X), f} ? g + f ? {J(X), g},

for all X in g, f, g in C∞(M).
From Definition 1.2 and 1.3, we can easily see ([16]) that if a Vey2−product

is G-invariant, then the corresponding symplectic connection is also G−invariant.
Therefore, Lichnerowicz’s result is also necessary for the existence of an invari-
ant Vey2-product. A G-invariant Vey2−product exists if and only if there is an
invariant symplectic connection.

In Fedosov’s construction [12] of star products on a symplectic manifold, it
is obvious that the existence of an invariant (torsion free) connection implies the
existence of an invariant (torsion free) symplectic connection and therefore the
existence of an invariant star product. By Palais’ theorem, a proper Lie group
action on a symplectic manifold M allows a G-invariant metric, and therefore
a G-invariant (torsion free) connection, the Levi-Civita connection, on M , and
hence a G-invariant star product.

The existence of invariant star products leads to the study of quantum mo-
mentum map and reduction theory. Xu in [20] introduced and studied the theory
of quantum momentum map. In [11] and [13], Fedosov used his quantization

∗In short, we will just say “G invariant” star product in this note.
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method to study quantum Marsden-Weinstein reduction of a compact Hamilto-
nian Lie group action. Bordemann, Herbig, and Waldmann in [5] studied BRST
cohomology in the framework of deformation quantization and quantum reduced
space.

Recently, there have been many attempts in literature to extend the study of
invariant star products and Xu’s quantum momentum map to more general types
of quantization. In [19], Müller-Bahns and Neumaier considered star products of
Wick type; and in [14], Gutt and Rawnsley investigated natural star products.
All the known results have suggested that Lichnerowicz’s original idea that the
existence of an invariant star product is closely related to the existence of an
invariant connection is correct.

In the above discussion, we have concentrated on symplectic manifolds. The
Poisson version of the question is also worth mentioning. The existence of a star
product for a general Poisson manifold was first shown by Kontsevich (and later
Tarmarkin with a different method) in [15] using his formality theorem. From
Kontsevich’s original construction, the conditions needed for the existence of an
invariant star product are not very obvious. Dolgushev in [9] gave an alternative
construction of the global formality theorem using Fedosov type resolution and
Kontsevich’s local formality theorem. Dolgushev’s construction explicitly shows
that the existence of an invariant connection is a sufficient condition for an invari-
ant star product (also an invariant formality theorem). It would be interesting to
look at the Poisson version of quantum momentum maps and BRST quotients.

It is also worth mentioning that since [7] and [10], there has been discussion
of conformally invariant symbol calculus and star products. These products are
different from the star product defined in Definition 1.1 in that they are not
defined on all smooth functions but suitable subalgebras. The study of conformally
invariant quantization is still at its early stage, and we do not even know whether
a conformally invariant quantization always exists. However, we have seen its
interesting relations to other areas of mathematics. For example, Cohen, Manin,
and Zagier in [7] obtained this type of product by considering deformations of
modular forms.

In this note, we will show that there is a Hamiltonian Lie algebra action which
has no invariant star product.

In this direction, Arnal, Cortet, Molin, and Pinczon in [2] showed that on some
coadjoint orbitO of a nilpotent Lie algebra g, there is no g-invariant Vey2−product
by showing that there is no invariant g−connection.

What we will do is extend their result to any star product. Since we are
working in full generality, to show that there is no invariant connection (as in [2])
is not enough any more. We will study properties of general invariant differential
operators, which will give us enough information to show the nonexistence of an
invariant star product.
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Remark 1.4 This type of counter example is believed to exist among experts we
have talked to, but we cannot find any explicit example in the literature. If there
is any other example, please let us know.

Remark 1.5 On a large class of coadjoint orbits, invariant star products were
constructed in [1] and references therein.

Remark 1.6 Weaker than invariant star products, people have introduced a no-
tion of “covariant star products” (see [2]). Instead of the keeping the same action,
we allow a higher order modification to the group (Lie algebra) action. The ex-
istence and uniqueness of covariant star products are related to the lower order
Lie algebra (Lie group) cohomology (see [19]). This spring, Kontsevich conjec-
tured that the automorphism group of the Poisson algebra of polynomial functions
on R2n is naturally isomorphic to the automorphism group of the corresponding
2n−dimensional Weyl algebra. Also this summer in IHP, Gorokhovsky, Nest, and
Tsygan showed the author a very interesting construction of their “stacky star
product”.

Acknowledgement: The result of this paper was completed during my Ph. D.
study at UC Berkeley. Firstly, I would like to thank my thesis advisor Alan
Weinstein for proposing this question to me and for giving me helpful comments
and suggestions. I also want to thank Simone Gutt for answering my questions
through emails, and Alexander Gorokhovsky, Rsyzard Nest, and Boris Tsygan
for interesting discussion. Finally, I want to thank the referee for making many
suggestions towards the improvement of this paper.

2 Main result

We look at (R2, dx∧dy) with the Lie algebra g action formed by the Hamiltonian
vector fields generated by

x3, x2, x, y, 1.

g is a 5-dim nilpotent Lie algebra†. By the expression of a star product, we
can easily see that if a star product is invariant under g action, then each Cr of ?
has to be g invariant, i.e.

X(Cr(u, v)) = Cr(X(u), v)+Cr(u, X(v)) ∀X ∈ g, u, v ∈ C∞(M), r = 1, 2, 3, · · · .

Therefore, in the following, we will first look at properties of differential operators
that are invariant under the g action. Then we will come back to the existence of
an invariant ? product.

†We can consider the Lie algebra of the corresponding Hamiltonian vector fields, which has
no center.
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We write a locally bidifferential operator C in an open set O containing the
origin of R2 as ∑

0≤i,j,k,l<∞

Cij;kl(∂x)
i(∂y)

j ⊗ (∂x)
k(∂y)

l,

where for any x ∈ O, there are only finite number of i, j, k, l such that Cij,kl 6= 0.

Property 2.1 If C is invariant under the g action, then on O, Cij;kl satisfies the
following relations:

1. Cij;kl are all constants.

2. if i > l or j < k, then Cij;kl = 0;

3.
Cij;kl = −Ci+1,j−1;k−1,l+1, for j ≥ 1, k ≥ 1;
Cij;kl = −Ci−1,j+1;k+1,l−1, for i ≥ 1, l ≥ 1.

4.
Cij;kl = −Ci+2,j−1;k−2,l+1, for j ≥ 1, k ≥ 2;
Cij;kl = −Ci−2,j+1;k+2,l−1, for i ≥ 2, l ≥ 1.

Proof . We work on each generator of g.

1. 1 ∈ g. This part is trivial. Because the Hamiltonian vector field of 1 is 0,
every bidifferential operator is invariant under it.

2. x ∈ g. The Hamiltonian vector field generated by x is ∂y. The invariance of
C under ∂y implies

∂y(
∑

0≤i,j,k,l<∞Cij;kl(∂x)
i(∂y)

j ⊗ (∂x)
k(∂y)

l)

=
∑

0≤i,j,k,l<∞Cij;kl((∂x)
i(∂y)

j+1 ⊗ (∂x)
k(∂y)

l + (∂x)
i(∂y)

j ⊗ (∂x)
k(∂y)

l+1).

We expand the left-hand side of the above equation, and after cancellation,
we have

∂y(Cij;kl) = 0.

3. y ∈ g. Similar to the case of x, we get

∂x(Cij;kl) = 0.

From the above, we have that on O, ∂x(Cij;kl) = ∂y(Cij;kl) = 0, and therefore
Cij;kl is a constant.



278 Xiang Tang

4. x2 ∈ g. The Hamiltonian vector field generated by x2 is 2x∂y. The invariance
of C under 2x∂y gives

(1)
2x∂y(Cij;kl(∂x)

i(∂y)
j ⊗ (∂x)

k(∂y)
l)

=
∑

0≤i,j,k,l<∞Cij;kl((∂x)
i(∂y)

j(2x∂y)⊗ (∂x)
k(∂y)

l

+ (∂x)
i(∂y)

j ⊗ (∂x)
k(∂y)

l(2x∂y)).

Setting x = 0 in the above equation, we get
(2)∑
0≤i,j,k,l<∞

Cij;kl((∂x)
i−1(∂y)

j+1⊗ (∂x)
k(∂y)

l +(∂x)
i(∂y)

j ⊗ (∂x)
k−1(∂y)

l+1) = 0,

where the first term exists when i > 0, and the second term exists when
k > 0.

(a) We look at terms of the form (∂x)
i ⊗ (∂x)

k∂y
l. It is easy to find that

the first term of Equation (2) does not have this kind of term since its
existence requires j to be greater than or equal to 1. From this, we
have

Ci0;kl = 0 ∀k > 0.

(b) Next, we look at terms of the form (∂x)
i(∂y)

j ⊗ (∂x)
k. Arguments like

those above show that

Cij;k0 = 0 ∀i > 0.

(c) If j > 0, l > 0, equation (1) gives∑
0≤i,j,k,l<∞

Ci+1,j−1;kl(∂x)
i(∂y)

j⊗(∂x)
k(∂y)

l+Cij;k+1,l−1(∂x)
i(∂y)

j⊗(∂x)
k(∂y)

l = 0.

This shows that
Ci+1,j−1;kl + Cij;k+1,l−1 = 0.

Therefore,

i. if j > 0, k > 0,
Cij;kl = −Ci+1,j−1;k−1,l+1;

ii. if i > 0, l > 0,
Cij;kl = −Ci−1,j+1;k+1,l−1.

According to (a), and iteration using i. of (c), we get that if j < k,
Cij;kl = 0. Similarly, by (b) and ii. of (c), we get that if i > l,
Cij;kl = 0.

5. x3. The Hamiltonian vector field generated by x3 is 3x2∂y.

As in the arguments for x2, we get
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(a) if k > 1, Ci0;kl = 0;

(b) if i > 1, Cij;k0 = 0;

(c) if j ≥ 1 and l ≥ 1,

Ci+2,j−1;k,l + Cij;k+2,l−1 = 0.

We can rewrite it as the following,

i. if j ≥ 1 and k ≥ 2,

Cij;kl = −Ci+2,j−1;k−2,l+1;

ii. if i ≥ 2 and l ≥ 1,

Cij;kl = −Ci−2,j+1;k+2,l−1. �

With the above preparation, we prove the following theorem.

Theorem 2.2 For the Hamiltonian g action on (R2, dx ∧ dy), there is no geo-
metrically g invariant ? product.

Proof . We prove the theorem by contradiction. Assume that there is a ? product
of (R2, dx ∧ dy) of the form ∑

r≥0

~rCr,

which is geometrically g invariant.
For each r > 0, by the assumption of locality, on an open setO of R2 containing

the origin, we can write

Cr =
∑

0≤i,j,k,l<∞

Cr
ij;kl(∂x)

i(∂y)
j ⊗ (∂x)

k(∂y)
l.

According to the associativity of ? for the ~2-term and comparing the corre-
sponding coefficients, we have that for any f, g, h ∈ C∞(R2),
(3)
C2(fg, h)+C1(C1(f, g), h)+C2(f, g)h = C2(f, gh)+C1(f, C1(g, h))+ fC2(g, h).

In the following, we will restrict our discussion on the open set O.

1. We look at the coefficient of the term fyygxhx.

• On the left-hand side of equation (3):

(a) C2(fg, h). It may possibly contribute the term C2
12;10. But ac-

cording to the conclusion of Proposition 2.1 that if i > l, then
Cij;kl = 0, we have C2

12;10 = 0. Therefore, C2(fg, h) has no term of
the form fyygxhx.
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(b) C1(C1(f, g), h). There are two C1. As we have hx term, the outside
C1 has to be of the form C1

ij;10. According the result of Proposition
2.1, if i > l, then Cij;kl = 0, we have that there are only two
possibilities for the outside C1:

C1
01;10 and C1

02;10.

If the outside C1 contributes C1
01;10, then as all the C1

ij;kl are con-
stant, the inside one also has to contribute C1

01;10. Therefore, there
is a contribution of (C1

01;10)
2.

If the outside C1 has C1
02;10, then the inside C1 can only contribute

C1
00;10, but by Proposition 2.1, it has to equal 0, because j < k.

So the second term has only one contribution which is (C01;10)
2.

(c) C2(f, g)h. Because in this term there is no derivative with respect
to h, this term cannot contribute anything.

In summary, the left-hand side of the above equation can only con-
tribute (C01;10)

2 to the coefficient of fyygxhx.

• On the right-hand side of equation (3).

(a) C2(f, gh) can only possibly contribute C2
02;20. But according to

Proposition 2.1,
C2

02;20 = −C2
21;01.

But from i > l, we know C2
21;01 = 0. Therefore, there is no contri-

bution of this term.

(b) C1(f, C1(g, h)). By comparing the number of derivatives of f , we
know that the outside C1 has to be of the form C1

02;kl. As the
differential of g and h are all with respect to x, there are three
possibilities for the outside C1:

C1
02;00, C1

02;10, and C1
02;20.

In the following, we will show that all three of them do not have
any contribution.

i. C2
02;00. Then the inside C1 has to be of the form C1

10;10. This
is 0 according to Proposition 2.1.

ii. C2
02;10. Then the inside C1 has to be of the form C1

10;00 or C1
00;10,

which are both 0 because of Proposition 2.1.

iii. C2
02;20. From the previous calculation, we know that C2

02;20 = 0.

(c) fC2(g, h). Because this term has no derivative of f, there is no
contribution of this term.

In all, considering both sides of equation (3), there is only one contri-
bution of the term fyygxhx, which is (C1

01;01)
2. Therefore, we have

C1
01;10 = 0.
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2. We look at the coefficient of fxxgyhy.

• On the left-hand side of equation (3).

(a) C2(fg, h). The only possible contribution is C2
21;01. But according

to Proposition 2.1, C2
21;01 = 0.

(b) C1(C1(f, g), h). By comparing the derivatives of h, we get that the
outside C1 has to be of the form C1

ij;01. As i has to be less than or
equal to 1, otherwise this term is 0 according to proposition 2.1,
we know that there are four possibilities;

C1
10;01, C1

11;01, C1
01;01, and C1

00;01.

In the following, we will show that except for C1
10;01, the other three

cases have no contributions.

i. C1
10;01. In this case, the inside C1 also has to be of the form

C1
10;01. The contribution of this term is (C1

10;01)
2.

ii. C1
11;01. Then the inside C1 has to be of the form C1

10;00, but this
has to be 0 because i > l. So this term has no contribution.

iii. C1
01;01. Then the inside C1 has to be of the form C1

20;00. This
also has to be 0, because i > l. This term again has no contri-
bution.

iv. C1
00;01. Then the inside C1 has to be of the form C1

20;01. This
is 0 for the same reason as the C1

20;00.

(c) C2(f, g)h. This has no contribution, because there is no derivative
on h.

• On the right-hand side of the relation.

(a) C2(f, gh). The only possible contribution of C2(f, gh) is of the
form C2

20;02. This has to be 0, because C2
20;02 = C2

01;21 = 0.

(b) C1(f, C1(g, h)). Comparing the part of f , we know that the outside
C1 has to be of the form C1

20,kl. As i has to be less than or equal
to l, the outside C2 has to be of the form C2

20;02, which is 0.

In conclusion, total in both sides of equation (3), there is only one
contribution (C1

10;01)
2 for term fxxgyhy. Therefore C1

10;01 = 0.

We have shown that C1
10;01 and C1

01;10 are both 0. But on the other hand, from

[u, v] = u ? v − v ? u = −i~{u, v}+ o(~),

we have
C1

10;01 − C1
01;10 = −i.

If C1
10;01 = C1

01;10 = 0, the above equality cannot be true. So we get a contra-
diction.

Therefore, there is no geometrically g invariant star product on (R2, dx ∧ dy).
�
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