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The modular class of a twisted Poisson structure

by Yvette Kosmann-Schwarzbach

and Camille Laurent-Gengoux

Abstract

We study the geometric and algebraic properties of the twisted Poisson
structures on Lie algebroids, leading to a definition of their modular class
and to an explicit determination of a representative of the modular class,
in particular in the case of a twisted Poisson manifold.

Résumé. Nous étudions des propriétés géométriques et algébriques des
structures de Poisson tordues sur les algébroides de Lie, permettant une
définition de leur classe modulaire et une détermination explicite d’un
représentant de celle-ci, en particulier pour le cas d’'une variété de Pois-
son tordue.

1 Introduction

The primary aim of this paper is to extend the definition and properties of the
modular class of Poisson manifolds to the case of manifolds with a twisted Poisson
structure. Moreover we show that the notion of modular class can be extended to
the case of Lie algebroids with a twisted Poisson structure.

There are many ways in which the Jacobi identity for a skew-symmetric bracket
can be violated. On a manifold with a twisted Poisson structure, the Jacobi
identity for the Poisson bracket holds only up to an additional term involving a
closed 3-form, called the background 3-form. Such structures appeared in string
theory. The quantization of an open membrane coupled to a background 3-form
was interpreted in the work of Jae-Suk Park [13] as a deformation of the theory
without background; the defining condition, equation (4.2) below, appears as
the quantum master equation in the Batalin-Vilkovisky quantization of an action
functional containing a term, the C-field, which is a closed 3-form. Meanwhile,
in [2], Cornalba and Schiappa introduced a star-product deformation which is
not only non-commutative but also non-associative; the Jacobi identity for the
associated commutator bracket was therefore violated, and that identity took the
form that appears in formula (4.4) below. For Klimé¢ik and Strobl [7], equation
(4.2) appears as the condition for the constraints for a Lagrangian system to be
first-class, i.e., to span a subalgebra of the Poisson algebra, when the action is that
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of a Poisson o-model to which is added a term analogous to the term of Wess and
Zumino as, e.g., in the Wess-Zumino-Witten model. For this reason, Klimcik et
Strobl proposed to call such structures WZW-Poisson structures or WZ-Poisson
structures. “Poisson geometry with a 3-form background” was then studied by
Severa and Weinstein [15] who showed that such a structure is a Dirac structure
in a Courant algebroid whose bracket is defined by means of the 3-form. They
called it a Poisson structure with background or a twisted Poisson structure, the
term that we have adopted here, in spite of a possible confusion of terminology
evoked at the very end of our paper. While any twisted Poisson manifold is locally
equivalent to a genuine Poisson manifold, global phenomena make this generalized
case interesting.

The modular vector fields of Poisson manifolds already figured in Koszul’s 1985
article [12], and some of their properties and applications appear in the work of
Dufour and Haraki [3], who called them “curl” (rotationnel, in French), and in
other papers of the early nineties. Weinstein, in [16], related this notion to the
modular automorphism group of von Neumann algebras, gave it the name that
has been adopted in the literature, and introduced the notion of modular class.

Given an orientable Poisson manifold, choose a volume form and associate to
each smooth function the divergence of its hamiltonian vector field. The map
thus obtained is a derivation and is, by definition, the modular vector field. The
basic observation is that this vector field is closed in the Poisson cohomology and
that its cohomology class, the modular class, does not depend on the choice of
the volume form. The non-orientable case can be dealt with, replacing volume
forms by densities. Further advances, already announced in [16], were made in the
article of Evens, Lu and Weinstein [4] where the modular class for a Lie algebroid
was defined and where it was shown that the modular class of a Poisson manifold
was one half that of its cotangent Lie algebroid. At the same time, Huebschmann
developed a powerful algebraic theory in the framework of Lie-Rinehart algebras
[5] [6] which recovered the results of [4] when applied to the case where a Lie-
Rinehart algebra is the space of sections of a Lie algebroid. Duality properties
were proved by these authors and by Xu in [17].

In this article, we shall follow the approach of [8], where the modular vector
fields are characterized in terms of the difference of two generating operators of
square zero of the Gerstenhaber algebra associated to the given Lie algebroid.
After brief preliminary results on operators of order 1 and 2 on graded algebras,
we introduce, in Section 3, operators on forms and multivectors and a vector field,
defined in terms of a bivector and a 3-form, that are the needed ingredients of
the construction of the modular class. This makes sense on an arbitrary vector
bundle. In Section 4, we define the Lie algebroids with a twisted Poisson structure,
which comprise the cotangent Lie algebroids of twisted Poisson manifolds and the
triangular Lie bialgebroids. We show in Section 5 that on a Lie algebroid with a
twisted Poisson structure, there exist generators of square zero of the Gerstenhaber
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algebra of multivectors, defined in terms of the operators of Section 3, and the
definition and properties of the modular vector field (Section 6) follow. That
vector field is closed in the Lie algebroid cohomology and its class is well-defined
(Theorem 6.1). It is the sum of the vector field X, depending on the bivector
and the volume form A (or density in the non-orientable case), that appears in
the untwisted case, and which is no longer closed in the twisted case, and the
vector field, Y ,, depending on the bivector 7 and the 3-form v defining the
twisted Poisson structure. In Section 7, we then recall the construction of Evens,
Lu and Weinstein [4] and prove that, as expected, when the Lie algebroid is the
tangent bundle of a twisted Poisson manifold, M, the class that we have defined
is one half the class, as defined in [4], of the cotangent Lie algebroid T*M. The
examples described in Section 8 show that this is not the case in general, even
for Lie algebras considered as Lie algebroids over a point. As another example,
we show that the modular classes of the Lie groups equipped with the twisted
Poisson structure introduced in [15] vanish. Many of the features of the usual
Poisson case can be recovered but new phenomena appear in the case of the Lie
algebroids with a twisted Poisson structure.

A full understanding of the relationship between the modular class that we in-
troduce and the modular classes defined in [16] [4] for Lie algebroids, and further
justification for the generalization that we propose are provided by the consider-
ation of the relative modular classes [11].

2 Preliminaries: differential operators on graded
commutative algebras

By definition, a graded linear operator on a graded commutative algebra A is
of order less than or equal to k if its graded commutator with any k& 4+ 1 left-
multiplications by elements of A vanishes. The graded commutator of graded
endomorphims u, of degree |u|, and v, of degree |v|, of the graded vector space
A is [u,v] = wov — (—=1)MPly o u. Let 1 denote the unit element of A, and let
{, denote left-multiplication by a € A. For u a graded linear operator on A, and
k=1, 2 and 3, we consider the operators ®F : A®% — A defined in [1]. For a, b
and cin A,
¢, (a) = u(a) — u(l)a,

7 (a)(b) = @, (ab) — D, (a)b — (~1)1*"a®, (b),
®;(a,b)(c) = ;(a)(be) — @} (a)(b)e — (=1) 1P () (c).

It is easy to prove the following propositions.
e v is of order 0 if and only if ®! = 0.
e v is of order < 1 if and only if ®2 = 0.

In fact, for all a € A, ®3(a) = @}, , ;.
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e v is of order < 1 if and only if (ID}A is of order < 1.

e A differential operator u of order < 1 is a derivation if and only if u(1) = 0.
e v is of order < 2 if and only if ®3 = 0.

e u is of order < 2 if and only if ®2(a) is a derivation, for all a € A.

In fact, u is of order < 2 if and only if [u, f,] is of order < 1 for all a. This
condition is equivalent to ®2(a) is of order < 1 for all a, because ®2(a) and [u, {,]
differ by left-multiplication by ®.(a), an operator of order 0. Since ®2(a)(1) = 0,
the operator ®2(a) is of order < 1 if and only if it is a derivation.

We remark that the expression ®2(a)(b) is skew-symmetric (in the graded
sense) in a and b. More precisely,

(2.1) (=D)M@}(b)(a) = —(=1)WFDEFD (—1) Dl (a) (b).

3 Bivectors and 3-forms

We shall make use of several algebraic constructions which we now describe.

3.1 Conventions

Hereafter A is a vector bundle (later, a Lie algebroid) with base M. By convention,
we shall call sections of A vector fields or vectors. More generally, for p and ¢
positive integers, we call sections of AP A, p-vectors and, similarly, we call sections
of N1(A*), g-forms. The pairing of a p-vector and a p-form is denoted < |, >.

Let ix be the interior product of forms by the vector X, which is a derivation
of I'(A®A*). More generally, for vectors X; and Xy, set

/l:Xl/\XQ - /L.Xl o /I:XQ )
and define inductively the interior product of forms by a multivector. By def-

inition, the interior product of an r-form (r a positive integer) by a section of
NTA* @ NP A vanishes if p > r and, for p < r, satisfies

iglA...qu@)XlA.,.AXp (041 AT Olr) =GN NG A Z'Xl/\.../\Xp (al ARTIA ar) .

Interior products by elements of T'(AZA* ® APA) are operators of order p on
['(A*A*). The interior product of multivectors by multivector-valued forms is
similarly defined.

Given a bivector 7, the vector bundle morphism 7 from A* to A is defined by
< B,7*a >= m(a, ), for 1-forms o and 3. Thus

ix(@ A B) = —7(a, B) =< a, 70 > .
Let (e) and (¢*), 1 < k < N, where N is the rank of A, be dual local bases of
sections of A and A*, respectively. Then
1

1
= ek A THER) = —§7rﬁ(ee) Neg .
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Here and below, we use the Einstein summation convention. The components,
mr of 7 are defined by m = 37*e; A ¢y, and they satisfy mh(e?) = ey,
Let 7 be a section of A2A and 1) a section of A2A*. We define v by
YIOX,Y) = v(f, X.Y)
for ¢ € T(A*), X and Y € T'A. Thus ¢! is both a vector-valued 2-form and a
2-form-valued vector on A. We further define ¢(?) by
Y& n)(X) = o (rf¢, 7Py, X) |

for ¢ and n € I'(A*), and X € T'A. Thus ¥ is both a bivector-valued 1-form and
a 1-form-valued bivector on A. In components, setting ¢ = %wkgmek AN e, we

find

1
(3.1) p = §7Tkp¢pzm ENE"®ey
and
1
(3.2) p® = Ewkpﬂeqiﬁpqm " ®epNey .

3.2 Operators on forms and multivectors

The following operators are naturally defined on a vector bundle A equipped with
a bivector m and a 3-form 1.

3.2.1 The operator 9, ,,

Any form-valued bivector on A acts by interior product on the sections of A®*A*.
We define the operator 9, ,, on sections of A*A* to be the interior product by the
1-form-valued bivector ¢,

Lemma 3.1. a) The operator 0, is a differential operator of order 2 and of
degree —1 on the graded algebra T'(A*A*), which vanishes on functions and on
1-forms.
b) For q > 2, and for all ay, ..., o, € I'(A%),
(3.3)
Dpplon Ao nag) = Y (1) P (o, a) Ao A+ AGR A= ANG A+ Ny .
1<k<t<q

(A caret over a factor signifies that the factor is missing.)

Proof. a) We know that, for p € N, the interior product by a form-valued p-vector
is a differential operator of order p, thus part a) follows.
b) Equation (3.3) follows from the definition of the interior product. O
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3.2.2 The operator d,,

We now consider 9 as a bivector-valued 1-form on A, we let it act by interior
product on the sections of A®A, and we denote this operator by d, .

Lemma 3.2. a) The operator d, , is a derivation of degree +1 of the graded
algebra T'(A*A), which vanishes on functions.
b) Forp>1 and for all Xy,...,X, € ['A,

p
(34)  dp (XA AX) =) (D)X ) AX A AXG A AKX,
k=1

Proof. a) Since d, , is a differential operator of order 1 and it vanishes on func-
tions, it is a derivation.
b) Equation (3.4) follows from the definition of the interior product. O

3.2.3 The operator i,

We define the operator 0, , on sections of A®*A* to be the interior product by the
2-form-valued vector ™).

Lemma 3.3. a) The operator 0., is a derivation of degree +1 of the graded
algebra T'(A\*A*), which vanishes on functions.
b) For ¢ > 1 and for all ay, ..., o, € I'(A%),

q
(35)  Srplar Ao Aag) =Y (D)D) Aag A NG A Ay
k=1

Proof. a) Since d,, is the interior product by a 2-form-valued vector, it is a
derivation.
b) Equation (3.5) follows from the definition of the interior product. O

Remark 3.1. Similarly, an operator of degree —1 on multivectors can be defined
as the interior product by the vector-valued 2-form (). This operator and all
three operators defined above are C*°(M)-linear and can therefore be defined
pointwise.

3.3 A vector field

Since i1 is a section of A*, 7 1) is a section of A. We set

(3.6) Yiw = 7 (ix0).
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Proposition 3.1. For any section o of A*,

. 1
(37) <a, Yﬂ,w >= _Zﬂ'ﬁ(a)/\ﬂ'w = § Trv,,
where TrW,, is the trace of the endomorphism of A* defined by
(3.8) Vo (0) = @ (e, ),

for each section (3 of A*.

Proof. From the definition of Y; ,, using the skew-symmetry of 7#, we obtain
<, Yy >=< a, (i) >= — < iz, wa >
which is indeed equal to —i s (4)a-?, While the trace of W, is
< PP (a, ), ep >= (rla, ek o) =< b, TP ATt A ey >,

where e, and €* are dual local bases of sections of A and A*. The conclusion
follows from the relation m = —% ek A ey ]

Proposition 3.2. The operators on sections of N*A*, 0z, 0., and iy, are
related by

(3.9) lin, O] = 20, — iy, ,, -

Proof. Since i, is of order 2 and of degree —2, and 6, = iy 1s of order 1 and
of degree 1, their commutator is of order < 2 and degree —1. Introducing the
big bracket as in [14], we know that the term of order 2 in the commutator is the
interior product by the big bracket {r, 1/} of m and ¢V (see [9]). A computation
shows that ¢ = £{m (")}, therefore the term of order 2 is 2i,e = 20, ,. If a
is a 1-form, then [ir, 0y p]o = irim,10, while

—iy, 0 = — < i), 0 >=< i), T >= iy inth.

Thus equation (3.9) is satisfied for 1-forms. It follows that the term of order 1 in

the commutator is —iy, . O

4 Lie algebroids with a twisted Poisson struc-
ture

4.1 Lie algebroids

We now assume that the vector bundle A is a Lie algebroid over the base manifold
M, with anchor p. We recall that p is a Lie algebroid morphism from A to 7M.
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We denote the Lie bracket of sections of A and the Gerstenhaber bracket on
the graded commutative algebra, I'(A®*A), obtained by extending it as a graded
biderivation, by the same symbol, [ , |. We recall that by definition [a,.] is a
derivation of degree |a| — 1 of I'(A®*A), where |a| is the degree of a. For a € I'A
and f € C®(M), [a, f] = p(a) - f and, for all ay,...,a4,b1,...,b, € TA ¢ >1
r =1,

(4.1)

£

.
[ar A Aag, biA A =D 3 (1) ag, b Aa A - AGLA- - AagAbiA- - AbgA- - -Aby.
k=1/¢=1

We shall also consider the differential d4 on I'(A®*A*) which is such that, for
feC>®(M),daf(a) =p(a)- f, for all a € T'A, and for a ¢-form «, ¢ > 1,

(dac)(ao, .ag) = > (=1)¥p(ar) - (alao, ... @k, ..., a,))

0<k<g

§ : k+€ o~ -~
+ ak,ag],ao,...,ak,...,ag,...,aq),
0<k<t<q

for all ag,...,a, € 'A. The Lie derivation of forms by a section X of A is the
operator £ = [ix,da]. When A is TM with the Lie bracket of vector fields,
the differential d4 is the de Rham differential of forms, and the Lie derivation
coincides with the usual notion.

4.2 Twisted Poisson structures

By definition, (A, 1) is a Lie algebroid with a twisted Poisson structure if 7 is
a section of A2A and ) is a d4-closed section of A®A* such that

(4.2) S = (W

To each function f € C*(M) is associated the section Hy of A, called the
hamiltonian section with hamiltonian f, defined by

(4.3) Hy = 7*(daf) = =[m, f].
The bracket of two functions f and g is then defined as

{f,9} =1[Hy,g].

This bracket is skew-symmetric and satisfies the following modified Jacobi identity,

for all f,g,h € C*(M),

(4'4) {{fa g}a h} + {{gv h}v f} + {{hv f}vg} = %D(Hf’ Hg7 Hh) .
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This relation is equivalent to
Hipgy = [va Hg] + ¢(1)<Hf7 Hy).

When a twisted Poisson structure is defined on the Lie algebroid T'M, the
manifold M is called a twisted Poisson manifold. The following results were proved
by Severa and Weinstein [15] in the case of A = TM and extend to the case of
any Lie algebroid A. See [14] for the case of Lie algebroids.

Theorem 4.1. Let (A, 7, 1) be a Lie algebroid with a twisted Poisson structure.
Then A* is a Lie algebroid with anchor p o ©*, where p is the anchor of A, and
Lie bracket of sections, a and (3, of A*,

(4.5) [, Bl = [, Blx + P (e, B),
where [, |, is defined by

(46) 0, Bl = LytalB — Largr — da(m(ar, 8).

The differential of the Lie algebroid A* is

(4.7) Ay = dx +d,

where, for X € T(A*A), d. X =[x, X], and d, , is defined in 3.2.2.
The map 7t satisfies

o, Blaw = [Tra, 7).

The case where 1) = 0 is that of a Lie algebroid with a Poisson structure, i.e.,
bivector 7 such that [7, 7] = 0, and the pair (A, A*) is also called a triangular Lie
bialgebroid. If moreover A = TM, we recover the case of a Poisson manifold.

Remark 4.1. When 7 is an arbitrary bivector and ¢ a 3-form, one can still
define a bracket [, ], which does not in general satisfy the Jacobi identity, and
a derivation, d,, which is not in general of square zero.

Proposition 4.1. Given a bivector m and a 3-form 1, the vector field Yy, defined
by equation (3.6) satisfies
(dyYaw)(, )
= —inda(igsanmsgh)+ < (N7, da(a A B) > + < datp, m ATt AT >,
for all a« and 5 € T'(A").

Proof. We shall make use of the fact (see, e.g., [10]) that A*z* is a chain map,
that is to say, for any positive integer q,

(4.8) dpoy o NI = — NP 700 dy.
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Thus
dﬂ',wYﬂ,w = dW,szﬂ(iﬂw) = —(/\Q’ITﬂ)dAiﬂw,
which implies
(dmeWﬂ/))(a? ﬁ) = irﬁa/\wﬁﬂdAiwz/}
- iﬂﬁa/\wﬁﬁ[d/la Zw]w_ < indA¢, WﬁOé N Wﬁﬂ > .
The first term is

iwﬂa/\ﬂﬁﬁ[dAv Zﬂ]w = [iﬂﬁa/\ﬂ'ﬁﬂv [dAa ZW]]¢ + [dA7 iﬂ]iwﬁa/\ﬂﬁﬁ¢'

The analogue of the Cartan relation for Lie algebroids (see, e.g., [9]) shows that

[Z.ﬂ'ua/\wﬁﬁv [d/h ZT(H == i[ﬂﬁaAﬂuB,ﬂ}j

where the bracket on the left-hand side is the graded commutator, while the
bracket on the right-hand side is the Gerstenhaber bracket of sections of A*A. To
conclude the proof, we express < [rfa A 73, 7], 1 > in terms of da(a A 3). By
equation (4.8),

[T A6, 7] = dp (TP A 7))

= dmb(yrﬁa ATHG) — C_i,r,w(ﬁﬁa ATEB) = —(APrh)dala A B) — C_iﬂ,d,(WﬁOé ArtB).

By equation (3.4),
< dwﬂ/;(ﬂ_ua N ﬂ_uﬂ)a w >

=< (N7 (intat) A 76,0 > — < (N7 (imegt)) A Tha, ¢ >= 0,
since the operator A?7* is symmetric. Therefore,
< [MPa AT B, 7], >= — < (AP7Hda(a A B), 0 > .
The proposition follows. [

Corollary 4.1. If (A, 7, ) is a Lie algebroid with a twisted Poisson structure,
the dy -coboundary of Yy, satisfies, for all a and 3 € T'(A*),

(49) (dﬂ’ﬂ/JYﬂ'ﬂ/})(aa B) = _iﬂ'dA(iﬂ'ﬁa/\ﬂ'ﬁﬁw> + % < [7T7 77]7 dA(CV A ﬁ) > .

We shall make use of this formula in the proof of Theorem 5.2.
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5 Generators of the Gerstenhaber algebra of a
twisted Poisson structure

By definition, a generator of a Gerstenhaber algebra, (A, [, ]a), is an operator u
on A such that
(5.1) a,bla = (=1)(u(ab) — u(a)b — (~1)au(b)),

for all @ and b € A.
It is clear that any two generators of a Gerstenhaber algebra differ by a deriva-
tion of the underlying graded commutative algebra.

Theorem 5.1. The operator Ox + 9., where Or = [da,ix], is a generator of the
Gerstenhaber algebra (I'(A*A*), [, |rp) associated to the Lie algebroid A with the
twisted Poisson structure (m,1)).

Proof. By definition of the Lie algebroid bracket of A*, for 1-forms, o and f3,
[, Bl = e, Bln + 9@ (a, ).

The differential operator, d,, is of order 2 and of degree —1. Therefore, for each
a € I'(A*A*), the map

B (=1)03 () (8) = (—1)(0x(a A B) — Oz A B — (—1)lae A 0 3)

is a derivation of degree || — 1. Since it satisfies the condition of skew-symmetry
(2.1), it is enough to show that it coincides with [a, 8], when « is of degree 1 and
0 is of degree 0 or 1. If 3 is a O-form, f, then

(=13 (a)(8) = (~1)*N(daf Niza — in(daf N a)) .

When « is a 1-form, this expression is equal to i,(daf Aa) =< daf, m*a >, which
is [a, f]x by definition. When « and /3 are 1-forms,

(=1)®F (a)(5)

=da(m(a,B)) +iz(daa A B) —iz(a ANdaB) — (izdac)B + alizdaf) ,
while
[Oé, 6]# = iwﬁadAﬁ - iwﬁﬂdAa + dA(’Tl'(CY, /8)) ’
and both expressions coincide since ir(daa A 3) — (ixdac)f = —izpdac, as can
be easily shown.
We now consider the bilinear map («, 3) — (—1)“"'(1)3# . () () which coincides

with ) for a and 3 of degree 1 and vanishes if a or 3 is of degree 0. By (2.1),
it is skew-symmetric in the graded sense and, for each «, it defines a derivation
of degree |a| — 1, since 9, , is a differential operator of order 2. Therefore this
bilinear map is the required extension of 1)(?). O
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But the square of the generator 9, + 9, ,, does not vanish in general.

Remark 5.1. When 7 is an arbitrary bivector and ¢ a 3-form, the extension
of bracket [, | as a biderivation on I'(A®*A*) is not in general a Gerstenhaber
algebra bracket. However the proof of the preceding theorem shows that the
operator O; + 0, ,, is a “generator” of this bracket, in the sense that it satisfies
relation (5.1).

Lemma 5.1. Let 0 be a generator of the Gerstenhaber algebra I'(A*E) of a Lie
algebroid E, and let U be a section of E*. Then O + iy is a generator of square
zero of T(A*E) if and only if 0° = ig,u.

Proof. The generalization of formula (2.4) in [12] (see, e.g., [8]) implies
(0+iv)* =0 +10,iv] = 0> — tauu,
which proves the claim. O

Theorem 5.2. The operator O, + 0, , + iy, , 1S a generator of square zero of the
Gerstenhaber algebra (I'(A*A*), [, =) associated to the Lie algebroid A with the
twisted Poisson structure (m,1)).

Proof. For 1-forms « and 3, compute

(aﬂ' + Qw,d))(a A ﬂ) = —dA(TF(CM, 6)) - Z‘71’dA(Oé N 6) + iﬂﬁa/\rrﬁﬁw .

Since J, ,, vanishes on 1-forms, and since drda(7(c, 3)) = 0,

(aﬂ + Qn,w>2(05 A\ ﬁ) = Z’ﬂdAiﬂ<dA<Oé A ﬁ)) - iﬂdA(iwﬁa/\wuﬂw) .

For any closed 3-form 7, [[ir, dal, ix|T = 2ixdiT. Since [[ir, da], ix| = iz ), where
the bracket on the right-hand side is the Gerstenhaber bracket of multivectors,

we obtain . .
IndgleT = 5[[2}” dal,iz]T = Ei[ﬁ,ﬂ]r
Therefore, in view of Corollary 4.1, when 7 and ) satisfy the equations of a twisted

Poisson structure,

(Or + 0r ) (A B) = ia, v, (A B).

The theorem then follows from Theorem 5.1 and the preceding lemma applied to
the Lie algebroid £ = A*. m

We recall that a Gerstenhaber algebra equipped with a generator of square
zero is called a Batalin-Vilkovisky algebra or, for short, a BV-algebra. We can
reformulate the preceding theorem as follows.

If (A,m,v) is a Lie algebroid with a twisted Poisson structure, the algebra
(D(AA*), [, law) is a BV-algebra, with generator Or + 0, + iy, -
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6 Generators and the modular class

For simplicity, we shall assume that the vector bundle A is orientable, i.e., admits
a nowhere-vanishing form of top degree, A € I'(AY A*), where N is the rank of A,
which we call a volume form. If the bundle is non-orientable, densities must be
used instead of volume forms, and the proofs need not be changed.

6.1 A generator of square zero

The N-form X\ defines an isomorphism x, of vector bundles from A®*A to A®*A* by
x,V = iy A, which induces a map on sections denoted in the same way. If V is a
p-vector, then *,V is an (N — p)-form.

Given a twisted Poisson structure on the Lie algebroid A, consider the operator

aﬂ,w,)\ = — k) dw,@[) *;17
where d , is the differential (4.7).

Proposition 6.1. The operator O, s a generator of square zero of the Ger-
stenhaber algebra (D'(A*A*), [, |xy) associated to the Lie algebroid A with the
twisted Poisson structure (m,1)).

Proof. The square of O, \ vanishes since d,, is a differential. It is well-known
that conjugating the differential of the Lie algebroid by *, yields the opposite of
a generator of the Gerstenhaber bracket. See, e.g., [8]. m

6.2 Properties of sections X, and Y;

In order to generalize the modular vector fields of Poisson manifolds, we shall first
consider the section X \ of A such that, for all o € T'(A4%),

(6.1) <o, Xpa> A= LA N — (ipdsa) ),

TFuOé

where £4 is the Lie derivation. Since the right-hand side of the previous expression
is C°°(M)-linear in «, the section X ) is well-defined.

In particular, Lﬁf)\ =< daf, Xz > A, where, as above, Hy is the hamiltonian
section with hamiltonian f € C°°(M). Thus, when A = T'M, the vector field X )
satisfies, for each f € C*(M),

(6.2) Ly A= (Xen- N,
i.e., the function X ,- f is the divergence of H; with respect to the volume form A.

Lemma 6.1. The section X, \ satisfies

(6.3) DA = —ix. A
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Proof. We shall make use of the fact that for any n € ['(A®*A*), n Ai A\ = in A\
By the definition of X j,

aNix, A= da(iza\) — (ixdac) ),
for each 1-form «. Since ) is a form of top degree, i.:,A = a A iz A. Therefore
aNix, A=daa Nig\ — a Adgiz\ — (izdaa) N = —a A dgiz) .
Thus ix, A = —daiA = =0\ O
We now consider the section Y; ,, defined by (3.6).

Lemma 6.2. The section Y, satisfies

(6.4) O ph = —2iy, A .

Proof. Let & A Q be a decomposable form-valued bivector. Then
ienQA = N i = ¢ *k\ Q = %3 1¢Q = ii.QA

where ¢ is the left exterior product by £. Let (ex) and (¢F), 1 < k < N, be
dual local bases of sections of A and A*, such that A = ¢! A--- A€V, Let 0 =
%af,fem ® er A ep. Then iz\ = ig), where S = J,’jfeg is twice the trace of o with

respect to the first index. If 0 = ¢@ | by formulas (3.2) and (3.7), S = —2Y,,,. O

We remark that 7 and v need not satisfy the axioms of a twisted Poisson
structure in order for the results of these two lemmas to be valid. Lemma 6.1
expresses the fact that the isomorphism *) identifies the vector field X, y with
the (N — 1)-form —0,\ = —dai,\, a property which is valid for the modular
vector fields of Poisson manifolds [8] [16].

6.3 The modular class

Set

(6.5) Znypr = Xox+ Yoy,
where Y; ,, is defined by (3.6).

Proposition 6.2. The section Z , \ satisfies the relation

(66) aﬁﬂﬁ,)\ - (aﬂ + Qﬂ',’[[] + Z.Yw,w) = iZw,w,A'

Proof. Because both 0 4 x and 0r + 9, , + iy, , are generators of the same Ger-
stenhaber algebra, they differ by the interior product by a section of A. It is
enough to evaluate their difference on the form of top degree A, and the result
follows from the fact that 0, ;1 A = 0, together with Lemmas 6.1 and 6.2. O
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By the general properties of [8], we obtain

Theorem 6.1. The section Zryx = Xax + Yry of A is a dry-cocycle. The
cohomology class of Z . is independent of the choice of A.

Proof. In fact, it follows from Lemma 5.1 that the difference of two generating
operators whose squares vanish is the interior product by a 1-cocycle. So the
fact that dr 2,y = 0 is a consequence of Theorem 5.2 and of Proposition
6.1. Replacing the form of top degree A by the form f\, where f is a nowhere-
vanishing smooth function on the base manifold, adds the coboundary d,(In |f|) =
dry(In|f]) to Xy 5, therefore Z , sy and Z,  \ are cohomologous cocycles. [

Remark 6.1. One can prove directly that d, 2 4 » = 0, but we have not found
a proof simpler than the one given here.

Definition 6.1. The section Z, ,  is called a modular section (or modular vector
field) of (A, m, ). The d. 4-cohomology class of Z, ,  is called the modular class
of the Lie algebroid A with the twisted Poisson structure (7, ), and A is called
unimodular if its modular class vanishes. When A = T'M, the modular class of
(TM,m,) is called the modular class of the twisted Poisson manifold (M, ).

The modular classes of twisted Poisson manifolds generalize the modular classes
of Poisson manifolds. If 1 = 0, then Z; ,\» = X; , the generator 0 4\ reduces
to Ox\ = — %), dw*gl, and relation (6.6) reduces to

(6.7) Ory = Or = ix,
a relation valid for the modular vector fields of a triangular Lie bialgebroid, in

particular of a Poisson manifold [8].

6.4 Properties of the modular sections

We now list properties of the modular sections which generalize the properties
of the modular vector fields of Poisson manifolds. The modular vector fields of
Poisson manifolds and triangular Lie bialgebroids satisfy

*)\Xm)\ = _aw/\ )
whereas in the twisted case, equation (6.6) implies
(68) */\Zﬂ'ﬂl),)\ = —((971- -+ Qﬂﬂﬂ + iyﬂ,’¢>)\ .

The modular vector fields of Poisson manifolds and triangular Lie bialgebroids
satisfy *y X x» = —d %), whereas in the twisted case, in view of Proposition 3.2,

(6.9) 3 Zrgpn = —(da+ 0z y) 2T =30, 4 A
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In the untwisted case, the modular vector fields satisfy relation (6.1) for any
1-form «, and therefore
<o, Xpa>A=L4 )

WuOé

for any d4-closed 1-form. In the twisted case, adding relations (6.1) and (3.7), we
obtain
<, Zrgpr > A =LA —in((da+ 6rp)a) A .

We have used the operator d,, introduced in (3.5) to write the term i .1 as
0r . The differential d4 of the Lie algebroid A is twisted into the derivation

(6.10) damy = da+ Ony

of T'(A®*A*), which is no longer of square zero, and the modular section Z, \
satisfies

(6.11) <, Tngpr > N=LA4 N,

for any da ,-closed 1-form a.

6.5 The unimodular case

When (A, m,) is unimodular, i.e., the class of the modular section Z, , , van-
ishes, the homology and cohomology are isomorphic, the isomorphism being, in
fact, defined at the chain level. By definition, the homology HF¥(A) of a Lie alge-
broid with a twisted Poisson structure, (A, 7, ), is the homology of the complex
(D(A®A%), 0 + 0, +iv, ). The untwisted case, generalizing the Poisson homol-
ogy of Koszul and Brylinski, was studied by Huebschmann in the framework of
Lie-Rinehart algebras [5] [6] and by Xu [17]. The cohomology Hy ,,(A*) of a Lie
algebroid with a twisted Poisson structure is the cohomology of the Lie algebroid
A* defined in Theorem 4.1, i.e., the cohomology of the complex (I'(A*A), dy ).

Proposition 6.3. If (A, 7, 1) is unimodular, for all k € N, HTY(A) ~ HTJXJ'“(A*),
where N is the rank of A.

This proposition follows from the results of [5] and [6], or [17]. However, to
make this paper self-contained, we present a proof.

Proof. Let X\ be a nowhere-vanishing form of top degree, and compare Oy fa
and Or y x, where f is a nowhere-vanishing function on M. Then, by the graded
Leibniz identity, for any multivector X and any function g,

de(9X)=[m g NX+gd; X =—H,NX +g d. X.
Since d, ,, is C°°(M)-linear, this relation implies

dep(9X) = —H, N X + g drp X.
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For any p-form «,
Onpir(@0) = — 5px dry *;/\1 = —kydpy ¥y a+ fry (H% A#yta)

= ﬂ—vkaa —I— fZHla = aﬂ7w7>\a —I— ZHln‘f‘a'
7

We have used the fact that ix o*), = %) ocx, where ex is the left exterior product
by X, which implies that (X A *,'a) = ixa.

If the modular class vanishes, there exists g € C*°(M) such that Z, ., = H,.
Set f =e 9. Then

On + 0y +iy, y = Orypx— iz, = Orgpx — tH, = On g fx -

In other words, the map V' +— x.V is a chain map from (I'(A*A),d,) to
(D(A*A), O + 0y + iy, ,)- a

7 Comparison with the ELW-modular class

As stated in Theorem 4.1, when (A, 7, %) is a Lie algebroid with a twisted Poisson
structure, the dual vector bundle A* is a Lie algebroid with anchor p o 7* and
bracket [ , ]r,. Since in [6] and [4], general notions for Lie algebroids were
defined, a comparison is in order. In [4], Evens, Lu and Weinstein defined the
characteristic class of a Lie algebroid with a representation in a line bundle and
the modular class of a Lie algebroid £ — which we shall call the ELW-modular
class of E. We shall compare what we have called the modular class of (A, w, 1)
to the ELW-modular class of the Lie algebroid (A*,pon® [, ].4), and conclude
that in the case of A = T'M, the first is one half the second, a result that is not
valid in the case of a Lie algebroid in general.

7.1 The characteristic class

We recall the construction of [4]. Let E be a Lie algebroid over a manifold M,
with anchor p and Lie bracket of sections [, |g, and let D be a representation of
E on a line bundle L over M, x € TE — D, € End(I'L). By definition, the map
D is C®°(M)-linear and D,(fu) = fD.pu+ (p(z) - f)p, forall z € TE, p € T'L
and f € C*(M), and Dy, = [Ds, Dy, for all z and y in IT'E. The characteristic
class of E associated to the representation D on L is the class of the dg-cocycle
05 € I'(E*) defined by
D,s =<6,,x > s,

where s is a nowhere-vanishing section of L. If L is not trivial, the class of L is
defined as one half that of its square.
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Assume that 0 is a generating operator of the Gerstenhaber bracket, [, |g, of
[(A*E). Set

for z € TE and p € T(AVE). Then D? is a representation of E on ANE, and the
associated characteristic class is the class of the cocycle & € T'(E*) such that

<&rx>p=-—xNou.

If, in particular, (A, , 1) is a Lie algebroid with a twisted Poisson structure,
we can consider the Lie algebroid £ = A*, with Lie bracket of sections [, |, and
generator 0 = Jr + 0., + iy, . If A is a nowhere-vanishing section of T'(AYA*)
(or a density in the non-orientable case), then, by equation (6.8), OX = —iz_, A
The associated characteristic class is the class of the d,-cocycle § € I'A such
that

<a,0>A=aNiy

for all @ € I'(A*). Therefore,

A=< a, Zﬂﬂb’)\ > A ,

b, A

Proposition 7.1. The characteristic class of A* associated to the representation
(7.1), a— DY, of A* on AN(A*), where & = 0x + 0, + iy, . coincides with the

%4

modular class of the Lie algebroid A with the twisted Poisson structure (m,1)).

7.2 The ELW-modular class of A*

In [4], the modular class of a Lie algebroid E is defined as follows. Let L¥ =
ANE @ AVT* M, where n is the dimension of M. Define a representation D¥ of E/
on L¥ by

(7.2) Dfweou) =rwroaptws L () s

for z € TE and w ® pu € T(LF). Here L is the Lie derivation of forms on M by
vector fields.

Definition 7.1. The ELW-modular class of the Lie algebroid E is the character-
istic class of E associated to the representation D¥ of E on L”.

Proposition 7.2. The modular class of a twisted Poisson manifold is equal to
one half the ELW-modular class of its cotangent bundle Lie algebroid.

Proof. Let A be a volume form on M, i.e., a nowhere-vanishing section of AT M.
By definition, the ELW-modular class of the Lie algebroid 7" M is the class of the
vector field U such that

(7.3) <A, U>ARQAN=[, Az QA+ A® Lo\,
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for all 1-forms . For any generator 0 of the Gerstenhaber bracket [ , | .y,
[, Az = (Oa)X —a AOX .

If0=0,+09,,+iy,,, then da =< a, Yy > —irda, while, by equation (6.8),
O\ = —iz_, A, and therefore

[Oé, A]Wﬂﬁ = (< o, Zﬂ’d,’)\ + Y7r,1j) > —Z.WdOé)/\ .

Since by definition X 4 satisfies L 1, A = (< a, Xy > +izda)), the vector field
U is such that
<OK,U> ARAN=2 <Oé,Z7r’¢’)\ >ARQ M.

Therefore U = 27  ». O

In the Poisson case, d = 0, and 0;\ = —ix,_, A, and we obtain the relation
<a,U>A®@A=2<a,X;)>A®A\, which gives a new proof of the result of [4]
stating that the modular class of a Poisson manifold, defined as the class of X ),
characterized by an equation such as (6.2), is equal to one half the ELW-modular
class of the Lie algebroid (T*M, 7%, [, ].).

The simple relationship between the modular class of A = T'M and the ELW-
modular class of A* = T*M does not in general hold for a Lie algebroid with
a twisted Poisson structure. In particular, in Section 8, we shall show that the
two classes may be different for a Lie algebra considered as a Lie algebroid over a
point, even in the usual, untwisted case.

7.3 Modular class and gauge transformations

Assume that we are given, on the cotangent bundle T*M of a manifold M, two
Lie algebroid structures, denoted by (T*M, p, [, ]) and (T*M, o/, [, |') respectively,
together with a Lie algebroid isomorphism, o : T*M — T*M, over the identity
of the base M. According to formula (7.2), each Lie algebroid acts on LT =
ANYT*M @ N"T*M, where n is the dimension of M, and we denote by D and
D’ these representations. Define 7 : LT™M — LT™M by o s det(o)w, for all
w e (LM,

Lemma 7.1. The isomorphism 7 is an intertwining operator for the representa-
tions D and D' oo, i.e.,

(74) ;.(a)T((.U) = T(Da(JJ),

for alla € (T*M), w € T(LT™M).

Proof. For any sections wy and we of A"T* M, 7(w1 Qws) = (A"0)(w1) @ws. Hence
Dy T(w1 ® wa) = [o(), (A"0)(w1)] @ wa + (A"0) (1) ® Lyy(aaw2
= (A"0)([a,w1]) ® we + (A"0)(w1) @ Lyayws = det(0) Do(wi ® wo),

since ¢ is an isomorphism of Lie algebroids. O
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Choose a volume form A on T*M. Let U (resp., U’') be the representative of
the ELW-modular class of the Lie algebroid (T*M, p, [, |) (vesp., (T*M,p',[,]))

with volume form A (resp. u = +/|det(o)|\).

Proposition 7.3. The vector fields U and U’ are related by U ='o U’', where to
1s the transpose of o.

Proof. For some locally constant function € € {—1,+1}, T(A ®@ \) = eu ® p.
Therefore, by equation (7.4),

€Dyt @ p = T(DaA @ N).
By the definition of the modular vector field given by equation (7.3),
<o(a),U >ep@p=<a,U>1ARN).
Hence < o(«),U’ >=< a,U >, and the result follows. O

A twisted Poisson structure on a given manifold, M, can be modified by a
gauge transformation. Assume that B is a 2-form on M such that for all m € M,
the linear automorphism of 1) M, op : a — a + 4,5, is invertible. Define a

bivector 7’ by
(7" = a*(Id + B’ o 7¥) 1 |

where B’ : TM — T*M is defined by B’(X) = ixB. Then (7', — dB) is a
twisted Poisson structure that is said to be obtained by a gauge transformation

from (7, ) [15].

Proposition 7.4. A vector field X on M is in the modular class of (T M, 1))
if and only if X + wtix B is in the modular class of (TM,n' 1 — dB).

Proof. According to [15], the map op is a Lie algebroid isomorphism from 7*M
equipped with the Lie algebroid structure associated to (m,%) to T*M equipped
with the Lie algebroid structure associated to (7', ¢ —dB). It follows from Propo-
sitions 7.2 and 7.3 that its transpose, X — X + mfix B, maps modular class to
modular class. O

8 Examples

Example 1. The case where (A%7*)y) = 0. Whenever (M, ) is a Poisson
manifold and 1 is a closed 3-form satisfying (A%7%)y = 0, then (M, ) is a
twisted Poisson manifold. One can prove that the assumption (A37#)y) = 0 implies
Yz = 0. Hence, for any volume form A, the modular vector field of (M, m, ) is
equal to X, », which is the modular vector field of the Poisson manifold (M, 7). In
this case therefore, the modular class of the twisted Poisson manifold (M, , ) is
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equal to the modular class of the Poisson manifold (M, 7). This conclusion holds
more generally in the case of a Lie algebroid with a twisted Poisson structure of
this type.

Example 2. The case where 7* is invertible. Let (,1) be a twisted Poisson
structure on A such that = € T'(A%A) is of maximal rank at each point. Let w be
the non-degenerate 2-form such that w’ = (7¥)~'. One can show that the modular

vector field Z; 4 x, where A is the volume form w%, vanishes. The proof rests on

the properties dyqw = v and %w%’l = z‘ﬂw%. Therefore the Lie algebroids with

a twisted Poisson structure whose bivector is of maximal rank are unimodular, a
result which extends the fact that symplectic manifolds are unimodular.

Example 3. Twisted Poisson structures on Lie groups. Consider the
example of a twisted Poisson structure defined on a dense open subset of a Lie
group [15]. Let G be a Lie group with Lie algebra g, and assume that g is
equipped with an invariant non-degenerate symmetric bilinear form < , > For
any X € g (resp., a € g*), we denote by X € g* (resp., a € g) the image
of X (resp., a) under the isomorphism of g to g* (resp., g* to g) induced by
(, ). For any X € A°g, let X® and X be the corresponding right- and left-
invariant multivector fields. Dually, for any a € A®g*, we denote by ot and o’ the
corresponding right- and left-invariant forms. Then, for any o € g*, dal = (dya)*,
while daf! = —(da)®, where d, is the Chevalley-Eilenberg differential of g and d
is the de Rham differential.

The canonical 3-form ¢ on g, defined by ¥(X,Y, Z) = %<X, Y, Z]>, for X,Y
and Z € g, satisfies ¥ = 9)*. The corresponding bi-invariant form on G is called
the Cartan 3-form, and we shall denote it by the same symbol. It satisfies, for
any X € g,

(8.1) ix1) = —%(dQY)L and  ixry) = —%(dgf)R.

Let Gog be the dense open set of elements g € G such that —1 is not an
eigenvalue of Ad,. Equivalently, Gy is the subset of elements g € G such that
the linear map a — a’(g) + o (g) is an isomorphism from g* to T;G. A twisted
Poisson structure on Gy is given by 1 and the bivector 7 defined by

(ol + af) = 2(a* — o),
Proposition 8.1. The twisted Poisson manifold (Go, 7, 1)) is unimodular.
Proof. We first evaluate Y, on the 1-forms off + o, obtaining
iy, (0" + ") = —ipnmialrat) = —2ipp(al—aR)V-

By equation (8.1), we obtain

(8.2) iyﬂ7w<OéL + aR) = iﬂ((dga)L — (dga)R).
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We can choose a volume form A which is both left- and right-invariant. By defi-
nition,
(in,A (OéL + CYR)) A= Eﬂu(aLJraR))\ — (’iﬂd(OéL + CYR)) A

Since A is left- and right-invariant, L :(qryaryA = 2(Lor A — LyrA) = 0, thus
(8.3) ix,,(a" +a’) = —ir((dga)" — (dga)").
Equations (8.2) and (8.3) imply that Z, , , = 0. O

Example 4. Lie algebras with a triangular r-matrix. Let g be a real Lie
algebra of dimension N, and let r € A%g such that [r,r] = 0, this bracket being
the algebraic Schouten bracket on A®g. Such an r is called a triangular r-matriz.
Then g* is a Lie algebra with bracket [o, 3], = ad},0 — adjza. Let A be a

non-zero element in AVg*. The class that we have just defined is the class of the
element X, » of g such that

<, X\ > A= (0,a) N + dy(iyea ),
or, equivalently, by equation (6.3),
<o, Xon>A=—aA0A,

for « € g*. On the other hand, the ELW-modular class of g* considered as a
Lie algebroid over a point is the class, in the Lie algebra cohomology of g, of the
element X, , of g such that

< a,)?m >\ = [, A,

Since 0, generates the bracket [, |, [, Al = (9,@)A — A O, A. Thus the class of
X, is one half that of X, , if and only if dg(i,:,A) vanishes for all o € g*.

Example 4.1. Triangular r-matriz on the non-abelian 2-dimensional Lie algebra.
In this simple example, one class vanishes, while the other does not. Let g be the
non-abelian 2-dimensional Lie algebra with basis (eq, es) such that [e1, es] = ey,
with the triangular 7-matrix 7 = 7 = e; Aes, and ¢ = 0. For the dual basis (€', €?),
[€!,€?], = —€%, the dual Lie algebra is in fact isomorphic to g. Let A = €' A €2.
The modular vector X ) vanishes since iy, \A = —dgi, A and dgy vanishes on Ng.
On the other hand, the ELW-modular class of g is the class of )N(n,\ = —eq, and
this element is non-zero, therefore its class does not vanish.

Remark. The ELW-modular class of g* is equal to the class of the infinitesimal
modular character of g*, which is the element of g, a — Tr(ad,), and it also
coincides with the modular class of the linear Poisson manifold g, dual to the Lie
algebra g*. In the example above, alternatively, we can show that the constant
vector field X, = —e; is not globally hamiltonian with respect to the linear
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Poisson structure 7" on g, the dual of the Lie algebra (g*,[, |). If (z1,%2) are
the coordinates on g with respect to the chosen basis, and x € g, then 7" (z) =
—x9e1 A\ eg. Since, for a function u € C(g), dyru = [17,u] = CCQ((.?—;;Gl — 88—;162>,

the condition —e; = d,ru is clearly not realizable along the axis x5 = 0.

Ezample 4.2. Triangular r-matriz on sl(2,R). On g = sl(2,R), define 7 =
r = X,y A H, where X, X and H denote the usual basis of sly(R) such that
[H, Xy] = 2X,, [H,X_|] = —2X_ and [X;,X_] = H. The relation [r,r] = 0
is satisfied, hence (r,1) with ¢» = 0 is a twisted Poisson structure on s[(2,R).
In view of equation (6.8), in the particular case where ¢» = 0, for any non-zero
A € A’g*, the modular vector Z,., is defined by *3Zrx = —dgiy\, We choose
A=H*"NX7NX", where X7, X", H* is the dual basis, and we compute

*)\ZT,)\ = —dgiT/\ = —ngj =2H"A Xj — i2X+/\-

Hence the modular vector is Z, y = 2X and the modular class is not trivial.

It is straightforward to check that dgi,:,A vanishes for any o € sl(2,R)*.
Therefore, according to the above statement concerning the case of triangular
r-matrices, the ELW-modular class of the Lie algebra g* is equal to twice the
modular class. This conclusion can be verified by computing the infinitesimal
modular character of the Lie algebra g*.

Example 5. A twisted r-matrix. Let g be the Lie algebra of the group
of affine transformations of R?. Denote by ui,us a basis of R? (that we iden-
tify with the abelian subalgebra of translations) and e, ;, 7,5 € {1,2}, the basis
of gl(2,R) given by e; j(ur) = [ei;,ur] = djxu;. The dual basis is denoted by
(6?1’ 67,27 6;,17 6372, UT, UZ)

Define m =17 = €11 Aegp +us Aup and o = —(e] | +e3,) Auj Aus. It is easy
to check that ¢ is closed, and the following computation shows that (r,v) is a
twisted Poisson structure on g,

1
5[7’, r] = [er 1A\ eg0, us Aug) = (€11 —e22) Auy Aug = —(/\3rﬁ)((e{71—i-e;z)/\u’{/\u;).

To compute the modular field, we first evaluate
Yip = r”(eil +e5,) = €22 — €11
Then we set A =e5, Aej; AejyAes; Auy Auj, and we obtain
Xop ==, dgiyh = — % dg(efy Nesy Aub Auf + €55 Aefy Aeiy Aesy)

= — ' (elaAesy Ndg(ug Aui)) = ez — €1
Hence the modular class of (g,7,1) is 2(eg2 —e€11).

Remark. Whereas to a Lie algebroid with a Poisson structure, (A, ), is associ-
ated a Lie bialgebroid structure on (A4, A*), to a Lie algebroid with a twisted Pois-
son structure, (A, 7, 1)), is associated a quasi-Lie bialgebroid structure on (A, A*).
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This was proved by Roytenberg in [14]. The Lie algebroid structure on A* is that
described in Theorem 4.1, while the bracket on Ais [, |4+%™, and the associated
derivation of I'(A®*A*) is the operator d .y = da + 0, introduced in (6.10). If,
in particular, A is a Lie algebra g, and r € A%g and a dg-cocycle ¢ € APg* satisfy
the twisted Poisson condition, 3[r,r] = (A%*#)¢, then the pair (g, g*) becomes a
quasi-Lie bialgebra. To avoid confusion, we stress that the term “twisted” is used
here to denote an r-matrix which is not triangular but satisfies a non-linear con-
dition involving a 3-cocycle, while in the theory of Lie quasi-bialgebras, a“twist”
or “twisting” is the modification of an r-matrix by the addition of an element
t € A%g. The case of “twisted r-matrices” in the former sense deserves to be

further explored.
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