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Quasi-Poisson structures as Dirac structures

by Henrique Bursztyn, Marius Crainic,

and Pavol Ševera

Abstract

We show that quasi-Poisson structures can be identified with Dirac
structures in suitable Courant algebroids. This provides a geometric way
to construct Lie algebroids associated with quasi-Poisson spaces.

1 Introduction

In this note we use the theory of Courant algebroids to give a geometrical con-
struction of the Lie algebroids associated with quasi-Poisson spaces considered in
[5, 6]. Our main observation is that, just as ordinary Poisson structures, quasi-
Poisson structures [1] can be described as Dirac structures, but in a different
Courant algebroid.

Let M be a manifold, and let Xk(M) denote the space of k-multivector fields
on M . For a bivector field π ∈ X2(M), consider the bundle map

(1.1) π] : T ∗M → TM, β(π](α)) = π(α, β),

and the bracket on Γ(T ∗M) = Ω1(M) given by

(1.2) [α, β]π := Lπ](α)β − Lπ](β)α− dπ(α, β).

Let TM ⊕ T ∗M be equipped with its original Courant bracket [7]. In Poisson
geometry, we have the following well-known result:

Proposition 1.1 The following conditions are equivalent:

i) The bivector field π defines a Poisson structure on M ;

ii) T ∗M is a Lie algebroid with anchor (1.1) and bracket (1.2);

iii) Lπ := graph(π]) ⊂ TM ⊕ T ∗M is a Dirac structure.
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The equivalence between i) and iii) is one of the motivating examples for the
theory of Dirac structures [7, 8]; on the other hand, whenever Lπ is a Dirac
subbundle of TM⊕T ∗M , it inherits a Lie algebroid structure, and the equivalence
of ii) and iii) follows from the natural identification

(1.3) T ∗M
∼−→ Lπ, α 7→ (π](α), α).

This note concerns the analogous description of quasi -Poisson structures in
terms of Lie algebroids and Dirac structures. If g is a Lie quasi-bialgebra, it is
shown in [5, 6] that a quasi-Poisson g-action on M is equivalent to a certain Lie
algebroid structure on g ⊕ T ∗M (see Thm. 2.1 in Section 2). This is the analog
in quasi-Poisson geometry of the equivalence of i) and ii) above. The proof of
this result in [6] is purely algebraic, based on the construction of a degree-one
differential on Γ(∧(g∗⊕TM)). Our main result (Thm. 4.1) provides the analog of
iii): any quasi-Poisson g-structure on M can be identified with a Dirac structure

(1.4) L ⊂ d⊕ (TM ⊕ T ∗M),

where now the Courant algebroid in question is the direct sum of TM ⊕ T ∗M
and the Drinfeld double d = g ⊕ g∗. Moreover, this Dirac structure naturally
induces the Lie algebroid structure on g ⊕ T ∗M through an identification analo-
gous to (1.3). This completes the picture of the quasi-Poisson counterpart of the
equivalences in Proposition 1.1.

The description of quasi-Poisson spaces in terms of Lie algebroids has several
interesting consequences. It shows, in particular, that any quasi-Poisson g-space
carries a singular foliation (the “orbits” of the Lie algebroid). In the hamiltonian
context, these foliations have been studied in [1, 2] in order to relate quasi-Poisson
geometry to the momentum map theory of [3]. More generally, the Lie algebroids
of quasi-Poisson spaces are essential to unravel the connection between the theory
of D/G-valued momentum maps [1] and Dirac geometry, see [5, 6].

The paper is organized as follows: In Section 2 we recall Lie quasi-bialgebras,
quasi-Poisson spaces and their associated Lie algebroids; Section 3 recalls Courant
algebroids and Lie quasi-bialgebroids; In Section 4 we describe quasi-Poisson
spaces in terms of Dirac structures and prove our main result (Thm. 4.1). In
Section 5, we point out various interesting aspects of the Lie algebroids of quasi-
Poisson spaces from this new geometric point of view.
Acknowledgments: This note grew out of discussions that started during the
Poisson 2004 conference at the University of Luxembourg. We would like to thank
the organizers for the invitations and hospitality as well as the participants for
interesting discussions.
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2 Lie quasi-bialgebras and quasi-Poisson spaces

In this section we recall some definitions in quasi-Poisson geometry.
A Lie quasi-bialgebra [9] is a triple (g, F, χ), where g is a (finite-dimensional,

real) Lie algebra, F ∈ Hom(g, g ∧ g), and χ ∈ ∧3g, satisfying compatibility con-
ditions which are equivalent to the requirement that d = g ⊕ g∗ is a Lie algebra
with respect to the bracket:

[(u, 0), (v, 0)]d = ([u, v]g, 0),(2.1)

[(v, 0), (0, µ)]d = (−ad∗µv, ad∗vµ),(2.2)

[(0, µ)(0, ν)]d = (χ(µ, ν), F ∗(µ, ν)),(2.3)

for u, v ∈ g and µ, ν ∈ g∗. The Lie algebra (d, [·, ·]d) is called the Drinfeld double
[4] of the Lie quasi-bialgebra (g, F, χ).

Given a Lie quasi-bialgebra (g, F, χ), a quasi-Poisson g-space1 [1] is a smooth
manifold M equipped with a bivector field π ∈ X2(M) and a g-action ρM : g →
X1(M) so that

1

2
[π, π] = ρM(χ),(2.4)

LρM (v)π = −ρM(F (v)), for all v ∈ g.(2.5)

In (2.4), (2.5), we keep the notation ρM : ∧•g → X•(M) for the induced map of
exterior algebras.

We saw that the integrability condition of a Poisson bivector field is equiva-
lent to the Jacobi identity of (1.2), and the axioms of a Lie quasi-bialgebra are
equivalent to the Jacobi identity of [·, ·]d. Analogously, it is shown in [6] that the
compatibility conditions (2.4), (2.5) defining a quasi-Poisson action are equivalent
to the Jacobi identity of a certain bracket on Γ(g⊕ T ∗M) = C∞(M, g)⊕Ω1(M).
More precisely, we have [6]:

Theorem 2.1 Let (g, F, χ) be a Lie quasi-bialgebra, let M be a smooth manifold
equipped with a bivector field π, and let ρM : g → X1(M) be an R-linear map.
Then the following are equivalent:

1. ρM : g → X1(M) preserves brackets and makes (M, π) into a quasi-Poisson
g-space;

2. (A, r, [·, ·]A) is a Lie algebroid, where A = g⊕ T ∗M , r : g⊕ T ∗M → TM is
the bundle map

(2.6) r(u, α) = ρM(u) + π](α),

1We restrict our attention to Lie quasi-bialgebras and their infinitesimal actions; the reader
is referred to [1, 11] for their global versions.
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and the bracket [·, ·]A on C∞(M, g)⊕ Ω1(M) is given by

[(u, 0), (v, 0)]A = ([u, v]g, 0),(2.7)

[(v, 0), (0, α)]A = (−iρ∗M (α)(F (v)),LρM (v)α),(2.8)

[(0, α)(0, β)]A = (iρ∗M (α∧β)χ, [α, β]π),(2.9)

for α, β ∈ Ω1(M), and u, v ∈ g, considered as constant sections in C∞(M, g)
(the bracket is extended to general elements by the Leibniz rule).

A direct corollary of this result is that the generalized distribution defined by
ρM(u) + π](α) ⊆ TM , u ∈ g, α ∈ T ∗M , is integrable.

Theorem 2.1 is the counterpart for quasi-Poisson spaces of the equivalence of
i) and ii) in Proposition 1.1. The remainder of this note is devoted to showing
that this Lie algebroid structure on g⊕ T ∗M is inherited from a Dirac structure.

3 Courant algebroids and Lie quasi-bialgebroids

A Courant algebroid [12] over a manifold M is a vector bundle E → M equipped
with a nondegenerate symmetric bilinear form 〈·, ·〉 on the bundle, a bundle map
ρ : E → TM and a bilinear bracket [[·, ·]] on Γ(E) such that for all e, e1, e2, e3 ∈
Γ(E), f ∈ C∞(M) the following is satisfied:

1. [[e1, [[e2, e3]]]] = [[[[e1, e2]], e3]] + [[e2, [[e1, e3]]]];

2. [[e, e]] = 1
2
D〈e, e〉;

3. Lρ(e)〈e1, e2〉 = 〈[[e, e1]], e2〉+ 〈e1, [[e, e2]]〉;

4. ρ([[e1, e2]]) = [ρ(e1), ρ(e2)];

5. [[e1, fe2]] = f [[e1, e2]] + (Lρ(e1)f)e2,

where D : C∞(M) → Γ(E) is defined by 〈Df, e〉 = Lρ(e)f . We chose to use
non-skew-symmetric brackets as in [18].

A subbundle L ⊂ E is called a Dirac structure (or a Dirac subbundle) if
it is maximal isotropic with respect to 〈·, ·〉 and if Γ(L) is closed under [[·, ·]]. The
latter requirement is referred to as the integrability condition.

The following two standard examples will play a central role in this note.

Example 3.1 A Courant algebroid over a point is just a Lie algebra d equipped
with an ad-invariant nondegenerate symmetric bilinear form 〈·, ·〉d (condition 3.).
In this case, a Dirac structure is a Lie subalgebra g ⊂ d which is a maximal
isotropic subspace.
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Example 3.2 The vector bundle TM ⊕ T ∗M over M equipped with the sym-
metric pairing 〈(X, α), (Y, β)〉 := β(X) + α(Y ) and bracket on X1(M) ⊕ Ω1(M)
given by

(3.1) [[(X, α), (Y, β)]]M := ([X, Y ],LXβ − iY dα)

is the (non-skew-symmetric version [12, 18] of the) original Courant algebroid of
[7].

Important examples of maximal isotropic subbundles are graphs of bundle
maps ω] : TM → T ∗M (resp. π] : T ∗M → TM) associated with 2-forms ω ∈
Ω2(M) (resp. bivector fields π ∈ X2(M)); in this case, the integrability condition
amounts to dω = 0 (resp. [π, π] = 0, where [·, ·] is the Schouten bracket).

More general Courant brackets on TM ⊕ T ∗M are considered in [20].

We restrict our attention to Courant algebroids E → M that can be written
as E = L⊕K, where L is a Dirac structure and K is a complementary isotropic
subbundle of L (not necessarily satisfying the integrability condition). We identify
K with L∗ using 〈·, ·〉 so that E = L ⊕ L∗ is now equipped with the symmetric
form

〈(l1, ξ1), (l2, ξ2)〉 = ξ2(l1) + ξ1(l2), l1, l2 ∈ Γ(L), ξ1, ξ2 ∈ Γ(L∗).

The natural projections are denoted by prL : E → L and prL∗ : E → L∗.
If [·, ·]L is the restriction of [[·, ·]] to Γ(L), then (L, [·, ·]L, ρ|L) is a Lie algebroid.

The associated coboundary operator is denoted by

dL : Γ(∧•L∗) → Γ(∧•+1L∗),

and the Schouten-type bracket on Γ(∧L) is denoted by

[·, ·]L : Γ(∧kL)× Γ(∧mL) → Γ(∧k+m−1L).

For each l ∈ Γ(L), we denote the corresponding Lie derivative operator on Γ(∧L∗)
by Ll, see e.g. [16, Sec. 2]. Dually, we may define a bracket [·, ·]L∗ on Γ(L∗) by

(3.2) [ξ1, ξ2]L∗ := prL∗([[ξ1, ξ2]]), ξ1, ξ2 ∈ Γ(L∗).

The bracket (3.2) and the map ρ|L∗ : L∗ → TM then induce, as before, a derivation
dL∗ of degree +1 on Γ(∧L) and a bracket [·, ·]L∗ of degree −1 on Γ(∧L∗), but now
dL∗ is just a “quasi” differential (it may not square to zero) and [·, ·]L∗ is just
a “quasi” Gerstenhaber bracket, see [19]. We keep the notation Lξ for the Lie
derivative operator on Γ(∧L) associated with ξ ∈ Γ(L∗).

It follows from condition 3. in the definition of [[·, ·]] that, for l ∈ Γ(L) and
ξ ∈ Γ(L∗), we have

[[(l, 0), (0, ξ)]] = (−iξdL∗l,Llξ).
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Hence, for l1, l2 ∈ Γ(L) and ξ1, ξ2 ∈ Γ(L∗), the bracket [[·, ·]] on E = L ⊕ L∗ has
the form
(3.3)
[[(l1, ξ1), (l2, ξ2)]] = ([l1, l2]L− iβdL∗l1 +Lξ1l2 +Φ(ξ1, ξ2), [ξ1, ξ2]L∗ +Ll1ξ2− il2dLξ1),

where Φ : Γ(∧2L∗) → Γ(L) is given by

(3.4) Φ(ξ1, ξ2) = prL([[(0, ξ1), (0, ξ2)]]), ξ1, ξ2 ∈ Γ(L∗).

(We often view Φ as an element in Γ(∧3L).)

Example 3.3 We saw in Example 3.1 that Courant algebroids over a point are
Lie algebras (d, [[·, ·]]) equipped with an ad-invariant nondegenerate symmetric
form. If one can write d = g⊕k, where g ⊂ d is a maximal isotropic Lie subalgebra
(i.e., a Dirac structure) and k is an isotropic complement, then (d, g, k) is called
a Manin quasi-triple. These are essentially the same as Lie quasi-bialgebra
structures on g, see e.g. [1]:

On one hand, if (g, F, χ) is a Lie quasi-bialgebra and d = g⊕ g∗ is its Drinfeld
double, then it is easy to check that (d, g, g∗) is a Manin quasi-triple. Conversely,
let (d, g, k) be a Manin quasi-triple, and let us identify k with g∗. If we define
F ∈ Hom(g, g∧ g) as the dual of the bracket [·, ·]g∗ ∈ Hom(g∗ ∧ g∗, g∗) as in (3.2),
and if we set χ = Φ ∈ ∧3g as in (3.4), then writing the Lie bracket [[·, ·]] on d as in
(3.3), one can check that it coincides with (2.1),(2.2) and (2.3). Hence (g, F, χ) is
a Lie quasi-bialgebra.

Following Example 3.3, a Lie quasi-bialgebroid [18, 19] is defined as a Lie
algebroid (L, [·, ·]L, ρL) together with a bundle map ρL∗ : L∗ → TM , an element
Φ ∈ Γ(∧3L), and a skew-symmetric bracket [·, ·]L∗ on Γ(L∗) such that (E, [[·, ·]], ρ)
is a Courant algebroid, where E = L ⊕ L∗, ρ = ρL + ρL∗ and [[·, ·]] is given by
(3.3). If (L∗, [·, ·]L∗ , ρL∗) is a Lie algebroid, then we call the pair (L, L∗) a Lie
bialgebroid [12, 16].

Example 3.4 In the case of E = TM ⊕ T ∗M with bracket [[·, ·]]M as in Example
3.2, both TM and T ∗M are Dirac subbundles of E, so they form a Lie bialge-
broid. (For the “twisted” Courant algebroids of [20], only T ∗M is integrable, so
(T ∗M, TM) is a Lie quasi-bialgebroid [19]).

Let us consider an element Λ ∈ Γ(∧2L∗) and the associated bundle map Λ] :
L → L∗. Let LΛ ⊂ L⊕ L∗ = E be given by the graph of Λ].

Proposition 3.5 LΛ is a Dirac structure if and only if Λ satisfies

(3.5) dLΛ +
1

2
[Λ, Λ]L∗ = Λ](Φ).

Proposition 3.5 can be proven along the same lines of [12, Thm. 6.1], which is
the particular case where Φ = 0; see also [19].
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4 Quasi-Poisson actions as Dirac structures

In this section we consider the Courant algebroid given by the direct sum of the
Courant algebroids in Examples 3.1 and 3.2,

(4.1) E := (g⊕ g∗)⊕ (TM ⊕ T ∗M),

with bracket

(4.2) [[(a1, b1), (a2, b2)]] := [(u1, µ1), (u2, µ2)]d + [[(X1, α1), (X2, α2)]]M ,

where ai = (ui, µi) ∈ g ⊕ g∗, bi = (Xi, αi) ∈ Γ(TM ⊕ T ∗M), i = 1, 2 (we
regard ai as constant sections and the bracket is extended to arbitrary sections in
C∞(M, g⊕ g∗) by the Leibniz rule), and anchor

(4.3) ρ : E → TM,

given by the natural projection of E onto TM . Note that E = L ⊕ L∗, where
L = g⊕T ∗M is a Dirac structure and L∗ = g∗⊕TM is an isotropic complement.

We now show that quasi-Poisson spaces can be naturally identified with certain
Dirac structures in E. Suppose that (g, F, χ) is a Lie quasi-bialgebra, π ∈ X2(M)
is a bivector field on M and ρM : g → X1(M) is a linear map. It follows from the
natural identification

(4.4) Γ((∧2g∗)⊕ (g∗ ⊗ TM)⊕ (∧2TM))
∼−→ Γ(∧2(g∗ ⊕ TM)) = Γ(∧2L∗)

that the pair (ρM , π) defines an element Λ ∈ Γ(∧2L∗). As before, let Λ] : L → L∗

be the associated bundle map.
We have the following quasi-Poisson counterpart of Prop. 1.1:

Theorem 4.1 The following are equivalent:

1. LΛ = graph(Λ]) is a Dirac structure in E;

2. ρM : g → X1(M) defines a quasi-Poisson action on (M, π);

3. (g ⊕ T ∗M, r, [·, ·]A) is a Lie algebroid (with r defined by (2.6) and [·, ·]A
defined by (2.7),(2.8) and (2.9)).

Proof: By Proposition 3.5, condition 1. is equivalent to the Maurer-Cartan
type equation (3.5). In order to explicitly identify its terms, let us write ρM =∑

i,j ei ⊗ ρij∂xj, where ei is a basis for g∗, and π =
∑

k,m πkm∂xk ∧ ∂xm. The

corresponding element Λ ∈ Γ(∧2(g∗ ⊕ TM)) is

(4.5) Λ =
∑
i,j

(ei, 0) ∧ ρij(0, ∂xj) +
∑
k,m

πkm(0, ∂xk) ∧ (0, ∂xm).
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Writing the Courant bracket (4.4) in the standard form (3.3), one sees that Φ = χ
(regarded as an element in Γ(∧3L)), and one checks that Λ] : Γ(g ⊕ T ∗M) →
Γ(g∗ ⊕ TM) is given by

(4.6) Λ](v, α) = (−ρ∗M(α), ρM(v) + π](α)), v ∈ g, α ∈ Ω1(M).

It follows that the right-hand side of (3.5) becomes

(4.7) Λ](Φ) = ρM(χ).

In order to identify the term dLΛ, note that dL = ∂g, the Chevalley-Eilenberg
operator of g (since the differential on X1(M) is zero). It is then simple to check
that dLΛ ∈ ∧2g∗ ⊗ X1(M) is defined by

(4.8) dLΛ(u, v) = −ρM([u, v]g), for u, v ∈ g.

The remaining term in (3.5) is

(4.9)
1

2
[Λ, Λ]L∗ ∈ (g∗ ⊗ X2(M))⊕ (∧2g∗ ⊗ X1(M))⊕ (X3(M)).

The bracket [·, ·]L∗ on Γ(g∗ ⊕ TM) is F ∗ + [·, ·], where [·, ·] is the Lie bracket of
vector fields; using (4.5) and the graded Leibniz identity for [·, ·]L∗ , we obtain the
following results: the component of (4.9) in g∗ ⊗ X2(M) is given by

(4.10) v 7→ LρM (v)π + ρM(F (v)), v ∈ g;

the component of (4.9) in ∧2g∗ ⊗ X1(M) is

(4.11) (u, v) 7→ [ρM(u), ρM(v)], u, v ∈ g,

and the component in X3(M) is 1
2
[π, π]. Separating the terms by degrees, we find

that

dLΛ +
1

2
[Λ, Λ]L∗ = ρM(χ)

is equivalent to the three equations:

ρM([u, v]g) = [ρM(u), ρM(v)],
1

2
[π, π] = ρM(χ) and LρM (v)π = −ρM(F (v)), u, v ∈ g.

Hence conditions 1. and 2. are equivalent.
In order to show that 1. and 3. are equivalent, we observe that LΛ is a Dirac

structure if and only if (LΛ, ρ|LΛ
, [[·, ·]]|LΛ

) is a Lie algebroid. So it suffices to prove
that r and [·, ·]A agree with ρ|LΛ

and [[·, ·]]|Γ(LΛ) under the identification

L = g⊕ T ∗M
∼−→ LΛ, (v, α) 7→ ((v, α), (−ρ∗M(α), ρM(v) + π](α)))
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(analogous to (1.3)). For the anchor map, we have

ρ((v, α), (−ρ∗M(α), ρM(v) + π](α))) = ρM(v) + π](α) = r(v, α).

For the bracket of elements of type (u, 0), (v, 0), we have

[[((u, 0), (0, ρM(u))), ((v, 0), (0, ρM(v)))]] = (([u, v]g, 0), (0, [ρM(u), ρM(v)])),

hence the projection to Γ(L) = Γ(g⊕T ∗M) is just [u, v]g. For elements (u, 0) and
(0, α), we get

[[((u, 0), (0, ρM(u))), ((0, α), (−ρ∗M(α), π](α)))]] = [(u, 0), (0,−ρ∗M(α))]d

+[[(ρM(u), 0), (π](α), α)]]M ,

which equals ((ad∗ρ∗M (α)u,−ad∗uρ
∗
M(α)), ([ρM(u), π](α)],LρM (u)α)); its projection to

Γ(L) is
(ad∗ρ∗M (α)u,LρM (u)α) = (−iρ∗M (α)F (u),LρM (u)α).

Finally, for elements (0, α), (0, β), we similarly find that the projection of

[[((0, α), (−ρ∗M(α), π](α))), ((0, β), (−ρ∗M(β), π](β)))]]

on Γ(L) is (iρ∗(α∧β)χ, [α, β]π). �

For a Lie quasi-bialgebra (g, F, χ), the extreme cases of F = 0 or χ = 0 are of
interest:

Example 4.2 Let g be a quadratic Lie algebra, and consider the Lie quasi-
bialgebra structure for which F = 0 and χ ∈ ∧3g is the Cartan trivector [1,
Ex. 2.1.5]; in this case, the Lie algebroids of Thm. 4.1 coincide with the ones
defined in [5] for quasi-Poisson g-manifolds.

Example 4.3 A Lie quasi-bialgebra for which χ = 0 is a Lie bialgebra; in this
case the Lie algebroids of Thm. 4.1 are the same as the ones studied by Lu [13]
in the context of Poisson actions.

5 Final remarks

We conclude the paper with some remarks and questions:
First of all, the equivalence of conditions 1. and 2. in Thm. 4.1 leads to a

“gauge-invariant” definition of quasi-Poisson structure on a manifold M associated
with a Manin pair (g, d) [1, 11], rather than a quasi-triple: this is a Dirac structure
in the Courant algebroid E = d⊕ (TM ⊕T ∗M) which intersect TM trivially and
whose intersection with d⊕ TM projects to g under the natural map E → d. For
any choice of isotropic complement of g, h ⊂ d, this recovers the usual notion of
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quasi-Poisson structure on M associated with the Lie quasi-bialgebra defined by
the quasi-triple (g, h, d).

Second, the identification of quasi-Poisson structures with Dirac structures
in the Courant algebroid (4.1) indicates some other generalizations: since quasi-
Poisson structures correspond to special elements in Γ(∧2L∗) (those whose first
component vanish under (4.4)), it could be interesting to understand what kind of
structures correspond to more general elements; In another direction, the construc-
tion of the Lie algebroids of quasi-Poisson spaces can be extended to manifolds
carrying quasi-Poisson actions of Lie quasi-bialgebroids.

Third, as mentioned in Example 4.3, when χ = 0 we are in the situation of
a Poisson action of a Lie bialgebra (g, g∗) on a Poisson manifold M ; in this case,
the Lie algebroid of Thm. 4.1 is obtained by a generalized semi-direct product
involving the Lie algebroids g n M and T ∗M , as well as algebroid actions of each
one on the other [13]. This is an example of a matched pair of Lie algebroids,
in the sense of [17]. If χ 6= 0, then T ∗M fails to be a Lie algebroid in a way
“controlled” by the action of g n M on it in such a way that, by Thm. 4.1,
g ⊕ T ∗M still acquires a Lie algebroid structure. This suggests a corresponding
notion of “quasi” matched pair.

Another remark, yet to be explored, is that the Lie algebroid A = g ⊕ T ∗M
associated with a quasi-Poisson action is naturally part of a Lie quasi-bialgebroid:
the dual g∗ ⊕ TM is equipped with the bracket prL∗([[·, ·]]|Γ(L∗)) and anchor ρ|L∗

inherited from (4.1). This observation is immediate from the geometric construc-
tion in Thm. 4.1, though it is not evident from the algebraic approach of [5]. In
particular, when χ = 0, (A, A∗) is a Lie bialgebroid.

Finally, there are interesting global versions of these structures. As we just
observed, the Lie algebroid A of a quasi-Poisson structure fits into a Lie quasi-
bialgebroid, so its global counterpart is a quasi-Poisson groupoid. This shows how
to associate quasi-Poisson groupoids to quasi-Poisson spaces and fits well with
the theory of [10]. In particular, when χ = 0, the Lie groupoid integrating A is a
Poisson groupoid [16]. This Poisson groupoid is built out of the Poisson-Lie group
of (g, g∗) and the symplectic groupoid of T ∗M , as well as actions of each one on
the other; it is an example of a matched pair of Lie groupoids [14]. This indicates
a general construction of (quasi)Poisson groupoids as (quasi)matched pairs. It
would be interesting to find the precise relationship between these “doubles” and
the ones e.g. in [15].
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