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Higher Derived Brackets for Arbitrary Derivations

by Theodore Th. Voronov

Abstract

We introduce and study a construction of higher derived brackets gen-
erated by a (not necessarily inner) derivation of a Lie superalgebra. Higher
derived brackets generated by an element of a Lie superalgebra were intro-
duced in our earlier work. Examples of higher derived brackets naturally ap-
pear in geometry and mathematical physics. From a totally different view-
point, we show that higher derived brackets arise when one wants to turn
the inclusion map of a subalgebra of a differential Lie superalgebra, with
a given complementary subalgebra, into a fibration. (For a non-Abelian
complementary subalgebra, this leads to a generalization of L∞-algebras
with dropped or weakened (anti)symmetry of the brackets.)

1 Introduction

Higher derived brackets were introduced by the author in [14], motivated by phys-
ical and differential-geometric examples. The starting point in the construction
was an element ∆ in a Lie superalgebra L provided with a direct sum decompo-
sition L = K ⊕ V into two subalgebras, where V is Abelian. Then a sequence
of symmetric brackets on V is ‘derived’ from ∆ in the same way as the partial
derivatives of a function:

{ξ, . . . , ξ︸ ︷︷ ︸
n

}∆ = P (− ad ξ)n∆,

for coinciding even arguments, P denoting the projector on V . (In particular
examples this analogy becomes exact.) It was proved that the Jacobiators for the
higher derived brackets of an odd ∆ are equal to the higher derived brackets of
∆2. In particular, this leads to L∞-algebras and algebras related with them.

In this paper we introduce and study higher derived brackets generated by
an arbitrary derivation D : L → L, which does not have to be inner. See for-
mula (2.1). (The case of non-inner derivations was touched on in the final version
of [14] without proofs.) As in [14], we make use of the decomposition L = K⊕V .
The subalgebra V is still assumed to be Abelian, though at the end of the paper
we briefly discuss how this condition can be relaxed.
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Our first main result is Theorem 1, which we state and prove in Section 2.
It says that the Jacobiators for the higher derived brackets generated by an odd
derivation D are equal to the brackets generated by D2. So it is an analog of a
similar statement for ∆. However, the presently available proof of Theorem 1 is
technically much harder. Notice also that strictly speaking, the theorem about
brackets generated by ∆ is not a corollary of the theorem for D because of the
possible presence of a ‘background’ in the former.

Secondly, we establish a relation between higher derived brackets and homo-
topical algebra. This is done in Section 4. The main result is Theorem 2. The
question of whether the higher derived brackets of ∆ defined in our paper [14] can
be interpreted in the framework of homotopical algebra was asked by the anony-
mous referee of [14]. In fact, he suggested linking them with the notion of a ‘left
cone’ (i.e., a cocone, or a homotopy fiber in topologists’ language). This question
happened to be very fruitful. The proper framework for it is when the brackets
are generated by an arbitrary derivation D. In Section 4 we show that such a
homotopical-algebraic interpretation is indeed possible. We show that the higher
derived brackets of D appear as part of the brackets in ΠL ⊕ V that naturally
arise from the condition that the canonical differential in ΠL ⊕ V (viewed as a
cone or a cocylinder) respects an algebra structure extended from L, and we prove
that the latter brackets make ΠL ⊕ V an L∞-algebra if D2 = 0. Thus we arrive
at an alternative approach to higher derived brackets.

Behind Theorem 1 one can recognize a more general algebraic statement. If one
considers the Lie superalgebra DerL of derivations of L and the Lie superalgebra
VectV of vector fields on V , both w.r.t. the commutator, then it is possible
to see that the construction of higher derived brackets gives a homomorphism
DerL → VectV . By identifying vector fields with multilinear operations on V
specified by their Taylor expansion at zero, we arrive at the statement that V
becomes a ‘generalized’ L∞-algebra ‘over’ the Lie superalgebra DerL (that is,
there is a family of brackets parametrized by elements of DerL obeying ‘Jacobi
type’ relations following the relations in DerL). This is a new algebraic notion. We
discuss it briefly. As mentioned, we also briefly discuss the possibility of dropping
the condition that V be Abelian. By doing so, we arrive at higher derived brackets
that are not necessarily symmetric. This leads to another generalization of L∞-
algebras, which we hope to analyze further elsewhere.

Terminology and notation. We use the ‘super’ language and conventions; in
particular, a vector space always means a Z2-graded vector space, and we freely
identify it with the corresponding vector supermanifold; multilinearity, symmetry,
antisymmetry, derivations, etc., are always understood in the Z2-graded sense. Π
stands for the parity reversion functor, and the parity of homogeneous objects is
denoted by a tilde, i.e. ã = 0 or ã = 1 if a ∈ A0 or a ∈ A1 respectively, for a in a
Z2-graded module A.
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2 Construction of Higher Derived Brackets

The algebraic setup is as follows. We are given a Lie superalgebra L and a
decomposition of L into a sum of two subalgebras:

L = K ⊕ V.

Let P : L→ V be the projector on V parallel to K, i.e., V = ImP , K = KerP .
Consider an arbitrary derivation D : L→ L, either even or odd.

Definition 2.1. The k-th (higher) derived bracket of D is a multilinear operation

V × . . .× V︸ ︷︷ ︸
k times

→ V

given by the formula

(2.1) {a1, . . . , ak}D := P [. . . [[Da1, a2], a3], . . . , ak]

where ai ∈ V . Here k = 1, 2, 3, . . . .

The derived brackets have the same parity as the parity of the derivation D.
In this paper we construct higher derived bracket for an arbitrary derivation

D. Higher derived brackets were first defined in [14] in the case when D is an
inner derivation, D = ad ∆ for some ∆ ∈ L.

Remark 2.1. The binary derived bracket when P = id, i.e, L = V , K = 0, was
introduced by Yvette Kosmann-Schwarzbach [6] following an idea of Koszul, and
independently by the author [12] (unpublished). In [6] a slightly more general
setting was considered, L being a Loday (Leibniz) algebra. Derived brackets have
numerous applications, see [7] for a survey.

Lemma 2.1. Suppose that V is an Abelian subalgebra. Then the derived brackets
are symmetric (in the Z2-graded sense).

From now on we assume that V is Abelian.
(Later we shall discuss whether this requirement can be relaxed.)
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Remark 2.2. A symmetric multilinear operation is defined by its value on co-
inciding even arguments (to be more precise, this is true if extending scalars to
include as many ‘odd constants’ as necessary, is allowed). For the higher derived
brackets, if ξ is even, we have

(2.2) {ξ, . . . , ξ︸ ︷︷ ︸
n

}D = (−1)n−1P (ad ξ)n−1Dξ

for any n = 1, 2, . . . , regardless of the parity of D.

We want to investigate if in addition to symmetry the derived brackets can
satisfy other identities such as the Jacobi identity. Consider the binary bracket.
Notice first that it is symmetric, not antisymmetric, compared to the bracket on a
Lie algebra. To turn symmetry into antisymmetry we have to reverse parity and
consider ΠV . The bracket induced on ΠV will be even (as a Lie bracket should
be) if the bracket in V is odd. Therefore, to ask about (analogs of) the Jacobi
identity for the higher derived brackets makes sense when the derivation D is odd.

Example 2.1. Consider a vector space V . Let L = DerS(V ∗). Elements of L
can be viewed as polynomial vector fields on V . Let ξi be the linear coordinates
on V corresponding to a basis (ei) in V . We can consider vectors in V as vector
fields with constant coefficients, so V ⊂ L will be an Abelian subalgebra. Then
L = K ⊕ V , where the subalgebra K consists of all vector fields vanishing at the
origin. The projector P maps every vector field to its value at the origin (constant
vector field). Consider an arbitrary vector field

X = Xj(ξ)
∂

∂ξj
,

even or odd, and consider the derived brackets on V generated by the derivation
adX,

{u1, . . . , uk}X := {u1, . . . , uk}adX = [. . . [X, u1] , . . . , uk] (0) .

One can see that
{ei1 , . . . , eik}X = (±)Xj

i1...ik
ej

where

Xj
i1...ik

=
∂kXj

∂ξi1 . . . ∂ξik
(0) .

In particular, consider a quadratic vector field:

Q =
1

2
ξiξjQk

ji

∂

∂ξk
.

Then the k-th derived bracket of Q is zero unless k = 2, and the binary derived
bracket is given by

(2.3) {ei, ej}Q = (±)Qk
ijek .
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Suppose that Q is odd. By a direct check one can see that the Jacobi identity
for the bracket (2.3) is equivalent to the condition Q2 = 0. (More precisely, the
usual graded Jacobi identity is valid for the antisymmetric bracket in ΠV .) Q
then can be identified with the Chevalley–Eilenberg differential in the standard
cochain complex of the resulting Lie (super)algebra.

Odd vector fields with square zero are known as homological. Example 2.1
shows that the structure of a Lie superalgebra on a vector space corresponds to a
quadratic homological vector field. If we drop the condition that the homological
vector field be quadratic, we obtain ‘L∞-algebras’ or ‘strong homotopy Lie alge-
bras’ where the Jacobi identity for a binary bracket holds up to homotopy, which
is a ternary bracket, and in its turn satisfies an analog of the Jacobi identity up to
a homotopy, and so on. Describing algebraic structures by derivations of square
zero is a very general principle dating back to Nijenhuis in the 1950’s and used
in recent works of Kontsevich (his “formality theorem” implying the existence of
deformation quantization of Poisson manifolds, see [4, 5]).

Let V be a vector space endowed with a sequence of k-linear odd symmetric
operations denoted by braces. Here k = 0, 1, 2, 3, . . . .

Definition 2.2. The n-th Jacobiator is the following expression:

Jn(a1, . . . , an) =
∑
k+l=n

∑
(k, l)-shuffles

(−1)ε{{aσ(1), . . . , aσ(k)}, aσ(k+1), . . . , aσ(k+l)}

where the sign (−1)ε is given by the usual sign rule for permutations of homoge-
neous elements of V .

Let us recall the definition of L∞-algebras, due to Lada and Stasheff [9].

Definition 2.3. An L∞-algebra, or strong(ly) homotopy Lie algebra, is a vector
space V endowed with a sequence of k-linear odd symmetric operations, k =
0, 1, 2, 3, . . . , such that all the Jacobiators vanish.

Remark 2.3. We gave the definition in the form most convenient for our purposes.
If one wishes to directly include the case of ordinary Lie algebras, the term L∞-
algebra should be applied to the structure on the opposite space, i.e., ΠV , where
the corresponding operations are antisymmetric and are even for an even number
of arguments and odd otherwise. Also, it is often assumed that the 0-bracket is
zero. The 0-bracket is sometimes referred to as the ‘background’.

Proposition 2.1. There is a one-to-one correspondence between L∞-algebra struc-
tures on V and formal homological vector fields on V :

Q = Qk(ξ)
∂

∂ξk
=

(
Qk

0 + ξiQk
i +

1

2
ξiξjQk

ji +
1

3!
ξiξjξlQk

lji + . . .

)
∂

∂ξk
.
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This proposition is a well-known fact. What we can give here is an explicit
invariant expression for the correspondence: the brackets in an L∞-algebra corre-
sponding to a homological field Q are the higher derived brackets of Q,

(2.4) {u1, . . . , uk}Q = [. . . [Q, u1] , . . . , uk] (0)

(this generalizes Example 2.1).
Let us return to our abstract setup. Consider the higher derived brackets (2.1)

of an odd derivationD. We get a sequence of odd symmetric multilinear operations
on V . By definition the 0-ary operation is zero. What about the Jacobiators?

Theorem 1. Suppose that D preserves the subalgebra K = KerP . Then the n-th
Jacobiator of the derived brackets of D equals the n-th derived bracket of D2:

(2.5) JnD(a1, . . . , an) = {a1, . . . , an}D2 ,

for all n = 1, 2, 3, . . . .

Let us make two comments before giving the proof.
Firstly, notice that in our setup the condition that L = K ⊕ V is the sum of

subalgebras where V is Abelian can be expressed by the identities

(2.6) [Pa, Pb] = 0

and

(2.7) P [a, b] = P [Pa, b] + P [a, Pb],

for all a, b (a “distributivity law” for P ). Notice that (2.7) is also equivalent to
the vanishing of the Nijenhuis bracket of P with itself.

Secondly, the condition in the theorem that D(K) ⊂ K can be written as the
identity

(2.8) PDP = PD .

Condition (2.8) already appears if we check the Jacobiator of order one:

J1
D(a) = {{a}D}D = PDPDa = PDDa = {a}D2 ,

if PDP = PD. (Notice that in general D does not have to preserve V . Indeed, if
D preserves V , then all the derived brackets of D starting from the binary bracket,
will vanish.)

Proof of Theorem 1. To simplify the notation, let us omit temporarily the sub-
script D from the brackets and Jacobiators. Since the Jacobiators are multilinear
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symmetric functions, it is sufficient to consider them for coinciding even argu-
ments. Denote Jn(ξ, . . . , ξ) where ξ is even by Jn(ξ). From Definition 2.2 and
equation (2.2) we clearly obtain

Jn(ξ) =
n−1∑
l=0

C l
n{{ξ, . . . , ξ︸ ︷︷ ︸

n−l

}, ξ, . . . , ξ︸ ︷︷ ︸
l

},

where C l
n = n!

l!(n−l)! is the binomial coefficient, in our case appearing as the number

of (n− l, l)-shuffles. It follows that

Jn(ξ) =
n−1∑
l=0

C l
nP [. . . [D{ξ, . . . , ξ︸ ︷︷ ︸

n−l

}, ξ], . . . , ξ]︸ ︷︷ ︸
l

=

n−1∑
l=0

C l
nP [. . . [DP (−1)n−l−1(ad ξ)n−l−1Dξ, ξ], . . . , ξ]︸ ︷︷ ︸

l

=

n−1∑
l=0

C l
n(−1)n−l−1(−1)lP (ad ξ)lDP (ad ξ)n−l−1Dξ =

n−1∑
l=0

C l
n(−1)n−1P (ad ξ)lDP (ad ξ)n−l−1Dξ .

Consider (ad ξ)lDP . We want to move D to the left. Since

ad ξ ·D −D · ad ξ = − ad(Dξ) ,

as one can easily check, it follows that for any l > 1

(ad ξ)lDP = (ad ξ)l−1(ad ξ ·D −D · ad ξ +D · ad ξ)P =

(ad ξ)l−1(− ad(Dξ) +D · ad ξ)P = −(ad ξ)l−1 ad(Dξ)P = −
[
(ad ξ)l−1Dξ, P (.)

]
where we used ad ξ · P = 0. Substituting this into the formula above we obtain

Jn(ξ) =
n−1∑
l=1

C l
n(−1)nP

[
(ad ξ)l−1Dξ, P (ad ξ)n−l−1Dξ

]
+(−1)n−1PDP (ad ξ)n−1Dξ

or

(−1)nJn(ξ) =
n−1∑
l=1

C l
nP
[
(ad ξ)l−1Dξ, P (ad ξ)n−l−1Dξ

]
− PD(ad ξ)n−1Dξ

(where we also used (2.8)). We can re-arrange the first sum by adding it to itself
in the reverse order and dividing by two:
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n−1∑
l=1

C l
nP
[
(ad ξ)l−1Dξ, P (ad ξ)n−l−1Dξ

]
=

1

2

(
n−1∑
l=1

C l
nP
[
(ad ξ)l−1Dξ, P (ad ξ)n−l−1Dξ

]
+

n−1∑
l=1

C l
nP
[
(ad ξ)n−l−1Dξ, P (ad ξ)l−1Dξ

])
=

1

2

n−1∑
l=1

C l
n

(
P
[
(ad ξ)l−1Dξ, P (ad ξ)n−l−1Dξ

]
+P

[
(ad ξ)n−l−1Dξ, P (ad ξ)l−1Dξ

])
.

Noticing that
[
(ad ξ)n−l−1Dξ, P (ad ξ)l−1Dξ

]
=
[
P (ad ξ)l−1Dξ, (ad ξ)n−l−1Dξ

]
, be-

cause ξ is even and Dξ is odd, and using the distributivity relation (2.7), we find
the following expression for the Jacobiator:

(−1)nJn(ξ) =
1

2

n−1∑
l=1

C l
nP
[
(ad ξ)l−1Dξ, (ad ξ)n−l−1Dξ

]
− PD(ad ξ)n−1Dξ

or

(2.9) (−1)nJn(ξ) =
1

2
P

n−1∑
l=1

C l
n

[
(ad ξ)l−1Dξ, (ad ξ)n−l−1Dξ

]
−

P
[
D, (ad ξ)n−1

]
Dξ − P (ad ξ)n−1D2ξ .

We shall now analyze the term [D, (ad ξ)n−1]Dξ. Using the formula for the com-
mutator [A,BN ] for arbitrary operators A, B, we get[

D, (ad ξ)n−1
]
Dξ =

∑
i+j=n−2

(ad ξ)i[D, ad ξ](ad ξ)jDξ =∑
i+j=n−2

(ad ξ)i ad(Dξ)(ad ξ)jDξ =
∑

i+j=n−2

(ad ξ)i
[
Dξ, (ad ξ)jDξ

]
=

∑
i+j=n−2

∑
r+s=i

Cr
i

[
(ad ξ)rDξ, (ad ξ)s+jDξ

]
=

n−2∑
i=0

i∑
r=0

Cr
i

[
(ad ξ)rDξ, (ad ξ)n−2−rDξ

]
=

n−2∑
r=0

n−2∑
i=r

Cr
i

[
(ad ξ)rDξ, (ad ξ)n−2−rDξ

]
.

Since in the internal sum the commutators do not depend on the index of sum-
mation i, they can be taken out of the sum. It is possible to apply a well-known
identity for sums of binomial coefficients (see, e.g. [1, p. 153]):

m∑
i=r

Cr
i = Cr

r + Cr
r+1 + . . .+ Cr

m = C0
r + C1

r+1 + . . .+ Cm−r
m = Cm−r

m+1 ,
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where in our case m = n− 2. Hence

n−2∑
i=r

Cr
i = Cn−2−r

n−1 ,

and we arrive at the equality

(2.10)
[
D, (ad ξ)n−1

]
Dξ =

n−2∑
r=0

Cn−2−r
n−1

[
(ad ξ)rDξ, (ad ξ)n−2−rDξ

]
.

Notice that since Dξ is odd and the bracket is symmetric, the left-hand side
contains similar terms, with r and r′, where r = n− 2− r′. Hence, this sum can
be re-arranged by writing it twice in opposite orders and dividing by two:[

D, (ad ξ)n−1
]
Dξ =

1

2

(
n−2∑
r=0

Cn−2−r
n−1

[
(ad ξ)rDξ, (ad ξ)n−2−rDξ

]
+

n−2∑
r=0

Cr
n−1

[
(ad ξ)n−2−rDξ, (ad ξ)rDξ

])

=
1

2

n−2∑
r=0

(
Cr+1
n−1 + Cr

n−1

) [
(ad ξ)rDξ, (ad ξ)n−2−rDξ

]
=

1

2

n−2∑
r=0

Cr+1
n

[
(ad ξ)rDξ, (ad ξ)n−2−rDξ

]
=

1

2

n−1∑
l=1

C l
n

[
(ad ξ)l−1Dξ, (ad ξ)n−1−lDξ

]
,

which coincides with the first term in the formula for the Jacobiator (2.9). Sub-
stituting into (2.9), we see that the first two terms cancel, and we finally obtain

(−1)nJn(ξ) = −P (ad ξ)n−1D2ξ

or
JnD(ξ) = (−1)n−1P (ad ξ)n−1D2ξ = {ξ, . . . , ξ︸ ︷︷ ︸

n

}D2

for an arbitrary even ξ. This implies identity (2.5) for all elements of V .

We say that the derivation D is of order r with respect to the subalgebra V if
for all a1, . . . , ar+1 ∈ V

[. . . [Da1, a2] , . . . , ar+1] = 0.

Here r = 0, 1, 2, . . .
If D is of order r, all the derived k-brackets of D vanish for k > r + 1.

Corollary 2.1. For an odd derivation D, if the order of D2 is r, then the higher
derived brackets of D satisfy all the Jacobi identities with r+1 or more arguments,

Corollary 2.2. If the order of D2 is zero, i.e., D2(V ) = 0, in particular if D2 = 0,
then the higher derived brackets of an odd derivation D define an L∞-algebra.

Proposition 2.1 shows that all L∞-algebras are obtained in this way.
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3 Examples

All examples of higher derived brackets naturally arising in applications are for the
case when D = ad ∆ is an inner derivation given by some element ∆. This is the
situation where higher derived brackets were first introduced in [14]. An analog of
Theorem 1 was proved there for brackets generated by ∆. (That proof is simpler
than the above proof of Theorem 1 for general D.) Let us clarify the relation
between the higher derived brackets of an element ∆ ∈ L as introduced in [14]
and the higher derived brackets of a derivation D : L→ L as in Definition 2.1.

Any element ∆ ∈ L, of course, gives an inner derivation D = ad ∆: L → L,
and the higher derived brackets of the derivation D = ad ∆

{a1, . . . , ak}D = P [. . . [(ad ∆)a1, a2] , . . . , ak] ,

coincide with the brackets defined in [14],

{a1, . . . , ak}∆ = P [. . . [[∆, a1] , a2] , . . . , ak] ,

where k = 1, 2, 3, . . . . However, for ∆ there is a natural notion of a 0-bracket (no
arguments, a distinguished element),

{∅}∆ = P∆ ,

which is not defined for arbitrary derivations D. The Jacobiators for the higher
derived brackets of ∆ include this 0-bracket and start with the 0-th Jacobiator
{{∅}∆}∆. At the same time, the 0-ary bracket is assumed to be zero in all the
Jacobiators for a general D and it does not appear in our Theorem 1. There is
no obvious way of incorporating the 0-th bracket into the picture for a general
derivation D. If P∆ 6= 0, that means that ∆ /∈ K, hence there is no guarantee
that (ad ∆)(K) ⊂ K, which is a condition of Theorem 1. The calculation of
J1
D(a) above shows that some sort of condition is needed (and at least a weaker

condition PD2P = PDPDP is necessary). Therefore, Theorem 1 of [14], to which
Theorem 1 is an analog, does not follow from Theorem 1, in general.

We can summarize by saying that the theory developed in [14] is a particular
case of the theory developed here if P (∆) = 0, i.e., ∆ ∈ K. Then, in particular,
(ad ∆)(K) ⊂ K and Theorem 1 applies.

We shall leave open the question of how the theory for non-inner derivations
can be modified to incorporate an 0-ary bracket.

With having this in mind, there are some examples of higher derived brackets,
all coming from inner derivations. They are given for illustrative purposes only.
More details can be found in [14]. See also [13], [3].

Example 3.1. The setup of Example 2.1. L = VectV , where V is a vector space,
P : X 7→ X(0) is a projection onto the Abelian subalgebra of vector fields with
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constant coefficients. For an odd vector field Q such that Q(0) = 0 we get the
higher derived brackets on V , k = 1, 2, . . . , ,

{u1, . . . , uk}Q = [. . . [Q, u1] , . . . , uk] (0).

They define an L∞-algebra with e zero background (‘strict’ in the terminology
of [14]) if Q2 = 0, and this is a canonical description of all (strict) L∞-algebra
structures on the space V .

Example 3.2. L = EndA for a commutative associative algebra with unit A and
V = A. The projector P maps an operator ∆ to ∆1 ∈ A ⊂ EndA. The higher
derived brackets of ad ∆ for an operator ∆ such that ∆1 = 0 are the ‘Koszul
operations’ (see [8])

{a1, . . . , ak}∆ = [. . . [∆, a1] , . . . , ak] 1,

k = 1, 2, 3, . . . , . For a differential operator of order n the brackets with more than
n arguments vanish and the top bracket is the symbol of ∆. An odd operator ∆
satisfying ∆2 = 0 provides an example of a ‘homotopy Batalin–Vilkovisky algebra’.

Example 3.3. L = C∞(T ∗M), V = C∞(M), P is the restriction on M , and
i∗ : C∞(T ∗M) → C∞(M), where i : M → T ∗M . For a Hamiltonian S ∈ C∞(T ∗M)
such that i∗S = 0, on functions on M there are derived brackets

{f1, . . . , fk}S = i∗ (. . . (S, f1) , . . . , fk) ,

k = 1, 2, 3, . . . , where in the right-hand side stand the canonical Poisson brackets
on T ∗M . If S is odd (for a nontrivial example M should be a supermanifold)
and satisfies (S, S) = 0, we get ‘higher Schouten brackets’ on C∞(M) giving an
example of a ‘homotopy Schouten algebra’.

Example 3.4. Similarly, let L = C∞(ΠT ∗M), V = C∞(M) and let P be the
restriction on M . For a multivector field ψ ∈ C∞(ΠT ∗M) such that i∗ψ = 0, on
functions on M there are derived brackets

{f1, . . . , fk}ψ = i∗[[ . . . [[ψ, f1]], . . . , fk]],

k = 1, 2, 3, . . . , where on the right-hand side we have the canonical Schouten
brackets on ΠT ∗M . Since the canonical Schouten brackets are odd, for an even
ψ the derived brackets have alternating parity (even for an even number of argu-
ments, odd for odd). If [[ψ, ψ]] = 0, these ‘higher Poisson brackets’ on functions
on M give an example of a ‘homotopy Poisson algebra’.

Other examples of higher derived brackets which we shall not consider here,
are ‘homotopy Lie algebroids’, which are an analog of L∞-algebras in the world of
algebroids, and the non-linear analogs in the world of graded manifolds [13] (see
also [11]). We hope to be able to say more about such examples elsewhere.

It is a good question whether a genuinely non-inner derivation can naturally
occur in examples of higher derived brackets coming from differential geometry or
physics.
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4 Relation with Homotopy Theory

Now we shall show how our construction of the (higher) derived brackets arises
naturally if one wishes to consider the homotopy theory of Lie superalgebras.

Let us re-formulate the setup in a way convenient for this purpose. We have
a Lie superalgebra L with a decomposition L = K ⊕ V , where K and V are
subalgebras. Consider an odd derivation D such that D(K) ⊂ K, and from the
start assume that D is of square zero. Hence we have an inclusion of differential
Lie superalgebras

i : K → L

and a given complement for the image of i, which is called V . (V is not, in general,
a differential subalgebra.)

There is an idea, familiar to topologists, that every map can be made into
a fibration by appropriately replacing a space by a homotopy equivalent one.
More precisely, if we have a category where a “weak equivalence”, “fibration”
and “cofibration” make sense (i.e., a Quillen model category [10]), the following
diagram is called a cocylinder diagram:

X
f

- Y

@
@

@j R �
�

�

p
�

Z

if j is a cofibration and weak equivalence, and p is a fibration. Then Z is also
denoted by Cocyl f . (To refresh the intuition, recall that for topological spaces
that are cell complexes, cofibrations are just inclusions of subspaces, fibrations
are ‘Serre fibrations’, i.e., maps satisfying the covering homotopy property, and
weak equivalences are maps inducing isomorphisms of all homotopy groups. In
this case, a cocylinder for any map f : X → Y may be obtained as a subspace
in X × Y I consisting of all pairs (x, γ) where γ : I → Y is a path such that
γ(0) = f(x).)

Can we do this (in an algebraic context) for the inclusion K → L?
To begin with let us temporarily forget about the algebra structure. Consider

just an arbitrary inclusion of complexes

i : K → L

such that there is a given complementary subspace V (not a subcomplex!) and
L = K ⊕ V . In the context of this paper, a complex is simply a vector space with
an odd operator of square zero.

Let P be the projector onto V parallel to K. The space V becomes a complex
with the differential PD. Introduce into L⊕ ΠV an operator d as follows:

(4.1) d(x,Πa) :=
(
Dx,−ΠP (x+Da)

)
,
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for x ∈ L, a ∈ V . It is then straightforward to show that d2 = 0. Consider the
maps j : K → L⊕ΠV and p : L⊕ΠV → L, where j : x 7→ (x, 0), p : (x,Πa) 7→ x.

Lemma 4.1. The following diagram

K
i

- L

@
@

@j R �
�

�

p
�

L⊕ ΠV

is a cocylinder diagram in the category of complexes, i.e., the maps j and p are
chain maps, i = p◦j, the map j : K → L⊕ΠV is a monomorphism (‘cofibration’)
and a quasi-isomorphism (‘weak homotopy equivalence’), and the map p : L ⊕
ΠV → L is an epimorphism (‘fibration’).

Proof. This is immediate. A quasi-inverse for j is the map

q : (x,Πa) 7→ (1− P )(x+Da).

Remark 4.1. As is well known, for maps of complexes there are canonical con-
structions of cylinders and cocylinders; they are modelled on the (co)chain com-
plexes corresponding to the canonical topological cylinders and cocylinders. For a
particular chain map it might be more convenient to consider a ‘smaller’ cylinder
or cocylinder than the one featured by the standard construction. This is exactly
what happens in our case. The standard cocylinder construction applied to the
inclusion i : K → L would not yield the complex L⊕ΠV as in Lemma 4.1, instead
it would give a bigger complex K ⊕ L ⊕ ΠL = K ⊕K ⊕ V ⊕ ΠK ⊕ ΠV that is
homotopy equivalent to L⊕ΠV . One should also note that the complex L⊕ΠV
essentially coincides with the standard (co)cone of the projection L→ V . See the
Appendix.

It follows from Lemma 4.1 that the space ΠV = Ker p, taken with the differen-
tial −ΠPD, is a homotopy fiber of the inclusion of complexes i : K → L = K⊕V .

Now we want to ‘turn the algebra structure on’. To this end, since we have
been working with V rather than ΠV , let us first apply a parity shift to the
cocylinder diagram above. Then we have the cocylinder diagram

ΠK
i

- ΠL

@
@

@j R �
�

�

p
�

ΠL⊕ V
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for the inclusion of complexes ΠK → ΠL. In particular, the differential in ΠL⊕V
is

(4.2) d : (Πx, a) 7→ (−ΠDx,P (x+Da))

(which is the differential in the standard cone, see the Appendix, of the projection
of complexes (L,D) onto (V, PD)).

Let us restore our framework. Assume as above that L is a Lie superalgebra
with D being a derivation, and that V is an Abelian subalgebra. The Lie bracket
in L induces an odd bracket in ΠL:

(4.3) {Πx,Πy} = Π[x, y](−1)x̃.

Is it possible to extend this to a bracket on the whole of ΠL⊕ V ?

Proposition 4.1. There exists an odd binary bracket on ΠL⊕ V extending that
on ΠL such that the operator (4.2) acts as a derivation. It is given by the formulae

{Πx, a} = P [x, a],(4.4)

{a, b} = P [Da, b](4.5)

for arbitrary x ∈ L and a, b ∈ V .

Proof. As a starting point we use formula (4.3) for the bracket on ΠL, where Πx
and Πy are considered as elements of ΠL⊕V . Apply d given by (4.2) to {Πx,Πy}
and require that the Leibniz rule be satisfied:

(4.6) d{Πx,Πy} = −{dΠx,Πy} − (−1)x̃+1{Πx, dΠy}

for all x, y ∈ L (notice that the parity in (4.3) ‘sits’ at the opening bracket, hence
the signs). Expanding d by (4.2), so that dΠx = −ΠDx + Px, and treating the
brackets between elements of ΠL and V as unknown, we find that the failure
of (4.6) for x = y and x̃ = 1 is the difference {Px,Πx} − P [Px, x]. Replacing
Px by an arbitrary element of V , we arrive at the above definition (4.4). Now
assume (4.4) and require the Leibniz rule for this new bracket:

(4.7) d{Πx, b} = −{dΠx, b}+ (−1)x̃{Πx, db}

for all x ∈ L, b ∈ V . Here dΠx = −ΠDx + Px, da = PDa, and we treat the
bracket in V as unknown. The failure of (4.7) equals {Px, b}+ (−1)x̃P [Px,Db].
Denoting Px = a ∈ V , we arrive at the formula {a, b} = −(−1)ãP [a,Db] or,
equivalently,

{a, b} = P [Da, b]

as the necessary and sufficient condition of (4.7). This is our derived bracket (2.1)
for k = 2. The Leibniz rule for {a, b} is now satisfied automatically and does not
bring any new relations.



Higher Derived Brackets for Arbitrary Derivations 177

Remark 4.2. Defining the bracket by formula (4.4) is a sufficient condition
for (4.6). A more detailed analysis shows that (4.4) is also necessary at least
when x ∈ K. Hence the condition that the operator (4.2) acts as a derivation
defines the bracket in an essentially unique way.

One can see that a binary bracket defined in this way on ΠL ⊕ V will not
satisfy the Jacobi identity exactly, thus giving rise to a ternary bracket, and so
on. Define the higher brackets on ΠL⊕ V as follows:

{Πx, a1, . . . , an} = P [. . . [x, a1], . . . , an],(4.8)

{a1, . . . , an} = P [. . . [Da1, a2], . . . , an],(4.9)

where n > 1. As an unary bracket take the differential (4.2), and set the 0-ary
bracket to zero. All the other brackets except those obtainable by symmetry,
are defined to be zero. Formulae (4.8), (4.9) directly extend (4.4), (4.5) to many
arguments, and formula (4.9) is the familiar higher derived bracket on V for all k.

Theorem 2. The set of brackets (4.3), (4.8) and (4.9), together with (4.2), define
on the space ΠL⊕ V the structure of an L∞-algebra.

Proof. We shall prove that all the brackets (4.2)–(4.9) satisfy all the generalized
Jacobi identities. Consider the Jacobiator Jn in ΠL ⊕ V with n arbitrary argu-
ments. Without loss of generality we can assume that each of the arguments is
either in ΠL or V . We claim that there can be no non-trivial Jacobiators with
more than 3 arguments in ΠL. Indeed, Jn is a sum of terms of the form{

{ , ,︸︷︷︸
k

}, , , ,︸ ︷︷ ︸
l

}
where k+ l = n and k > 1. If there occur 4 elements of ΠL or more, then among
those k or l arguments there must be at least 2 in ΠL, and it should be exactly
k = 2 and l = 2, since there are no brackets involving 3 arguments in ΠL. Then
the internal bracket also takes values in ΠL, hence we get 3 arguments in ΠL for
the external bracket, so it must vanish. Consider the Jacobiators that contain
exactly 3 arguments from ΠL. By a similar analysis one can see that the only
potential non-vanishing Jacobiator is for n = 3, which is exactly the Jacobiator
in ΠL and it vanishes since L is a Lie superalgebra. This leaves the Jacobiators
with exactly 1 or 2 arguments in ΠL. (The Jacobiators with all arguments in V
vanish by Theorem 1 applied to D such that D2 = 0.) They are as follows:

(4.10) Jp+1 (Πx, a1, . . . , ap) =
p∑

k=1

∑
(k, p− k)-shuffles

(−1)x̃+1(−1)ε(σ;a1,...,ap)
{
Πx, {aσ(1), . . . , aσ(k)}, aσ(k+1), . . . , aσ(p)

}
+
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p∑
k=0

∑
(k, p− k)-shuffles

(−1)ε(σ;a1,...,ap)
{
{Πx, aσ(1), . . . , aσ(k)}, aσ(k+1), . . . , aσ(p)

}
and

(4.11) Jp+2(Πx,Πy, a1, . . . , ap) = {{Πx,Πy}, a1, . . . , ap}+
p∑

k=0

∑
(k, p− k)-shuffles

(−1)ε(σ;a1,...,ap)

(
(−1)x̃+1

{
Πx, {Πy, aσ(1), . . . , aσ(k)}, aσ(k+1), . . . , aσ(p)

}

+ (−1)(ỹ+1)(x̃+ãσ(1)+...+ãσ(k))
{

Πy, {Πx, aσ(1), . . . , aσ(k)}, aσ(k+1), . . . , aσ(p)

})
.

Here x, y ∈ L, ai ∈ V . By (−1)ε(σ;a1,...,ap) we denoted the sign arising from the
action of a permutation σ on the product of p commuting homogeneous variables
of parities ã1, . . . , ãp. The equalities Jp+1 = 0 and Jp+2 = 0 can be informally
perceived, respectively, as expressing the fact that taking a bracket with Πx acts,
in a sense, as a derivation, and that taking a bracket with {Πx,Πy} acts, in
a sense, as the commutator of brackets with Πx and with Πy. (All this in a
generalized sense, involving partitions and shuffles). Hence these equalities are
intuitively plausible. Let us prove them. For this sake consider x = y and ai = ξ
for all i, where x̃ = 1, ξ̃ = 0. Then (4.10) and (4.11) reduce to

(4.12) Jp+1(Πx, ξ) := Jp+1(Πx, ξ, . . . , ξ︸ ︷︷ ︸
p

) =

p∑
k=1

Ck
p

{
Πx, {ξ, . . . , ξ︸ ︷︷ ︸

k

}, ξ, . . . , ξ︸ ︷︷ ︸
p−k

}
+

p∑
k=0

Ck
p

{
{Πx, ξ, . . . , ξ︸ ︷︷ ︸

k

}, ξ, . . . , ξ︸ ︷︷ ︸
p−k

}
and

(4.13) Jp+2(Πx, ξ) := Jp+2(Πx,Πx, ξ, . . . , ξ︸ ︷︷ ︸
p

) =

{
{Πx,Πx}, ξ, . . . , ξ︸ ︷︷ ︸

p

}
+ 2

p∑
k=0

Ck
p

{
Πx, {Πx, ξ, . . . , ξ︸ ︷︷ ︸

k

}, ξ, . . . , ξ︸ ︷︷ ︸
p−k

}
,

respectively. Here Ck
p denotes the binomial coefficient. Substituting the definitions

of the brackets in (4.12), we get after a simplification

Jp+1(Πx, ξ) = {−ΠDx+ Px, ξ, . . . , ξ︸ ︷︷ ︸
p

}+

p∑
k=1

Ck
p

({
Πx, P [. . . [Dξ, ξ], . . . , ξ]︸ ︷︷ ︸

k−1

, ξ, . . . , ξ︸ ︷︷ ︸
p−k

}
+
{
P [. . . [[x, ξ], ξ], . . . , ξ]︸ ︷︷ ︸

k

, ξ, . . . , ξ︸ ︷︷ ︸
p−k

})
=
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(−1)p+1P (ad ξ)pDx+ (−1)pP (ad ξ)pDPx+
p∑

k=1

Ck
p

(
P (−1)p−1(ad ξ)p−k

[
x, P (ad ξ)k−1Dξ

]
+ P (−1)p(ad ξ)p−kDP (ad ξ)kx

)
or

(−1)pJp+1(Πx, ξ) = −P (ad ξ)pDx+ P (ad ξ)pDPx+
p∑

k=1

Ck
p

(
−P (ad ξ)p−k

[
x, P (ad ξ)k−1Dξ

]
+ P (ad ξ)p−kDP (ad ξ)kx

)
.

Using the identity (ad ξ)kDP = −[(ad ξ)k−1Dξ, P ( . )], for k > 1 (see the proof of
Theorem 1), we can re-write this as

(4.14) (−1)pJp+1(Πx, ξ) = P

(
−(ad ξ)pDx− [(ad ξ)p−1Dξ, Px]+

p−1∑
k=1

Ck
p

(
−
[
(ad ξ)p−kx, P (ad ξ)k−1Dξ

]
−
[
(ad ξ)p−k−1Dξ, P (ad ξ)kx

])
−
[
x, P (ad ξ)p−1Dξ

]
+DP (ad ξ)px

)
=

−P (ad ξ)pDx+PD(ad ξ)px−P [(ad ξ)p−1Dξ, x]−
p−1∑
k=1

Ck
pP
[
(ad ξ)p−kx, (ad ξ)k−1Dξ

]
=

P [D, (ad ξ)p]x−
p∑

k=1

Ck
pP
[
(ad ξ)p−kx, (ad ξ)k−1Dξ

]
where we used identities (2.7) and (2.8). Now, by arguing in the same way as we
did when deducing the expression (2.10) for the commutator of D and (ad ξ)N

acting on Dξ in the proof of Theorem 1, we can deduce the equality

[D, (ad ξ)p]x =

p−1∑
r=0

Cp−1−r
p

[
(ad ξ)rDξ, (ad ξ)p−1−rx

]
=

p∑
k=1

Ck
p

[
(ad ξ)k−1Dξ, (ad ξ)p−kx

]
.

Notice that since x is odd, ξ is even, and D is odd, in the Lie bracket above both
arguments are odd, so the order is irrelevant. We immediately see that the two
terms in the last line of (4.14) cancel, and thus for all x and ξ

Jp+1(Πx, ξ) = 0,
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as desired. Now consider Jp+2(Πx, ξ). Substituting the definitions of the brackets
into (4.13), we get

Jp+2(Πx, x) = −
{
Π[x, x], ξ, . . . , ξ︸ ︷︷ ︸

p

}
+ 2

p∑
k=0

Ck
p

{
Πx, P (− ad ξ)kx, ξ, . . . , ξ︸ ︷︷ ︸

p−k

}
=

− (−1)pP (ad ξ)p[x, x] + 2(−1)p
p∑

k=0

Ck
pP (ad ξ)p−k

[
x, P (ad ξ)kx

]
,

or

(−1)p+1Jp+2(Πx, x) = P (ad ξ)p[x, x]− 2

p∑
k=0

Ck
pP (ad ξ)p−k

[
x, P (ad ξ)kx

]
=

P (ad ξ)p[x, x]− 2

p∑
k=0

Ck
pP
[
(ad ξ)p−kx, P (ad ξ)kx

]
=

P (ad ξ)p[x, x]− P

p∑
k=0

Ck
p

[
(ad ξ)p−kx, (ad ξ)kx

]
=

P (ad ξ)p[x, x]− P (ad ξ)p[x, x] = 0,

where we used the commutativity of V and identity (2.7). Thus for all x and ξ

Jp+2(Πx, ξ) = 0,

as desired. This completes the proof of the theorem.

A remarkable fact about the formulae for the brackets in ΠL⊕ V is that they
arise naturally if one wants to extend the bracket in ΠL keeping the differen-
tial (4.2) a derivation. Of course, the crucial and much harder thing is to prove
that they indeed give the structure of an L∞-algebra as stated by Theorem 2. The
subspace V is a subalgebra (even an ideal) with respect to this structure, and the
induced brackets are exactly the higher derived brackets.

Corollary 4.1. The complex ΠL ⊕ V , with operations defined as above, is a
cocylinder for i : ΠK → ΠL in the category of L∞-algebras, and V with the higher
derived brackets of D is a homotopy fiber (or a cocone), in this category, for the
inclusion i of differential Lie superalgebras.

Remark 4.3. The idea of relating the higher derived brackets of ∆ with ho-
motopical algebra was proposed by the referee of the first version of [14]. He
conjectured, for the Z-graded case, an interpretation of these brackets in terms
of a ‘homotopy left cone’ (cocone, in our terminology) and suggested a formula
of type (4.8) for the extended brackets. In this section we showed that the con-
jecture about a homotopical-algebraic interpretation of higher derived brackets is
correct, in the natural setup where the brackets are generated by an arbitrary odd
derivation D. Corollary 4.1 gives the precise statement.
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The considerations of this section give an alternative and quite unexpected,
viewpoint of higher derived brackets. For a given derivation D, which is assumed
to be a differential, the construction of the complex ΠL ⊕ V , viewed as a cone
(for L → V ) or a cocylinder (for ΠK → ΠL) is canonical. The higher derived
brackets of D appear as an answer to the question of how to extend the algebra
structure to ΠL⊕ V from L.

Notice also that although homological or homotopical algebra requires D2 = 0
from the start, we never directly used this identity in the proof of Theorem 2,
except where we referred to Theorem 1 in the particular case when D2 = 0; hence
it seems reasonable that the homotopical-algebraic picture can be rephrased in a
way allowing to incorporate a possibly non-zero D2.

5 Generalizations and Discussion

Let us return to Theorem 1 and see what information can be extracted from it
if one does not immediately set D2 equal to zero. To be able to make a precise
statement, notice that our construction of higher derived brackets allows extension
of scalars, in the following sense.

Consider an arbitrary commutative superalgebra Λ with unit (a good example
is the Grassmann algebra with N generators, Λ = ΛN) and the tensor product
L⊗Λ. It is a Lie superalgebra over Λ, and DerΛ(L⊗Λ) = (DerL)⊗Λ. Thus the
higher derived brackets can be constructed fromD ∈ DerΛ(L⊗Λ), i.e., a derivation
with coefficients in Λ. They will be operations on V ⊗Λ. (In particular, brackets
generated by D ∈ DerL can be considered on V ⊗ Λ for any Λ and this explains
why it is sufficient to check the Jacobiators only on even arguments.) Clearly,
Theorem 1 remains valid. Now, the map which assigns to a derivation D all its
higher derived brackets is a linear operation in the sense that it commutes with
sums and with multiplication by scalars. Now we shall make use of the following
obvious algebraic statement: if a linear map of Lie superalgebras maps the squares
of odd elements to squares, for all extensions of scalars by various Λ, then it is a
Lie algebra homomorphism. (Indeed, by polarization, it maps all brackets of odd
elements to the brackets; then by using suitable odd constants, even elements can
be turned into odd, and after that the constants can be eliminated.)

An arbitrary sequence of multilinear symmetric operations on V can be en-
coded in a (formal) vector field X, which serves as their generating function, so
that the operations are obtained as the higher derived brackets of X:

{u1, . . . , uk}X = [. . . [X, u1] , . . . , uk] (0)

where ui ∈ V , X ∈ VectV , as in (2.4). If we restrict ourselves to formal vector
fields, this correspondence will be one-to-one. The sequence of the Jacobiators of
the brackets derived from X has the vector field X2 as the generating function
(this is a very special case of Theorem 1, but can be seen directly).
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Consider now an arbitrary derivation D : L → L. Denote the vector field on
V corresponding to the higher derived brackets of D, by QD. Theorem 1 then can
be re-formulated as the equality

(5.1) (QD)2 = QD2

for all odd D. Having in mind the above remarks, we see that Theorem 1 is
equivalent to the following.

Theorem 3. The correspondence D 7→ QD is a homomorphism of Lie superalge-
bras DerL→ VectV , i.e.,

(5.2) [QD1 , QD2 ] = Q[D1,D2]

for all D1, D2 ∈ DerL.

(It is an interesting question whether there is a more direct way of constructing
a vector field on V from the following data: the homological field specifying the
Lie bracket in L and a derivation D.)

Let g be a Lie superalgebra and V a vector space. We call the space V a
generalized L∞-algebra over g (or: a g-parametric L∞-algebra) if there is given a
homomorphism g → VectV . We can visualize this as (sequences of) brackets in
V parametrized by elements of g. Relations between elements of g give rise to
‘generalized Jacobi identities’ in V between the corresponding brackets.

Example 5.1. If g has dimension 0|1, with a single odd basis element Q satisfying
Q2 = 0, then we get a usual L∞-algebra structure.

Example 5.2. If g has dimension 1|1, with a basis H,Q with H even, Q odd,
satisfying Q2 = H, then a generalized L∞-algebra over g is the same as an ar-
bitrary sequence of odd symmetric brackets that a priori are not subject to any
relations. (In fact, there are some relations that are always satisfied, they are the
‘mixed’ Jacobi identities for odd brackets and their Jacobiators, corresponding to
the identity [H,Q] = 0.)

Apart from these two opposite extremes there should be other interesting
examples.

Another attractive direction is to study the higher derived brackets where V
in the decomposition L = K ⊕ V is not assumed Abelian. Notice that this is
exactly the case in the original definition of a (binary) derived bracket: given a
Lie superalgebra L and an odd derivation D : L→ L, then for arbitrary a, b ∈ L

(5.3) [a, b]D := [Da, b]

(we use a sign convention convenient for the comparison with (2.1)). This is a
particular case of (2.1) for k = 2 if L = V and K = 0. It is known that the
derived bracket (5.3) is not, in general, symmetric:

(5.4) [a, b]D − (−1)ãb̃[b, a]D = D[a, b]
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(in typical applications it is possible to restrict to an Abelian subalgebra, thus
restoring symmetry and making it into a different special case of (2.1) for k = 2
with a ‘hidden’ P ).

Proposition 5.1. In the context of L = K⊕V where V is not necessarily Abelian,
the k-th derived brackets defined by (2.1) satisfy the identity

(5.5) {a1, . . . , ai, ai+1, . . . , ak}D − (−1)ãiãi+1{a1, . . . , ai+1, ai, . . . , ak}D =

{a1, . . . , [ai, ai+1], . . . , ak}D

for the transposition of two adjacent arguments, for all a1, . . . , ak ∈ V and all
i = 1, . . . , k−1. Here on the right-hand side we have the (k−1)-th derived bracket
with the Lie bracket of the arguments ai and ai+1 inserted at the i-th position.

The proof is not hard and we omit it. Formula (5.5) generalizes (5.4).
It is known that the classical derived bracket, though not symmetric, satisfies

the Jacobi identity, defining an odd Loday algebra if D2 = 0. What about analogs
for higher derived brackets? What is the precise list of relations in an algebraic
structure defined by the higher derived brackets if V is non-Abelian? (It includes
an even Lie bracket as well as a sequence of odd brackets and may be called an
‘L∞-algebra on a Lie algebra background’.) It may be possible to make use of
a homotopic-algebraic approach such as in Section 4. We hope to consider these
questions elsewhere.

A Appendix. Standard cylinders and cocylin-

ders

Here we collect, for reference purposes, the formulae for the standard constructions
of cylinders and cocylinders of chain maps (compare, e.g., [2]). They all originate
in topological constructions of the cylinder X × I and cocylinder XI .

A complex is a (Z2-graded) vector space equipped with an odd operator d such
that d2 = 0. A map or a ‘chain map’ is an even linear map commuting with d.

Let f : X → Y be a map of complexes.
The standard cylinder diagram for f : X → Y is the commutative diagram

X
f

- Y

@
@

@j R �
�

�

p
�

Cyl f

where
Cyl f = X ⊕ ΠX ⊕ Y
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with the differential given by

d(x1, x2,Πy) = (dx1 − x2,Π(−dx2), dy + f(x2)).

The maps j and p are given by the formulae

j(x) = (x, 0, 0)

p(x1,Πx2, y) = f(x1) + y,

and p is a quasi-isomorphism with a quasi-inverse map i : Y → Cyl f , i(y) =
(0, 0, y). The cone of f is the cofiber of j, i.e., Cyl f/j(X). Hence

Con f = ΠX ⊕ Y

with the differential

d(Πx, y) = (Π(−dx), dy + f(x)).

In a similar way, the standard cocylinder diagram for f : X → Y is the com-
mutative diagram

X
f

- Y

@
@

@j R �
�

�

p
�

Cocyl f

where
Cocyl f = X ⊕ Y ⊕ ΠY

with the differential given by

d(x, y1,Πy2) = (dx, dy1,Π(f(x)− y1 − dy2)).

The maps j and p are given by the formulae

j(x) = (x, f(x), 0)

p(x, y1,Πy2) = y1,

and j is a quasi-isomorphism with a quasi-inverse map q : Cocyl f → X, q(x, y1,Πy2) =
x. The cocone of f is the fiber (kernel) of p. Hence

Cocon f = X ⊕ ΠY

with the differential
d(x,Πy) = (dx,Π(f(x)− dy)).

It follows that Π Con f = Con fΠ = Cocon(−f); i.e., up to a sign, the cone
and cocone of a chain map f are related by the parity shift functor. In the main
text, the complex L ⊕ ΠV appearing there as a cocylinder of the inclusion of
complexes i : K → L, can be alternatively viewed as the canonical Cocon(−P )
or as Π ConP where the projector P is treated as a map L → V , so V with the
differential PD is considered as a quotient complex of L (rather than a subspace
of L).
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