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Basic notation

Fq the field of q = pn elements
K∞ a local field with residue field Fq

O∞ the ring of integers of K∞
π a uniformizer of K∞
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The Bruhat-Tits tree

K∞, O∞, π, Fq

Definition (Bruhat-Tits tree)

T := the simplicial complex of dimension 1 with

set of vertices Vert(T ) :=
homothety classes [L] of rank 2 O∞-lattices L ⊂ K2

∞

set of edges Edge(T ) :=
pairs ([L], [L′]) such that πL ( L′ ( L.

|T | the geometric realization of T

Lemma
T is a q + 1-regular tree.

Definition
Vertices Λi := [O∞ ⊕ πiO∞], i ∈ Z.
standard vertex Λ0, standard edge e0 := (Λ0,Λ1)
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Group action

K∞, O∞, π, Fq

Consider elements of K2
∞ as column vectors

⇒ have natural left action of GL2(K∞) on K2
∞.

Definition (GL2(K∞)-action on T )

GL2(K∞)× T → T : (γ, [L]) 7→ [γL]

Set Γ∞ :=
{(

a b
c d

)
∈ GL2(O∞) | c ∈ πO∞

}
.

Lemma
GL2(K∞) acts transitively on Vert(T ) and Edge(T ).

Vert(T ) = GL2(K∞)/GL2(O∞)K ∗∞,
Edge(T ) = GL2(K∞)/Γ∞K ∗∞.
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Drinfeld’s upper half plane Ω

C∞ := K̂ alg
∞

Definition (Drinfeld’s upper half plane)

Ω := P1(C∞) r P1(K∞)

Definition (GL2(K∞)-action on Ω)

GL2(K∞)× Ω→ Ω : (γ =
(

a b
c d

)
, z) 7→ γz = az+b

cz+d
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(rigid) analysis on Ω

K∞, O∞, π, Fq, C∞, Ω

Let b1, . . . , bq ∈ O∞ be representatives of O∞/π.

Proposition (reduction map)

∃ a (natural) GL2(K∞)-equivariant map

ρ : Ω→ |T | such that

ρ−1(|e0|r {Λ0,Λ1}) = {z ∈ C∞ | 1 < |z | < q}

ρ−1(Λ0) = {z ∈ C∞ | ∀
i=1,...,q

|z − bi | = 1}

Remarks “Ω is like a tubular neighborhood of T ”

GL2(K∞)-translates of ρ−1(|e0|) provide an atlas for Ω.

On these charts use Laurent series type expansions to define
(rigid) analytic functions on Ω.
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Drinfeld modular forms

From now on: K∞ := Fq(( 1
T )), π := 1

T .

For A := Fq[T ] and K = Frac(A) have

GL2(A) ↪→ GL2(K ) ↪→ GL2(K∞).

For Γ ⊂ GL2(A) a congruence subgroup:

Definition (Drinfeld modular form (Goss))

A Drinfeld modular form of weight k (and trivial type)
for Γ is a rigid analytic function

f : Ω→ C∞

such that
(a) f

((
a b
c d

)
z
)

= (cz + d)k f (z) for all
(

a b
c d

)
∈ Γ.

(b) f has a Laurent series expansion at all cusps with
vanishing principal part.
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Results

One defines cusp forms (in the obvious way).
Have Hecke operators for prime ideals 0 6= p ⊂ Fq[T ]
No known analog of a Petersson inner product.

Let f be a Hecke eigenform with eigenvalues ap(f ).

Theorem (Goss)

The ap(f ) are integral

Kf := K ({ap(f )}p) is finite over K .

Theorem (B.)

There is a strictly compatible system(
ρf ,λ : Gal(K/K )→ GL1(K̂f

λ
)
)
λ finite

such that ρf ,λ(Frobp) = ap(f ) for almost all p.

The sequence (ap(f ))p is given by a Hecke character.
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Questions
There is no multiplicity one result!

Does multiplicity one hold for fixed weight?

Does it hold in weight 2

Does it hold in weight 2 and for Γ0(p) with p prime?

 Possible implications for uniform boundedness of torsion
points of Drinfeld modules of rank 2 over K .

There is no Ramanujan-Petersson conjecture

But each eigenvalue systems seems to have fixed weight.

What is the distribution of weights?

There may be p not dividing the level N of f such that

ρf ,λ(Frobp) 6= ap(f )

(because of non–ordinariness of modular curves of level Nq)

What happens at these p?
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Harmonic cocycles

T , Edge(T ), Γ

How to compute Drinfeld modular forms?.

Let M be a K [GL2(A)]-module with dimK (M) finite.

Definition
The K -vector space Char (Γ,M) of M-valued Γ-invariant
harmonic cocycles is the set of maps

c : Edge(T )→ M : e 7→ c(e),

such that:

1. For all edges e one has c(−e) = −c(e).

2. For all vertices v one has
∑

e→v c(e) = 0,

where the sum is over all edges e ending at v .

3. For all γ ∈ Γ and e ∈ Edge(T ) one has c(γe) = γc(e).
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Basic properties
T , Edge(T ), Γ

Proposition (automatic cuspidality; Teitelbaum)

Given M there exists a finite subset Z of Γ\T such that any
c ∈ Char (Γ,M) vanishes on all edges e not in a class of Z .

Definition
A simplex t ∈ Vert(T ) ∪ Edge(T ) is Γ-stable iff

StabΓ(t) = {1}.

Proposition

There are only finitely many Γ-stable orbits of simplices.

Theorem (Teitelbaum)

Suppose Γ is p′-torsion free. Then:

I Any Γ-invariant harmonic cocycle is determined by its
values on the Γ-stable orbits of edges.

I The only relations are those coming from Γ-stable
vertices.
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Remark:
The space Char (Γ,M) has an interpretation in terms of
relative group homology. Let Γv ⊂ Γ be the stabilizers of a
set of representatives for the cusps. Then:

Char (Γ,M) ∼= H1(Γ, Γv ,M).
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The residue map

T , Edge(T ), Γ, Char (Γ,M)

Recall:
A Drinfeld modular form f is a rigid analytic function on Ω.

Ω is a tubular neighborhood of T via ρ.

ρ−1 of the inner part of an edge e is an annulus A(e).

For f of weight 2 define

Res2 : Edge(T )→ C∞ : e 7→ ResA(e)(fdz).

Theorem (Teitelbaum)

Res2 defines an isomorphism from the C∞ vector space of
Drinfeld cusp forms of weight 2 and level Γ to
Char (Γ,K )⊗K C∞.

An analogous theorem holds in weight k with M ≈ Symk−2.
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On the proof of Teitelbaum’s theorem:
It suffices to prove it for Γ = Γ(N) with N ∈ Fq[T ] r Fq.
Injectivity: Using a π-adic measure theory, Teitelbaum
constructs an explicit section for

Res2 : S2(Γ(N))→ Char (Γ,C∞).

Surjectivity: Compute dim S2(Γ(N)) via Riemann-Roch and
a canonical line bundle on Γ(N)\Ω.
Express dim Char (Γ(N),C∞) as the number of stable orbits
of edges minus the number of stable orbits of vertices..
Show that the dimensions are equal.
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How to understand the quotient tree?

Proposition

The quotient tree GL2(Fq[T ])\T is represented by the half
line with vertices {Λi}i≥0.

There are no GL2(Fq[T ])-stable simplices of T . For i ≥ 1,
the stabilizer of Λi+1 is strictly larger than that of Λi .

For general Γ:
Consider Γ\T as a finite ‘covering’ of the above half line.

The stabilizers of simplices of the ‘cover’ have a similar
monotonicity property as those of GL2(Fq[T ])\T .

Stable simplices can only be found above Λi for small i
(depending on Γ).

Using the above idea, one can show all ‘basic properties’ on
harmonic cocycles we quoted.
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Proposition

The quotient tree GL2(Fq[T ])\T is represented by the half
line with vertices {Λi}i≥0.

There are no GL2(Fq[T ])-stable simplices of T . For i ≥ 1,
the stabilizer of Λi+1 is strictly larger than that of Λi .

For general Γ:
Consider Γ\T as a finite ‘covering’ of the above half line.

The stabilizers of simplices of the ‘cover’ have a similar
monotonicity property as those of GL2(Fq[T ])\T .

Stable simplices can only be found above Λi for small i
(depending on Γ).

Using the above idea, one can show all ‘basic properties’ on
harmonic cocycles we quoted.
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