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Setting

H = {z = x + iy ∈ C : y > 0}

ds2 =
dx2 + dy2

y2
, dvol =

dx dy

y2

γ =

(
a b
c d

)
∈ SL(2, R), γ.z =

az + b

cz + d

Γ ⊂ SL(2, R) discrete subgroup, vol(Γ\H) <∞

∆ = −div ◦ grad = −y2
(

∂2

∂x2
+

∂2

∂y2

)

Problem: Compute the spectral resolution
(i.e., the eigenfunctions) of ∆ acting on L2(Γ\H)
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Prototypical example: Γ = SL(2, Z)

L2(Γ\H) = C︸︷︷︸
constant
functions

⊕ L2
Eisenstein(Γ\H)︸ ︷︷ ︸

continuous spectrum
spanned by

Eisenstein series

⊕ L2
cusp(Γ\H)︸ ︷︷ ︸

discrete spectrum
spanned by
Maass forms

f(z) =
∑
n∈Z
n6=0

a(n)
√

yKir(2π|n|y)e2πinx

eigenvalue λ =
1

4
+ r2, Kir = K-Bessel function
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“Computing Arithmetic Spectra”, March 9–14,
American Institute of Mathematics

Question: To what extent can one

(A) Compute the data (i.e., eigenvalues and Fourier coefficients)
of automorphic forms, and

(B) prove theorems about them?

Prototypical answer (again for Γ = SL(2, Z)):

(A) Some 50,000 eigenvalues computed approximately (6 or 7
decimal places) with heuristic justification of their correct-
ness (work of H. Then based on an algorithm of D. Hejhal).

(B) First 2000 eigenvalues rigorously computed to high precision
(more than 40 places). The eigenspaces are simple, and for
each one the first several Fourier coefficients have been com-
puted to high precision (joint work with A. Strömbergsson).
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Hejhal’s algorithm

Suppose f ∈ L2(SL(2, Z)\H) is a Maass form with eigenvalue
λ = 1

4 + r2 and Fourier coefficients an. Then for M large and y
bounded away from 0,

f(z) =
∑
|n|≤M
n6=0

an
√

yKir(2π|n|y)e(nx) + (small).

For a fixed y, Q > M and 1−Q ≤ j ≤ Q, let

xj =
j − 1/2

2Q
and zj = xj + iy,

and let z∗j = x∗j + iy∗j be its pullback to the fundamental domain.
Then

an
√

yKir(2π|n|y) ≈
1

2Q

Q∑
j=1−Q

f(zj)e(−nxj).
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an
√

yKir(2π|n|y) ≈
1

2Q

Q∑
j=1−Q

f(z∗j )e(−nxj)

≈
1

2Q

Q∑
j=1−Q

∑
|m|≤M
m6=0

am

√
y∗jKir(2π|m|y∗j)e(mx∗j)e(−nxj)

an ≈
∑
|m|≤M
m6=0

am

1
2Q

∑Q
j=1−Q

√
y∗jKir(2π|m|y∗j)e(mx∗j)e(−nxj)
√

yKir(2π|n|y)︸ ︷︷ ︸
C(n,m)

(C − I)

 a−M
...

aM

 ≈ 0
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Turing’s method

Theorem. Let N(t) be the number of cuspidal eigenvalues λ =
1
4 + r2 with r ∈ [0, t]. Define

S(t) = N(t)−

 t2

12
−

2t

π
log

t

e
√

π
2

−
131

144


and

E(t) =
(
1 +

6.59125

log t

)(
π

12 log t

)2
.

Then for T > 1,

−2E(T ) ≤
1

T

∫ T

0
S(t) dt ≤ E(T ).
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Moreover, we have:

Theorem. There is an algorithm that, given Λ, D ≥ 0, will com-

pute all cuspidal eigenvalues λ ∈ [0,Λ] on SL(2, Z)\H to within

10−D in polynomial time in Λ, D.

Sample application

Question: Given a large X > 0, how quickly can one determine

the structure of the ideal groups of all real quadratic fields Q(
√

d),

0 < d < X?

Under GRH, can be done in “essentially linear time” O(X1+ε).

Given a fast algorithm for computing eigenvalues and Fourier co-

efficients of Maass forms, one can remove the GRH assumption.
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Higher rank

H ∼= SL(2, R)/SO(2, R) ∼= GL(2, R)/O(2, R) · R×

z = x + iy ∈ H 7−→
(

y x
1

)
Maass forms ←→ functions on SL(2, Z)\SL(2, R)/SO(2, R)

“degree 3 hyperbolic space”

= SL(3, R)/SO(3, R) ∼= GL(3, R)/O(3, R) · R×

z =
(

1 x12 x13
1 x23

1

)(
y1y2

y1
1

)

“degree 3 automorphic forms”

= functions on SL(3, Z)\SL(3, R)/SO(3, R)
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Fourier expansion

f(z) =
∑

g∈Γ2∞\Γ2

∞∑
n=1

∞∑
m=1

a(n, m)

nm
Wu,v

(( nm
m

1

)
gz
)

,︸ ︷︷ ︸
Jacquet’s Whittaker function

Γ2 =
{(

a b
c d

1

)
: a, b, c, d ∈ Z, ad− bc = ±1

}
,

Γ2
∞ = unipotent elements of Γ2

L-functions
For χ a Dirichlet char. of conductor q and parity a ∈ {0,1}, define

L(s, f × χ) =
∞∑

n=1

a(n,1)χ(n)n−s (<(s) > 1)

=
∏
p

1

1− a(p,1)χ(p)p−s + a(p,1)χ(p)2p−2s − χ(p)3p−3s
,

γ(s, u, v) = ΓR

(
s− i

2u + v

3

)
ΓR

(
s + i

u− v

3

)
ΓR

(
s + i

u + 2v

3

)
,

Λ(s, f × χ) = γ(s + a, u, v)L(s, f × χ)
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Converse theorem

f automorphic =⇒ Λ(s, f × χ) continues to an entire function
and satisfies a “functional equation”:

(*) Λ(s, f × χ) = ε3χq3(1/2−s)Λ(1− s̄, f × χ)

εχ = root number of L(s, χ)

In fact, these nice analytic properties characterize the degree 3
automorphic forms:
Theorem (Jacquet, Piatetski-Shapiro, Shalika). Let L(s, f × χ)
be given by the Euler product on the previous slide, and sup-
pose that for every χ the associated Λ(s, f × χ) continues to an
entire function of finite order satisfying (*). Then the Dirich-
let coefficients a(n,1) are the Fourier coefficients of a degree 3
automorphic form.
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Computing degree 3 automorphic forms
(joint work with Ce Bian)

• Treat Fourier coefficients a(n,1) as unknowns

• Take Mellin transform of Λ(s, f × χ):

S(X, f × χ) =
1√
X

∞∑
n=1

a(n,1)Ff×χ(n/X),

Ff×χ(y) =
ya

2πi

∫
<(s)=1

γ(s, u, v)y−s ds

Functional equation for Λ(s, f × χ)⇐⇒

S(X, f × χ) = ε3χS(q3/X, f × χ)

• Choosing X = q3/2, for each χ we get a linear equation in
<(a(n,1)),=(a(n,1)) for n up to ≈ q3/2

• There are about 18
π4Q2 primitive χ of conductor q ≤ Q

11








