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@ The Bruhat-Tits-Tree and its quotients

© Drinfeld modular forms and harmonic cocycles on 7

© Computing Hecke operators on harmonic cocycles
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Notation

@ k:=TFg with g =p"

K := Quot(k|T])

Voo valuation of K at the place oo, i.e.

Voo (L) = deg(g) — deg(f), veo(0) = o0

@ Ky, the completition of K at vy, i.e. Ko = k((e0)) the laurent
series ring where 7y is the uniformizer =1

Ow = {x € Ky | voo(x) = 0}
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The Bruhat-Tits-Tree 7

Definition of 7

o Let X(7) be the equivalence classes of Ou-lattices in K2. Each such
equivalence class defines a vertex of 7.

o Let A, € X(7) and choose a lattice L € A. A and A’ are connected
in 7 iff there exists a L' € A’ such that L’ < L and
L/l ~ Oy /mOx. The set of directed edges of 7 is called Y (7).

Theorem about the structure of 7

| A

T is a g + l-regular tree, i.e. 7 is a connected, cycle-free tree, where
every vertix has g + 1 neighbours.
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Example for g = 3
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Figure: The Bruhat-Tits-Tree for k = I3
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Operation of GLy(k[T]) on T

@ There is a bijection
X(T) — GL2(Kw)/ GL2(Ow) K3,
@ There is a bijection
Y(T) —> Gla(Ko) [T K

with [ = {(j 2) € GLy(Oy) | veo(c) > 0}
@ GLa(k[T])\7 is just a half-line.

Reason: GLo(K[T])\ GLo(Ku)/ GLa(Ou) K2 = {(3 0) | ne Ny

ﬂ.n
o We write A, for the class of the lattice Oy @ 75, Ouo
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Congruence subgroups

Let N e Fq[T| be normalized.

o T(N) = {y e GLa(k[T]) | 7 = ((1) ;’) mod N}

@ A subgroup of GLo(k[T]) containig I'(N) for any N € k[ T] is called a
congruence subgroup.

o To(N) :={y e GLa(k[T]) | 7 = <8 Z) mod N}

W)= (€ GLakTD) 7= (5 ) mod )

e Congruence subgroups are of finite index in GL2(IFq[ T]), since

r G T) = (g ]) staTim),
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Calculation of MN\7 with I a congruence subgroup, Idea

M7 is a covering of GLa(k[T])\7T

GL2(k[TD\T is a simple half line.

GLa(k[TD\T : Ao > A1 = Ao — ...

Elements of MN\7 are I-orbits of 7. Every GLa(k[T])-orbit of T
decomposes into finitly many I-orbits, since '\ GL2(k[T]) is finite.

We need to know Stabgy,k[77)(/Ai) to see how an GLy(k[T])-orbit
decomposes.

Ralf Butenuth (Uni Essen) Hecke Operators On Drinfeld Cusp Forms Bristol 2008

8 /18



Algorithm for the calculation of MN\7

o Let G; := Stabgp,k[77)(Ai). A simple calculation shows, that
Go = GLa(k) and G; = {(8 Z) | a,d € k*, be k[ T],deg(b) < i}.

o Let S ={s1,...,5n} be a set of representativs of MN\GL2(k[T]).

@ Let T be the standard half line Ag > Ay > Ay — ... and s;(T) the
halfline S,'(/\()) — S,‘(/\l) — S,'(/\z) — ...

@ Then M\7 can be obtained by taking the halflines s;(T), ..., s,(T)
and identify vertices and edges using the following rules:

© Only identify vertices and edges of the same level.

@ si(An) ~ sj(A,) iff there exists a g € G, such that s,-gsj_1 erl.

@ si((MNo, A1) ~ s;((Ao, A1) iff there exists a g € Gy N Gy such that
s,-gs-*1 erl.

Q si((Mp,Nns1)) ~ si(An, A1) iff there exists a g € G, such that
s,-gsj_1 el forn>=1.
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Example: g = 2, I1(T?)\7

Figure: The Quotient I'1(T?)\7 for k = I,
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Example: g = 3, [1(T?)\T

@ \

Figure: The Quotient I'1(T?)\7 for k = IF3

Ralf Butenuth (Uni Essen) Hecke Operators On Drinfeld Cusp Forms Bristol 2008 11 /18



Definition of harmonic cocycles

@ For an edge e € Y(7) let e* denote the same edge with orientation
reversed.

@ For an vertex v € X(7) we write e — v if v is the target of e

e Let M be any vector space with a GLo(k[T])-operation and
I < GLa(k[T]) a congruence subgroup.

@ A function ¢: Y(7) — M is called an M-valued harmonic cocycle, if
@ for all vertices v € X(7) we have Y, c(e) =0.
@ c(e*) = —c(e) for all edges e € Ye(HTV)
@ A function ¢ : Y(7T) — M is called I-equivariant, if for all y € T we
have c(ve) = vyc(e)
@ A l-equivariant harmonic cocycle c is called cuspidal, if there exist a
finite subgraph Z = M\ 7 with c(e) = 0 for all e ¢ Y (7 (2)).

Theorem: Automatic cuspidality

Let M be a finite-dimensional vector-space over a field of characteristic p
with a GLa(k| T])-operation. Then every M-valued I-equivariant harmonic

cocycle is cuspidal.
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Connection with Drinfeld cusp forms

Theorem (Teitelbaum, 1990)

There is an explicit k[[']-module V, (with dimyVp, = m—1 and
independent of I'), such the following holds: Let ' be a congruence
subgroup of GL2(k[T]) and let 5,(I") be the space of Drinfeld cusp forms
of level m > 2 for I'. Then there is a (Hecke-equivariant) isomorphism
from Sp(I') to Char (T, Vin).

Ralf Butenuth (Uni Essen) Hecke Operators On Drinfeld Cusp Forms Bristol 2008 13 /18



Stable Edges

@ From now on let [ be one of I'1(N) or [(N), i.e. T is p’-torsion-free
for p' # p.

@ Anedge e€ Y(T) (or a vertex v € X(7)) is called I-stable, if
Stabr(e) = {1} (or Stabr(v) = {1}). (So, i.e. there are no
GLo(k[T])-stable edges!)

e Fact: The stable part of the tree is connected in '\7.

o Fact: A vertex v € X(7) is stable if and only if its image in M'\7 has
exactly g + 1 neighbours. An edge v € Y(7) is stable, if and only if
one of the adjacent vertices is stable (except for the case I'1(T)).

@ Fact: For every unstable edge e € Y(7) there is a finite and easy to
compute set Source(e) of stable edges of 7 such that

cley= D cle)

e’eSource(e)
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Stable Edges, cont.

@ So a harmonic cocycle c¢ is determined by the values of ¢ on the
stable part of N\7

o Let n = deg(N). Then an edge in the covering over (A;,A;;1) with
i > nis unstable.

@ In fact a harmonic cocycle is determined by the values of ¢ on the
stable edges over the edge (Ag, A1), and for every stable vertix over
Ao we get one relation between these edges.
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Example: g =

Figure: Colored: Stable edges and vertices. Red: Minimal set of edges, that
determine a harmonic cocycle.
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Hecke Operators on Cp, (I, V)

o Translating the Hecke-action to the tree gives:

T(c)(e) = pral (g (1)>1c((g g’) se).

6E(rﬂ|—0(

o Let e = (yAg,y/\1) be given. To evaluate c((’é (1)> de) we consider

. p 0 p 0 1o
the matrices (0 1) 6 and (0 1) oy (0 7T>-

@ Writing both these matrices in the form +/ é :k a with

a € K3 GL2(Oy) and 4" € GLo(k[T]) we find the new edge
v (Nes Nies1).

e Write o/ = vgsj with 79 € [ and sj € S and use the -equivariance of
¢ to obtain an edge in the pre-stored quotient graph MN\7.

o If this edge is stable, than we know the value of ¢ at this edge. If not,
than we have to sum over the source of the edge.

Ralf Butenuth (Uni Essen) Hecke Operators On Drinfeld Cusp Forms Bristol 2008 17 / 18



[§ J.P. Serre: Trees, Springer Verlag (1980)

ﬁ J.T. Teitelbaum: The Poisson Kernel For Drinfeld Modular Curves,
Journal Of The American Mathematical Society 4, (1991), 491-511

[@ J.T. Teitelbaum: Rigid Analytic Modular Forms: An Integral
Transform Approach, In: The Arithmetic of Function Fields, edited by
D. Goss, D. R. Hayes, and M. I. Rosen, deGruyter Press (1992)

[§ my master's thesis (Diplomarbeit)

Ralf Butenuth (Uni Essen) Hecke Operators On Drinfeld Cusp Forms Bristol 2008 18 / 18



	The Bruhat-Tits-Tree and its quotients
	Drinfeld modular forms and harmonic cocycles on T
	Computing Hecke operators on harmonic cocycles

