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“Are we not drawn onward, we few, drawn onward to new era?”



Cusps, as Families of Tate Curves

Definition: X0(N) is the projective curve whose points over Cp
correspond to pairs (E ,C) where E is a generalized elliptic
curve and C ⊆ E is a cyclic subgroup of order N which meets
every component of E .

Every cusp is surrounded by a family of Tate curves (with level
structure) which degenerate into the corresponding Néron
n-gon.

Definition: For d |N, the canonical families of width d on X0(N)
are given by (C∗p/qd , 〈ζq〉), where ζ is any primitive r th root of
unity such that lcm(r ,d) = N.

Each family defines a rigid map from the disk |q| < ε into X0(N)
which takes q = 0 to one of the cusps (z → zgcd(d ,N/d) followed
by an injection). Note: it is easy to check when two families
represent the same cusp (there are φ(gcd(d ,N/d)) different
ones of width d).
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Lemma: (C∗p/qd , 〈ζq〉) ∼ (C∗p/qd
1 , 〈ζq1〉) if and only if

qgcd(d,N/d) = qgcd(d,N/d)
1 .

Pf/ Let λ be a primitive N th root of unity. So ζ = λjN/r for some j with
(j , r) = 1. Then the two elliptic curves are isomorphic if and only if
q1 = (λ)kN/dq for some k .

First suppose 〈λjN/r q〉 = 〈λjN/rλkN/dq〉. Then

jN/r = (jN/r + kN/d)(1 + ld) + mN

0 = kN/d + ldjN/r + ldkN/d + mN.

Thus, we see that d
∣∣(kN/d). So

d
gcd(d,N/d)

∣∣∣∣k .
Therefore qgcd(d,N/d)

1 = λkN gcd(d,N/d)/dqd = qd .

The other direction is similar.
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The Tate Curve C∗p/qd with Some of its N-torsion

!

p

qd

q3

q2

!3

!
2

..
1

q.

.

..

.
.

C



Definition of Modular Forms

Definition: A modular form of weight k for Γ0(N) is a function
which takes pairs (E ,C) as input, and outputs a section of Ω⊗k

E .
(sufficiently well-behaved, of course)

Definition: Suppose f is a weight k modular form for Γ0(N).
The q-expansion of f associated to the canonical family
(C∗/qd , 〈ζq〉) is the unique f (q) such that

f (C∗p/qd , 〈ζq〉) = f (q)
(

dz
z

)⊗k
.

So at this point, we’ve defined q-expansions associated to
families of Tate curves, based on the moduli-theoretic definition
of modular forms. Why?
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Pullbacks by Level-Lowering Maps

Suppose that M`
∣∣N. It is well-known that we have maps,

π` : X0(N)→ X0(M), defined by

π`(E ,C) = (E/C[`],C[M`]/C[`]).

We can also define the π` pullback of a modular form f for Γ0(M).

Definition: Let f be a weight k modular form for Γ0(M), with M`
∣∣N as

above. Then we define

(π∗` f )(E ,C) = ι∗(f (E/C[`],C[M`]/C[`])),

where ι : E → E/C[`] is the canonical isogeny and

ι∗ : Ω⊗k
E/C[`] → Ω⊗k

E .

Big Idea: We can use Tate curve calculations to compute the
q-expansions of π∗` f in terms of the q-expansions of f .
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Theorem 1: Suppose r , d , M, and ` are positive divisors of N, such
that M`

∣∣N (so π` : X0(N)→ X0(M)) and lcm(d , r) = N. Suppose ζ is
a primitive r th root of unity. Suppose f is any weight k modular form
for Γ0(M).

Let g = gcd(d ,N/`), and find a,b ∈ Z s.t. ad + b(N/`) = g.

If
f (C∗p/(ζbNg/dq`g2/d ), 〈(ζq)`g/d 〉[M]) = f (q)

( dz
z

)⊗k
,

then
π∗` f (C∗p/qd , 〈ζq〉) = f (q)

(
`g
d

)k ( dz
z

)⊗k
.

pf/ We want to compute π∗` f on (C∗p/qd , 〈ζq〉) using the definition of
π∗` , and in this case E = C∗p/qd and C = 〈ζq〉. So first we apply
ι : E → E/C[`] to get C∗p/〈qd , (ζq)N/`〉. Now use

C∗p/〈qd , (ζq)N/`〉
∼=−→ C∗p/(ζbNg/dq`g2/d ) z 7→ z`g/d
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Although we will only use the theorem to pull back forms of
level 1 (in particular ∆), the theorem does tell us explicitly how
to obtain the q-expansions of π∗` f at any cusp, given the
q-expansions at the image cusp. (It’s just a substitution, since q
is just a number here!)

Corollary 1.1: Suppose f is a form for Γ0(1) with q-expansion
f (q). Then the expansion at (C∗p/qd , 〈ζq〉) of π∗` f is given by

f (ζbNg/dq`g2/d )
(

`g
d

)k
.
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Part II
Eta Products



Ligozat’s Criteria

Definition: Let ∆ be the usual weight 12 level 1 cusp form, with
q-expansion ∆(q). Let η(q) = (∆(q))1/24. So

η(q) = q1/24
∞∏

n=1

(1− qn).

An eta product is an expression of the form
∏

`
∣∣N(η(q`))r` .

Theorem 2: (Ligozat) An eta product is a weight 0 modular
form, i.e. a modular function, on X0(N), if and only if

(i)
∑

rd = 0
(ii)
∑

d · rd ≡ 0 (mod 24)
(iii)

∑ N
d · rd ≡ 0 (mod 24)

(iv)
∏(

N
d

)rd
∈ Q2.
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q-expansions of ∆ pullbacks

Theorem 3: For any `
∣∣N, ∆(q`) is the q-expansion at infinity of

a weight 12 modular form for Γ0(N). Its q-expansion associated
to the family, (C∗p/qd , 〈ζq〉) is given by

∆(ζbNg/dq`g2/d )
( g

d

)12
.

pf/ This is a direct application of Corollary 1.1. The form in
question is actually `−12π∗` (∆). So from the corollary, its
expansion is

`−12∆(ζbNg/dq`g2/d )
(

`g
d

)12
.
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Corollary 3.1: The leading term of the q-expansion of any
delta product (associated to a fixed family) is given by∏

`|N

(
ζbNg/dq`g2/d

)r` ( g
d

)12r` .

In particular, the ord at the corresponding cusp of the
corresponding eta product is

1
24 gcd(d ,N/d)

∑
`|N

`·r`
d (gcd(d ,N/`))2.

Moreover, when the ord is 0 at a particular cusp, the value of

the corresponding delta product is given (up to an r th root of
unity) by ∏

`|N

( 1
d gcd(d ,N/`))12r` .
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Eta products on X0(18)

Applying the corollary about ords, we find:

1 2 3 6 9 18
2 1 6 3 18 9
1 2 3 6 1 2
2 1 6 3 2 1
9 18 3 6 1 2

18 9 6 3 2 1

 ·


r1
r2
r3
r6
r9
r18

 =



ord(d = 1)
ord(d = 2)
ord(d = 3)
ord(d = 6)
ord(d = 9)
ord(d = 18)


Note: There are two cusps with d = 3 and two with d = 6.

Let f =
η2

2η9

η1η
2
18

.

By Ligozat, it is a legitimate function, and by above it has divisor
(1/2)− (∞). Hence it is a parameter on this genus 0 curve.
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Moreover, the values of f 24 at the d = 18, 6, 3, and 2 cusps are
324, 312, 312, and 1 (respectively, up to a root of unity). These
values can be easily verified (in this case) by choosing eta
products which vanish at the other cusps, and then comparing
with f .

x =
η2

1η6η9

η2η3η
2
18

(x) = (0)− (∞) x = f − 3

y =
η2η

6
3

η2
1η

2
6η

3
18

(y) = c6,1 + c6,2 − 2(∞) y = f 2 + 3

z =
η1η

8
6η

3
9

η2
2η
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What if there aren’t enough eta products?

Answer: There are. Philosophically, Ligozat works in different
weights, and we can apply the θ operator. Weight 0 to weight 2
(functions to differentials) is especially straightforward.

Theorem 4: (Shimura) Let f be a form of even weight k . Let
ν = f (z)(dz)k/2. Then

Div(f ) = Div(ν) + (k/2) ·
(∑

(1− e−1
i )Pi + cusps

)
,

where {Pi} are the elliptic points of order ei .
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A Nice Example Involving X0(11)

Doing the usual thing, we find that t = η12
1 /η12

11 is a legitimate
function with divisor 5(0)− 5(∞). We also get a weight two
cusp form by taking (η1η11)2. Using the preceding theorem, its
divisor (as a form) is (0) + (∞).

There aren’t any elliptic points. So the function,

x :=
dt/t

(η1η11)2 ,

has degree 2, with a simple pole at each cusp. This implies that
x is a parameter on X0(11)+ := X0(11)/w11. By comparing
q-expansions, we find:

t2 +
1
55 (x5 +170x4 +9345x3 +167320x2−7903458)t +116 = 0.
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Remark:

This reduces mod 11 to

t2 + (x − 2)2(x + 3)3t = 0.

It’s the blow-down of the Deligne-Rapoport model!!

By letting

y =
2 · 55t + (x5 + 170x4 + 9345x3 + 167320x2 − 7903458)

(x + 47)(x2 + 89x + 1424)

we arrive at the “nicer” model:

y2 = (x − 8)(x3 + 76x2 − 8x + 188).

Note: π∗1j =
(60y + 61x2 + 864x − 2016)3

56t
.
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Conclusions:

(1) It’s fairly straightforward to compute the q-expansion of the
pullback of a modular form for Γ0(N) via π∗` in terms of the
expansion at the appropriate image cusp.

(2) Using (1), we have nice formulas for everything you’d want
to know about eta products.

(3) Eta products can be used to get really nice explicit models
for X0(N), even if N = p.
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Part III
Implementation



Eta Product Package Wish List

Easy: (just derived the formulas)

(1) Ligozat check
(2) Matrix that converts exponent lists to cuspidal divisors
(3) Value of delta product at any cusp not in the support

Slightly Harder: (just a pain)

(4) Basis for eta products (as a Z-module).
(5) Eta products of minimal degree.
(6) Equations relating choice of finitely many eta products.
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Basis Calculation for X0(18)
Ligozat condition is equivalent to a system of (2 + p(N))
homogeneous linear congruences mod 24, in (d(N)− 1)
variables (where p(N) is the number of primes dividing N).
Simple Gaussian elimination should give a basis over Z/24Z
and then over Z.

r1 +2r2 +3r3 +6r6 +9r9 +18r18 ≡ 0 (mod 24)
18r1 +9r2 +6r3 +3r6 +2r9 +r18 ≡ 0 (mod 24)
12r1 +12r3 +12r9 ≡ 0 (mod 24)

12r3 +12r6 ≡ 0 (mod 24)−17 −16 −15 −12 −9
17 8 5 2 1
12 0 12 0 12
0 0 12 12 0



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r18

 = a


0
3
0
0
0
−3

+ b


4
−2
4
0
0
−6

+ c


3
0
−1
1
0
−3

+ d


−1
−1
0
0
1
1


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Using eta products to find an equation on X0(26)

On X0(26), the eta product divisor matrix is:
1 2 13 26
2 1 26 13

13 26 1 2
26 13 2 1

 ·


r1
r2
r13
r26

 =


ord(d = 1)
ord(d = 2)
ord(d = 13)
ord(d = 26)


Note: Only one cusp of each width this time.

Initially, we choose the following two eta products:

t =
η2

2η
2
13

η2
26η

2
1

(t) = (1/2) + (1/13)− (0)− (∞)

u =
η4

2η
2
13

η4
26η

2
1

(u) = 3(1/2)− 3(∞)
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Since u = 13 at the cusp 0, we let v = t(u− 13) and must have:

a1u4 + a2v3 + a3v2u + a4vu2 + a5u3+

a6v2 + a7uv + a8u2 + a9v + a10u + a11 = 0.

By comparing q-expansions, we find:

u4 − v3 + 4uv2 + 4u2v − 27u3 − 52uv + 195u2 − 169u = 0.

Changing back to (t ,u), we have:

u2 − t3u + 4t2u + 4tu − u + 13t3 = 0.

Finally, with x = t and y = 2u − t3 + 4t2 + 4t − 1 we arrive at:

y2 = x6 − 8x5 + 8x4 − 18x3 + 8x2 − 8x + 1.

Remark: π∗1(η2
1/η

2
13) = u/t2 and π∗2(η2

1/η
2
13) = u/t .
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