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The automorphy method (Hejhal’s method) Generalizations

Maass waveforms on PSL2(Z).

Maass waveforms (cusp forms) are solutions to the following
problem:

1 (∆+λ)φ(z) = 0, λ = 1
4 +R2 > 0,

2 φ(γz) = φ(z) , ∀γ ∈ PSL2(Z),
3

R
Γ\H |φ|

2 dµ < ∞, implies φ(z)→ 0 as y → ∞ (in our case).

Fourier expansion at ∞:

φ(z) = ∑
n∈Z,n 6=0

cnκn (y)e (nx) ,

κn (y) =
√

yKiR (2π |n|y)∼
√

1
4|n|e

−2π|n|y as |n|y → ∞.
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Truncation and Inversion

Let ε > 0, set Ymin =
√

3
2 and Y0 < Ymin. Then ∃M0 = M (Y0) s.t.

φ(z) = φ̂(z)+ [[ε]] = ∑
|n|≤M0

cnκn (y)e (nx)+ [[ε]] , ∀y > Y0.

(We will ignore the error [[ε]] from now on). View φ̂ as a finite
Fourier transform and invert φ̂ over a horocycle
zm = xm + iY = 2m−1

4Q + iY , 1−Q ≤m ≤ Q with Q > M0 gives

cnκn (Y ) =
1

2Q

Q

∑
m=1−Q

φ̂(zm)e (−nxm) .
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Automorphy

Consider the standard (closed) f.d.
F0 =

{
z = x + iy ∈H | |x | ≤ 1

2 , |y | ≥ 1
}

. For z ∈H let
z∗ = Az ∈ F0 denote the pullback of z to F0. Then

φ(zm) = φ(z∗m) . (*)

Hence

c (n)κn (Y ) =
1

2Q

Q

∑
m=1−Q

φ̂(z∗m)e (−nxm)

= ∑
|l|≤M

Vnlcl (**)

Setting Ṽnl = Vnl −δnlκn (Y ) we get the homogeneous system

Ṽ~c = 0 (***)

Normalize by e.g. c1 = 1 (Hecke).
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Locating eigenvalues

Locating Eigenvalues

The previous system can be constructed and solved for
arbitrary R and Y < Ymin, giving~c =~c (Y ,R).
If R2 + 1

4 is in the discrete spectrum of ∆ then the solution
vectors~c =~c (Y ,R) are independent of Y < Ymin (up to ε).

Construct a functional of R : Let~c =~c (Y1,R) and
~c′ =~c (Y2,R) and set for example

h (R) = ε2
(
c2− c′2

)
+ ε3

(
c3− c′3

)
+ ε4

(
c4− c′4

)
here εj =±1 is set so that h changes sign at the zeros.

Then h (R) = 0 if R corresponds to an eigenvalue and we
can use e.g. Newton’s method to find eigenvalues.
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Phase 2

Phase 2: get more than M0 coefficients

If Q > M (Y ) > |n| then (**) is valid for n and

cn =
∑|l|≤M0

Vnlcl

κn (Y )
+

[[ε]]
κn (Y )

We can use this to compute a large number of coefficients using
the initial set. The main computational cost here comes from the
fact that we not only need Q > M (Y ) > |n| but we also need to
keep κn (Y ) reasonably large at the same time. This leads to a
decreasing sequence of Y and increasing Q.
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Successful generalizations

Γ⊆ PSL2(Z) a finite index subgroup [4]

General weight and multiplier system [5]

Eisenstein Series (Helen Avelin) [1, 3].

Green’s functions (Helen Avelin) [2] (will not be discussed)

Weak Maass forms and vector-valued Poincaré series

The Picard group (Holger Then) See e.g. [6] (will not be
discussed)

One needs: Fourier expansion (possibility to truncate), pullback
algorithm and automorphy relation.
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More general groups

Γ a Fuchsian group with κ≥ 1 cusp(s)

Fourier series
φ has κ Fourier series expansions:

φj (z) = φ

(
σ
−1
j z

)
= ∑

n 6=0

cj (n)κn (y)e (nx)

where σj is a cusp normalizing map for cusp nr. j .

Automorphy relation

φj (zm) = φI (j,m)
(
z∗m,j

)
where I (j,m) and z∗m,j depends on both j and m.
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More general groups

Pullback Algorithm to Γ⊆ PSL2(Z)

1 Choose right coset representatives: PSL2(Z) = tΓVj

2 A f.d. for Γ is given by FΓ = ∪Vj (F0)
3 If z ∈H,

1 z̃ = Tz ∈ F0 is the pullback to F0.
2 Find j s.t. T−1 ∈ ΓVj ⇒ VjT ∈ Γ

3 z∗ = Vj z̃ ∈ FΓ is a pullback to FΓ.

Important for the truncation to work is the existence of a minimal
„invariant height“ of FΓ, Y0 i.e. if Y < Y0 then ℑz∗mj > Y0 for all j

and m. For Γ0 (N) we have Y0 ≥
√

3
2N .



Non congruence subgroup
of index 9, Γ9,12.
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Characters, weights and multipliers

Characters, weights and multipliers

Let Γ = Γ0 (N), k ∈ R and v be a multiplier system (or
character) on Γ of weight k and (∆k +λ)φ = 0, ∆k = ∆− iyk ∂

∂x .

Fourier series

φj (z) = ∑
nj 6=0

cj (n)√
|nj |

Wsign(nj) k
2 ,iR (4π |nj |y)e (njx)

where nj = n +αj , αj ∈ [0,1) and Wµ,iR (x) is the Whittaker
W-function.

Automorphy relation

φj (zm) = jγ
(
z∗mj

)k
v (γ)φI (j,m)

(
z∗mj

)
if z∗mj = γ−1zm and j(a b

c d

) (z) = eiArg(cz+d).
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Holomorphic functions

Holomorphic Automorphic Functions

Correspondence with Maass waveforms

F (z) = ∑
n≥0

cne (nz) ∈Mk (Γ) , k > 0

⇒
f (z) = y

k
2 F (z) ∈Maass (Γ,k ,v = 1,λ)

with λ = k
2

(
1− k

2

)
. Hence we can use our algorithm to compute

the Fourier coefficients dn = n
1−k

2 cn of

f (z) = ∑
n

dnκn (y)e (nx) ,

with κn (y) =
√

y (ny)
k−1

2 e−2πny .



The automorphy method (Hejhal’s method) Generalizations

Non-holomorphic Eisenstein Series

Non-holomorphic Eisenstein Series for PSL2(Z)
Fourier series

E (z;s) = ys +ϕ(s)y1−s + ∑
n 6=0

cn (s)Ks− 1
2
(2π |n|y)e (nx)

= A(y)+∑
n

cn (s)κn (y)e (nx)

where A(y) = ys, c0 (s) = ϕ(s) and κn (y) = Ks− 1
2
(2π |n|y) for

n 6= 0 and κ0 (y) = y1−s.

By Fourier inversion we get:

1
2Q

Q

∑
m=1−Q

E (zm;s)e (−nxm) =

{
A(Y )+ c0κ0 (Y ) , n = 0,

cn (s)κn (Y ) , n 6= 0
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Non-holomorphic Eisenstein Series

Inhomogeneous system

Similar steps as above lead to an inhomogeneous system:

0 = Ṽ~c + ~̃W (Y )

where V =
(
Ṽnl

)
is essentially the same as before and

W̃n =
1

2Q

Q

∑
m=1−Q

A(y∗m)e (−nxm)−δn0A(Y ) .

Note that if s (1− s) belongs to the discrete spectrum of ∆ the
corresponding Maass waveform solves the homogeneous
system and some extra care has to be taken to avoid multiple
solutions.

This algorithm was first implemented by Helen Avelin for Hecke
triangle groups and for deformations of Γ0 (5).
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Harmonic weak Maass forms

Harmonic Weak Maass forms

Definition ( Harmonic weak Maass form)

f is a Harmonic weak Maass form of weight k ∈ 1
2Z for

Γ = Γ0 (N) (or Γ̃) and representation ρ : Γ→ Ch if

1 ∆̃k f = 0 where ∆̃k = ∆− iky
(

∂

∂x + i ∂

∂y

)
= ∆k + ky ∂

∂y ,

2

f (z) = f|ρ,k γ = Jγ (z)−2k
ρ(γ)−1 f (γz) , ∀γ ∈ Γ

where J(
a b
c d

) (z) =
√

cz +d = |cz +d |
1
2 ei 1

2 Arg(cz+d)

3 There exists a polynomial Pf = ∑n≤0 c+
n e (nz) such that

f (z)−Pf (z) = O
(
e−εy) , asy → ∞.



The automorphy method (Hejhal’s method) Generalizations

Harmonic weak Maass forms

Fourier Series

We have

f (z) = ∑
n�−∞

c+ (n)e (nz)+ ∑
n<0

c− (n)Γ(1− k ,4π |n|y)e (nz)

= Pf (z)+ ∑
n>0

c+ (n)κ
+
n (y)e (nx)+ ∑

n<0
c− (n)κ

−
n (y)e (nx)

where κ+
n (y) = e−2πny and κ−n (y) = κ+

n (y)Γ(1− k ,4π |n|y).

It is known that f is determined by Pf and we the space of weak
Maass forms is spanned by Poincaré series.
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Harmonic weak Maass forms

The Weil representation

Let q (x) = Nx2, L = 〈Z,q〉, L′ the dual lattice and
L′/L∼=

{
0, 1

2N , · · · , 2N−1
2N

}
. Let eβ be the standard basis of

C [L′/L] , eβ (x) = e2πixeβ. Let ρL : SL2(Z)→ C [L′/L] be the
Weil representation corresponding to L, i.e. if T =

(
1 1
0 1

)
,

S =
(

0 −1
1 0

)
and −I =

(−1 0
0 −1

)
then

ρL (T )eγ = e (q (γ))eγ

ρL (S)eγ =
1√
2Ni

∑
δ∈L′/L

e (−(γ,δ))eδ

ρL (−I)eγ = −ie−γ
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Harmonic weak Maass forms

Non-holomorphic Poincaré series

Definition (Non-holomorphic Poincaré series)

Let β ∈ L′/L and mβ ∈ Z+q (γ) < 0. Then

F L
β,m (z,s) =

1
2Γ(2s) ∑

M∈Γ∞\SL2(Z)

[
Ms (4π |m|y)eβ (mx)

]
|ρL,k M

here M is related to the Whittaker M-function

F L
β,m (γz,s) = Jγ (z)2k

ρL (γ)F L
β,m (z,s) and

∆k F L
β,m =

((
s (1− s)+

k
2

(
k
2
−1

)))
F L

β,m.
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Harmonic weak Maass forms

Harmonic Poincaré series

If s = 1− k
2 then ∆k F L

β,m = 0 and (n ∈ Z+q (γ))

the Fourier expansion

F L
β,m (z) = eβ (mz)+ e−β (mz)+ ∑

γ∈L′/L
∑
n≥0

c+ (γ,n)eγ (nz)

+ ∑
γ∈L′/L

∑
n<0

c− (γ,n)κ
−
n (y)eγ (nx)

Automorphy relation

F L
β,m (γz)eγ = Jγ (z)2k

∑
δ∈L′/L

ρL (γ)
γδ

F L
β,m (z)eδ.
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Harmonic weak Maass forms

κn (y) decreases as y |n| → ∞ so „the algorithm“ applies and as
for the Eisenstein series we get an inhomogeneous system:

Ṽ~c + ~̃W = 0.

Examples of Coefficient Bounds

1 φ ⇒ cn = O
(

n
2
5 +ε

)
2 E (z;s) ⇒ cn (s) = O

(
|n|

1
2 +|ℜs− 1

2 |+ε
)

, n 6= 0 and

c0 (s) = ϕ(s) is unbounded (has poles)

3 F L
β,m ⇒ c+ (n) = O

(
1√
nN

e4π

√
|mn|

)
and c− (n) = O (1).
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Harmonic weak Maass forms

Some numerical aspects on the Linear systems

Maass forms: Stable system after subtracting κn (Y )
Eisenstein series: s0 is a pole of ϕ the system is clearly
unstable around s0 but since ϕ(1− s)ϕ(s) = 1 and
E (z;s) = ϕ(s)E (z;1− s) we can always study the region
where ϕ(s) = 0 instead.

In Poincaré series computation things are much worse. The
exponential growth in one direction makes the system
unbalanced but we can scale the positive coefficients by
the exact asymptotic.

However we still need to use at least so many digits
precision that c+ (n) can be represented with an error of ε

so the precision must increase with n.
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Harmonic weak Maass forms

Explict formulas

c+ (γ,n) = 2π

∣∣∣ n
m

∣∣∣ k−1
2

∑
c 6=0

Hc (β,m,γ,n) I1−k

(
4π

|c|
√
|mn|

)
,n > 0

c+ (γ,0) =
(2π)2−k |m|1−k

Γ(2− k) ∑
c 6=0

|c|k−1 Hc (β,m,γ,0)

c− (γ,n) =
−1

Γ(1− k)
δmn

(
δβ,n +δ−β,γ

)
+

2π

Γ(1− k)

∣∣∣ n
m

∣∣∣ k−1
2

∑
c 6=0

Hc (β,m,γ,n)J1−k

(
4π

|c|
√
|mn|

)
,n < 0

Hc (β,γ,n) is a ρL-twisted Kloosterman sum. These formulas
have terrible convergence!
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Harmonic weak Maass forms
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