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Fundamental domains

Let Γ ⊂ PSL2(R) be a finitely generated Fuchsian group, a discrete
group of orientation-preserving isometries of the upper half-plane H with
hyperbolic metric d. A fundamental domain for Γ is a closed domain D ⊂ H
such that:

(i) ΓD = H, and
(ii) gDo ∩Do = ∅ for all g ∈ Γ \ {1}, where o denotes the interior.

In particular, the translates gD for g ∈ Γ give a tesselation of H. For
example, for Γ = SL2(Z), we have the usual picture:
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Fundamental domains: SL2(Z)

Or more artistically:

Regular Division of the Plane VI (1957–1958), M.C. Escher.
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Fundamental domains: Subgroups of SL2(Z)

For congruence (and some noncongruence) subgroups of SL2(Z), e.g.
Γ0(N) for N ∈ Z>0, there is a method which uses Farey symbols to
compute a fundamental domain (Verrill).

Here, the choice of any 6 triangles each of different color gives a fundamental
domain for Γ0(2).

For a Fuchsian group Γ, there are a clearly many possible fundamental
domains. Indeed, if D is a fundamental domain then so is gD for any
g ∈ G. We seek out the most ones which are most natural (and useful).
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Dirichlet domains

Let p ∈ H be a point with trivial stabilizer Γp = {1}. We define the
Dirichlet domain centered at p to be

D(p) = {z ∈ H : d(z, p) ≤ d(gz, p) for all g ∈ Γ}.

The set D(p) is a fundamental domain for Γ, and is a generalized hyperbolic
polygon, a closed, connected, and hyperbolically convex domain whose
boundary consists of finitely many geodesic segments, called sides, along
with possibly segments of the real axis.

(The Dirichlet construction works whenever a discrete group Γ acts on a
locally compact space X with an intrinsic metric, so that there exists an
equidistant point y ∈ X from any two points x1, x2 ∈ X.)

From now on, we assume that the group Γ is cofinite, the orbit space Γ\H
has finite hyperbolic area. Of particular and relevant interest is the class
of arithmetic Fuchsian groups, those groups commensurable with groups
associated to unit groups in certain quaternion algebras over totally real
fields.
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Dirichlet domains: Γ6(1)

Here is an example of a tesselation of H from a Dirichlet domain for the
arithmetic Fuchsian group Γ6(1), associated to the quaternion algebra of
discriminant 6 over Q:
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Dirichlet domains: (2, 4, 6)-triangle group

Here is Escher’s rendition in the hyperbolic unit disc for the (2, 4, 6)-triangle
group, which contains Γ6(1) with index 4:

Circle Limit IV (1960), by M.C. Escher.
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Side pairings

Let D ⊂ H be a generalized hyperbolic polygon. Let S = S(D) denote the
set of sides of D, with the following convention.

If g ∈ Γ is an element of order 2 which fixes a side s of D, and s contains
the fixed point of g, we instead consider s to be the union of two sides
meeting at the fixed point of g.

We define a labeled equivalence relation on S by

P = {(g, s, s∗) : s∗ = g(s)} ⊂ Γ× (S × S).

We say that P is a side pairing for D if P induces a partition of S into
pairs, and we denote by G(P ) the projection of P to Γ.

Proposition. The Dirichlet domain D(p) has a side pairing P , and the
set G(P ) generates Γ.
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Side pairings: Γ6(1)

For the group Γ6(1), we have the following side pairing:
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Algorithm

From now on, we assume that Γ is exact, specified by a finite set of
generators G ⊂ SL2(K) with K ↪→ R ∩Q.

We specify the Dirichlet domain D(p) centered at p by a sequence of
vertices, oriented counterclockwise around p. We represent elements of H
using exact complex arithmetic; in practice, we use fixed (sufficiently large)
precision, since round-off errors will occur rarely in practice.

Our main theorem is as follows.

Theorem. There exists an algorithm which, given a (cofinite, exact)
Fuchsian group Γ and a point p ∈ H with Γp = {1}, returns the Dirichlet
domain D(p), a side pairing for D(p), and a finite presentation for Γ
with a minimal set of generators.

So fundamental domains are good for more than just pictures! This
algorithm also provides an efficient solution to the word problem for the
computed presentation of Γ.
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Arithmetic Fuchsian groups

Let F be a number field with ring of integers ZF . A quaternion algebra B
over F is an F -algebra with generators α, β ∈ B such that

α2 = h, β2 = k, βα = −αβ

with h, k ∈ F ∗; such an algebra is denoted B =
(

h, k

F

)
and is specified in

bits by h, k.

An element γ ∈ B is represented by γ = x + yα + zβ + wαβ with
x, y, z, w ∈ F , and we define the reduced trace and reduced norm of γ by
trd(γ) = 2x and nrd(γ) = x2 − hy2 − kz2 + hkw2.

Let B be a quaternion algebra over F . A place v of F is split or ramified
according as B⊗F Fv

∼= M2(Fv) or not, where Fv denotes the completion of
F at v. The product of all ramified finite primes p ⊂ ZF is the discriminant
of B.
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Arithmetic Fuchsian groups

Let ZF denote the ring of integers of F . An order O ⊂ B is a finitely
generated ZF -submodule with FO = B which is also subring; an order is
maximal if it is not properly contained in any other order. We represent an
order by a pseudobasis over ZF .

Suppose that F is a totally real field and that B is split at exactly one real
place corresponding to ι∞ : B ↪→ M2(R). Let O ⊂ B be a maximal order
and let O∗

1 denote the group of units of reduced norm 1 in O. The group

ΓB(1) = ι∞(O∗
1/{±1}) ⊂ PSL2(R)

is a cofinite (and hence finitely generated) Fuchsian group.

An arithmetic Fuchsian group Γ is a group commensurable with ΓB(1) for
some choice of B. One can, for instance, recover the usual modular groups
in this way, taking F = Q, O = M2(Z) ⊂ M2(Q) = B, and Γ ⊂ PSL2(Z)
a subgroup of finite index.
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Applications: Group invariants, automorphic forms

As a first application, we compute invariants of Γ. The group Γ has finitely
many orbits with nontrivial stabilizer, known as elliptic cycles and parabolic
cycles according as the stabilizer is finite or infinite. The coset space
X = Γ\H can be given the structure of a Riemann surface, and we say that
Γ has signature (g;m1, . . . ,mt; s) if X has genus g and Γ has t elliptic
cycles of orders m1, . . . ,mt and s parabolic cycles.

Corollary. There exists an algorithm which, given a Fuchsian group Γ
returns the signature of Γ and a set of representatives for the elliptic
and parabolic cycles in Γ.

For example, Γ6(1) has signature (0; 2, 2, 3, 3; 0).

Next, we give an application relevant to the evaluation of automorphic
forms (to high precision).

Corollary. There exists an algorithm which, given a Fuchsian group Γ
and z, p ∈ H with Γp = {1}, returns a point z′ ∈ H and g ∈ Γ such that
z′ = g(z) and z′ ∈ D(p).
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Application: principalization, group cohomology

We obtain from the algorithm a finite presentation with a minimal set of
generators for the group O∗

1, which is a noncommutative generalization of
the problem of computing a system of fundamental units of a (totally real)
number field.

In analogy with SL2(Z), this is likely to yield an explicit method for the
principalization of right ideals in O or equivalently a reduction theory for
quaternary quadratic forms arising in this context.

In joint work with Matt Greenberg (Calgary), we use the solution to the
word problem corresponding to this explicit reduction theory to compute the
action of the Hecke operators on the cohomology group H1(Γ, Z), which
(modulo torsion) encodes the space of modular forms on Γ of weight 2. In
this way, one obtains explicit q-expansions for modular forms associated to
(modular) elliptic curves over totally real fields!
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Isometric circles

Our algorithms work in the hyperbolic unit disc D. We map φ : H → D with
p 7→ 0. We transfer the notion of Dirichlet domain so φ(D(p)) = D(0). To
ease notation, we identify Γ with Γφ = φΓφ−1 ⊂ SU(1, 1).

A matrix g =
(

a c
c a

)
∈ SU(1, 1) multiplies lengths by |g′(z)| = |cz+a|−2.

Thus, Euclidean lengths (and areas) are preserved if and only if |cz+a| = 1.
We define the isometric circle of g to be

I(g) = {z ∈ C : |cz + a| = 1}.

When c 6= 0, I(g) is a circle of radius 1/|c| and center −a/c; if c = 0, then
g fixes p and we have I(g) = C.
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Isometric circles

We then have the following alternative description of D(0).

Proposition. The domain D(0) is the closure in D of⋂
g∈Γ\{1}

ext(I(g)),

where ext (resp. int) denotes the exterior (resp. interior).

For G ⊂ Γ, we define ext(G) =
⋂

g∈G\{1} ext(I(g)), so that D(0) is the

closure of ext(Γ). By definition

D(0) = {z ∈ D : d(z, 0) ≤ d(gz, 0) for all g ∈ Γ}.

so the above proposition follows from the following lemma.

Lemma. For any g ∈ SU(1, 1), we have

d(z, 0)


<

=
>

 d(gz, 0) according as


z ∈ ext(I(g)),
z ∈ I(g),
z ∈ int(I(g)).
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Isometric circles: Γ6(1)

Those g ∈ Γ with isometric circle I(g) having sufficiently small radius do
not contribute to the Dirichlet domain.

1

(The Dirichlet domain for the group Γ6(1) associated to the quaternion
algebra of discriminant 6.)
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Inverse radius

We now relate isometric circles to the arithmetic of B. A short calculation

shows that if g =
(

a b
c d

)
∈ SL2(R), then the isometric circle of gφ =

φgφ−1 ∈ SU(1, 1) has radius
2 Im(p)
|fg(p)|

, where

fg(t) = ct2 + (d− a)t− b

is the polynomial whose roots are the fixed points of g.

The map

invrad : M2(R) → R

g 7→ 2
rad(g)2

+ det(g)

is a positive definite quadratic form on M2(R): indeed, if p = i, then simply

invrad
(

a b
c d

)
= a2 + b2 + c2 + d2.
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Absolute reduced norm

For the real ramified places v of F , the reduced norm form nrdv : B → R
by g 7→ v(nrd(g)) is positive definite. Putting these together, we have the
absolute reduced norm

N : B → R

g 7→ invrad(g) +
∑
v|∞

ramified

nrdv(g) =
2

rad(g)2
+ TrF/Q nrd(g)

which is positive definite and gives O the structure of a lattice of rank 4n.

The elements g ∈ O with small absolute reduced norm N are those such
that TrF/Q nrd(g) is small and rad(g) is large. In particular, this will include
those g ∈ O∗

1 with large rad(g). Hence, one simple idea to construct D(0)
for an arithmetic Fuchsian group would be to enumerate all elements of O∗

1

by increasing N and stop when the exterior of the isometric circles of these
elements has area equal to µ(Γ\H) (which may by computed independently
by a formula involving the arithmetic invariants of Γ).
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Absolute reduced norm: Γ6(1)

1



21

Absolute reduced norm: Γ6(1)

1
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Absolute reduced norm: Γ6(1)

1
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Absolute reduced norm: Γ6(1)

1
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Absolute reduced norm: Γ6(1)

1
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Absolute reduced norm: Γ6(1)

1



26

Absolute reduced norm: Γ6(1)

1
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Absolute reduced norm: Γ6(1)

1
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Absolute reduced norm: Γ6(1)

1
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Absolute reduced norm: Γ6(1)

1
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Absolute reduced norm: Γ6(1)

1
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Absolute reduced norm: Γ6(1)

1
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Absolute reduced norm: Γ6(1)

1
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Absolute reduced norm: Γ6(1)

1
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Absolute reduced norm: Γ6(1)

1
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Absolute reduced norm: Γ6(1)

1



36

Absolute reduced norm: Γ6(1)

1
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Absolute reduced norm: Γ6(1)

1
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Absolute reduced norm: Γ6(1)

1

(Finished!)
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The reduction algorithm

We can improve upon this näıve algorithm as follows. Recall that

d(z, 0) < d(gz, 0) ⇔ z ∈ ext(I(g)).

For z ∈ D and γ ∈ SU(1, 1), we define ρ(γ; z) = d(γz, 0) ∈ R≥0.

Given a finite subset G ⊂ Γ \ {1} we say that γ is (G, z)-reduced if for all
g ∈ G, we have ρ(γ; z) ≤ ρ(gγ; z). We see that γ is (G, z)-reduced if and
only if γz is in the closure of ext(G).

We have a straightforward algorithm to obtain a (G, z)-reduced element,
which we denote γ 7→ redG(γ; z): if ρ(γ; z) > ρ(gγ; z) for some g ∈ G, set
γ := gγ and repeat. The algorithm terminates since Γ is discrete.

This reduction is analogous to the generalized division algorithm in a
polynomial ring over a field: if G is a Gröbner basis for an ideal I, then
f ∈ I if and only if the remainder on division by f by G is zero.

Proposition. Suppose that ext(G) is a fundamental domain for Γ. Then
for any γ ∈ SU(1, 1), we have redG(γ; 0) = 1 if and only if γ ∈ Γ.
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Computing a basis

Proposition. Suppose that ext(G) is a fundamental domain for Γ. Then
for any γ ∈ SU(1, 1), we have redG(γ; 0) = 1 if and only if γ ∈ Γ.

In particular, this gives us an explicit solution to the word problem in Γ.

A set G is a basis for Γ if ext(G) is a fundamental domain for Γ. Our aim
then is to construct a basis.

Recall that the Dirichlet domain has a side pairing, and that the set of side
pairing elements generates Γ. Since side pairing elements pair vertices, our
strategy very roughly runs as follows:

1. (G, 0)-reduce the elements of G.

2. Compute E = ext(G). If all vertices of E are paired, return G.
Otherwise, given a vertex v on I(g) which is not paired, add redG(g; v)
to G and return to Step 1.
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Computing a basis: example

Let F be the (totally real) cubic subfield of Q(ζ13) with discriminant
dF = 169. We have F = Q(b) where b3 + 4b2 + b − 1 = 0. F has class
number 1.

The quaternion algebra B =
(
−1, b

F

)
has discriminant D = (1) and is

ramified at 2 of the 3 real places of F .

We take O to be an Eichler order of level p = (b+2), a prime ideal of norm
5; explicitly, we have

O = ZF ⊕ pα⊕ ZF
b2 + (b + 4)α + β

2
⊕ ZF

b + (b2 + 4)α + αβ

2
.

We compute a fundamental domain for the group Γ = Γ(1)
0 (p) =

ι∞(O∗
1)/{±1}. We take p = 9/10i ∈ H.
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Computing a basis: example

1

We begin by enumerating elements of O by their absolute reduced norm.
Of the first 260 elements, we find 29 elements of reduced norm 1, yielding
the following.
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Computing a basis: example

1

We begin by enumerating elements of O by their absolute reduced norm.
Of the first 260 elements, we find 29 elements of reduced norm 1, yielding
the following.
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Computing a basis: example

1

Let G be the set of elements which contribute to the boundary. For each
g 6∈ G, we compute redG(g; 0). Each in fact reduces to 1, so we are left
with 8 elements.
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Computing a basis: example

1

Let G be the set of elements which contribute to the boundary. For each
g 6∈ G, we compute redG(g; 0). Each in fact reduces to 1, so we are left
with 8 elements.



46

Computing a basis: example

1

Next, because the domain does not yet have finite area, we enumerate
elements of O by their reduced norm with respect to a point in the direction
of the infinite vertex v7.
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Computing a basis: example

v7

1

Next, because the domain does not yet have finite area, we enumerate
elements of O by their reduced norm with respect to a point in the direction
of the infinite vertex v7. We find the following enveloper.
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Computing a basis: example

1

Next, because the domain does not yet have finite area, we enumerate
elements of O by their reduced norm with respect to a point in the direction
of the infinite vertex v7. We find the following enveloper.
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Computing a basis: example

1

We append the enveloper and its inverse.
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Computing a basis: example

1

We append the enveloper and its inverse. We then reduce but obtain the
same domain.
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Computing a basis: example

1

We repeat with the new infinite vertex, finding an enveloper and reducing.
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Computing a basis: example

1

We repeat with the new infinite vertex, finding an enveloper and reducing.
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Computing a basis: example

1

We repeat with the new infinite vertex, finding an enveloper and reducing.
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Computing a basis: example

1

One more time.
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Computing a basis: example

1

One more time. The domain now has finite area.
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Computing a basis: example

1

We now attempt to pair each vertex.
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Computing a basis: example

v1v8

I(g1)I(g7) = I(g−1

1
)

1

The first vertex v1 pairs with v8, pairing I(g1) with I(g7).
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Computing a basis: example

v1v8

v2

v6

I(g2)

I(g5) = I(g−1

2
)

1

In a similar way, v2 pairs with v6, pairing I(g2) with I(g5).
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Computing a basis: example

v1v8

v2

v6

v3

v4

I(g3) = I(g−1

3
)

1

Now v3 pairs with v4; but since g3 is an element of order 2, according to
our convention, we place another vertex at its fixed point (unnumbered).
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Computing a basis: example

v1v8

v2

v6

v3

v4v4

v5

I(g4) = I(g−1

4
)

1

Similarly, g4 is an element of order 2 pairing v4 and v5.
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Computing a basis: example

v1v8

v2

v6

v3

v4v4

v5

v6

v7

I(g6) = I(g−1

6
)

1

And g6 is an element of order 2 pairing v6 and v7.
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Computing a basis: example

v1v8

v2

v6

v3

v4v4

v5

v6

v7

v8 v11

I(g8) = I(g−1

10
)

1

As before, v8 pairs with v11 via g8.
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Computing a basis: example

v1v8

v2

v6

v3

v4v4

v5

v6

v7

v8 v11
v9

I(g9) = I(g−1

9
)

1

Finally: The vertex v9 does not pair with another vertex; indeed, g9(v9) does
not lie in the exterior domain. So we compute the reduction redG(g9; v9).
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Computing a basis: example

1

But now the area of the domain is now equal to the coarea of Γ, so we are
done!
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Generators and relations

Recall that the set of side pairing elements G generates the group Γ. A
complete set of relations amongst these generators is obtained from the set
of minimal cycles amongst the vertices of a Dirichlet domain D, namely, a
sequence of vertices v1, . . . , vn such that v1 = vn, vi 6= vj for i 6= j, and
vi+1 = gi(vi) for some gi ∈ G.

To each such cycle, we associate the word g = gn · · · g2g1 and the relation
gk = 1 where k is the order of g (where k = ∞, corresponding to a
parabolic cycle, gives us no relation.)
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Generators and relations: example

v1

v2

v3v4

v5

v6
v7

v8

v9

v10

v11

v12

v14

v16

v17

1

g1 pairs e1,2 with e10,11

g2 pairs e2,3 with e7,8

g3 pairs e3,4 with e4,5

g4 pairs e5,6 with e6,7

g5 pairs e8,9 with e9,10

g6 pairs e11,12 with e16,17

g7 pairs e12,13 with e13,14

g8 pairs e14,15 with e15,16

g9 pairs e17,18 with e18,1

We have 18 vertices and 9 generators, with the following relations:

g2
3 = g2

4 = g2
6 = g2

9 = g2
10 = g2

12 = 1 and
g1g

−1
9 g6 = g−1

2 g−1
5 g1 = g−1

3 g−1
4 g2 = g−1

6 g8g7 = 1

which simplify to yield a presentation for a group with signature (0; 26; 0).


