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The main topics of this seminar are p-adic modular forms and the eigencurve.
The study of p-adic modular forms was started by Serre, Dwork and Katz, one of
the goals being to explain congruences between classical modular forms.

Serre took the approach to define p-adic modular forms as limits of classical
modular forms. Katz, on the other hand, started from the observation that modular
forms are sections of line bundles on quotients Γ\H of the complex upper half plane
H by a congruence subgroup Γ ⊆ SL2(Z). Interpreting this quotient as a modular
curve, i.e., as a moduli space of elliptic curves, we can generalize this notion to
other base rings. To obtain a truly p-adic notion of modular forms, one considers
functions on the complement of small disks around lifts of the points corresponding
to supersingular elliptic curves.

Although this reasoning was important as motivation, Katz [K] tried to avoid
rigid analytic techniques. To the contrary, Coleman, who took up the subject in
the 1990’s made rigid analytic geometry (à la Tate) one of the foundations of the
subject and in this way succeeded to explain many things in a more conceptual
way, and in particular to give a definition of (overconvergent) p-adic modular forms
of more general weights than just integers.

One of the most interesting phenomena that occur with p-adic modular forms is
that they vary in families. The simplest example is the family of Eisenstein series.
Recall that for an even integer k ≥ 4, the Eisenstein series

Ek(z) =
ζ(1− k)

2
+

∑
n≥1

σk−1(n)qn

is a modular form of weight k. Here q = exp(2πiz), and σd(n) denotes the sum of
the d-th powers of the positive divisors of n. Although in terms of usual modular
forms Ek makes sense only for k an even integer, the coefficients of its Fourier
expansion above are defined for any k ∈ C. Similarly, we can obtain a “p-adic
family”, where p is an odd prime, in the following way:

E∗k(z) = Ek(z)− pk−1Ek(pz) =
(1− pk−1)ζ(1− k)

2
+

∑
n≥1

σ∗k−1(n)qn,

where σ∗d(n) is the sum of the d-th powers of the positive divisors of n that are
coprime to p. (The modification amounts to omitting the Euler factor at p.) Then
E∗k(z) is again a modular form (an old-form of level p). Let S be the set of positive
even integers k ≥ 4, k ≡ 0(p − 1). This is a dense subset of Zp, the ring of p-
adic integers with the p-adic topology. Then the Fourier coefficients of E∗k(z) are
continuous as k varies in S (with respect to the topology on S induced by the
embedding S ⊂ Zp).
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Generalizing work of Hida (concerned with “ordinary” modular forms) and pre-
vious work of Coleman, Coleman and Mazur [CM] constructed a rigid analytic
space, the eigencurve C, which parameterizes all p-adic eigenforms (of tame level
N , finite slope, and that are overconvergent). Instead of integers, we allow more
general weights here. As is to be expected, if the modular forms vary p-adically,
this also has to be true for the weights, and the natural weight space is the set of
continuous C×p -valued characters of Z×p × (Z/NZ)×, which as a rigid analytic space
is just a disjoint union of unit disks. The paper [CM] will be the main focus of our
seminar.

The eigencurve is described as a closed subspace of X × A1, the product of the
affine line and the rigid analytic space associated with the universal deformation
ring of certain Galois (pseudo-)representations. An eigenform f corresponds to
the point in X × A1 given by the associated Galois pseudorepresentation and the
eigenvalue of f under the Atkin-Lehner operator Up.

Although this definition is fairly easy to write down, it is very hard to prove
any properties from it. For instance, it is not obvious that C is a curve. In the
final chapter of their paper, Coleman and Mazur give a different construction of C
(more precisely, of the underlying reduced rigid subspace), which works by gluing
local pieces. In this way, they prove that C is in fact a curve, as the terminology
suggests, and also show some further properties. Nevertheless, there remain many
open questions.

The work of Coleman and Mazur was further generalized by Buzzard [B2] who
axiomatized the construction of the eigencurve and developed an “eigenvariety ma-
chine”. There is also a different approach by Emerton [E], and related work of
Belläıche, Calegari, Chenevier, Kassaei, Kisin, and others. We will not have time
to discuss these more recent developments in the seminar, though.

See Kassaei’s survey [Ka] for a more thorough survey, and Buzzard’s lecture
notes for a more informal account of a large part of the relevant topics with many
pictures.

Technical note: To avoid additional technicalities, we always allow ourselves to
assume that p > 5 and that N = 1 (with the notation of [CM]). The assumption
that N = 1 is often made there anyway (but see [B2]).

Level of the talks: The talks 2, 3, and 6 are the simplest ones, and are practically
self-contained. For talk 4, some knowledge about p-adic L-functions is useful. Talks
5, 8, and 9 are probably a little harder. Talk 7 with the definition of the Atkin-
Lehner operator U is probably the most difficult talk (but for the later talks one
can mostly use the U -operator as a black box). In talks 10 and particularly 11,
basically everything studied before comes into the play.

Program

1. Overview and motivation. See [CM], in particular the introduction and §1.5,
and also [Ka], [B3], etc.

2. Rigid analytic geometry (2 talks). Explain the basic notions of rigid ana-
lytic geometry à la Tate: affinoid algebras, affinoid spaces, the Grothendieck topol-
ogy, rigid analytic spaces. For a brief account see Schneider’s survey [Sch], for more
detailed accounts see the lecture notes [Bo] by Bosch, the book [FP] of Fresnel and
van der Put, and the encyclopedic volume [BGR] by Bosch, Güntzer, and Remmert.
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Explain how to construct the rigid space associated with a scheme, and with a
formal scheme, resp., also in the non-adic case ([CM] 1.1, cf. also [Ber]). Explain
the specialization map.

Discuss the following examples in detail:
• A1

K

• BK(0, 1), the wide open unit disk
• The Tate elliptic curve
• Modular curves over Cp

Explain the notion of strict neighborhood, see [CM] 2.1, [C2] A5.

3. Modular forms à la Katz. Explain Katz’ method of defining modular forms
over an arbitrary base, [K] Chapter 1 and Appendix A1, see also [G]. Discuss the
q-expansion principle. (In this talk, we do not yet deal with p-adic modular forms.)

4. The Eisenstein family. The Eisenstein family is of crucial importance in Cole-
man’s definition of overconvergent modular forms. See the remarks at the end of
[CM] 2.2.

Introduce weight space ([CM] 1.4), and define the Eisenstein family (see [C2]
B1, [CM] 2.2, and the references given there). Note the close relation to p-adic L-
functions, the topic of the previous research seminar. Discuss the Eisenstein series
from the point of view of the preceding talk (in particular its reduction modulo p,
[K] 2.0, 2.1).

5. p-adic modular forms à la Coleman. Explain Coleman’s definition of over-
convergent modular forms, [CM] 2.4. (For integral weight this is easy, because one
can define overconvergent modular forms in terms of sections of a line bundle on
a suitable open of the (rigid analytic) modular curve, see loc. cit 2.1. It is not so
clear, how to define overconvergent modular forms of arbitrary weight. Coleman’s
strategy is to say that a power series is (the q-expansion of) an overconvergent
modular form of weight κ, if the quotient F/Eκ is a modular function (where E•
is the Eisenstein family).) See also [C2] B, in particular B4.

Compare this notion with classical and Katz’ p-adic modular forms, [K] Ch. 2,
[CM] 2.3.

6. p-adic Banach spaces. Discuss [C2] A1–4, see also [Se]. In particular: Or-
thonormalizable p-adic Banach spaces. Completely continuous operators. Charac-
teristic series/Fredholm determinants.

7. The Atkin-Lehner operator Up and the Hecke algebra (2 talks). The
operator U and its spectral theory on the spaces of overconvergent modular forms
is a crucial ingredient for all that follows. Define U following [C1] §1–3, see also [K]
Ch. 3, [G] II.3, [C2] B2, B3, B4, [B3] 6th lecture.

Explain the effect of U on q-expansions. Explain that for U as an operator on
the space of overconvergent modular forms we have an interesting spectral theory
([G] II.3.3, II.3.4).

The other Hecke operators are easier to deal with, see [CM] §3.

8. Fredholm theory. Cover [CM] §1.3, §4, and in particular, explain [CM] The-
orem 4.3.1 (and all terms occurring there). Define and discuss the spectral curves
as in loc. cit. 4.4.

(See also [C2], App. I, for “explicit” formulas.)
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9. Pseudo-representations (2 talks). Since universal deformation rings of Ga-
lois representations (with coefficients in a finite field) exist only under certain as-
sumptions, for us the notion of pseudo-representation is more suitable to parame-
terize modular forms.

Go through [CM] §5: Define the notion of pseudo-representations. Compare the
notions of pseudo-representation and representation, in particular loc. cit. Theorem
5.1.2. Define and discuss the rigid space Xp as defined in loc. cit. State the theorems
about the pseudo-representation attached to a modular form.

10. The eigencurve. Now we can define the eigencurve, as a rigid analytic sub-
space of Xp × A1, cut out by certain Fredholm determinants. The basic idea is
to view the set of all overconvergent (normalized . . . ) eigenforms as the subset
{(pseudo-repr. attached to the eigenform, Up − eigenvalue)} ⊂ Xp × A1.

Discuss [CM] §6, and in particular Theorem 6.2.1: the points of the eigen-
curve are (certain) overconvergent modular eigenforms with non-zero Up-eigenvalue.
Cf. also loc. cit. 1.5.

11. Properties of the eigencurve. (A selection of) [CM] §7. Explain the con-
struction of the curve D by gluing local pieces (7.1–7.3). State Theorem 7.5.1, and
discuss as much of it, and of section 7.6, as possible.
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[Se] J.-P. Serre, Endomorphismes complètement continues des espaces de Banach p-adiques,

Publ. Math. IHES 12 (1962), 69–85.


