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ABOUT SETS

Without sets, cannot do maths (physics, computer science,...).

Mathematical set theory is (too) advanced.
Instead, we describe:

‘well-known’ sets,
rules on sets,
how to make new sets out of given sets.
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‘WELL KNOWN’ SETS

N = {0,1,2,3, . . . }, the natural numbers,

Z = {. . . ,−2,−1,0,1,2, . . . }, the integers,
Q, the rational numbers (fractions),
R, the real numbers,
C, the complex numbers (to be introduced in another
lecture),
∅, the empty set.
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ELEMENTS

Elements are ‘members’ of sets.

Examples:
7 ∈ N, i.e. 7 is an element of the set of natural numbers
(short: 7 is a natural number)
−7 6∈ N, i.e. −7 is NOT a natural number,
−7 ∈ Z, i.e. −7 is an integer,
−7 ∈ Q, i.e. −7 is a rational number,
1/7 ∈ Q, i.e. 1/7 is a rational number,
1/7 6∈ Z, i.e. 1/7 is NOT an integer,√

2 6∈ Q. i.e.
√

2 is not a rational number,
∈: ‘belongs to’, ‘is an element of’,
6∈: ‘does not belong to’, ‘is not an element of’.

Exercise 1.
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SETS BY ENUMERATION

Two ways to describe sets:

(I) By enumeration.

Examples:
{2,3,5}, the set consisting of 2,3,5,
{A,B,C,D}, the set consisting of the symbols A,B,C,D,
{} = ∅, the empty set, i.e. the set without any element,
{∅, {∅}, {{∅}}, {∅, {∅}}}.

Aside.
:= define the symbol on the left, e.g.
A := {2,3,5}, the symbol A represents the given set.

Exercise 2.
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THE TWO IMPORTANT RULES

There are two important rules for sets.

1 The elements of a set are pairwise distinct

, i.e.
any element belongs to it only once (even if we write it
several times).

For example:
{1,2,3} = {1,2,2,3,3}
{A,B,B,C,A} = {A,B,C}

2 The elements of a set are not ordered.

For example:
{1,3,2} = {1,2,3}
{Z ,A} = {A,Z}.

Exercise 3.
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CARDINALITY

The cardinality of a finite set is its number of elements.

Examples:
#{1,2,3} = |{1,2,3}| = 3
# and | | are alternative notations for the cardinality.
#{A,B,C,D,E} = 5
#{4,3,2,4,1,2} = 4
N,Z,Q,R,C are NOT finite sets. Write #Z =∞, infinity.

There is a notion of cardinality for infinite sets, showing that R is
strictly larger than Q, but that Q and N have the same
cardinality.
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SETS BY PROPERTIES

Two ways to describe sets:
(II) By properties.

Examples:

Set of even integers:
{ n ∈ Z︸ ︷︷ ︸

in superset

| 2 divides n︸ ︷︷ ︸
property

}

More general alternative:
{ n︸︷︷︸

symbol

| n ∈ Z and 2 divides n︸ ︷︷ ︸
property

}

Closed interval for a,b ∈ R:
[a,b] := {x ∈ R | a ≤ x ≤ b}
Open and half-open intervals:
]a,b[:= {x ∈ R | a < x < b}
[a,b[:= {x ∈ R | a ≤ x < b}
]a,b] := {x ∈ R | a < x ≤ b}

Exercise 4.
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}

Closed interval for a,b ∈ R:
[a,b] := {x ∈ R | a ≤ x ≤ b}
Open and half-open intervals:
]a,b[:= {x ∈ R | a < x < b}
[a,b[:= {x ∈ R | a ≤ x < b}
]a,b] := {x ∈ R | a < x ≤ b}

Exercise 4.
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SUBSETS AND EQUALITY

Definition.
Let A,B be sets.

A is a subset of B (in symbols: A ⊆ B or B ⊇ A)
if every element of A belongs to B (∀a ∈ A : a ∈ B).

Examples:
{1,3} ⊆ {1,2,3}
Every set is a subset of itself: A ⊆ A
The empty set ∅ is a subset of any set: ∅ ⊆ A.

A and B are equal (A = B) if they have the same elements.
We have:
A = B ⇔ (A ⊆ B) ∧ (B ⊆ A)

Examples:
{3,1,1,4} = {1,3,4}
N = {n ∈ Z | n ≥ 0}

Exercise 5.
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OPERATIONS ON SETS

Let A,B be sets. Define:
The complement of B in A:
A \ B := {x | (x ∈ A) ∧ (x 6∈ B)}.

The intersection of A and B:
A ∩ B := {x | (x ∈ A) ∧ (x ∈ B)}.
The union of A and B:
A ∪ B := {x | (x ∈ A) ∨ (x ∈ B)}.
The union of A and B is said to be disjoint if A ∩ B = ∅.
Notation: A t B.

Exercise 6.
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CARTESIAN PRODUCTS

Let A,B be sets. Define the cartesian product of A and B as
A× B := {(a,b) | (a ∈ A) ∧ (b ∈ B)}.

Example: Let A := {1,2} and B := {a,b, c}.
A× B = {(1,a), (1,b), (1, c), (2,a), (2,b), (2, c)}.

Let n ∈ N and A1,A2, . . . ,An be sets.
Define their cartesian product:∏n

i=1 Ai := {(a1, . . . ,an) | ∀ i ∈ {1, . . .n} : ai ∈ Ai}.

Let I be a set and for each i ∈ I, let Ai be a set.
Define their cartesian product:∏

i∈I Ai := {(ai)i∈I | ∀ i ∈ I : ai ∈ Ai}.

Exercise 7.
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POWER SETS

Let A be a set. Define the power set of A as
P(A) := {B | B ⊆ A subset }.

Example: Let A := {1,2} and B := {a,b, c}.

P(A) = {∅, {1}, {2}, {1,2}}

P(B) = { ∅, {a}, {b}, {c}, {a,b}, {a, c}, {b, c}, {a,b, c} }

Theorem. If #A = n, then #P(A) = 2n.

Exercise 8.
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SOME PROPERTIES (I)

Lemma. Let A,B,C be sets. Then:
1 A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

2 A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

Compare with the following rules from logic.

Lemma. Let A,B,C be assertions. Then:
1 A ∧ (B ∨ C) = (A ∧ B) ∨ (A ∧ C)

2 A ∨ (B ∧ C) = (A ∨ B) ∧ (A ∨ C)
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ONE PROOF

We prove:
A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
for sets A,B,C, using the corresponding rule from logic.

x ∈ A ∩ (B ∪ C)
def of ∩⇔ (x ∈ A) ∧ (x ∈ B ∪ C)
def of ∪⇔ (x ∈ A) ∧

(
(x ∈ B) ∨ (x ∈ C)

)
logic⇔

(
(x ∈ A) ∧ (x ∈ B)

)
∨
(
(x ∈ A) ∧ (x ∈ C)

)
def of ∩⇔

(
x ∈ A ∩ B

)
∨
(
x ∈ A ∩ C

)
def of ∪⇔ x ∈ (A ∩ B) ∪ (A ∩ C)

We have thus proved that an object x is in A ∩ (B ∪ C) if and
only if it is in (A ∩ B) ∪ (A ∩ C). Hence, the two sets are equal.
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We have thus proved that an object x is in A ∩ (B ∪ C) if and
only if it is in (A ∩ B) ∪ (A ∩ C). Hence, the two sets are equal.

Gabor Wiese Sets and Functions



SOME PROPERTIES (II)

Lemma. Let S be a set and let A ⊆ S and B ⊆ S be subsets.
Then:

1 A t (S \ A) = S

2 S \ (S \ A) = A
3 A ⊆ B ⇔ (S \ B) ⊆ (S \ A)

4 S \ (A ∪ B) = (S \ A) ∩ (S \ B)

5 S \ (A ∩ B) = (S \ A) ∪ (S \ B)
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RUSSELL’S PARADOX

Consider the set:
E := {A | A is a set such that A 6∈ A}
It is the set consisting of those sets that are not elements of
themselves.

Consider the following:
1 If E ∈ E , then E 6∈ E .

Hence, E ∈ E cannot be true.
2 If E 6∈ E , then E ∈ E .

Hence, E 6∈ E cannot be true either.
So, the assertion E ∈ E is neither true nor false!
There’s a mistake somewhere: E cannot be a set.
This leads to (advanced) set theory.

Homework: do as many of the remaining exercises as possible.

Gabor Wiese Sets and Functions



RUSSELL’S PARADOX

Consider the set:
E := {A | A is a set such that A 6∈ A}
It is the set consisting of those sets that are not elements of
themselves.
Consider the following:

1 If E ∈ E , then E 6∈ E .

Hence, E ∈ E cannot be true.
2 If E 6∈ E , then E ∈ E .

Hence, E 6∈ E cannot be true either.
So, the assertion E ∈ E is neither true nor false!
There’s a mistake somewhere: E cannot be a set.
This leads to (advanced) set theory.

Homework: do as many of the remaining exercises as possible.

Gabor Wiese Sets and Functions



RUSSELL’S PARADOX

Consider the set:
E := {A | A is a set such that A 6∈ A}
It is the set consisting of those sets that are not elements of
themselves.
Consider the following:

1 If E ∈ E , then E 6∈ E .
Hence, E ∈ E cannot be true.

2 If E 6∈ E , then E ∈ E .
Hence, E 6∈ E cannot be true either.

So, the assertion E ∈ E is neither true nor false!
There’s a mistake somewhere: E cannot be a set.
This leads to (advanced) set theory.

Homework: do as many of the remaining exercises as possible.

Gabor Wiese Sets and Functions



RUSSELL’S PARADOX

Consider the set:
E := {A | A is a set such that A 6∈ A}
It is the set consisting of those sets that are not elements of
themselves.
Consider the following:

1 If E ∈ E , then E 6∈ E .
Hence, E ∈ E cannot be true.

2 If E 6∈ E , then E ∈ E .

Hence, E 6∈ E cannot be true either.
So, the assertion E ∈ E is neither true nor false!
There’s a mistake somewhere: E cannot be a set.
This leads to (advanced) set theory.

Homework: do as many of the remaining exercises as possible.

Gabor Wiese Sets and Functions



RUSSELL’S PARADOX

Consider the set:
E := {A | A is a set such that A 6∈ A}
It is the set consisting of those sets that are not elements of
themselves.
Consider the following:

1 If E ∈ E , then E 6∈ E .
Hence, E ∈ E cannot be true.

2 If E 6∈ E , then E ∈ E .
Hence, E 6∈ E cannot be true either.

So, the assertion E ∈ E is neither true nor false!
There’s a mistake somewhere: E cannot be a set.
This leads to (advanced) set theory.

Homework: do as many of the remaining exercises as possible.

Gabor Wiese Sets and Functions



RUSSELL’S PARADOX

Consider the set:
E := {A | A is a set such that A 6∈ A}
It is the set consisting of those sets that are not elements of
themselves.
Consider the following:

1 If E ∈ E , then E 6∈ E .
Hence, E ∈ E cannot be true.

2 If E 6∈ E , then E ∈ E .
Hence, E 6∈ E cannot be true either.

So, the assertion E ∈ E is neither true nor false!

There’s a mistake somewhere: E cannot be a set.
This leads to (advanced) set theory.

Homework: do as many of the remaining exercises as possible.

Gabor Wiese Sets and Functions



RUSSELL’S PARADOX

Consider the set:
E := {A | A is a set such that A 6∈ A}
It is the set consisting of those sets that are not elements of
themselves.
Consider the following:

1 If E ∈ E , then E 6∈ E .
Hence, E ∈ E cannot be true.

2 If E 6∈ E , then E ∈ E .
Hence, E 6∈ E cannot be true either.

So, the assertion E ∈ E is neither true nor false!
There’s a mistake somewhere:

E cannot be a set.
This leads to (advanced) set theory.

Homework: do as many of the remaining exercises as possible.

Gabor Wiese Sets and Functions



RUSSELL’S PARADOX

Consider the set:
E := {A | A is a set such that A 6∈ A}
It is the set consisting of those sets that are not elements of
themselves.
Consider the following:

1 If E ∈ E , then E 6∈ E .
Hence, E ∈ E cannot be true.

2 If E 6∈ E , then E ∈ E .
Hence, E 6∈ E cannot be true either.

So, the assertion E ∈ E is neither true nor false!
There’s a mistake somewhere: E cannot be a set.
This leads to (advanced) set theory.

Homework: do as many of the remaining exercises as possible.

Gabor Wiese Sets and Functions



RUSSELL’S PARADOX

Consider the set:
E := {A | A is a set such that A 6∈ A}
It is the set consisting of those sets that are not elements of
themselves.
Consider the following:

1 If E ∈ E , then E 6∈ E .
Hence, E ∈ E cannot be true.

2 If E 6∈ E , then E ∈ E .
Hence, E 6∈ E cannot be true either.

So, the assertion E ∈ E is neither true nor false!
There’s a mistake somewhere: E cannot be a set.
This leads to (advanced) set theory.

Homework: do as many of the remaining exercises as possible.

Gabor Wiese Sets and Functions



Lecture 2

Functions

Gabor Wiese Sets and Functions



EXAMPLE

Let us describe the function f (x) = x2.

f : R → R, x 7→ x2

domain value set rule
source target

Note the difference between the two arrows→ and 7→.

Instead of x 7→ x2, can also write the rule: f (x) = x2.

When defining a function/map, always specify domain and
value set!
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DEFINITION

Definition. Let A,B be sets. A function/map

f : A→ B

is a rule associating to every a ∈ A a unique f (a) ∈ B.

A: the domain/source of f
B: the value set/target of f

Examples:
f : R→ R, x 7→ x2

f : Z→ N, n 7→ n2

g : {X | X is a student in PrepCamp} → {male, female}
X 7→ gender of X .
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EXAMPLE

Let A := {1,2,3} and B := {a,b}.

We want to define a map g : A→ B explicitly.
Consider the following keeping in mind the rules:

g(1) = a,g(1) = b,g(2) = b,g(3) = b
Forbidden! One value only per element in domain.

g(1) = a,g(2) = b
Incomplete! Need a value per element in the domain.

g(1) = a,g(2) = b,g(3) = b. OK!

Exercise 1.
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IMPORTANT EXAMPLES

Let A be a set. The identity map on A is:
idA : A→ A, a 7→ a.

Let f : A→ B be a map and S ⊆ A a subset. The
restriction of f to S is the map
f |S : S → B, s 7→ f (s).
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IMAGE AND PREIMAGE

Definition. Let A,B be sets and f : A→ B be a map.
For a ∈ A, we call f (a) the image of a under f .

For a subset S ⊆ A, we call
f (S) := {f (s) | s ∈ S}
the image of S under f .
The image of f is simply f (A) = {f (a) | a ∈ A}.
Let b ∈ B. A preimage of b under f is any a ∈ A such that
b = f (a).
For a subset T ⊆ B, we call
f−1(T ) := {a ∈ A | f (a) ∈ t}
the preimage of T under f .

Exercise 2.
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GRAPH

Definition. Let A,B be sets and f : A→ B be a map.
The graph of f is the set
Γf := {(a, f (a)) | a ∈ A} ⊆ A× B.

Lemma. Let E ⊆ A× B be a subset. Then the following
statements are equivalement:

I There is a map f : A→ B such that E = Γf .
II ∀a ∈ A ∃! b ∈ B : (a,b) ∈ E .

Statement II exactly states the requirements for a map:

Need a value for every element of the domain a ∈ A.
Only one value.

Exercise 3.
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INJECTIVITY, SURJECTIVITY, BIJECTIVITY

Definition. Let A,B be sets and f : A→ B be a map.

f is said to be injective if
∀ x , y ∈ A : (f (x) = f (y)⇒ x = y).

Note: f is injective if and only if
∀b ∈ B : #f−1({b}) ≤ 1.
f is said to be surjective if
f (A) = B.
Note: f is surjective if and only if
∀b ∈ B : #f−1({b}) ≥ 1.
f is said to be bijective if
f is injective and surjective.
Note: f is bijective if and only if
∀b ∈ B : #f−1({b}) = 1.

Exercise 4.
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CARDINALITY AND INJECTIVITY, ETC.

Lemma. Let A,B be finite sets and f : A→ B be a map.

1 f is injective⇔ #f (A) = #A.

2 f is surjective⇔ #f (A) = #B.
3 f is bijective⇔ #f (A) = #A = #B.
4 Suppose #A = #B. Then

f is injective⇔ f is surjective⇔ f is bijective
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COMPOSITION OF MAPS

Definition. Let A,B,C be sets and let f : A→ B and g : B → C
be maps. The map
g ◦ f : A→ C, a 7→ g(f (a))
is called the composition of f and g.

It is also referred to as g after f .

Proposition (Associativity of composition). Let A,B,C,D be
sets and let f : A→ B, g : B → C and h : C → D be maps.
Then
(h ◦ g) ◦ f = h ◦ (g ◦ f ).

Attention! f ◦ g does not make sense unless C = A.
If it makes sense, then f ◦ g can be different from g ◦ f .

Exercise 5.

Gabor Wiese Sets and Functions



COMPOSITION OF MAPS

Definition. Let A,B,C be sets and let f : A→ B and g : B → C
be maps. The map
g ◦ f : A→ C, a 7→ g(f (a))
is called the composition of f and g.
It is also referred to as g after f .

Proposition (Associativity of composition). Let A,B,C,D be
sets and let f : A→ B, g : B → C and h : C → D be maps.
Then
(h ◦ g) ◦ f = h ◦ (g ◦ f ).

Attention! f ◦ g does not make sense unless C = A.
If it makes sense, then f ◦ g can be different from g ◦ f .

Exercise 5.

Gabor Wiese Sets and Functions



COMPOSITION OF MAPS

Definition. Let A,B,C be sets and let f : A→ B and g : B → C
be maps. The map
g ◦ f : A→ C, a 7→ g(f (a))
is called the composition of f and g.
It is also referred to as g after f .

Proposition (Associativity of composition). Let A,B,C,D be
sets and let f : A→ B, g : B → C and h : C → D be maps.
Then
(h ◦ g) ◦ f = h ◦ (g ◦ f ).

Attention! f ◦ g does not make sense unless C = A.
If it makes sense, then f ◦ g can be different from g ◦ f .

Exercise 5.

Gabor Wiese Sets and Functions



COMPOSITION OF MAPS

Definition. Let A,B,C be sets and let f : A→ B and g : B → C
be maps. The map
g ◦ f : A→ C, a 7→ g(f (a))
is called the composition of f and g.
It is also referred to as g after f .

Proposition (Associativity of composition). Let A,B,C,D be
sets and let f : A→ B, g : B → C and h : C → D be maps.
Then
(h ◦ g) ◦ f = h ◦ (g ◦ f ).

Attention! f ◦ g does not make sense unless C = A.

If it makes sense, then f ◦ g can be different from g ◦ f .

Exercise 5.

Gabor Wiese Sets and Functions



COMPOSITION OF MAPS

Definition. Let A,B,C be sets and let f : A→ B and g : B → C
be maps. The map
g ◦ f : A→ C, a 7→ g(f (a))
is called the composition of f and g.
It is also referred to as g after f .

Proposition (Associativity of composition). Let A,B,C,D be
sets and let f : A→ B, g : B → C and h : C → D be maps.
Then
(h ◦ g) ◦ f = h ◦ (g ◦ f ).

Attention! f ◦ g does not make sense unless C = A.
If it makes sense, then f ◦ g can be different from g ◦ f .

Exercise 5.

Gabor Wiese Sets and Functions



COMPOSITION OF MAPS

Definition. Let A,B,C be sets and let f : A→ B and g : B → C
be maps. The map
g ◦ f : A→ C, a 7→ g(f (a))
is called the composition of f and g.
It is also referred to as g after f .

Proposition (Associativity of composition). Let A,B,C,D be
sets and let f : A→ B, g : B → C and h : C → D be maps.
Then
(h ◦ g) ◦ f = h ◦ (g ◦ f ).

Attention! f ◦ g does not make sense unless C = A.
If it makes sense, then f ◦ g can be different from g ◦ f .

Exercise 5.

Gabor Wiese Sets and Functions



INVERSE MAPS

Definition. Let A,B be sets and f : A→ B be a map. A map
g : B → A
is called the inverse of f if f ◦ g = idB and g ◦ f = idA.

Proposition.
A Suppose f : A→ B is bijective. Then f possesses a unique

inverse f−1 : B → A.
Namely, for b ∈ B, by the bijectivity of f , there is a unique a
such that f (a) = b; define f−1(b) := a.

B Suppose that f : A→ B possesses an inverse g : B → A.
Then f is bijective.

Proof.
Since f ◦ g = idB holds, f is surjective.
Since g ◦ f = idA holds, f is injective.

Exercise 6.
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