Prep Camp Sets and Functions

Gabor Wiese

Lecture 1 Sets

Without sets, cannot do maths (physics, computer science,...).

Without sets, cannot do maths (physics, computer science,...).

Mathematical set theory is (too) advanced. Instead, we describe:

• 'well-known' sets,

Without sets, cannot do maths (physics, computer science,...).

Mathematical set theory is (too) advanced. Instead, we describe:

- 'well-known' sets,
- rules on sets,

Without sets, cannot do maths (physics, computer science,...).

Mathematical set theory is (too) advanced. Instead, we describe:

- 'well-known' sets,
- rules on sets,
- how to make new sets out of given sets.

• $\mathbb{N} = \{0, 1, 2, 3, ... \}$, the natural numbers,

- $\mathbb{N} = \{0, 1, 2, 3, ... \}$, the natural numbers,
- $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\},$ the integers,

- $\mathbb{N} = \{0, 1, 2, 3, ...\}$, the natural numbers,
- $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$, the integers,
- Q, the rational numbers (fractions),
- ullet \mathbb{R} , the real numbers,
- C, the complex numbers (to be introduced in another lecture),

- $\mathbb{N} = \{0, 1, 2, 3, ... \}$, the natural numbers,
- $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$, the integers,
- Q, the rational numbers (fractions),
- \bullet \mathbb{R} , the real numbers,
- C, the complex numbers (to be introduced in another lecture),
- Ø, the empty set.

Elements are 'members' of sets.

Elements are 'members' of sets.

Examples:

• $7 \in \mathbb{N}$, i.e. 7 is an element of the set of natural numbers (short: 7 is a natural number)

Elements are 'members' of sets.

- $7 \in \mathbb{N}$, i.e. 7 is an element of the set of natural numbers (short: 7 is a natural number)
- $-7 \notin \mathbb{N}$, i.e. -7 is NOT a natural number,

Elements are 'members' of sets.

- $7 \in \mathbb{N}$, i.e. 7 is an element of the set of natural numbers (short: 7 is a natural number)
- $-7 \notin \mathbb{N}$, i.e. -7 is NOT a natural number,
- ullet $-7 \in \mathbb{Z}$, i.e. -7 is an integer,

Elements are 'members' of sets.

- $7 \in \mathbb{N}$, i.e. 7 is an element of the set of natural numbers (short: 7 is a natural number)
- $-7 \notin \mathbb{N}$, i.e. -7 is NOT a natural number,
- $-7 \in \mathbb{Z}$, i.e. -7 is an integer,
- $-7 \in \mathbb{Q}$, i.e. -7 is a rational number,

Elements are 'members' of sets.

- $7 \in \mathbb{N}$, i.e. 7 is an element of the set of natural numbers (short: 7 is a natural number)
- $-7 \notin \mathbb{N}$, i.e. -7 is NOT a natural number,
- $-7 \in \mathbb{Z}$, i.e. -7 is an integer,
- $-7 \in \mathbb{Q}$, i.e. -7 is a rational number,
- $1/7 \in \mathbb{Q}$, i.e. 1/7 is a rational number,

Elements are 'members' of sets.

- $7 \in \mathbb{N}$, i.e. 7 is an element of the set of natural numbers (short: 7 is a natural number)
- $-7 \notin \mathbb{N}$, i.e. -7 is NOT a natural number,
- $-7 \in \mathbb{Z}$, i.e. -7 is an integer,
- $-7 \in \mathbb{Q}$, i.e. -7 is a rational number,
- $1/7 \in \mathbb{Q}$, i.e. 1/7 is a rational number,
- $1/7 \notin \mathbb{Z}$, i.e. 1/7 is NOT an integer,

Elements are 'members' of sets.

- $7 \in \mathbb{N}$, i.e. 7 is an element of the set of natural numbers (short: 7 is a natural number)
- $-7 \notin \mathbb{N}$, i.e. -7 is NOT a natural number,
- $-7 \in \mathbb{Z}$, i.e. -7 is an integer,
- $-7 \in \mathbb{Q}$, i.e. -7 is a rational number,
- $1/7 \in \mathbb{Q}$, i.e. 1/7 is a rational number,
- $1/7 \notin \mathbb{Z}$, i.e. 1/7 is NOT an integer,
- $\sqrt{2} \notin \mathbb{Q}$. i.e. $\sqrt{2}$ is not a rational number,

Elements are 'members' of sets.

- $7 \in \mathbb{N}$, i.e. 7 is an element of the set of natural numbers (short: 7 is a natural number)
- $-7 \notin \mathbb{N}$, i.e. -7 is NOT a natural number,
- $-7 \in \mathbb{Z}$, i.e. -7 is an integer,
- $-7 \in \mathbb{Q}$, i.e. -7 is a rational number,
- $1/7 \in \mathbb{Q}$, i.e. 1/7 is a rational number,
- $1/7 \notin \mathbb{Z}$, i.e. 1/7 is NOT an integer,
- $\sqrt{2} \notin \mathbb{Q}$. i.e. $\sqrt{2}$ is not a rational number,
- ∈: 'belongs to', 'is an element of',

Elements are 'members' of sets.

Examples:

- $7 \in \mathbb{N}$, i.e. 7 is an element of the set of natural numbers (short: 7 is a natural number)
- $-7 \notin \mathbb{N}$, i.e. -7 is NOT a natural number,
- $-7 \in \mathbb{Z}$, i.e. -7 is an integer,
- $-7 \in \mathbb{Q}$, i.e. -7 is a rational number,
- $1/7 \in \mathbb{Q}$, i.e. 1/7 is a rational number,
- $1/7 \notin \mathbb{Z}$, i.e. 1/7 is NOT an integer,
- $\sqrt{2} \notin \mathbb{Q}$. i.e. $\sqrt{2}$ is not a rational number,
- ∈: 'belongs to', 'is an element of',

Exercise 1.

Two ways to describe sets:

(I) By enumeration.

Two ways to describe sets:

(I) By enumeration.

Examples:

 \bullet {2,3,5}, the set consisting of 2,3,5,

Two ways to describe sets:

(I) By enumeration.

- {2,3,5}, the set consisting of 2,3,5,
- $\{A, B, C, D\}$, the set consisting of the symbols A, B, C, D,

Two ways to describe sets:

(I) By enumeration.

- {2,3,5}, the set consisting of 2,3,5,
- $\{A, B, C, D\}$, the set consisting of the symbols A, B, C, D,
- $\{\} = \emptyset$, the empty set, i.e. the set without any element,

Two ways to describe sets:

(I) By enumeration.

- {2,3,5}, the set consisting of 2,3,5,
- $\{A, B, C, D\}$, the set consisting of the symbols A, B, C, D,
- $\{\} = \emptyset$, the empty set, i.e. the set without any element,
- $\{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\}$.

Two ways to describe sets:

(I) By enumeration.

Examples:

- {2,3,5}, the set consisting of 2,3,5,
- $\{A, B, C, D\}$, the set consisting of the symbols A, B, C, D,
- $\{\} = \emptyset$, the empty set, i.e. the set without any element,
- {∅, {∅}, {{∅}}, {∅, {∅}}}.

Aside.

:= define the symbol on the left,

Two ways to describe sets:

(I) By enumeration.

Examples:

- {2,3,5}, the set consisting of 2,3,5,
- $\{A, B, C, D\}$, the set consisting of the symbols A, B, C, D,
- $\{\} = \emptyset$, the empty set, i.e. the set without any element,
- {∅, {∅}, {{∅}}, {∅, {∅}}}.

Aside.

:= define the symbol on the left, e.g.

 $\mathcal{A}:=\{2,3,5\}$, the symbol \mathcal{A} represents the given set.

Two ways to describe sets:

(I) By enumeration.

Examples:

- {2,3,5}, the set consisting of 2,3,5,
- $\{A, B, C, D\}$, the set consisting of the symbols A, B, C, D,
- ullet $\{\}=\emptyset$, the empty set, i.e. the set without any element,
- {∅, {∅}, {{∅}}, {∅, {∅}}}.

Aside.

:= define the symbol on the left, e.g.

 $\mathcal{A}:=\{2,3,5\},$ the symbol \mathcal{A} represents the given set.

Exercise 2.

There are two important rules for sets.

The elements of a set are pairwise distinct

There are two important rules for sets.

The elements of a set are pairwise distinct, i.e. any element belongs to it only once (even if we write it several times).

There are two important rules for sets.

The elements of a set are pairwise distinct, i.e. any element belongs to it only once (even if we write it several times).

For example:

$$\{1,2,3\}=\{1,2,2,3,3\}$$

There are two important rules for sets.

The elements of a set are pairwise distinct, i.e. any element belongs to it only once (even if we write it several times).

For example:

$$\{1,2,3\} = \{1,2,2,3,3\}$$

 $\{A,B,B,C,A\} = \{A,B,C\}$

There are two important rules for sets.

The elements of a set are pairwise distinct, i.e. any element belongs to it only once (even if we write it several times).

For example:

$$\{1,2,3\} = \{1,2,2,3,3\}$$

 $\{A,B,B,C,A\} = \{A,B,C\}$

The elements of a set are not ordered.

There are two important rules for sets.

The elements of a set are pairwise distinct, i.e. any element belongs to it only once (even if we write it several times).

For example:

$$\{1,2,3\} = \{1,2,2,3,3\}$$

 $\{A,B,B,C,A\} = \{A,B,C\}$

The elements of a set are not ordered.

For example:

$$\{1,3,2\}=\{1,2,3\}$$

There are two important rules for sets.

The elements of a set are pairwise distinct, i.e. any element belongs to it only once (even if we write it several times).

For example:

The elements of a set are not ordered.

For example:

$$\{1,3,2\} = \{1,2,3\}$$

 $\{Z,A\} = \{A,Z\}.$

There are two important rules for sets.

The elements of a set are pairwise distinct, i.e. any element belongs to it only once (even if we write it several times).

For example:

$$\{1,2,3\} = \{1,2,2,3,3\}$$

 $\{A,B,B,C,A\} = \{A,B,C\}$

The elements of a set are not ordered.

For example:

$$\{1,3,2\} = \{1,2,3\}$$

 $\{Z,A\} = \{A,Z\}.$

Exercise 3.

The cardinality of a finite set is its number of elements.

The cardinality of a finite set is its number of elements. Examples:

 $\bullet \ \#\{1,2,3\} = |\{1,2,3\}| = 3$

The cardinality of a finite set is its number of elements. Examples:

• $\#\{1,2,3\} = |\{1,2,3\}| = 3$ # and | | are alternative notations for the cardinality.

The cardinality of a finite set is its number of elements. Examples:

- $\#\{1,2,3\} = |\{1,2,3\}| = 3$ # and | | are alternative notations for the cardinality.
- $\#\{A, B, C, D, E\} = 5$

The cardinality of a finite set is its number of elements. Examples:

- $\#\{1,2,3\} = |\{1,2,3\}| = 3$ # and | | are alternative notations for the cardinality.
- $\#\{A, B, C, D, E\} = 5$
- $\bullet \ \#\{4,3,2,4,1,2\}=4$

The cardinality of a finite set is its number of elements. Examples:

- $\#\{1,2,3\} = |\{1,2,3\}| = 3$ # and | | are alternative notations for the cardinality.
- $\#\{A, B, C, D, E\} = 5$
- $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are NOT finite sets. Write $\#\mathbb{Z} = \infty$, infinity.

The cardinality of a finite set is its number of elements. Examples:

- $\#\{1,2,3\} = |\{1,2,3\}| = 3$ # and | | are alternative notations for the cardinality.
- $\#\{A, B, C, D, E\} = 5$
- $\bullet \ \#\{4,3,2,4,1,2\} = 4$
- $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are NOT finite sets. Write $\#\mathbb{Z} = \infty$, infinity.

There is a notion of cardinality for infinite sets, showing that $\mathbb R$ is strictly larger than $\mathbb Q$, but that $\mathbb Q$ and $\mathbb N$ have the same cardinality.

Two ways to describe sets:

(II) By properties.

Two ways to describe sets:

- (II) By properties. Examples:
 - Set of even integers:

```
\{\underbrace{n \in \mathbb{Z}}_{\text{in superset}} \mid \underbrace{2 \text{ divides } n}_{\text{property}}\}
```


Two ways to describe sets:

- (II) By properties. Examples:
 - Set of even integers:

Two ways to describe sets:

- (II) By properties. Examples:
 - Set of even integers:

• Closed interval for $a, b \in \mathbb{R}$:

$$[a,b] := \{x \in \mathbb{R} \mid a \le x \le b\}$$

Two ways to describe sets:

- (II) By properties. Examples:
 - Set of even integers:

- Closed interval for $a, b \in \mathbb{R}$: $[a, b] := \{x \in \mathbb{R} \mid a \le x \le b\}$
- Open and half-open intervals:

$$\begin{aligned}
]a, b[&:= \{x \in \mathbb{R} \mid a < x < b\} \\
[a, b[&:= \{x \in \mathbb{R} \mid a \le x < b\} \\
]a, b] &:= \{x \in \mathbb{R} \mid a < x \le b\}
\end{aligned}$$

Two ways to describe sets:

- (II) By properties. Examples:
 - Set of even integers:

- Closed interval for $a, b \in \mathbb{R}$: $[a, b] := \{x \in \mathbb{R} \mid a \le x \le b\}$
- Open and half-open intervals:

$$\begin{aligned}
]a, b[&:= \{x \in \mathbb{R} \mid a < x < b\} \\
[a, b[&:= \{x \in \mathbb{R} \mid a \le x < b\} \\
[a, b] &:= \{x \in \mathbb{R} \mid a < x \le b\}
\end{aligned}$$

Exercise 4.

Definition.

Let A, B be sets.

• A is a subset of B (in symbols: $A \subseteq B$ or $B \supseteq A$) if every element of A belongs to $B \ (\forall \ a \in A : a \in B)$.

Definition.

- A is a subset of B (in symbols: $A \subseteq B$ or $B \supseteq A$) if every element of A belongs to B ($\forall a \in A : a \in B$). Examples:
 - $\{1,3\} \subseteq \{1,2,3\}$

Definition.

- A is a subset of B (in symbols: $A \subseteq B$ or $B \supseteq A$) if every element of A belongs to B ($\forall a \in A : a \in B$). Examples:
 - $\{1,3\} \subseteq \{1,2,3\}$
 - Every set is a subset of itself: $A \subseteq A$

Definition.

- A is a subset of B (in symbols: A ⊆ B or B ⊇ A)
 if every element of A belongs to B (∀ a ∈ A : a ∈ B).
 Examples:
 - $\{1,3\} \subseteq \{1,2,3\}$
 - Every set is a subset of itself: $A \subseteq A$
 - The empty set \emptyset is a subset of any set: $\emptyset \subseteq A$.

Definition.

- A is a subset of B (in symbols: A ⊆ B or B ⊇ A)
 if every element of A belongs to B (∀ a ∈ A : a ∈ B).
 Examples:
 - $\{1,3\} \subseteq \{1,2,3\}$
 - Every set is a subset of itself: $A \subseteq A$
 - The empty set \emptyset is a subset of any set: $\emptyset \subseteq A$.
- A and B are equal (A = B) if they have the same elements.

Definition.

- A is a subset of B (in symbols: A ⊆ B or B ⊇ A)
 if every element of A belongs to B (∀ a ∈ A : a ∈ B).
 Examples:
 - $\{1,3\} \subseteq \{1,2,3\}$
 - Every set is a subset of itself: $A \subseteq A$
 - The empty set \emptyset is a subset of any set: $\emptyset \subseteq A$.
- A and B are equal (A = B) if they have the same elements.
 We have:

$$A = B \Leftrightarrow (A \subseteq B) \land (B \subseteq A)$$

Definition.

Let *A*, *B* be sets.

- A is a subset of B (in symbols: A ⊆ B or B ⊇ A)
 if every element of A belongs to B (∀ a ∈ A : a ∈ B).
 Examples:
 - $\{1,3\} \subseteq \{1,2,3\}$
 - Every set is a subset of itself: $A \subseteq A$
 - The empty set \emptyset is a subset of any set: $\emptyset \subseteq A$.
- A and B are equal (A = B) if they have the same elements. We have:

$$A = B \Leftrightarrow (A \subseteq B) \land (B \subseteq A)$$

Examples:

•
$$\{3,1,1,4\} = \{1,3,4\}$$

Definition.

Let *A*, *B* be sets.

- A is a subset of B (in symbols: A ⊆ B or B ⊇ A)
 if every element of A belongs to B (∀ a ∈ A : a ∈ B).
 Examples:
 - $\{1,3\} \subseteq \{1,2,3\}$
 - Every set is a subset of itself: $A \subseteq A$
 - The empty set \emptyset is a subset of any set: $\emptyset \subseteq A$.
- A and B are equal (A = B) if they have the same elements.
 We have:

$$A = B \Leftrightarrow (A \subseteq B) \land (B \subseteq A)$$

Examples:

- $\{3,1,1,4\} = \{1,3,4\}$
- $\mathbb{N} = \{ n \in \mathbb{Z} \mid n \geq 0 \}$

Definition.

Let *A*, *B* be sets.

- A is a subset of B (in symbols: A ⊆ B or B ⊇ A)
 if every element of A belongs to B (∀ a ∈ A : a ∈ B).
 Examples:
 - $\{1,3\} \subseteq \{1,2,3\}$
 - Every set is a subset of itself: $A \subseteq A$
 - The empty set \emptyset is a subset of any set: $\emptyset \subseteq A$.
- A and B are equal (A = B) if they have the same elements.
 We have:

$$A = B \Leftrightarrow (A \subseteq B) \land (B \subseteq A)$$

Examples:

- $\{3,1,1,4\} = \{1,3,4\}$
- $\mathbb{N} = \{ n \in \mathbb{Z} \mid n \geq 0 \}$

Exercise 5.

Let A, B be sets. Define:

• The complement of B in A:

$$A \setminus B := \{x \mid (x \in A) \land (x \not\in B)\}.$$

Let A, B be sets. Define:

- The complement of B in A: $A \setminus B := \{x \mid (x \in A) \land (x \notin B)\}.$
- The intersection of A and B: $A \cap B := \{x \mid (x \in A) \land (x \in B)\}.$

Let *A*, *B* be sets. Define:

- The complement of B in A: $A \setminus B := \{x \mid (x \in A) \land (x \notin B)\}.$
- The intersection of A and B: $A \cap B := \{x \mid (x \in A) \land (x \in B)\}.$
- The union of A and B: $A \cup B := \{x \mid (x \in A) \lor (x \in B)\}.$

Let *A*, *B* be sets. Define:

- The complement of B in A: $A \setminus B := \{x \mid (x \in A) \land (x \notin B)\}.$
- The intersection of A and B: $A \cap B := \{x \mid (x \in A) \land (x \in B)\}.$
- The union of A and B: $A \cup B := \{x \mid (x \in A) \lor (x \in B)\}.$
- The union of A and B is said to be disjoint if $A \cap B = \emptyset$. Notation: $A \sqcup B$.

Let A, B be sets. Define:

- The complement of B in A: $A \setminus B := \{x \mid (x \in A) \land (x \notin B)\}.$
- The intersection of A and B: $A \cap B := \{x \mid (x \in A) \land (x \in B)\}.$
- The union of A and B: $A \cup B := \{x \mid (x \in A) \lor (x \in B)\}.$
- The union of A and B is said to be disjoint if A ∩ B = ∅.
 Notation: A ⊔ B.

Exercise 6.

Let A, B be sets. Define the cartesian product of A and B as $A \times B := \{(a,b) \mid (a \in A) \land (b \in B)\}.$

Let A, B be sets. Define the cartesian product of A and B as $A \times B := \{(a,b) \mid (a \in A) \land (b \in B)\}.$

Example: Let
$$A := \{1,2\}$$
 and $B := \{a,b,c\}$. $A \times B = \{(1,a),(1,b),(1,c),(2,a),(2,b),(2,c)\}$.

Let A, B be sets. Define the cartesian product of A and B as $A \times B := \{(a,b) \mid (a \in A) \land (b \in B)\}.$

Example: Let
$$A := \{1,2\}$$
 and $B := \{a,b,c\}$. $A \times B = \{(1,a),(1,b),(1,c),(2,a),(2,b),(2,c)\}$.

Let $n \in \mathbb{N}$ and A_1, A_2, \dots, A_n be sets.

Define their cartesian product:

$$\prod_{i=1}^{n} A_{i} := \{(a_{1}, \ldots, a_{n}) \mid \forall i \in \{1, \ldots n\} : a_{i} \in A_{i}\}.$$

Let A, B be sets. Define the cartesian product of A and B as $A \times B := \{(a, b) \mid (a \in A) \land (b \in B)\}.$

Example: Let $A := \{1, 2\}$ and $B := \{a, b, c\}$. $A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}$.

Let $n \in \mathbb{N}$ and A_1, A_2, \dots, A_n be sets.

Define their cartesian product:

$$\prod_{i=1}^{n} A_i := \{(a_1, \ldots, a_n) \mid \forall i \in \{1, \ldots n\} : a_i \in A_i\}.$$

Let *I* be a set and for each $i \in I$, let A_i be a set.

Define their cartesian product:

$$\prod_{i\in I}A_i:=\{(a_i)_{i\in I}\mid \forall\, i\in I: a_i\in A_i\}.$$

Let A, B be sets. Define the cartesian product of A and B as $A \times B := \{(a,b) \mid (a \in A) \land (b \in B)\}.$

Example: Let
$$A := \{1, 2\}$$
 and $B := \{a, b, c\}$.
 $A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}$.

Let $n \in \mathbb{N}$ and A_1, A_2, \dots, A_n be sets.

Define their cartesian product:

$$\prod_{i=1}^{n} A_i := \{(a_1, \ldots, a_n) \mid \forall i \in \{1, \ldots n\} : a_i \in A_i\}.$$

Let *I* be a set and for each $i \in I$, let A_i be a set.

Define their cartesian product:

$$\prod_{i\in I}A_i:=\{(a_i)_{i\in I}\mid \forall\, i\in I: a_i\in A_i\}.$$

Exercise 7.

Let *A* be a set. Define the power set of *A* as $\mathcal{P}(A) := \{B \mid B \subseteq A \text{ subset } \}.$

Let *A* be a set. Define the power set of *A* as $\mathcal{P}(A) := \{B \mid B \subseteq A \text{ subset } \}.$

Example: Let $A := \{1, 2\}$ and $B := \{a, b, c\}$.

$$\mathcal{P}(\textit{A}) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$$

Let A be a set. Define the power set of A as

$$\mathcal{P}(A) := \{B \mid B \subseteq A \text{ subset } \}.$$

Example: Let $A := \{1, 2\}$ and $B := \{a, b, c\}$.

$$\mathcal{P}(\textit{A}) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$$

$$\mathcal{P}(B) = \{ \emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\} \}$$

Let A be a set. Define the power set of A as

$$\mathcal{P}(A) := \{B \mid B \subseteq A \text{ subset } \}.$$

Example: Let $A := \{1, 2\}$ and $B := \{a, b, c\}$.

$$\mathcal{P}(\textit{A}) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$$

$$\mathcal{P}(B) = \{ \emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\} \}$$

Theorem. If #A = n, then $\#\mathcal{P}(A) = 2^n$.

POWER SETS

Let A be a set. Define the power set of A as

$$\mathcal{P}(A) := \{B \mid B \subseteq A \text{ subset } \}.$$

Example: Let $A := \{1, 2\}$ and $B := \{a, b, c\}$.

$$\mathcal{P}(\textit{A}) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$$

$$\mathcal{P}(B) = \{ \emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\} \}$$

Theorem. If #A = n, then $\#\mathcal{P}(A) = 2^n$.

Exercise 8.

Lemma. Let *A*, *B*, *C* be sets. Then:

$$\bullet \quad A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Lemma. Let *A*, *B*, *C* be sets. Then:

Lemma. Let A, B, C be sets. Then:

$$\bullet \quad A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Compare with the following rules from logic.

Lemma. Let *A*, *B*, *C* be sets. Then:

Compare with the following rules from logic.

Lemma. Let *A*, *B*, *C* be assertions. Then:

$$\bullet \quad A \wedge (B \vee C) = (A \wedge B) \vee (A \wedge C)$$

We prove:

$$A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$$

We prove:

$$A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$$

$$x \in A \cap (B \cup C)$$

We prove:

$$A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$$

$$\begin{array}{c}
x \in A \cap (B \cup C) \\
 \Leftrightarrow \\
(x \in A) \wedge (x \in B \cup C)
\end{array}$$

We prove:

$$A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$$

$$\begin{array}{ccc} x \in A \cap (B \cup C) \\ & \stackrel{\mathsf{def} \ \mathsf{of} \ \cap}{\Leftrightarrow} & (x \in A) \wedge (x \in B \cup C) \\ & \stackrel{\mathsf{def} \ \mathsf{of} \ \cup}{\Leftrightarrow} & (x \in A) \wedge \big((x \in B) \vee (x \in C) \big) \end{array}$$

We prove:

$$A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$$

$$\begin{array}{ccc} & x \in A \cap (B \cup C) \\ & \stackrel{\mathsf{def} \ \mathsf{of} \ \cap}{\Leftrightarrow} & (x \in A) \land (x \in B \cup C) \\ & \stackrel{\mathsf{def} \ \mathsf{of} \ \cup}{\Leftrightarrow} & (x \in A) \land ((x \in B) \lor (x \in C)) \\ & \stackrel{\mathsf{logic}}{\Leftrightarrow} & ((x \in A) \land (x \in B)) \lor ((x \in A) \land (x \in C)) \end{array}$$

We prove:

$$A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$$

$$\begin{array}{ccc} x \in A \cap (B \cup C) \\ & \Leftrightarrow & (x \in A) \wedge (x \in B \cup C) \\ & \Leftrightarrow & (x \in A) \wedge ((x \in B) \vee (x \in C)) \\ & \Leftrightarrow & ((x \in A) \wedge (x \in B)) \vee ((x \in A) \wedge (x \in C)) \\ & \Leftrightarrow & (x \in A \cap B) \vee (x \in A \cap C) \end{array}$$

We prove:

$$A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$$

$$\begin{array}{ccc} x \in A \cap (B \cup C) \\ & \Leftrightarrow & (x \in A) \wedge (x \in B \cup C) \\ & \Leftrightarrow & (x \in A) \wedge ((x \in B) \vee (x \in C)) \\ & \Leftrightarrow & ((x \in A) \wedge (x \in B)) \vee ((x \in A) \wedge (x \in C)) \\ & \Leftrightarrow & (x \in A \cap B) \vee (x \in A \cap C) \\ & \Leftrightarrow & (x \in A \cap B) \vee (x \in A \cap B) \\ & \Leftrightarrow & (x \in A \cap B) \vee (x \in A \cap B) \\ & \Leftrightarrow & (x \in A \cap B) \vee (x \in A \cap B) \\ & \Leftrightarrow & (x \in A \cap B) \vee (x \in A \cap B) \\ & \Leftrightarrow & (x \in A \cap B) \vee (x \in A \cap B) \\ & \Leftrightarrow & (x \in A \cap B) \vee (x \in A \cap B) \\ & \Leftrightarrow & (x \in A \cap B) \vee (x \in A \cap B) \\ & \Leftrightarrow & (x \in A \cap B) \vee (x \in A \cap B) \\ & \Leftrightarrow & (x \in A \cap B) \vee (x \in A \cap B) \\ & \Leftrightarrow & (x \in A \cap B) \vee (x \in A \cap B) \\ & \Leftrightarrow & (x \in A \cap B) \vee (x \in A \cap B) \\ & \Leftrightarrow & (x \in A \cap B) \vee (x \in A \cap B) \\ & \Leftrightarrow & (x \in A \cap B) \vee (x \in A \cap B) \\ & \Leftrightarrow & (x \in A \cap B) \vee (x \in A \cap B) \\ & \Leftrightarrow & (x \in A \cap B) \vee (x \in A \cap B) \\ & \Leftrightarrow & (x \in A \cap B) \vee (x \in A \cap B)$$

We prove:

$$A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$$

for sets A, B, C, using the corresponding rule from logic.

$$\begin{array}{ccc} x \in A \cap (B \cup C) \\ & \Leftrightarrow & (x \in A) \wedge (x \in B \cup C) \\ & \Leftrightarrow & (x \in A) \wedge ((x \in B) \vee (x \in C)) \\ & \Leftrightarrow & ((x \in A) \wedge (x \in B)) \vee ((x \in A) \wedge (x \in C)) \\ & \Leftrightarrow & (x \in A \cap B) \vee (x \in A \cap C) \\ & \Leftrightarrow & (x \in A \cap B) \vee (x \in A \cap B) \\ & \Leftrightarrow & (x \in A \cap B) \vee (x \in A \cap B) \\ & \Leftrightarrow & (x \in A \cap B) \vee (x \in A \cap B) \\ & \Leftrightarrow & (x \in A \cap B) \vee (x \in A \cap B) \\ & \Leftrightarrow & (x \in A \cap B) \vee (x \in A \cap B) \\ & \Leftrightarrow & (x \in A \cap B) \vee (x \in A \cap B) \\ & \Leftrightarrow & (x \in A \cap B) \vee (x \in A \cap B) \\ & \Leftrightarrow & (x \in A \cap B) \vee (x \in A \cap B) \\ & \Leftrightarrow & (x \in A \cap B) \vee (x \in A \cap B) \\ & \Leftrightarrow & (x \in A \cap B) \vee (x \in A \cap B) \\ & \Leftrightarrow & (x \in A \cap B) \vee (x \in A \cap B) \\ & \Leftrightarrow & (x \in A \cap B) \vee (x \in A \cap B) \\ & \Leftrightarrow & (x \in A \cap B) \vee (x \in A \cap B) \\ & \Leftrightarrow & (x \in A \cap B) \vee (x \in A \cap B) \\ & \Leftrightarrow & (x \in A \cap B) \vee (x \in A \cap B) \\ & \Leftrightarrow & (x \in A \cap B) \vee (x \in A \cap B)$$

We have thus proved that an object x is in $A \cap (B \cup C)$ if and only if it is in $(A \cap B) \cup (A \cap C)$. Hence, the two sets are equal.

Consider the set:

 $E := \{A \mid A \text{ is a set such that } A \notin A\}$

It is the set consisting of those sets that are not elements of themselves.

Consider the set:

 $E := \{A \mid A \text{ is a set such that } A \notin A\}$

It is the set consisting of those sets that are not elements of themselves.

Consider the following:

• If $E \in E$, then $E \notin E$.

Consider the set:

 $E := \{A \mid A \text{ is a set such that } A \notin A\}$

It is the set consisting of those sets that are not elements of themselves.

Consider the following:

• If $E \in E$, then $E \notin E$. Hence, $E \in E$ cannot be true.

Consider the set:

 $E := \{A \mid A \text{ is a set such that } A \notin A\}$

It is the set consisting of those sets that are not elements of themselves.

Consider the following:

- If $E \in E$, then $E \notin E$. Hence, $E \in E$ cannot be true.

Consider the set:

 $E := \{A \mid A \text{ is a set such that } A \notin A\}$

It is the set consisting of those sets that are not elements of themselves.

Consider the following:

- If $E \in E$, then $E \notin E$. Hence, $E \in E$ cannot be true.
- If $E \notin E$, then $E \in E$. Hence, $E \notin E$ cannot be true either.

Consider the set:

 $E := \{A \mid A \text{ is a set such that } A \notin A\}$

It is the set consisting of those sets that are not elements of themselves.

Consider the following:

- If $E \in E$, then $E \notin E$. Hence, $E \in E$ cannot be true.
- If $E \notin E$, then $E \in E$. Hence, $E \notin E$ cannot be true either.

So, the assertion $E \in E$ is neither true nor false!

Consider the set:

 $E := \{A \mid A \text{ is a set such that } A \notin A\}$

It is the set consisting of those sets that are not elements of themselves.

Consider the following:

- If $E \in E$, then $E \notin E$. Hence, $E \in E$ cannot be true.
- If $E \notin E$, then $E \in E$. Hence, $E \notin E$ cannot be true either.

So, the assertion $E \in E$ is neither true nor false! There's a mistake somewhere:

Consider the set:

 $E := \{A \mid A \text{ is a set such that } A \notin A\}$

It is the set consisting of those sets that are not elements of themselves.

Consider the following:

- If $E \in E$, then $E \notin E$. Hence, $E \in E$ cannot be true.
- If $E \notin E$, then $E \in E$. Hence, $E \notin E$ cannot be true either.

So, the assertion $E \in E$ is neither true nor false!

There's a mistake somewhere: E cannot be a set.

This leads to (advanced) set theory.

Consider the set:

 $E := \{A \mid A \text{ is a set such that } A \notin A\}$

It is the set consisting of those sets that are not elements of themselves.

Consider the following:

- If $E \in E$, then $E \notin E$. Hence, $E \in E$ cannot be true.
- If $E \notin E$, then $E \in E$. Hence, $E \notin E$ cannot be true either.

So, the assertion $E \in E$ is neither true nor false!

There's a mistake somewhere: E cannot be a set.

This leads to (advanced) set theory.

Homework: do as many of the remaining exercises as possible.

Lecture 2 Functions

Let us describe the function $f(x) = x^2$.

Let us describe the function $f(x) = x^2$. $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$

Let us describe the function $f(x) = x^2$. $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$ domain value set rule


```
Let us describe the function f(x) = x^2.

f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2

domain value set rule

source target
```



```
Let us describe the function f(x) = x^2.

f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2

domain value set rule

source target
```

Note the difference between the two arrows \rightarrow and \rightarrow .


```
Let us describe the function f(x) = x^2.

f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2

domain value set rule

source target
```

Note the difference between the two arrows \rightarrow and \mapsto .

Instead of $x \mapsto x^2$, can also write the rule: $f(x) = x^2$.

Let us describe the function $f(x) = x^2$. $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$ domain value set rule source target

Note the difference between the two arrows \rightarrow and \rightarrow .

Instead of $x \mapsto x^2$, can also write the rule: $f(x) = x^2$.

When defining a function/map, always specify domain and value set!

DEFINITION

Definition. Let *A*, *B* be sets. A function/map

$$f: A \rightarrow B$$

is a rule associating to every $a \in A$ a unique $f(a) \in B$.

Definition. Let *A*, *B* be sets. A function/map

$$f: A \rightarrow B$$

is a rule associating to every $a \in A$ a unique $f(a) \in B$.

A: the domain/source of f

B: the value set/target of f

Definition. Let *A*, *B* be sets. A function/map

$$f: A \rightarrow B$$

is a rule associating to every $a \in A$ a unique $f(a) \in B$.

A: the domain/source of f

B: the value set/target of f

Examples:

• $f: \mathbb{R} \to \mathbb{R}, \quad x \mapsto x^2$

Definition. Let *A*, *B* be sets. A function/map

$$f: A \rightarrow B$$

is a rule associating to every $a \in A$ a unique $f(a) \in B$.

A: the domain/source of f

B: the value set/target of f

Examples:

- $f: \mathbb{R} \to \mathbb{R}, \quad x \mapsto x^2$
- $f: \mathbb{Z} \to \mathbb{N}, \quad n \mapsto n^2$

Definition. Let *A*, *B* be sets. A function/map

$$f: A \rightarrow B$$

is a rule associating to every $a \in A$ a unique $f(a) \in B$.

A: the domain/source of f

B: the value set/target of f

Examples:

- $f: \mathbb{R} \to \mathbb{R}, \quad x \mapsto x^2$
- $f: \mathbb{Z} \to \mathbb{N}, \quad n \mapsto n^2$
- $g: \{X \mid X \text{ is a student in PrepCamp}\} \rightarrow \{\textit{male}, \textit{female}\}\$ $X \mapsto \text{gender of } X.$

Let $A := \{1, 2, 3\}$ and $B := \{a, b\}$.

We want to define a map $g: A \to B$ explicitly. Consider the following keeping in mind the rules:

Let $A := \{1, 2, 3\}$ and $B := \{a, b\}$.

We want to define a map $g: A \to B$ explicitly. Consider the following keeping in mind the rules:

•
$$g(1) = a, g(1) = b, g(2) = b, g(3) = b$$

Let $A := \{1, 2, 3\}$ and $B := \{a, b\}$.

We want to define a map $g: A \rightarrow B$ explicitly. Consider the following keeping in mind the rules:

• g(1) = a, g(1) = b, g(2) = b, g(3) = bForbidden! One value only per element in domain.

Let $A := \{1, 2, 3\}$ and $B := \{a, b\}$.

We want to define a map $g: A \rightarrow B$ explicitly. Consider the following keeping in mind the rules:

- g(1) = a, g(1) = b, g(2) = b, g(3) = bForbidden! One value only per element in domain.
- g(1) = a, g(2) = b

Let $A := \{1, 2, 3\}$ and $B := \{a, b\}$.

We want to define a map $g: A \rightarrow B$ explicitly. Consider the following keeping in mind the rules:

- g(1) = a, g(1) = b, g(2) = b, g(3) = bForbidden! One value only per element in domain.
- g(1) = a, g(2) = b
 Incomplete! Need a value per element in the domain.

Let $A := \{1, 2, 3\}$ and $B := \{a, b\}$.

We want to define a map $g: A \rightarrow B$ explicitly. Consider the following keeping in mind the rules:

- g(1) = a, g(1) = b, g(2) = b, g(3) = bForbidden! One value only per element in domain.
- g(1) = a, g(2) = b
 Incomplete! Need a value per element in the domain.
- g(1) = a, g(2) = b, g(3) = b.

Let $A := \{1, 2, 3\}$ and $B := \{a, b\}$.

We want to define a map $g: A \rightarrow B$ explicitly. Consider the following keeping in mind the rules:

- g(1) = a, g(1) = b, g(2) = b, g(3) = bForbidden! One value only per element in domain.
- g(1) = a, g(2) = b
 Incomplete! Need a value per element in the domain.
- g(1) = a, g(2) = b, g(3) = b. OK!

Let $A := \{1, 2, 3\}$ and $B := \{a, b\}$.

We want to define a map $g: A \to B$ explicitly. Consider the following keeping in mind the rules:

- g(1) = a, g(1) = b, g(2) = b, g(3) = bForbidden! One value only per element in domain.
- g(1) = a, g(2) = b
 Incomplete! Need a value per element in the domain.
- g(1) = a, g(2) = b, g(3) = b. OK!

Exercise 1.

IMPORTANT EXAMPLES

• Let A be a set. The identity map on A is: $id_A : A \rightarrow A$, $a \mapsto a$.

IMPORTANT EXAMPLES

- Let A be a set. The identity map on A is: $id_A: A \rightarrow A, \quad a \mapsto a$.
- Let $f: A \to B$ be a map and $S \subseteq A$ a subset. The restriction of f to S is the map $f|_{S}: S \to B, \quad s \mapsto f(s)$.

Definition. Let A, B be sets and $f: A \rightarrow B$ be a map.

• For $a \in A$, we call f(a) the image of a under f.

- For $a \in A$, we call f(a) the image of a under f.
- For a subset $S \subseteq A$, we call $f(S) := \{f(s) \mid s \in S\}$ the image of S under f.

- For $a \in A$, we call f(a) the image of a under f.
- For a subset $S \subseteq A$, we call $f(S) := \{f(s) \mid s \in S\}$ the image of S under f.
- The image of f is simply $f(A) = \{f(a) \mid a \in A\}$.

- For $a \in A$, we call f(a) the image of a under f.
- For a subset $S \subseteq A$, we call $f(S) := \{f(s) \mid s \in S\}$ the image of S under f.
- The image of f is simply $f(A) = \{f(a) \mid a \in A\}$.
- Let $b \in B$. A preimage of b under f is any $a \in A$ such that b = f(a).

- For $a \in A$, we call f(a) the image of a under f.
- For a subset $S \subseteq A$, we call $f(S) := \{f(s) \mid s \in S\}$ the image of S under f.
- The image of f is simply $f(A) = \{f(a) \mid a \in A\}$.
- Let $b \in B$. A preimage of b under f is any $a \in A$ such that b = f(a).
- For a subset $T \subseteq B$, we call $f^{-1}(T) := \{a \in A \mid f(a) \in t\}$ the preimage of T under f.

Definition. Let A, B be sets and $f : A \rightarrow B$ be a map.

- For $a \in A$, we call f(a) the image of a under f.
- For a subset $S \subseteq A$, we call $f(S) := \{f(s) \mid s \in S\}$ the image of S under f.
- The image of f is simply $f(A) = \{f(a) \mid a \in A\}$.
- Let $b \in B$. A preimage of b under f is any $a \in A$ such that b = f(a).
- For a subset $T \subseteq B$, we call $f^{-1}(T) := \{a \in A \mid f(a) \in t\}$ the preimage of T under f.

Exercise 2.

Definition. Let A, B be sets and $f : A \to B$ be a map. The graph of f is the set $\Gamma_f := \{(a, f(a)) \mid a \in A\} \subseteq A \times B$.

Definition. Let A, B be sets and $f : A \rightarrow B$ be a map. The graph of f is the set $\Gamma_f := \{(a, f(a)) \mid a \in A\} \subseteq A \times B$.

Lemma. Let $E \subseteq A \times B$ be a subset. Then the following statements are equivalement:

• There is a map $f: A \to B$ such that $E = \Gamma_f$.

Definition. Let A, B be sets and $f : A \rightarrow B$ be a map. The graph of f is the set

The graph of f is the set

 $\Gamma_f := \{(a, f(a)) \mid a \in A\} \subseteq A \times B.$

Lemma. Let $E \subseteq A \times B$ be a subset. Then the following statements are equivalement:

- There is a map $f: A \to B$ such that $E = \Gamma_f$.

Definition. Let A, B be sets and $f : A \rightarrow B$ be a map.

The graph of *f* is the set

$$\Gamma_f := \{(a, f(a)) \mid a \in A\} \subseteq A \times B.$$

Lemma. Let $E \subseteq A \times B$ be a subset. Then the following statements are equivalement:

- There is a map $f: A \to B$ such that $E = \Gamma_f$.

Statement II exactly states the requirements for a map:

Definition. Let A, B be sets and $f : A \rightarrow B$ be a map.

The graph of *f* is the set

$$\Gamma_f := \{(a, f(a)) \mid a \in A\} \subseteq A \times B.$$

Lemma. Let $E \subseteq A \times B$ be a subset. Then the following statements are equivalement:

- There is a map $f: A \to B$ such that $E = \Gamma_f$.

Statement II exactly states the requirements for a map:

• Need a value for every element of the domain $a \in A$.

Definition. Let A, B be sets and $f : A \rightarrow B$ be a map.

The graph of *f* is the set

$$\Gamma_f := \{(a, f(a)) \mid a \in A\} \subseteq A \times B.$$

Lemma. Let $E \subseteq A \times B$ be a subset. Then the following statements are equivalement:

- There is a map $f: A \to B$ such that $E = \Gamma_f$.

Statement II exactly states the requirements for a map:

- Need a value for every element of the domain $a \in A$.
- Only one value.

Definition. Let A, B be sets and $f : A \rightarrow B$ be a map.

The graph of *f* is the set

$$\Gamma_f := \{(a, f(a)) \mid a \in A\} \subseteq A \times B.$$

Lemma. Let $E \subseteq A \times B$ be a subset. Then the following statements are equivalement:

- There is a map $f: A \to B$ such that $E = \Gamma_f$.

Statement II exactly states the requirements for a map:

- Need a value for every element of the domain $a \in A$.
- Only one value.

Exercise 3.

Definition. Let A, B be sets and $f : A \rightarrow B$ be a map.

• f is said to be injective if $\forall x, y \in A : (f(x) = f(y) \Rightarrow x = y)$.

- f is said to be injective if $\forall x, y \in A : (f(x) = f(y) \Rightarrow x = y)$. Note: f is injective if and only if $\forall b \in B : \#f^{-1}(\{b\}) \le 1$.
- f is said to be surjective if f(A) = B.

- f is said to be injective if $\forall x, y \in A : (f(x) = f(y) \Rightarrow x = y)$. Note: f is injective if and only if $\forall b \in B : \#f^{-1}(\{b\}) \le 1$.
- f is said to be surjective if
 f(A) = B.
 Note: f is surjective if and only if
 ∀ b ∈ B : #f⁻¹({b}) > 1.
- f is said to be bijective if
 f is injective and surjective.

- f is said to be injective if $\forall x, y \in A : (f(x) = f(y) \Rightarrow x = y)$. Note: f is injective if and only if $\forall b \in B : \#f^{-1}(\{b\}) \le 1$.
- f is said to be surjective if
 f(A) = B.
 Note: f is surjective if and only if
 ∀ b ∈ B : #f⁻¹({b}) ≥ 1.
- f is said to be bijective if
 f is injective and surjective.

 Note: f is bijective if and only if
 ∀ b ∈ B : #f⁻¹({b}) = 1.

Definition. Let A, B be sets and $f : A \rightarrow B$ be a map.

- f is said to be injective if $\forall x, y \in A : (f(x) = f(y) \Rightarrow x = y)$. Note: f is injective if and only if $\forall b \in B : \#f^{-1}(\{b\}) \le 1$.
- f is said to be surjective if
 f(A) = B.
 Note: f is surjective if and only if
 ∀ b ∈ B : #f⁻¹({b}) ≥ 1.
- f is said to be bijective if f is injective and surjective. Note: f is bijective if and only if $\forall b \in B : \#f^{-1}(\{b\}) = 1$.

Exercise 4.

Lemma. Let A, B be finite sets and $f: A \rightarrow B$ be a map.

• f is injective $\Leftrightarrow \#f(A) = \#A$.

Lemma. Let A, B be finite sets and $f : A \rightarrow B$ be a map.

- f is injective $\Leftrightarrow \#f(A) = \#A$.
- f is surjective $\Leftrightarrow \#f(A) = \#B$.

Lemma. Let A, B be finite sets and $f: A \rightarrow B$ be a map.

- f is injective $\Leftrightarrow \#f(A) = \#A$.
- f is surjective $\Leftrightarrow \#f(A) = \#B$.
- f is bijective $\Leftrightarrow \#f(A) = \#A = \#B$.

Lemma. Let A, B be finite sets and $f: A \rightarrow B$ be a map.

- f is injective $\Leftrightarrow \#f(A) = \#A$.
- ② f is surjective $\Leftrightarrow \#f(A) = \#B$.
- f is bijective $\Leftrightarrow \#f(A) = \#A = \#B$.
- Suppose #A = #B. Then f is injective ⇔ f is surjective ⇔ f is bijective

Definition. Let A, B, C be sets and let $f: A \to B$ and $g: B \to C$ be maps. The map $g \circ f: A \to C$, $a \mapsto g(f(a))$ is called the composition of f and g.

Definition. Let A, B, C be sets and let $f: A \to B$ and $g: B \to C$ be maps. The map $g \circ f: A \to C$, $a \mapsto g(f(a))$ is called the composition of f and g. It is also referred to as g after f.

Definition. Let A, B, C be sets and let $f : A \rightarrow B$ and $g : B \rightarrow C$ be maps. The map $g \circ f : A \rightarrow C$, $a \mapsto g(f(a))$

 $g \circ f : A \to C$, $a \mapsto g(f(a))$ is called the composition of f and g.

It is also referred to as g after f.

Proposition (Associativity of composition). Let A, B, C, D be sets and let $f: A \to B$, $g: B \to C$ and $h: C \to D$ be maps. Then $(h \circ g) \circ f = h \circ (g \circ f)$.

Definition. Let A, B, C be sets and let $f: A \to B$ and $g: B \to C$ be maps. The map

 $g \circ f : A \to C$, $a \mapsto g(f(a))$ is called the composition of f and g.

It is also referred to as g after f.

Proposition (Associativity of composition). Let A, B, C, D be sets and let $f: A \to B$, $g: B \to C$ and $h: C \to D$ be maps. Then $(h \circ g) \circ f = h \circ (g \circ f)$.

Attention! $f \circ g$ does not make sense unless C = A.

Definition. Let A, B, C be sets and let $f: A \to B$ and $g: B \to C$ be maps. The map $g \circ f: A \to C$, $a \mapsto g(f(a))$ is called the composition of f and g. It is also referred to as g after f.

Proposition (Associativity of composition). Let A, B, C, D be sets and let $f: A \to B$, $g: B \to C$ and $h: C \to D$ be maps. Then $(h \circ g) \circ f = h \circ (g \circ f)$.

Attention! $f \circ g$ does not make sense unless C = A. If it makes sense, then $f \circ g$ can be different from $g \circ f$.

Definition. Let A, B, C be sets and let $f : A \to B$ and $g : B \to C$ be maps. The map $g \circ f : A \to C$, $a \mapsto g(f(a))$ is called the composition of f and g.

It is also referred to as g after f.

Proposition (Associativity of composition). Let A, B, C, D be sets and let $f: A \to B$, $g: B \to C$ and $h: C \to D$ be maps. Then $(h \circ g) \circ f = h \circ (g \circ f)$.

Attention! $f \circ g$ does not make sense unless C = A. If it makes sense, then $f \circ g$ can be different from $g \circ f$.

Exercise 5.

Definition. Let A, B be sets and $f : A \to B$ be a map. A map $g : B \to A$ is called the inverse of f if $f \circ g = \mathrm{id}_B$ and $g \circ f = \mathrm{id}_A$.

Definition. Let A, B be sets and $f : A \to B$ be a map. A map $g : B \to A$ is called the inverse of f if $f \circ g = \mathrm{id}_B$ and $g \circ f = \mathrm{id}_A$.

Proposition.

Suppose $f : A \rightarrow B$ is bijective. Then f possesses a unique inverse $f^{-1} : B \rightarrow A$.

Definition. Let A, B be sets and $f : A \to B$ be a map. A map $g : B \to A$ is called the inverse of f if $f \circ g = \mathrm{id}_B$ and $g \circ f = \mathrm{id}_A$.

Proposition.

Suppose f: A → B is bijective. Then f possesses a unique inverse f⁻¹: B → A.
 Namely, for b ∈ B, by the bijectivity of f, there is a unique a such that f(a) = b; define f⁻¹(b) := a.

Definition. Let A, B be sets and $f : A \to B$ be a map. A map $g : B \to A$ is called the inverse of f if $f \circ g = \mathrm{id}_B$ and $g \circ f = \mathrm{id}_A$.

Proposition.

- Suppose f: A → B is bijective. Then f possesses a unique inverse f⁻¹: B → A.
 Namely, for b ∈ B, by the bijectivity of f, there is a unique a such that f(a) = b; define f⁻¹(b) := a.
- Suppose that $f: A \to B$ possesses an inverse $g: B \to A$. Then f is bijective.

Definition. Let A, B be sets and $f : A \to B$ be a map. A map $g : B \to A$ is called the inverse of f if $f \circ g = \mathrm{id}_B$ and $g \circ f = \mathrm{id}_A$.

Proposition.

- Suppose f: A → B is bijective. Then f possesses a unique inverse f⁻¹: B → A.
 Namely, for b ∈ B, by the bijectivity of f, there is a unique a such that f(a) = b; define f⁻¹(b) := a.
- Suppose that $f: A \to B$ possesses an inverse $g: B \to A$. Then f is bijective.

Proof.

Since $f \circ g = id_B$ holds, f is surjective.

Definition. Let A, B be sets and $f : A \to B$ be a map. A map $g : B \to A$ is called the inverse of f if $f \circ g = \mathrm{id}_B$ and $g \circ f = \mathrm{id}_A$.

Proposition.

- Suppose f: A → B is bijective. Then f possesses a unique inverse f⁻¹: B → A.
 Namely, for b ∈ B, by the bijectivity of f, there is a unique a such that f(a) = b; define f⁻¹(b) := a.
- Suppose that $f: A \to B$ possesses an inverse $g: B \to A$. Then f is bijective.

Proof.

Since $f \circ g = id_B$ holds, f is surjective. Since $g \circ f = id_A$ holds, f is injective.

Definition. Let A, B be sets and $f : A \to B$ be a map. A map $g : B \to A$ is called the inverse of f if $f \circ g = \mathrm{id}_B$ and $g \circ f = \mathrm{id}_A$.

Proposition.

- Suppose f: A → B is bijective. Then f possesses a unique inverse f⁻¹: B → A.
 Namely, for b ∈ B, by the bijectivity of f, there is a unique a such that f(a) = b; define f⁻¹(b) := a.
- Suppose that $f: A \to B$ possesses an inverse $g: B \to A$. Then f is bijective.

Proof.

Since $f \circ g = id_B$ holds, f is surjective. Since $g \circ f = id_A$ holds, f is injective.

Exercise 6.

