Galois representations

Gebhard Bockle

March 16, 2012

Abstract

This are notes for parts of my talks at the Luxembourg Winter School 2012, organized
by Gabor Wiese, Lior-Bary Soroker and Sara Arias de Reyna.

1 Elliptic curves, modular forms and compatible systems
of Galois representations

1.0.1 Abelian CFT vs Langlands program

For time constraints, I shall say nothing about the automorphic side; local langlands correspon-
dence, compatibilities etc.

Basic question: Describe all Galois extension of a number field of a certain type. Too hard!

Much of current day number theory is concerned with understanding extension £/F of a number
field F' and their ramification properties. In applications one is mostly concerned with the case
that E/F is Galois. Since the absolute Galois group G = Gal(F'/F) is profinite, it suffices to
understand all finite Galois extensions, although it is often useful to consider profinite extensions.
To understand the ramification properties it is also important to understand the absolute Galois
group of a local field. This is considerably simpler and for p > 2 it is actually solved by Koch-
Janntzen-Wingberg.

The first main success in understand Galois extensions of number fields is abelian class field
theory. It gives a complete classification of all abelian extensions and their ramification proper-
ties.

1.0.2 Sources of abelian and non-abelian Galois extensions

Abelian class field theory by itself is not constructive. Over Q the cyclotomic extensions generate
Q. Over CM fields one can consider CM abelian varieties and their torsion representation.
The theory is worked out over imaginary quadratic fields — see [Si91]. For the general case, see
[Shog].



Beginning in the late 1960’s mainly due to Langlands a new approach got started. The abelian
case was considered as the GL; case. Langlands idea was to use automorphic forms and repre-
sentations to develop a class field theory for GL,,. Automorphic representations for a reductive
group G over F' should give rise to Galois representations into the dual group of G and in a
vague sense all such Galois representations should come from automorphic representations and
thus from modular forms. In fact to get modular forms, one needs to require some algebraicity
of the automorphic representations. But this would get us too far from the topic. The so far
most successful case is the group GLy over totally real fields. Other cases beyond these lectures
are unitary groups (i.e., inner forms of GL,) and of symplectic groups. Langlands program is
constructive but precise conjectures are not available in all cases.

Another important source of Galois representations is étale cohomology. In fact, in all cases
above, one uses étale cohomology to construct Galois representations from some geometric
data. A priori étale cohomology seems to give much more representations than the theory of
automorphic forms. But in the end, one might hope that all semisimple Galois representations
come from automorphic forms; see [Bel09].

1.0.3 Applications of Galois representations from automorphic forms:

Much of the following developments go back to Wiles work on Fermat’s Last theorem:

(a) The Taniyama-Shimura conjecture, which is a theorem by Breuil-Conrad-Diamond-Taylor
[BCDT], states that every elliptic curve over Q is modular.

(b) By results of Frey, Ribet and Serre [Ri90, Se87](proved in the 80’s) this implies Fermat’s
Last Theorem.

(¢) Wiles proof of FLT proved sufficiently many cases of Taniyama-Shimura to deduce FLT;
[Wi95, TWO5].

(d) For elliptic curves A over arbitrary totally real F, it follows that if they are modular, then
their L-function has an entire continuation to the complex plane. [Taylor has proved results
that under certain conditions, only using potential modularity, that in many cases the L-
function of A/F has a meromorphic continuation to C. See for instance [Sn09, Tay06].]

(e) If one can show that Sym" A is modular for all n € N and A/F an elliptic curve without
CM, then the Sato-Tate conjecture on the deviation of #A(k,) from #k, + 1 follows for
A. See [BLGG, CHT, HSBT, Tay08].

Here is the heuristic for the Sato-Tate distribution: Let X be the set of conjugacy classes of

0
0 6—1'9

elements in SUy(C). A representative of a conjugacy class is ) Therefore conjugacy

classes can be considered as elements 6 € R/7Z. Consider

SUL(C) = X 2 [0,7] = [~1,1].

The pushforward of the measure of equi-distribution on SUy(C) yields the measure with distri-
bution 2 sin*#d6 on [0, 7], or 2v/1 — 2d¢ on [—1,1].
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The ST-conjecture asserts that for £ — oo (or A — 00), the distribution of the numbers

(Lg(A)
2V/1

(for an elliptic curve A) or of the numbers

€ [-1,1]

CLA(f)
IN(—1)/2

(for f a modular form) converges to a measure on [—1, 1] with the ST-distribution

2
—V1 — t2dt.

™

In one lecture of the course notes [Ha07], by Michael Harris on the proof of the Sato-Tate
conjecture by Clozel, Harris, Shepherd-Barron and Taylor, the relation between the Sato-Tate
conjecture and the meromorphy of the L-function of Sym"™ A, n € N is explained.

1.0.4 Some notation

(a) For a number field F fix an algebraic closure F = Q.

(b) For a place v, i.e., an equivalence class of norms on F', let F, be the completion of F" at v
and fix an algebraic closure F,.

(c) If v is non-archimedean, define O, as the ring of integers of F),, m, as a uniformizer, k, as
the residue field at v and ¢, := #k, is the order of k,.

(d) Fix an embedding (i.e., an F-algebra homomorphism) F' < F,. This yields a homomorph-
ism of Galois groups G, := Gg, — G (known to be injective) from the diagram

F—F,

Gal(F_'/F)::GF Gr,=:Gy

FHFU

(e) For a set of places S of F', denote by G'r g the quotient of G that is the Galois group of
the maximal outside S unramified extension of F'.

(f) For v a place not in S, fix a Frobenius automorphism Frob, € G ¢ which is unique up to
conjugation. (The kernel of G, - G contains the inertia subgroup of G, and G, /I, =
G, which in turn is generated by the Frobenius. We take the geometric Frobenius.)



1.1 Definition of L-functions and (Galois representations
1.1.1 Elliptic curves

Let A be an elliptic curve over a number field F.

Let N be the conductor of A. It is defined as a product of local conductors. The latter are 1
at every place of good reduction of A. If A does not have good reduction at v, then the prime
corresponding to v divides .

Definition 1.1. (a) For a prime ¢, denote by Ta,(A) the G representation on 1(12114[5”](131 )
and write V;(A) for Ta,(A) ®z, Qp.
(b) The L-factor of A at v is L,(A,T) := det(1 — TFrob,|Vy(A))~!
(¢) The L-function of A is

L(A,s) =[] Luo(A q,*) for R(s) > 0.

v finite

It is not clear that the L-factors are independent of /. So in principle ¢ should occur in the
above notation. However part (a) of the following result clarifies this problem and shows the
independence of /.

Theorem 1.2 (see [Si85], [S191]). (a) The representation Vy(A) is ramified at v if and only if
v dwides the conductor N (Theorem of Néron-Ogg-Shafarevich).
(b) Ifv [N, then Ly(A,T)™ = 1—ay(A)T +q,T? where Ly(A,1)~" = #A(k,) defines a,(A).
(c) If v divides N but not ¢, then L,(A,T) can be computed by Tate’s Algorithm.
(d) The L-function defined above converges for all s € C with R(s) > 3/2.

(e) The representation Vy(A) is semisimple.

1.1.2 On traces and characteristic polynomials

Lemma 1.3. Let II be a profinite group. Let F C Il be a subset such that 11 is the topo-
logical closure of the conjugacy classes of F. Then any continuous semi-simple representation
p: 1T — GL, (L) where L € {C,F,, Q,} is uniquely determined by the characteristic polynomials
charpol(g) € L[T] for g € F.

For C this is classical representation theory, for F, this follows from the theorem of Brauer-
Nesbitt, see [CR62, 30.16]. A proof for Qy is in [Tay91].

Theorem 1.4. Given E/Qy finite and V a finite dimensional continuous linear Gp represen-
tation over E. Let kg be the residue field of E, i.e. kg = Op/mg.

(a) If V is semisimple, then there is a set S of density zero outside which V is unramified.



(b) In the situation of (a), one has det(1—TFrob,|V) € Og[T] for allv ¢ S and p is completely
determined by these characteristic polynomials, or even the traces of p(Frob,), v ¢ S.

(c) There exists a unique continuous semisimple G p-representation V' with
det(1 — TFrob,|V) = det(1 — TFrob,|V) mod mg in kp[T| Vv & S.

Proof. (a) See [KRO1]. (b) Follows from the existence of a G'p-stable lattice (which is deduced
from the compactness of Gr) and Remark 1.3. (¢) One reduces the lattice from (b), semisim-
plifies the reduction and applies Remark 1.3. O]

Corollary 1.5. Let A/F be an elliptic curve. Then V,(A) is completely characterized by the
condition Trace(Frob,|Vi(A)) = a,(A) for all finite places v not dividing N

1.1.3 Hilbert modular forms

Let F' be a totally real number field. Let I be the set of embeddings F' < R. Denote by Ag the
adele ring of F'. Write Ap = Ay x A for the decomposition into the finite and infinite adeles.
Fix k = (k,) € Z' such that k, > 2 for each component. and suppose that all components have
the same parity.! Set t = (1,...,1) € Z!, and set m = k — 2t. Also choose v € Z! such that
each v, > 0, some v, = 0 and m + 2v = put for some p € Z>.

For f: GLy(Ap) = C and u = usus € Gy X Goo = GLo(Ap) define
(flww) (@) = j(uoe, 1) " det(uoe) " fau™)
where:
e i=(v—1,...,v/-1) eb’;
o J: Gt = (€)' (5 0) _()ey) = Tha(ers +do);
o (o)) =T ., a2 for (o) € (C*)! and (n,) € Z'.

Definition 1.6. For U C Gy a compact open subgroup one defines the space of Hilbert modular
cusp forms Si(U) of level U and weight k to be the set of functions f: GLy(F)\GLy(Ar) — C
satisfying the following conditions:

(a) fleu= f for all u € UZ,, where Z,, = (R* - SOQ(R))I en

(b) for all z € Gy, the function f,: h — C defined by uzy — (U, 20)" det(u) ™0 7F f(au)
for u € G is well-defined and holomorphic;

!In H. Hida, Hilbert modular forms and Iwasawa Theory, Oxford Math. Monogr., Oxford University Press,
Oxford, 2006. Hida explains after formula (2.3.9) why without the parity condition, the space of Hilbert modular
forms is zero — he uses a different but equivalent formalism, in which this statement can be formulated more
meaningfully.



(c) fAf/F f(( 08 >m> da =0 for all x € GLy(Ar) and da an additive Haar measure on Fp/F.

Depending on the choice of level, one can also talk about a nebentype character. In any case, up
to conjugation of U, there is a largest ideal N of Op such that U D {g € Gy | g =1 (mod N)}.
We call N the level.

Definition 1.7. For x € G one defines the Hecke operator [UzU] for a function f: GLy(Ap) —

C as
UU)f =) f

where UzU = [[, Uz;. This assignment is well defined for f € Si(U) and defines an endo-
morphism in End¢(Sk(U)).

T

In the special case x = ( Y ) with v not a divisor of N, one abbreviates T, := [UzU].

For z= ( o’ ) with o a fractional ideal of /" prime to N one calls S, the diamond operator for .

Moreover, we define Ty (U) as the Z-subalgebra of End¢(Sk(U)) generated by the T, v f N, and
the S,, a prime to N.

A cusp form f of weight k£ and level U is called an eigenform for Ty (U) if it is a simultane-
ous eigenvector for all T,, S, with v /N. The eigenvalues are denoted by a,(f) and x,(f),
respectively.

Since Ty (U) is commutative, eigenforms exist.
Theorem 1.8. Let f € Si(U) be a Hecke eigenform and write a,(f) for the eigenvalue under
T, for all v not dividing the level N of U.

(a) The coefficient field Ey := Q(a,(f) | v/N) is a finite extension of Q. All a,(f), v[N,

are integral.

(b) For any prime X\ of the ring of integers Oy of E;, there exists a unique® continuous
representation V\(f) (isomorphic to E]%’)\), say

PFN: Gr — G’LQ(E‘]“’A)
which is unramified outside N{ and satisfies
det(1 — TFrob,|VA(f)) =1 — au(f)T + xo(f)q@T? for all v f N¢

where £ is the rational prime under X\ and Ey  is the completion of E; at \.

Part (a) is due to Shimura. Part (b) follows from work of Eichler-Shimura, Deligne, Ohta,
Carayol, Taylor and Blasius-Rogawski. If [F': Q] is odd or if f has a supercuspidal prime, then
the construction takes place in the étale cohomology of a Shimura curve. Taylor’s argument

for [F : Q] even is via congruences and the Jacquet-Langlands correspondence for GLs. See
[Ca86, Tay89]

2See Remark 1.3 and Theorem 1.10(d).



Definition 1.9. Let f be a cuspidal Hecke eigenform as in the previous theorem.

(a) The L-factor of f at v is L,(f,T) := det(1 — TFrob,|V\(f)¥)!.
(b) The L-function of f is

L(f,s):= HLv(f, q,°) for R(s) > 0.
Theorem 1.10. Let ky := max{k. | 7 € I}. Then

(a) The local L-factors are independent of A (as long as v is not above ().

(b) The poles of the local L-factor at v N are algebraic integers of absolute value g~/

(under any complex embedding), i.e. Weil numbers.

(¢) The L-function defined above converges for all s € C with R(s) > L. It has an entire
continuation to the complex plane and a functional equation A(f, ko — s) = A(f,s) where
A is obtained from L by multiplication by suitable L-factors at oo — see the references.

(d) The representation V\(A) is irreducible.

References: [RT11], [Sk09], [BI06], [Saill, Thm 2], [Ri85] for part (d), case of elliptic modular
forms, [Tay97] for (d) for Hilbert modular forms?
b

Remark 1.11. The idea of [Ri85] is as follows: If the representation is reducible get € ¢ on
the diagonal up to finite order with product 8’2’1 up to finite order (by CFT). The Ramanujan-
Petersen bound yields 2a = 2b = k — 1. Growth of L-function at s = k gives two contradictory
bounds (cusp form versus Eisenstein series.)

1.1.4 Compatible systems of Galois representations I

Definition 1.12 (Weakly compatible system). Let £ be a number field and P its set of finite
places. Let Sy consist of the places v of F' such that v and A lie over the same rational prime
(. A family of n-dimensional continuous Galois representations (p,\: Gr — GLn(E,\)) \ep IS an
E-rational weakly compatibly system (with finite ramification set S) if

(a) for all A € P, the representation p, is unramified outside S U Sy;
(b) for all finite places v of F not in S there exists a polynomial p,(T") € E[T] such that

po(T) = det(1 — T'py(Frob,)) € EX\[T] VA such that v ¢ Sy,
where F is canonically a subfield of E), its completion at .

Example 1.13. Let iy~ denote the set of /-power roots of unity in F for some number field F.
It is clearly stable under Gr. Define the ¢-adic cyclotomic character y: Gp — Aut(p~) = Z;
by g — ((n — (sﬁ(g)) for all n. (This is independent of the choice of roots (().) Then (e¢),
forms a compatibly Q-rational system with ramification set S = &.



Theorem 1.14. (a) If A is an abelian variety over a number field F', then the representations
Vi(A) form a Q-rational weakly compatible system with ramification set, the set of places
of ' where A has bad reduction.

(b) If f is a Hilbert modular form over a totally real field F', then the representations Vy(f)
form an Ey-rational weakly compatible system with ramification set, the set of places of F
dividing the (minimal) level N of f.

Remark 1.15. Now we can meaningfully talk about the symmetric powers of an elliptic curve
A/F. Namely we can mean by this the weakly compatible Q-rational family (Sym" V,(A)) of
representations of dimension n + 1.

1.1.5 What does it mean for A to be modular?

e A and f have the same L-function.
It is elementary to see that this implies a,(A) = a,(f) for all places of F' at which A has
good reduction and which do not divide the level.
Converting this into a statement about Galois representations it follows that V;(A) = Vi(f)
(and Ey = Q). Remembering that we defined L-factors at bad (or at all places) via the
Galois representation (and inertia invariants), it follows that we must have equality of the
remaining L-factors.

e The (-adic Tate module V;(A) of A and the (-adic Galois representation V;(f) attached
to f are isomorphic for one ¢ (or all /).

e Even better: From f one can (often, and always if [F' : Q] is odd) construct an elliptic
curve Ay (in some jacobian of a modular/Shimura curve). Then A being modular means
that A is isogenous to some Ay.

Remark 1.16. (a) If two elliptic curves A and A’ are isogenous over F', then they have the
same Galois representation and thus the same L-function.
Consider the isogeny 0 -+ K — A — A" — 0 with finite kernel K. Passing to ¢>-torsion
points and Tate modules, we deduce

0 — K[¢>] — Ta,(A) — Ta,(A") — 0.

Tensoring with Q, over Z,, the left hand term disappears and the other two become
isomorphic.

(b) Tt is a deep theorem due to Faltings [Fa82], the semisimplicity conjecture of Tate, that
shows that for Galois representations of abelian varieties A, A’ over a number field F' we
have that A and A’ are isogenous if and only if they have isomorphic Galois representations.
Faltings proves that the following natural homomorphism is an isomorphism:

Hom (4, 4') ©2 @, — Homg,,(Vi(A), Vi(4)) .

rational isog. A— A’ G —equiv. homom.



1.2 Weil-Deligne representations

The following is based on notes by T. Gee from the 2011 Winter School in Postech, Korea. See
also the important article [Tat79].

Question: Can one define a refined notion of compatible system that also takes ramified primes
into account?

Answer: Yes, by introducing Weil-Deligne representations.

Question: Can one refine the notion of compatible even further to also include primes above
the characteristic of the representation?

Answer: Yes (later), via Fontaine’s p-adic Hodge theory — and again Weil-Deligne representa-
tions.

1.2.1 Galois representations of local fields

The Weil group

Let K/Q, be a finite extension, Ok its ring of integers, 7k its uniformizer, k = kg its residue
field of cardinality qx. Let vig: K* — Z be the normalized additive valuation and ||x the
multiplicative valuation with |7x|x = ¢

Every element g of G = Gal(K /K) preserves O and induces an automorphism of the residue
field k of Og. The kernel of the induced homomorphism G — Gy, is the inertia subgroup /.

Denote by Frobg the canonical topological generator of Gy, the geometric Frobenius, i.e., the
inverse automorphism to k — k : z +— 29%. Pullback of 1 — Ix — Gx — G — 1 along
(Frobg) — G, defines the Weil group Wi in the s.e.s.

0— Ix - Wk — (Frobg) — 0.

Here Wy is a topological group by taking the neighborhoods of Ix (under the profinite topology
of Gk) as a neighborhood basis of the identity.

The inertia subgroup

Define K™ as K'%. Then K™ = U, K ((,»_1) and Gal(K™/K) — Gy, is an isom.

Define K" := Uycq(n =1 K™ (7'/"). By Kummer theory K'™°/K is Galois and
Gal(K'™"¢/K) = Gal(K"™™/K™) x Gal(K™/K) > 7 X\ Z

with Z/ = HZ#P Zg.

Kummer theory says that g € Gal(K™m¢/K™) maps to Z'. Explicitly: choose a compatible

system of roots of unity ¢ := ((u)nprimetop € K™. Define for g € I a sequence t,(g) in

the inverse limit Z’ by g(x/")/x'/" = (9. The t, define a surjective homomorphism te

Ik — Z'. Denote by t, the composite of t, with the projection Z' — Z,. The kernel of

Ggne — Gal(K"me/K™) is the wild ramification subgroup Pg. It is the pro-p-Sylow subgroup
of IK.

Let £x: Wi — (Frobg) — Z be character defined by Froby + 1.Then one has
te(grg™") = ¢, < Dte(7) (1)

9



for 7 € I and g € Wk.

Theorem 1.17 (Main Thm of local CFT (one version)). Let W2 denote the group Wy /[Wx, Wi].
Then there is a unique system of isomorphisms (for all extensions of Q,)

Artg o K* — Wb

such that

ab can

(a) if K'/K is a finite extension and T : Wib = WP, then Tk O ATt gt = Artco Ny /e,

(b) and we have a commutative square

Artg

K —————— Wb
vKl / ican: g—g
<FI‘ObK>

a
a—Frob%,

Definition 1.18 (Weil and Weil-Deligne representations). Let L be a field of characteristic
Z€ero.

A representation of Wy over a field L (on a finite dimensional vector space over L) is a repre-
sentation which is continuous with respect to the discrete topology on L and the one defined
above for Wi.

A Weil-Deligne representation of Wy on a finite dimensional L-vector space V' is a pair (r, N)
(or a triple (V;7; N)) where r is a representation of Wi on V and N is in End(V') such that
for all o € Wk one has the following analog of (1)

r(o)Nr(o) ™! = ¢, *<N. (2)

Remark 1.19. For r as above the image () is finite. Moreover by considering the eigenvalues
of N it easily follows that N is nilpotent. Finally, the relation (2) is equivalent to 7(c)N = Nr(o)
for all o € Ix and r(p)Nr(p) ™t = qx' N for ¢ € Wi a lift of the geometric Frobenius Frob-.

The conductor of a WD-representation is c(r, N) := c(r) + dim VIx — dim(Ker(N : V —
V)!x) where c(r) is the usual Artin conductor of a discrete representation in characteristic zero.
The Artin conductor of ¢(r) can be defined as the Artin conductor ¢(r’) of the finite image
representation 7’ from part (f) of the following exercise — 7’ is a twist of r by an unramified
character.

FEzercise 1.20. (a) For a representation (V;r) of Wy and m > 1, define Sp,,(r) as the triple
(B v P riatdliN)
i=1,....m i=1,....m

with N restricted to the i-th component V' that is acted on by r - |Art'[% being the
isomorphism to the ¢ + 1-th component acted on by 7 - |Art}1]?1. Then this defines a
WD-representation.

10



(b) Every WD representation is isomorphic to a direct sum of representations Sp,,(r).
(c) If (r; V; N) is a WD representation of Wy and K’/ K is a finite extension, then (r|g,,: V; N)
is a WD representation of Wi.

(d) If r is a representation of Wy, then for a finite index subgroup H the image r(H) lies in
Z(r(Wk)). In particular, the projective representation induced from r has finite image.

(e) There exists a representation 7’ of G (of finite image) such that r and r'|y,. have the same
projective image, and in particular any Weil representation is a twist of a representation
of Gk (of finite order) by character of Wy. (Hint: [Se77, Cor. of Thm. 4].)

(f) There exists a representation 1’ of G (of finite image) and an unramified character y of
Wi such that r =y @ r'.

(g) Let o be in Wi \ Ix. Then for any 7 € Wi there exist n in Z and m € Z~q such that
r(c™) =r(t").

(h) For a representation r of Wy the following conditions are equivalent: (a) r is semisimple.
(b) (o) is semisimple for all ¢ € Wk. (c) (o) is semisimple for some o ¢ I.

(i) If (r; N) is a Weil-Deligne representation of Wy, then (r, N)¥'=5 := (r* N) is a WD-
representation of Wi

Note that by r* we mean the following semisimplification: suppose the « is any automorphism
of a vector space over a field L. Then a can be written in a unique way as o = o - " for
commuting endomorphisms o and o™P such that o is semisimple, i.e., it is diagonalizable
over L8 and o™P is unipotent, i.e., all of its eigenvalues are one. Now one defines r** to mean
that for any g € Wi, one sets 7(g) := (r(g))*™ in the sense just described. Note that since Iy
has finite image under r, all elements in r(/x) are semisimple.

Definition 1.21. A WD-representation (r, V) is Frobenius semisimple if r is semisimple. (i.e.
r(¢) is semisimple as an endom.)

Definition 1.22. Let L be an algebraic extension of Q, with ¢ # p.

(a) A€ GL,(L) is bounded if det A lies in O and det(1 — T'A) in OL[T].
(b) A representation r of Wy is bounded if r(¢) is bounded for all o in Wy

Remark 1.23. (i) In (a), the matrix A is bounded if it stabilizes an Oy, lattice in L™.
(ii) In (b), the representation r is bounded if and only if (o) is bounded for some o ¢ .
Theorem 1.24 (Grothendieck’s Monodromy theorem). Suppose | # p, K/Q, is finite, L/Qy is

finite and V' 1s a finite dimensional L-vector space. Fix a lift o € Wi of Frobg and a compatible
system ¢ = () of roots of unity in K™&. (This defines a unique t¢o: Ixx — Zy for all £ # p.)

For any continuous representation p : G — GL(V), there exists a finite extension K' of K
such that p(Ix) =1 mod 2¢ for an Op-lattice of V' stabilized by G and there exists a unique
nilpotent endomorphism N of V' such that for all 0 € Ik one has r(o) = exp(Nt¢(0)).
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Moreover if r : Wi — GL(V) is defined by
r(0) = p(o) exp(Nic(p~a)),

then (r,N) =: WD(p) defines a WD-representation of Wx. The functor WD = WD,, - defines
an equivalence of categories from continuous representations p to bounded WD-representations
(r,N).

Finally for any choices (¢,() and (¢, (") there is a natural isomorphism WD, - — WD .

Proof. Exercise: The main tool needed is the existence of an f-adic logarithm. This is ensured
by the condition that p on I, has pro-¢ image and that the matrices of this image are congruent
to 1 mod 2¢. Then the usual series for the log converges. O]

Remark 1.25. Suppose p : G — Aut(V) is unramified. Then N = 0 and r(Ix) = {1} for
(r,N) = WD(V). Thus r is completely determined by p(¢) for a lift ¢ of Frobgk. In other
words, WD(p) depends on the conjugacy class of p(y), i.e., its rational canonical form. If one
passes to WD(p)¥ =5, then the isomorphism type of the latter is completely determined by the
characteristic polynomial det(1 — TFrobg|V).

Definition 1.26 (Strictly compatible system). Let £ be a number field and P its set of finite
places. For A € P let S\ denote the set of places v of a number field F' such that v and A lie
over the same rational prime ¢. A family of n-dimensional continuous Galois representations
(Vi)aep of GF is an E-rational strongly compatibly system (with finite ramification set S ) if

(a) for all A € P, the representation V) is unramified outside S U Sj;
(b) for all finite places v of F not in S there exists a polynomial p,(T") € E[T] such that

po(T) = det(1 — TFrob,|Vy) € EA[T] VA such that v ¢ Sj;

(c) for all finite places v in S there exists an Frobenius semisimple WD-representation (r,, IV,,)
of F), such that

WD (Wil )™ = (ry,N,) VA such that v ¢ Sy.

Conjecture 1.27 (Fontaine, Serre,Deligne). If V' is a representation that occurs in the (-adic étale
cohomology of a smooth proper variety over a local field, then its associated Weil-Deligne rep-
resentation is Frobenius semisimple. Moreover the Weil-Deligne representation is independent
of £. See [Tat79], [F0o94, Section 2.4.], [Se91, §§11,12].

Theorem 1.28 (Carayol, Eichler-Shimura, Langlands, Deligne). For v a Hilbert modular eigen-
form, the family (Vi(f)) is a strongly compatible E;-rational system;

Conjecture 1.29 (Fontaine, Serre). Suppose A/F is an abelian variety. Then (V,(A)) is a strongly
compatible system.

I do not know the status of the latter conjecture, i.e., whether condition (c¢) of Definition 1.33
holds. The thesis of A. Laskar from 2011 (Strasbourg) implies that latter conjecture if A has
semistable reduction. I do not know of a reference for potentially semistable. I also do not know
what is known about Frobenius semisimplicity.
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1.3 How to deal with primes above /(7
1.3.1 An example

Given A/F an elliptic curve, ¢ a rational prime, v a place of F' above ¢ and residue field k,.
What do we know about V;(A) restricted to a decomposition group at £7?

good reduction at v
If A/F, has good reduction, then A/k, is an elliptic curve and there is a short exact sequence

0 — AY[L¥](F,) — A[C*)(F,) — A[e](k,) — 0

where A%[(>]](F,) is given by a formal group of dimension 1 and height 1 (ordinary case) or

height 2 (supersingular case) and A[¢*°](k,) is either isomorphic to Q,/Z, if A/F, is ordinary
or trivial if A/F, is supersingular.

ordinary subcase Here V;(A)|q, is an extension of two 1-dimensional representations and thus
of the form

pv i Gy = GLy(Qy) = g — (EZ(gz)X(g) xj(g) )

with respect to a suitable basis and where ¢, is the f-adic cyclotomic character and y is an
unramified character. Due to the Weil-paring, the determinant must be ,. Note the g, is
infinitely wildly ramified — so that there is no associated WD-representation.

supersingular subcase Now V;(A)|q, need not have a filtration. If Endz, (A/F),) is 2-dimensional
then the formal group is given by two conjugate Lubin-Tate characters and easy to describe via
local class field theory. In general, the representation is absolutely irreducible and remains so
over any finite index subgroup H of G,. The mod ¢ reduction is rather special as can be seen
from analyzing the (-torsion group via the formal group law of A/F,. The representation is
infinitely ramified and again there is no direct way to get a WD representation.

FExercise 1.30. Suppose A has good reduction and 7 denotes the Frobenius endomorphism on
A/k,, so that 7 satisfies the quadratic polynomial p,(T) = T? — a,T = ¢, with integer coeffi-
cients, where A[p|(k,) = ¢, — a,(a) + 1. Let a, 3 € Z be the roots of p, so that v,, (af) = 1. It
is also standard that A[p](k") = ¢* — a™ — ™ + 1 for k" the unique extension of the finite field
k, of degree n. Show that A/k, is supersingular if and only if v,, (a), v, (8) > 0, if and only if
Vg, (@) = vy, () = 1/2. If A, is ordinary, the without loss of generality v, (o) = 0. Show that
x ' (Frob,) acts on the p™ torsion points in the same way as 7 and that y~!(Frob,) = a.

semistable reduction at v (here only split multiplicative reduction)
Here one uses the Tate curve of A/F,. It shows that the Galois action on the {>-torsion points
is given by the Galois action on F*/q¢* for ¢ € F* an element of valuation strictly less than
one. The (> torsion points are given by the set {¢"/*"(}. | i,7 € Z}. This describes an infinite
Kummer extension of F,. The corresponding Galois extension is of the form

pv: Gy = GLa(Qy) : g (6[(()@ *1<>
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potentially good or potentially semistable reduction (or non-split multiplicative
reduction)

The representation is as above after one restricts G, to a suitable open subgroup (coming from
the field over which good or semistable reduction is acquired).

Comparison to ¢-adic data
If one looks at the ¢-power torsion, then the above cases correspond to unramified /unramified /semistable
(N # 0) WD-representations or the general case of a WD-representation.

For the representations that arise from modular forms one has a similar behavior. The solution
of the puzzle:

1.4 Fontaine’s mysterious functors

Let K be a finite extension of Q, and K the subfield of K that is maximal unramified over Q,.
Fontaine defines functors D,, * € {HT,dR, cris, st} from

{,0: Gx — GL,(Q,) | p is cont. }

to modules over K, ®q, Q for K, = K, K, Ky, or K, respectively, with some additional
structure coming from some rings B, of Fontaine with B.s C Bsg C Bgr and Byt is the graded
ring associated to Bar. The structures are a continuous action of G and
(a) a graduation,
(b) a filtration,
)
)

(c

(d) a filtration and two endomorphisms ¢, N — for more, see 1.4.1.

a filtration and a semilinear endomorphism ¢ (Frobenius)

The rings B, also satisfy BE% = K,. One calls a representation p to be * (= Hodge-Tate, de
Rham, crystalline, semistable) if

(V(p)) ®qg, B.)¢x is free over K, ®q, Q, of rank equal to dimg-V(p).

In all cases one has < for the rank.

The ring Byr attaches the HT-weights (in Z) to a representation. The ring Bgr carries a
Z-graded filtration. The property of being Hodge-Tate or de Rham is invariant under finite
extensions E'/K. The property of being cris and st are not invariant under such extensions. So
one also has the notions of potentially crystalline and potentially semistable; for instance p is
potentially crystalline if there exists a finite extension E/K such that p|g, is crystalline. The
implications for a representation V' are described in the following diagram

V is cris =V is semist.

ﬂ g

V is pot. cris=————=1V is pot. semist. ——V ijs JR———=1V is HT.
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The proof of Fontaine’s conjecture that the notions de Rham and potentially semistable are
equivalent, due to A=I. André, B=L. Berger, K=K. Kedlaya, M=Z. Mebkhout, is described
by Colmez in [Co03]. Berger proves that Crew’s conjecture is equivalent to the conjecture of
Fontaine, and the three other authors, independently, give a proof of Crew’s conjecture.

1.4.1 The WD-representation of a potentially semistable I = V(p) of rank d

(after Fontaine)
Let K,V be as above and suppose K’/K is a finite Galois such that V’G’K is semistable. Then

Dy(Vlg,.) = (D, ¢, N,Fil') where

(a) D is a free K} ®g, Q, module of rank d.

(b) ¢p: D — D is 0 ®1id linear with o: Kj — K| the Frobenius in Gal(K//Q,),
(¢c) Np: D — D an K}, ®q, Q,-linear endomorphism such that Npyp = pppNp,
(d) a decreasing, separating, exhausting filtration Fil* of (D ® &, K'),

and the quadruple is equipped with an action of Gal(K'/K), i.e., an action Gal(K'/K) —
Aut(D, pp, Np,Fil*). If the representation is semistable, one has K’ = K, if it is potentially
crystalline, then N = 0 (and vice versa).

Remark 1.31. The quadruple (D, ¢p, Np, Fil') is weakly admissible - which is a characterization
of the image of the mysterious functor; it means that ¢ty (D) = ty(D) and ty(D') < ty(D') for
all stable (but not necessarily free) subobjects. Here ¢ty (D) is the index of the unique jump of
the filtration of the induced filtration Fil' A” D and ty is the slope of A% op.

The associated WD-representation to p is basically obtained by forgetting the filtration, see
[GMO09] and [Sav05, Def. 2.15] for K = Q,: Observe that

K(/) ®QP QTP = @ QTP
T K6—>QTP

Correspondingly one has
D - D ®K{)®Qp@ K(/) ®Qp @p - @ DT
: K)—Qp
with suitable components D, of D. One verifies that gp%q’@”] induces an isomorphism of the D

since it is K ®q, (QTp—linear. Fix 7y among the 7.

Definition 1.32. Let K,V, K’', D be as above and let ¢ € Wi be a lift of Frobg. Then the
WD-representation WD(V') is the triple (U, r, N) where

(a) U is the Q, vector space D,
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(b) 7: Wi — Autg (U) is the Weil representation determined by

(i) defining 7|7, as the restriction of the Ky ®g, Q,-linear action Ix — Gal(K'/K) on
D to the invariant subspace D,
(ii) and having ¢ act as p, '¢; on D, where ¢, is the action of ¢ via Gal(K’/K) and ¢, is

the action @g@:(@p I'both times on D and then restricted to the invariant subspace D,

(¢) N is the restriction of the endomorphism Np from D to its invariant subspace D, .

In the case where K = Q, and K'/K is totally ramified, so that K} = K, = Q,, the vector
space U is simply equal to D and ¢ is the inverse of ¢p (and N = Np).

Note: The eigenvalues of 7(¢) to the power [K{ : K| are those of ng[K‘/’:Q”]. Hence their p-adic
valuations are up to the scalar [Kj : Q,] the slopes (= p-adic valuations) of the eigenvalues of
¢p. In particular they are typically not units, and thus r is typically unbounded. This is
therefore different from the case where K and L have different residue characteristic.

1.4.2 Continuation of the above example of an elliptic curve A/F,

(a) If A has ordinary reduction, one has a short exact sequence
0— Dcris(Z€<5€X)> — Dcris(‘/Z(A)) — Dcris(ZZ(Xil)) —0

where the outer modules have underlying D of rank 1. Thus D.s(V;(A)) is reducible.
(b) If A has supersingular reduction, then either D.;s(V;(A)) is a simple object and remains
so after base change to any finite extension E/F,, or there is an extension E/F, of degree
at most 2 over which D¢5(Vz(A)) becomes the sum of two 1-dimensional subobjects.
(c) If A has semistable but non-good reduction, then N = ( 01 >, Dg(Vy(A)) has rank 2 and
is reducible while Ds(V;(A)) has rank 1 only; see [Ber02, p. 18].

1.4.3 Compatible systems II11

Definition 1.33 (Strictly compatible system, strong sense). Let E be a number field and P its
set of finite places. For A € P, and F' a number field, let S\ denote the places v of S such that
v and A lie over the same rational prime /.

A family of n-dimensional continuous Galois representations (Vy)xep of G is an E-rational
strictly compatibly system in the strong sense, (with finite ramification set S) if

(a) for all A € P, the representation V) is unramified outside SUS) and potentially semistable
at the places in Sy;

(b) for all finite places v of F' there exists a Frobenius semisimple WD-representation (r,, N,)
of F, such that
WD (Valw,, )™ = (r,,N,) VA€ P.
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Remark 1.34. As remarked earlier, if v is not in S, then (r,, N,) is simply (p(Frob,)*,0). Hence
for v ¢ S'U S, one can simply write require a compatibility of characteristic polynomials

po(T) = det(1 — TFrob,|Vy) € EA[T] VA such that v ¢ Sj;

Remark 1.35. One can add further conditions on compatible systems: For instance a purity
of weight condition: All roots of all characteristic polynomials are Weil-number of the same
weight. Etc.

Theorem 1.36 (Faltings, see [Fa87]). For a cuspidal Hecke eigenform f the representations
(VA(f))x are semistable of HT-weights (0,k —1).

Remark 1.37. The HT weights of V;(A) for an abelian variety A over a number field I are 0
and 1 equally distributed over all places v of F' above ¢ and all embeddings F, — Q,. A proof
in other language is contained in [Tat67].

Theorem 1.38 (T. Saito, see [Saill]). For a cuspidal Hilbert modular Hecke eigenform f the
system (V\(f))a is strictly compatible in the strong sense.

Question 1.39. Is it known that for an abelian variety A over number field F' the family (V;(A)),
is strictly compatible in the strong sense? (The HT-weights are 0 and 1 each with multiplicity
dim A.)

1.5 Refinement: Fontaine Laffaille theory

The above is not the end of the story of understanding ¢-adic Galois representations of ¢-adic
fields. One also needs integral information on V(p). Fontaine’s theory above only contributes
to f-adic information, but does not help if one studies the mod /¢-reduction. One theory that
achieves this is due to Fontaine and Laffaille from [FL82].

Let Ky/Q, be unramified (there are slight extensions which shall not bother us) with ring of
integers W, the ring of Witt vectors of the residue field of Kj.

Definition 1.40. A strongly divisible module is a free W-module M of finite type equipped
with a decreasing filtration by sub-W-modules (Fil’M);cz such that Fil°M = M, Fil'M = 0
for i > 0, each subquotient M/Fil'M free over W and one has a semilinear, i.e., a o-linear,
endomorphism ¢: M — M such that o(Fil'M) C p'Fil'M and M =, p~"p(Fil'M).

Theorem 1.41 (Fontaine-Laffaille). If M is a strongly divisible module, then M ®z, Q, is
admissible, i.e., equal to Deis(V) for some ranky M dimensional (crystalline) representation
Of GK.

Suppose conversely that V' is a crystalline representation of G of HT weights between 0 and
p— 2 and with Q,-coefficients. Then D.s(V') contains a strongly divisible module. (Hard part.)

Let A be a W-algebra. (e.g. W or W/pW or a finite W-algebra, or ...)
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Definition 1.42. A Fontaine-Laffaille module over A is a finitely generated W ® A-module M
equipped with a decreasing filtration by sub-W ® A-modules (Fil’M );cz such that Fil®AM = M,
Fil'M = 0 for i > p—1, and with a semilinear, i.e., a 0 ®id 4-linear, endomorphism ¢*: Fil' M —
M such that ¢|piy = ¢ and M =Y., @' (Fil'M).

Define a torsion crystalline representation of weight & (k € N) to be any finite representation of
Gk that can be written as T'/T" where T is a Galois stable lattice in a crystalline representation
of Gx with Hodge-Tate weights in {0,...,k} and 7" C T is a Galois stable sublattice. This
yields a category of crystalline torsion modules.

Theorem 1.43 (Fontaine-Laffaille). Suppose A is a finite W-algebra. If M is a Fontaine-
Laffaille-module over A, then under the integral version T, of Deyis the module M is the image
of the crystalline torsion A-module.

Conversely, if M is a torsion crystalline representation over A of weight k < p — 2, then the
image under T.s is a Fontaine-Laffaille-module M over A.

Special case (we still assume that K/Q, is unramified):

Theorem 1.44 (Fontaine-Laffaille + Raynaud). Let MFy,, be the category of Fontaine-Laffaille

torsion modules over W with Fil*> = 0 and suppose p > 2. Then there are equivalences of abelian
categories:

MF},, % { finite flat group schemes/W'} Ri> { flat repns. of Gg}.
ay.

The latter applies in particular to modular forms of weigh 2 and abelian varieties (with level
prime to p or conductor not divisible by p, respectively). References are [Ra74] and [FL.82].

1.6 The Fontaine Mazur conjecture

The Fontaine-Mazur conjecture is the following statement:

Congecture 1.45 ([FM95]). Let F' be a number field and S a finite set of places of F. Suppose
that p: Grg — GL,(Qy) is continuous and irreducible and that p|g, is de Rham for all v]|/.
Then p comes from geometry, i.e., there exists a smooth projective variety X over F' such that
p is a subquotient of some ¢-adic cohomology H (X, Q).

In special cases, the conjecture can be phrased in a more concrete form, in the sense that a
recipe is given where in geometry one can find the representation:

Congecture 1.46. Let S be a finite set of places of Q. Suppose that p: Ggs — GL,(Qy) is
continuous and irreducible. Suppose further that p|g, is de Rham with HT weights 0,w > 1.
Then there exists an elliptic cuspidal Hecke eigenform f and a place A of the coefficient field E
of f such that V(p) = Vi(f).

Conjecture 1.46 is proved in the majority of cases by Emerton and Kisin in [Em11] and [Ki09].

A second special case is the following:
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Congecture 1.47. Let F be a totally real number field. Suppose p: Grs — GLy(Qy) is continu-
ous, irreducible and of weight 2, i.e., it is de Rham at all places above ¢ with HT-weights (0, 1)
for all places v|¢ and all embeddings F,, — Q. Then p arises from a Hilbert modular form of
weight (2,...,2).

Conjecture 1.47 in the form stated is completely open. A weaker assertion is given by the
potential modularity results of Taylor. We follow the cases given in [Sn09]:

Theorem 1.48 (Taylor,Deulefait (version of [Sn09])). Suppose p is as in conjecture 1.47 and
that its reduction mod p is absolutely irreducible, that p > 3 and that for p = 5 some extra
hypotheses are satisfied. Then

(a) the L-function L(p,s) has a meromorphic continuation to C and the expected functional
equation;

(b) there exists a strictly compatibly system (in the strong sense) (px: Gps — GL,(EX))x for
some number field E and a place Ny such that py, = p.

Note that the theorem applies in particular to elliptic curves over F'. The proof, as a combination
of Brauer’s theorem on characters and the potential modularity result by Taylor; both ideas
stem from [Tay06]. Dieulefait in [Die07] observed how to deduce (b) from Taylor’s results. An
excellent survey of potential modularity and modularity lifting theorems is also [Bul0)].

1.7 How to prove that A/Q is modular?

e Let N be the conductor of the elliptic curve A.
e We search for a cuspidal Hecke eigenform of weight 2 because A has HT-weights {0, 1}.

e Choose a prime p > 2 (for simplicity) not dividing N for which A[p] is absolutely irreducible
and modular; the later means that A[p] = V,(f) for some modular form f (any weight and
level). [By Taylor, potentially, this is always possible. Wiles in [Wi95] uses p = 3 (but has
to deal with problems coming from p|N) and results of Langlands and Tunnel.]

e By the weight and level part of Serre’s conjecture: can assume that f has level dividing
N and weight equal to 2.

e Consider the Hecke-algebra TI'y(N) over Z, acting on Sa(I'g(N)) generated by T, and S,
for primes ¢ not dividing Np. Each Hecke-eigensystem of some eigenform g € Sy(I'g(N))
yields a ring homomorphism Ty(To(N)) — F, : T, = a,(f) mod mz . Let m; be the
kernel for our fixed f. Then the localization T := T2(I'¢(N))m, is a local ring.

Proposition 1.49. (a) Homg;(T,, Q,) is in bijection with the set of cuspidal Hecke newforms

of level dividing N whose associated mod p Galois representation is isomorphic to p. (Mod
p means mod X for some A over p.)
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(b) There exists a Galois representation p™?: Gg — GLa(T,) characterized completely by
Trace p(Frob,) = T, (and det p(Frob,) = ¢q,) for allvfNp.

The proposition says that any Galois representation that arises from a level N form g of weight
2 (or @ and that is congruent to f mod p is obtained from p™°d by a ring homomorphism
T; — Q. Let M, denote the set of these modular forms.

Proof. Part (a) is an elementary exercise. For (b), let O be the ring of integers of a finite
extension K of Q, that contains all coefficients of all g € Mj;. Then there is a representation

p: Gg — GLyo( [] 0)

geMp

with p(Frob,) = (ay(g))gers,. Observe that T, is a natural subring via the homomorphisms from
(a) of [J,epr, © which contains all traces Trace(p(Frob,)) = T,. (under the various embeddings,
T, maps to the tuple (a,(g))gerr,.) Now there is a theorem of Carayol [Ca94] and independently
Serre that uses the hypothesis: (i) Tj is a complete noetherian local ring with finite residue field,
(i) the ring JT ¢y, O is semilocal with finite residue fields and it contains Ty, (iii) all traces of
the representation p belong the subring T, (iv) p is absolutely irreducible. Then p is already
defined over T, and this is exactly the claim of (b) ]

So now that we have a universal Galois representation for cusp forms of level N, weight 2 and
fixed p, the idea is to compare it to a Galois theoretically defined universal representation, that
is hopefully of the same kind but defined abstractly and made so that it ”contains” V,,(A).

Define (R = R; n,2, pr) as the "universal deformation ring” that parameterizes all 2-dimensional
p-adic Galois representation whose mod p reduction is A[p], which at primes ¢ | N have the
same WD-representation type as A, which at p are crystalline of weight 0,1 (flat), and which
have the same determinant as V,,(A) and are unramfied at all primes not dividing Np. (By the
Weil-paring the latter determinant is a finite twist of the cyclotomic character.)

Such a ring was first defined and studied by Mazur. The main method to relate such rings to
Hecke algebras is due to Wiles.

From the universality of R and the construction of T; one deduces (elementary):

Proposition 1.50. There ewists a unique surjective homomorphism a: R — T, such that

mod conj.

pe "~ avo pp.

In the above situation one has the following result:

Theorem 1.51 (Main Theorem [Wiles, BCDT]). For Q have an isomorphism R — Tj.

Many refinements by Kisin, Khare-Wintenberger, Taylor and ”his” school.
Preview: In the remainder of this lecture series, I shall talk about universal deformation rings

and some subtleties in their definition. If time permits, I shall also explain some upper bound
on its dimension. References are
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(a
(b

C

€

(
(

Ma87] by Mazur for basic material.
Ki09] by Kisin for a short survey of many modern techniques.

Ki09] by Kisin for some groundbreaking deep results on deformation theory.

) [
) [
(c) |
(d) [Pi07] by Pilloni for a treatment of local deformation problems for n = 2 and p # /.
) [CHT] by Clozel, Harris, Taylor for many local (and global) deformation functors for GL,,.
) |

B610] for a detailed lecture series by myself on the topic.

Acknowledgements: Many thanks go to Hendrik Verhoek for a careful proof-reading.
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