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Abstract

This are notes for parts of my talks at the Luxembourg Winter School 2012, organized
by Gabor Wiese, Lior-Bary Soroker and Sara Arias de Reyna.

1 Elliptic curves, modular forms and compatible systems

of Galois representations

1.0.1 Abelian CFT vs Langlands program

For time constraints, I shall say nothing about the automorphic side; local langlands correspon-
dence, compatibilities etc.

Basic question: Describe all Galois extension of a number field of a certain type. Too hard!

Much of current day number theory is concerned with understanding extension E/F of a number
field F and their ramification properties. In applications one is mostly concerned with the case
that E/F is Galois. Since the absolute Galois group GF = Gal(F̄ /F ) is profinite, it suffices to
understand all finite Galois extensions, although it is often useful to consider profinite extensions.
To understand the ramification properties it is also important to understand the absolute Galois
group of a local field. This is considerably simpler and for p > 2 it is actually solved by Koch-
Janntzen-Wingberg.

The first main success in understand Galois extensions of number fields is abelian class field
theory. It gives a complete classification of all abelian extensions and their ramification proper-
ties.

1.0.2 Sources of abelian and non-abelian Galois extensions

Abelian class field theory by itself is not constructive. Over Q the cyclotomic extensions generate
Qab. Over CM fields one can consider CM abelian varieties and their torsion representation.
The theory is worked out over imaginary quadratic fields – see [Si91]. For the general case, see
[Sh98].
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Beginning in the late 1960’s mainly due to Langlands a new approach got started. The abelian
case was considered as the GL1 case. Langlands idea was to use automorphic forms and repre-
sentations to develop a class field theory for GLn. Automorphic representations for a reductive
group G over F should give rise to Galois representations into the dual group of G and in a
vague sense all such Galois representations should come from automorphic representations and
thus from modular forms. In fact to get modular forms, one needs to require some algebraicity
of the automorphic representations. But this would get us too far from the topic. The so far
most successful case is the group GL2 over totally real fields. Other cases beyond these lectures
are unitary groups (i.e., inner forms of GLn) and of symplectic groups. Langlands program is
constructive but precise conjectures are not available in all cases.

Another important source of Galois representations is étale cohomology. In fact, in all cases
above, one uses étale cohomology to construct Galois representations from some geometric
data. A priori étale cohomology seems to give much more representations than the theory of
automorphic forms. But in the end, one might hope that all semisimple Galois representations
come from automorphic forms; see [Bel09].

1.0.3 Applications of Galois representations from automorphic forms:

Much of the following developments go back to Wiles work on Fermat’s Last theorem:

(a) The Taniyama-Shimura conjecture, which is a theorem by Breuil-Conrad-Diamond-Taylor
[BCDT], states that every elliptic curve over Q is modular.

(b) By results of Frey, Ribet and Serre [Ri90, Se87](proved in the 80’s) this implies Fermat’s
Last Theorem.

(c) Wiles proof of FLT proved sufficiently many cases of Taniyama-Shimura to deduce FLT;
[Wi95, TW95].

(d) For elliptic curves A over arbitrary totally real F , it follows that if they are modular, then
their L-function has an entire continuation to the complex plane. [Taylor has proved results
that under certain conditions, only using potential modularity, that in many cases the L-
function of A/F has a meromorphic continuation to C. See for instance [Sn09, Tay06].]

(e) If one can show that SymnA is modular for all n ∈ N and A/F an elliptic curve without
CM, then the Sato-Tate conjecture on the deviation of #A(kv) from #kv + 1 follows for
A. See [BLGG, CHT, HSBT, Tay08].

Here is the heuristic for the Sato-Tate distribution: Let X be the set of conjugacy classes of

elements in SU2(C). A representative of a conjugacy class is
(
eiθ 0
0 e−iθ

)
. Therefore conjugacy

classes can be considered as elements θ ∈ R/πZ. Consider

SU2(C)→ X ∼= [0, π]
− cos∼= [−1, 1].

The pushforward of the measure of equi-distribution on SU2(C) yields the measure with distri-
bution 2

π
sin2 θdθ on [0, π], or 2

π

√
1− t2dt on [−1, 1].
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The ST-conjecture asserts that for `→∞ (or λ→∞), the distribution of the numbers

a`(A)

2
√
`
∈ [−1, 1]

(for an elliptic curve A) or of the numbers

aλ(f)

2λ(k−1)/2

(for f a modular form) converges to a measure on [−1, 1] with the ST-distribution

2

π

√
1− t2dt.

In one lecture of the course notes [Ha07], by Michael Harris on the proof of the Sato-Tate
conjecture by Clozel, Harris, Shepherd-Barron and Taylor, the relation between the Sato-Tate
conjecture and the meromorphy of the L-function of SymnA, n ∈ N is explained.

1.0.4 Some notation

(a) For a number field F fix an algebraic closure F̄ = Q̄.

(b) For a place v, i.e., an equivalence class of norms on F , let Fv be the completion of F at v
and fix an algebraic closure F̄v.

(c) If v is non-archimedean, define Ov as the ring of integers of Fv, πv as a uniformizer, kv as
the residue field at v and qv := #kv is the order of kv.

(d) Fix an embedding (i.e., an F -algebra homomorphism) F̄ ↪→ F̄v. This yields a homomorph-
ism of Galois groups Gv := GFv → GF (known to be injective) from the diagram

F̄

Gal(F̄ /F )=:GF

// F̄v

GFv=:Gv

F // Fv

(e) For a set of places S of F , denote by GF,S the quotient of GF that is the Galois group of
the maximal outside S unramified extension of F .

(f) For v a place not in S, fix a Frobenius automorphism Frobv ∈ GF,S which is unique up to
conjugation. (The kernel of Gv → GF,S contains the inertia subgroup of Gv and Gv/Iv ∼=
Gkv which in turn is generated by the Frobenius. We take the geometric Frobenius.)
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1.1 Definition of L-functions and Galois representations

1.1.1 Elliptic curves

Let A be an elliptic curve over a number field F .
Let N be the conductor of A. It is defined as a product of local conductors. The latter are 1
at every place of good reduction of A. If A does not have good reduction at v, then the prime
corresponding to v divides N .

Definition 1.1. (a) For a prime `, denote by Ta`(A) the GF representation on lim
←−

A[`n](F̄ )
and write V`(A) for Ta`(A)⊗Z` Q`.

(b) The L-factor of A at v is Lv(A, T ) := det(1− TFrobv|V`(A)Iv)−1

(c) The L-function of A is

L(A, s) :=
∏
v finite

Lv(A, q
−s
v ) for <(s)� 0.

It is not clear that the L-factors are independent of `. So in principle ` should occur in the
above notation. However part (a) of the following result clarifies this problem and shows the
independence of `.

Theorem 1.2 (see [Si85], [Si91]). (a) The representation V`(A) is ramified at v if and only if
v divides the conductor N (Theorem of Néron-Ogg-Shafarevich).

(b) If v 6 |N`, then Lv(A, T )−1 = 1−av(A)T +qvT
2 where Lv(A, 1)−1 !

= #A(kv) defines av(A).

(c) If v divides N but not `, then Lv(A, T ) can be computed by Tate’s Algorithm.

(d) The L-function defined above converges for all s ∈ C with <(s) > 3/2.

(e) The representation V`(A) is semisimple.

1.1.2 On traces and characteristic polynomials

Lemma 1.3. Let Π be a profinite group. Let F ⊂ Π be a subset such that Π is the topo-
logical closure of the conjugacy classes of F . Then any continuous semi-simple representation
ρ : Π→ GLn(L) where L ∈ {C,F`,Q`} is uniquely determined by the characteristic polynomials
charpol(g) ∈ L[T ] for g ∈ F .

For C this is classical representation theory, for F` this follows from the theorem of Brauer-
Nesbitt, see [CR62, 30.16]. A proof for Q` is in [Tay91].

Theorem 1.4. Given E/Q` finite and V a finite dimensional continuous linear GF represen-
tation over E. Let kE be the residue field of E, i.e. kE = OE/mE.

(a) If V is semisimple, then there is a set S of density zero outside which V is unramified.
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(b) In the situation of (a), one has det(1−TFrobv|V ) ∈ OE[T ] for all v /∈ S and ρ is completely
determined by these characteristic polynomials, or even the traces of ρ(Frobv), v /∈ S.

(c) There exists a unique continuous semisimple GF -representation V̄ with

det(1− TFrobv|V̄ ) ≡ det(1− TFrobv|V ) mod mE in kE[T ] ∀v /∈ S.

Proof. (a) See [KR01]. (b) Follows from the existence of a GF -stable lattice (which is deduced
from the compactness of GF ) and Remark 1.3. (c) One reduces the lattice from (b), semisim-
plifies the reduction and applies Remark 1.3.

Corollary 1.5. Let A/F be an elliptic curve. Then V`(A) is completely characterized by the
condition Trace(Frobv|V`(A)) = av(A) for all finite places v not dividing N`

1.1.3 Hilbert modular forms

Let F be a totally real number field. Let I be the set of embeddings F ↪→ R. Denote by AF the
adele ring of F . Write AF = Af × A∞ for the decomposition into the finite and infinite adeles.
Fix k = (kτ ) ∈ ZI such that kτ ≥ 2 for each component. and suppose that all components have
the same parity.1 Set t = (1, . . . , 1) ∈ ZI , and set m = k − 2t. Also choose v ∈ ZI such that
each vτ ≥ 0, some vτ = 0 and m+ 2v = µt for some µ ∈ Z≥0.

For f : GL2(AF )→ C and u = ufu∞ ∈ Gf ×G∞ = GL2(AF ) define

(f |ku)(x) := j(u∞, i)
−k det(u∞)v+k−tf(xu−1)

where:

• i = (
√
−1, . . . ,

√
−1) ∈ hI ;

• j : G∞ × hI →
(
C∗
)I
,
((

aτ bτ
cτ dτ

)
τ∈I
,
(
zτ
)
τ∈I

)
7→
∏

τ∈I(cτzτ + dτ );

• (ατ )
(nτ ) :=

∏
τ∈I α

nτ
τ for (ατ ) ∈ (C∗)I and (nτ ) ∈ ZI .

Definition 1.6. For U ⊂ Gf a compact open subgroup one defines the space of Hilbert modular
cusp forms Sk(U) of level U and weight k to be the set of functions f : GL2(F )\GL2(AF )→ C
satisfying the following conditions:

(a) f |ku = f for all u ∈ UZ∞ where Z∞ =
(
R∗ · SO2(R)

)I ⊂ G∞;

(b) for all x ∈ Gf , the function fx : hI → C defined by uz0 7→ j(u∞, z0)k det(u∞)t−v−kf(xu)
for u ∈ G∞ is well-defined and holomorphic;

1In H. Hida, Hilbert modular forms and Iwasawa Theory, Oxford Math. Monogr., Oxford University Press,
Oxford, 2006. Hida explains after formula (2.3.9) why without the parity condition, the space of Hilbert modular
forms is zero – he uses a different but equivalent formalism, in which this statement can be formulated more
meaningfully.
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(c)
∫
Af/F

f
((

1 a
0 1

)
x
)

da = 0 for all x ∈ GL2(AF ) and da an additive Haar measure on FF/F .

Depending on the choice of level, one can also talk about a nebentype character. In any case, up
to conjugation of U , there is a largest ideal N of OF such that U ⊃ {g ∈ Gf | g ≡ 1 (mod N)}.
We call N the level.

Definition 1.7. For x ∈ Gf one defines the Hecke operator [UxU ] for a function f : GL2(AF )→
C as

[UxU ]f :=
∑
i

f |xi

where UxU =
∐

i Uxi. This assignment is well defined for f ∈ Sk(U) and defines an endo-
morphism in EndC(Sk(U)).

In the special case x =
(
πv 0
0 1

)
with v not a divisor of N , one abbreviates Tv := [UxU ].

For x=
(
α 0
0 α

)
with α a fractional ideal of F prime toN one calls Sα the diamond operator for α.

Moreover, we define Tk(U) as the Z-subalgebra of EndC(Sk(U)) generated by the Tv, v 6 |N , and
the Sα, α prime to N .

A cusp form f of weight k and level U is called an eigenform for Tk(U) if it is a simultane-
ous eigenvector for all Tv, Sv with v 6 |N . The eigenvalues are denoted by av(f) and χv(f),
respectively.

Since Tk(U) is commutative, eigenforms exist.

Theorem 1.8. Let f ∈ Sk(U) be a Hecke eigenform and write av(f) for the eigenvalue under
Tv for all v not dividing the level N of U .

(a) The coefficient field Ef := Q(av(f) | v 6 |N) is a finite extension of Q. All av(f), v 6 |N ,
are integral.

(b) For any prime λ of the ring of integers Of of Ef , there exists a unique2 continuous
representation Vλ(f) (isomorphic to E2

f,λ), say

ρf,λ : GF → GL2(Ef,λ)

which is unramified outside N` and satisfies

det(1− TFrobv|Vλ(f)) = 1− av(f)T + χv(f)qvT
2 for all v 6 |N`

where ` is the rational prime under λ and Ef,λ is the completion of Ef at λ.

Part (a) is due to Shimura. Part (b) follows from work of Eichler-Shimura, Deligne, Ohta,
Carayol, Taylor and Blasius-Rogawski. If [F : Q] is odd or if f has a supercuspidal prime, then
the construction takes place in the étale cohomology of a Shimura curve. Taylor’s argument
for [F : Q] even is via congruences and the Jacquet-Langlands correspondence for GL2. See
[Ca86, Tay89]

2See Remark 1.3 and Theorem 1.10(d).

6



Definition 1.9. Let f be a cuspidal Hecke eigenform as in the previous theorem.

(a) The L-factor of f at v is Lv(f, T ) := det(1− TFrobv|Vλ(f)Iv)−1.

(b) The L-function of f is

L(f, s) :=
∏

Lv(f, q
−s
v ) for <(s)� 0.

Theorem 1.10. Let k0 := max{kτ | τ ∈ I}. Then

(a) The local L-factors are independent of λ (as long as v is not above `).

(b) The poles of the local L-factor at v 6 |N are algebraic integers of absolute value q
(k0−1)/2
v

(under any complex embedding), i.e. Weil numbers.

(c) The L-function defined above converges for all s ∈ C with <(s) > k0+1
2

. It has an entire
continuation to the complex plane and a functional equation Λ(f, k0 − s) = Λ(f, s) where
Λ is obtained from L by multiplication by suitable L-factors at ∞ – see the references.

(d) The representation Vλ(A) is irreducible.

References: [RT11], [Sk09], [Bl06], [Sai11, Thm 2], [Ri85] for part (d), case of elliptic modular
forms, [Tay97] for (d) for Hilbert modular forms?

Remark 1.11. The idea of [Ri85] is as follows: If the representation is reducible get εa` ε
b
` on

the diagonal up to finite order with product εk−1
` up to finite order (by CFT). The Ramanujan-

Petersen bound yields 2a = 2b = k − 1. Growth of L-function at s = k gives two contradictory
bounds (cusp form versus Eisenstein series.)

1.1.4 Compatible systems of Galois representations I

Definition 1.12 (Weakly compatible system). Let E be a number field and P its set of finite
places. Let Sλ consist of the places v of F such that v and λ lie over the same rational prime
`. A family of n-dimensional continuous Galois representations

(
ρλ : GF → GLn(Eλ)

)
λ∈P is an

E-rational weakly compatibly system (with finite ramification set S) if

(a) for all λ ∈ P , the representation ρλ is unramified outside S ∪ Sλ;
(b) for all finite places v of F not in S there exists a polynomial pv(T ) ∈ E[T ] such that

pv(T ) = det(1− Tρλ(Frobv)) ∈ Eλ[T ] ∀λ such that v /∈ Sλ,

where E is canonically a subfield of Eλ, its completion at λ.

Example 1.13. Let µ`∞ denote the set of `-power roots of unity in F̄ for some number field F .
It is clearly stable under GF . Define the `-adic cyclotomic character ε` : GF → Aut(µ`∞) ∼= Z∗`
by g 7→ (ζ`n 7→ ζ

ε`(g)
`n ) for all n. (This is independent of the choice of roots (ζ`n).) Then (ε`)`

forms a compatibly Q-rational system with ramification set S = ∅.
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Theorem 1.14. (a) If A is an abelian variety over a number field F , then the representations
V`(A) form a Q-rational weakly compatible system with ramification set, the set of places
of F where A has bad reduction.

(b) If f is a Hilbert modular form over a totally real field F , then the representations Vλ(f)
form an Ef -rational weakly compatible system with ramification set, the set of places of F
dividing the (minimal) level N of f .

Remark 1.15. Now we can meaningfully talk about the symmetric powers of an elliptic curve
A/F . Namely we can mean by this the weakly compatible Q-rational family (Symn V`(A)) of
representations of dimension n+ 1.

1.1.5 What does it mean for A to be modular?

• A and f have the same L-function.
It is elementary to see that this implies av(A) = av(f) for all places of F at which A has
good reduction and which do not divide the level.
Converting this into a statement about Galois representations it follows that V`(A) = V`(f)
(and Ef = Q). Remembering that we defined L-factors at bad (or at all places) via the
Galois representation (and inertia invariants), it follows that we must have equality of the
remaining L-factors.

• The `-adic Tate module V`(A) of A and the `-adic Galois representation V`(f) attached
to f are isomorphic for one ` (or all `).

• Even better: From f one can (often, and always if [F : Q] is odd) construct an elliptic
curve Af (in some jacobian of a modular/Shimura curve). Then A being modular means
that A is isogenous to some Af .

Remark 1.16. (a) If two elliptic curves A and A′ are isogenous over F , then they have the
same Galois representation and thus the same L-function.
Consider the isogeny 0 → K → A → A′ → 0 with finite kernel K. Passing to `∞-torsion
points and Tate modules, we deduce

0→ K[`∞]→ Ta`(A)→ Ta`(A
′)→ 0.

Tensoring with Q` over Z`, the left hand term disappears and the other two become
isomorphic.

(b) It is a deep theorem due to Faltings [Fa82], the semisimplicity conjecture of Tate, that
shows that for Galois representations of abelian varieties A,A′ over a number field F we
have that A and A′ are isogenous if and only if they have isomorphic Galois representations.
Faltings proves that the following natural homomorphism is an isomorphism:

Hom(A,A′)⊗Z Q`︸ ︷︷ ︸
rational isog. A→A′

−→ HomQ`[GF ](V`(A), V`(A
′))︸ ︷︷ ︸

GF−equiv.homom.

.
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1.2 Weil-Deligne representations

The following is based on notes by T. Gee from the 2011 Winter School in Postech, Korea. See
also the important article [Tat79].

Question: Can one define a refined notion of compatible system that also takes ramified primes
into account?
Answer: Yes, by introducing Weil-Deligne representations.
Question: Can one refine the notion of compatible even further to also include primes above
the characteristic of the representation?
Answer: Yes (later), via Fontaine’s p-adic Hodge theory – and again Weil-Deligne representa-
tions.

1.2.1 Galois representations of local fields

The Weil group
Let K/Qp be a finite extension, OK its ring of integers, πK its uniformizer, k = kK its residue
field of cardinality qK . Let vK : K∗ → Z be the normalized additive valuation and | |K the
multiplicative valuation with |πK |K = q−1

K .

Every element g of GK = Gal(K̄/K) preserves OK̄ and induces an automorphism of the residue
field k̄ of OK̄ . The kernel of the induced homomorphism GK → Gk is the inertia subgroup IK .

Denote by FrobK the canonical topological generator of Gk, the geometric Frobenius, i.e., the
inverse automorphism to k̄ → k̄ : x 7→ xqK . Pullback of 1 → IK → GK → Gk → 1 along
〈FrobK〉 → Gk defines the Weil group WK in the s.e.s.

0→ IK → WK → 〈FrobK〉 → 0.

Here WK is a topological group by taking the neighborhoods of IK (under the profinite topology
of GK) as a neighborhood basis of the identity.

The inertia subgroup
Define Knr as K̄IK . Then Knr = ∪nK(ζpn!−1) and Gal(Knr/K)→ Gk is an isom.
Define Ktame := ∪gcd(n,p)=1K

nr(π1/n). By Kummer theory Ktame/K is Galois and

Gal(Ktame/K) ∼= Gal(Ktame/Knr) o Gal(Knr/K) ∼= Ẑ′ o Ẑ

with Ẑ′ =
∏
6̀=p Z`.

Kummer theory says that g ∈ Gal(Ktame/Knr) maps to Ẑ′. Explicitly: choose a compatible
system of roots of unity ζ := (ζn)n prime to p ⊂ Knr. Define for g ∈ IK a sequence tn(g) in

the inverse limit Ẑ′ by g(π1/n)/π1/n = ζ
tn(g)
n . The tn define a surjective homomorphism tζ :

IK → Ẑ′. Denote by tζ,` the composite of tζ with the projection Ẑ′ → Z`. The kernel of
GKnr → Gal(Ktame/Knr) is the wild ramification subgroup PK . It is the pro-p-Sylow subgroup
of IK .

Let ξK : WK → 〈FrobK〉 → Z be character defined by FrobK 7→ 1.Then one has

tζ(gτg
−1) = q−ξK(g)

v tζ(τ) (1)
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for τ ∈ IK and g ∈ WK .

Theorem 1.17 (Main Thm of local CFT (one version)). Let W ab
K denote the group WK/[WK ,WK ].

Then there is a unique system of isomorphisms (for all extensions of Qp)

ArtK : K∗ → W ab
K

such that

(a) if K ′/K is a finite extension and πK′/K : W ab
K′

can→ W ab
K , then πK′/K ◦ArtK′ = ArtK ◦NK′/K,

(b) and we have a commutative square

K∗
ArtK
∼

//

vK

��

W ab
K

can: g 7→ḡ
��ξK

wwpppppppppppppp

Z
a7→FrobaK

// 〈FrobK〉

Definition 1.18 (Weil and Weil-Deligne representations). Let L be a field of characteristic
zero.

A representation of WK over a field L (on a finite dimensional vector space over L) is a repre-
sentation which is continuous with respect to the discrete topology on L and the one defined
above for WK .

A Weil-Deligne representation of WK on a finite dimensional L-vector space V is a pair (r,N)
(or a triple (V ; r;N)) where r is a representation of WK on V and N is in End(V ) such that
for all σ ∈ WK one has the following analog of (1)

r(σ)Nr(σ)−1 = q−ξK(σ)
v N. (2)

Remark 1.19. For r as above the image r(IK) is finite. Moreover by considering the eigenvalues
of N it easily follows that N is nilpotent. Finally, the relation (2) is equivalent to r(σ)N = Nr(σ)
for all σ ∈ IK and r(ϕ)Nr(ϕ)−1 = q−1

K N for ϕ ∈ WK a lift of the geometric Frobenius FrobK .

The conductor of a WD-representation is c(r,N) := c(r) + dimV IK − dim(Ker(N : V →
V )IK ) where c(r) is the usual Artin conductor of a discrete representation in characteristic zero.
The Artin conductor of c(r) can be defined as the Artin conductor c(r′) of the finite image
representation r′ from part (f) of the following exercise – r′ is a twist of r by an unramified
character.

Exercise 1.20. (a) For a representation (V ; r) of WK and m ≥ 1, define Spm(r) as the triple( ⊕
i=1,...,m

V,
⊕

i=1,...,m

r · |Art−1
K |m−iK , N

)
with N restricted to the i-th component V that is acted on by r · |Art−1

K |iK being the
isomorphism to the i + 1-th component acted on by r · |Art−1

K |i+1
K . Then this defines a

WD-representation.
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(b) Every WD representation is isomorphic to a direct sum of representations Spm(r).

(c) If (r;V ;N) is a WD representation ofWK andK ′/K is a finite extension, then (r|GK′ ;V ;N)
is a WD representation of WK′ .

(d) If r is a representation of WK , then for a finite index subgroup H the image r(H) lies in
Z(r(WK)). In particular, the projective representation induced from r has finite image.

(e) There exists a representation r′ of GK (of finite image) such that r and r′|WK
have the same

projective image, and in particular any Weil representation is a twist of a representation
of GK (of finite order) by character of WK . (Hint: [Se77, Cor. of Thm. 4].)

(f) There exists a representation r′ of GK (of finite image) and an unramified character χ of
WK such that r = χ⊗ r′.

(g) Let σ be in WK r IK . Then for any τ ∈ WK there exist n in Z and m ∈ Z>0 such that
r(σm) = r(τn).

(h) For a representation r of WK the following conditions are equivalent: (a) r is semisimple.
(b) r(σ) is semisimple for all σ ∈ WK . (c) r(σ) is semisimple for some σ /∈ IK .

(i) If (r;N) is a Weil-Deligne representation of WK , then (r,N)F−ss := (rss, N) is a WD-
representation of WK .

Note that by rss we mean the following semisimplification: suppose the α is any automorphism
of a vector space over a field L. Then α can be written in a unique way as α = αss · αunip for
commuting endomorphisms αss and αunip such that αss is semisimple, i.e., it is diagonalizable
over Lalg, and αunip is unipotent, i.e., all of its eigenvalues are one. Now one defines rss to mean
that for any g ∈ WK , one sets rss(g) := (r(g))ss in the sense just described. Note that since IK
has finite image under r, all elements in r(IK) are semisimple.

Definition 1.21. A WD-representation (r,N) is Frobenius semisimple if r is semisimple. (i.e.
r(ϕ) is semisimple as an endom.)

Definition 1.22. Let L be an algebraic extension of Q` with ` 6= p.

(a) A ∈ GLn(L) is bounded if detA lies in O∗L and det(1− TA) in OL[T ].

(b) A representation r of WK is bounded if r(σ) is bounded for all σ in WK

Remark 1.23. (i) In (a), the matrix A is bounded if it stabilizes an OL lattice in Ln.

(ii) In (b), the representation r is bounded if and only if r(σ) is bounded for some σ /∈ IK .

Theorem 1.24 (Grothendieck’s Monodromy theorem). Suppose l 6= p, K/Qp is finite, L/Q` is
finite and V is a finite dimensional L-vector space. Fix a lift ϕ ∈ WK of FrobK and a compatible
system ζ = (ζn) of roots of unity in Kalg. (This defines a unique tζ,` : IK → Z` for all ` 6= p.)

For any continuous representation ρ : GK → GL(V ), there exists a finite extension K ′ of K
such that ρ(IK′) ≡ 1 mod 2` for an OL-lattice of V stabilized by GK and there exists a unique
nilpotent endomorphism N of V such that for all σ ∈ IK′ one has r(σ) = exp(Ntζ,`(σ)).
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Moreover if r : WK → GL(V ) is defined by

r(σ) = ρ(σ) exp(Ntζ,`(ϕ
−ξK(σ)σ)),

then (r,N) =: WD(ρ) defines a WD-representation of WK. The functor WD = WDϕ,ζ defines
an equivalence of categories from continuous representations ρ to bounded WD-representations
(r,N).

Finally for any choices (ϕ, ζ) and (ϕ′, ζ ′) there is a natural isomorphism WDϕ,ζ →WDϕ′,ζ′.

Proof. Exercise: The main tool needed is the existence of an `-adic logarithm. This is ensured
by the condition that ρ on IK′ has pro-` image and that the matrices of this image are congruent
to 1 mod 2`. Then the usual series for the log converges.

Remark 1.25. Suppose ρ : GK → Aut(V ) is unramified. Then N = 0 and r(IK) = {1} for
(r,N) = WD(V ). Thus r is completely determined by ρ(ϕ) for a lift ϕ of FrobK . In other
words, WD(ρ) depends on the conjugacy class of ρ(ϕ), i.e., its rational canonical form. If one
passes to WD(ρ)F−ss, then the isomorphism type of the latter is completely determined by the
characteristic polynomial det(1− TFrobK |V ).

Definition 1.26 (Strictly compatible system). Let E be a number field and P its set of finite
places. For λ ∈ P let Sλ denote the set of places v of a number field F such that v and λ lie
over the same rational prime `. A family of n-dimensional continuous Galois representations
(Vλ)λ∈P of GF is an E-rational strongly compatibly system (with finite ramification set S) if

(a) for all λ ∈ P , the representation Vλ is unramified outside S ∪ Sλ;
(b) for all finite places v of F not in S there exists a polynomial pv(T ) ∈ E[T ] such that

pv(T ) = det(1− TFrobv|Vλ) ∈ Eλ[T ] ∀λ such that v /∈ Sλ;

(c) for all finite places v in S there exists an Frobenius semisimple WD-representation (rv, Nv)
of Fv such that

WD(Vλ|GFv )F−ss = (rv, Nv) ∀λ such that v /∈ Sλ.

Conjecture 1.27 (Fontaine, Serre,Deligne). If V is a representation that occurs in the `-adic étale
cohomology of a smooth proper variety over a local field, then its associated Weil-Deligne rep-
resentation is Frobenius semisimple. Moreover the Weil-Deligne representation is independent
of `. See [Tat79], [Fo94, Section 2.4.], [Se91, §§11,12].

Theorem 1.28 (Carayol, Eichler-Shimura, Langlands, Deligne). For v a Hilbert modular eigen-
form, the family (Vλ(f)) is a strongly compatible Ef -rational system;

Conjecture 1.29 (Fontaine, Serre). Suppose A/F is an abelian variety. Then (Vp(A)) is a strongly
compatible system.

I do not know the status of the latter conjecture, i.e., whether condition (c) of Definition 1.33
holds. The thesis of A. Laskar from 2011 (Strasbourg) implies that latter conjecture if A has
semistable reduction. I do not know of a reference for potentially semistable. I also do not know
what is known about Frobenius semisimplicity.

12



1.3 How to deal with primes above `?

1.3.1 An example

Given A/F an elliptic curve, ` a rational prime, v a place of F above ` and residue field kv.
What do we know about V`(A) restricted to a decomposition group at `?

good reduction at v
If A/Fv has good reduction, then A/kv is an elliptic curve and there is a short exact sequence

0→ A0[`∞](F̄v)→ A[`∞](F̄v)→ A[`∞](k̄v)→ 0

where A0[`∞]](F̄v) is given by a formal group of dimension 1 and height 1 (ordinary case) or
height 2 (supersingular case) and A[`∞](k̄v) is either isomorphic to Q`/Z` if A/Fv is ordinary
or trivial if A/Fv is supersingular.

ordinary subcase Here V`(A)|Gv is an extension of two 1-dimensional representations and thus
of the form

ρv : Gv → GL2(Q`) : g 7→
(
ε`(g)χ(g) ∗

0 χ−1(g)

)
with respect to a suitable basis and where ε` is the `-adic cyclotomic character and χ is an
unramified character. Due to the Weil-paring, the determinant must be ε`. Note the ε` is
infinitely wildly ramified – so that there is no associated WD-representation.

supersingular subcase Now V`(A)|Gv need not have a filtration. If EndF̄v(A/Fv) is 2-dimensional
then the formal group is given by two conjugate Lubin-Tate characters and easy to describe via
local class field theory. In general, the representation is absolutely irreducible and remains so
over any finite index subgroup H of Gv. The mod ` reduction is rather special as can be seen
from analyzing the `-torsion group via the formal group law of A/Fv. The representation is
infinitely ramified and again there is no direct way to get a WD representation.

Exercise 1.30. Suppose A has good reduction and π denotes the Frobenius endomorphism on
A/kv, so that π satisfies the quadratic polynomial pv(T ) = T 2 − avT = qv with integer coeffi-
cients, where A[p](kv) = qv − av(a) + 1. Let α, β ∈ Z be the roots of pv so that vqv(αβ) = 1. It
is also standard that A[p](knv ) = qnv − αn − βn + 1 for knv the unique extension of the finite field
kv of degree n. Show that A/kv is supersingular if and only if vqv(α), vqv(β) > 0, if and only if
vqv(α) = vqv(β) = 1/2. If Av is ordinary, the without loss of generality vqv(α) = 0. Show that
χ−1(Frobv) acts on the p∞ torsion points in the same way as π and that χ−1(Frobv) = α.

semistable reduction at v (here only split multiplicative reduction)
Here one uses the Tate curve of A/Fv. It shows that the Galois action on the `∞-torsion points
is given by the Galois action on F̄ ∗v /q

Z for q ∈ F ∗v an element of valuation strictly less than
one. The `∞ torsion points are given by the set {qi/`nζj`n | i, j ∈ Z}. This describes an infinite
Kummer extension of Fv. The corresponding Galois extension is of the form

ρv : Gv → GL2(Q`) : g 7→
(
ε`(g) ∗

0 1

)
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potentially good or potentially semistable reduction (or non-split multiplicative
reduction)
The representation is as above after one restricts GFv to a suitable open subgroup (coming from
the field over which good or semistable reduction is acquired).

Comparison to `′-adic data
If one looks at the `′-power torsion, then the above cases correspond to unramified/unramified/semistable
(N 6= 0) WD-representations or the general case of a WD-representation.

For the representations that arise from modular forms one has a similar behavior. The solution
of the puzzle:

1.4 Fontaine’s mysterious functors

Let K be a finite extension of Qp and K0 the subfield of K that is maximal unramified over Qp.
Fontaine defines functors D∗, ∗ ∈ {HT, dR, cris, st} from{

ρ : GK → GLn(Qp) | ρ is cont.
}

to modules over K∗ ⊗Q` Q` for K∗ = K, K, K0, or K0, respectively, with some additional
structure coming from some rings B∗ of Fontaine with Bcris ⊂ Bst ⊂ BdR and BHT is the graded
ring associated to BdR. The structures are a continuous action of GK and

(a) a graduation,

(b) a filtration,

(c) a filtration and a semilinear endomorphism ϕ (Frobenius)

(d) a filtration and two endomorphisms ϕ, N – for more, see 1.4.1.

The rings B∗ also satisfy BGK
∗ = K∗. One calls a representation ρ to be ∗ (= Hodge-Tate, de

Rham, crystalline, semistable) if

(V (ρ))⊗Qp B∗)
GK is free over K∗ ⊗Qp Qp of rank equal to dimQp V (ρ).

In all cases one has ≤ for the rank.

The ring BHT attaches the HT-weights (in Z) to a representation. The ring BdR carries a
Z-graded filtration. The property of being Hodge-Tate or de Rham is invariant under finite
extensions E/K. The property of being cris and st are not invariant under such extensions. So
one also has the notions of potentially crystalline and potentially semistable; for instance ρ is
potentially crystalline if there exists a finite extension E/K such that ρ|GE is crystalline. The
implications for a representation V are described in the following diagram

V is cris +3

��

V is semist.

��
V is pot. cris +3 V is pot. semist. ksA−B−K−M +3 V is dR +3 V is HT.
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The proof of Fontaine’s conjecture that the notions de Rham and potentially semistable are
equivalent, due to A=I. André, B=L. Berger, K=K. Kedlaya, M=Z. Mebkhout, is described
by Colmez in [Co03]. Berger proves that Crew’s conjecture is equivalent to the conjecture of
Fontaine, and the three other authors, independently, give a proof of Crew’s conjecture.

1.4.1 The WD-representation of a potentially semistable V = V (ρ) of rank d

(after Fontaine)
Let K,V be as above and suppose K ′/K is a finite Galois such that V |G′K is semistable. Then

Dst(V |GK′ ) = (D,ϕ,N,Fili) where

(a) D is a free K ′0 ⊗Qp Qp module of rank d.

(b) ϕD : D → D is σ ⊗ id linear with σ : K ′0 → K ′0 the Frobenius in Gal(K ′0/Qp),

(c) ND : D → D an K ′0 ⊗Qp Qp-linear endomorphism such that NDϕD = pϕDND,

(d) a decreasing, separating, exhausting filtration Fili of (D ⊗K′0 K
′),

and the quadruple is equipped with an action of Gal(K ′/K), i.e., an action Gal(K ′/K) −→
Aut(D,ϕD, ND,Fil•). If the representation is semistable, one has K ′ = K, if it is potentially
crystalline, then N = 0 (and vice versa).

Remark 1.31. The quadruple (D,ϕD, ND,Fili) is weakly admissible - which is a characterization
of the image of the mysterious functor; it means that tH(D) = tN(D) and tH(D′) ≤ tN(D′) for
all stable (but not necessarily free) subobjects. Here tH(D) is the index of the unique jump of
the filtration of the induced filtration Fili

∧dD and tN is the slope of
∧d ϕD.

The associated WD-representation to ρ is basically obtained by forgetting the filtration, see
[GM09] and [Sav05, Def. 2.15] for K = Qp: Observe that

K ′0 ⊗Qp Qp =
⊕

τ : K′0→Qp

Qp.

Correspondingly one has

D = D ⊗K′0⊗QpQp
K ′0 ⊗Qp Qp =

⊕
τ : K′0→Qp

Dτ

with suitable components Dτ of D. One verifies that ϕ
[K′0:Qp]
D induces an isomorphism of the Dτ

since it is K ′0 ⊗Qp Qp-linear. Fix τ0 among the τ .

Definition 1.32. Let K,V,K ′, D be as above and let ϕ ∈ WK be a lift of FrobK . Then the
WD-representation WD(V ) is the triple (U, r,N) where

(a) U is the Qp vector space Dτ0 ,
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(b) r : WK → AutQp(U) is the Weil representation determined by

(i) defining r|IK as the restriction of the K0 ⊗Qp Qp-linear action IK → Gal(K ′/K) on
D to the invariant subspace Dτ0 ,

(ii) and having ϕ act as ϕ−1
2 ϕ1 on Dτ0 where ϕ1 is the action of ϕ via Gal(K ′/K) and ϕ2 is

the action ϕ
[K0:Qp]
D both times on D and then restricted to the invariant subspace Dτ0 ,

(c) N is the restriction of the endomorphism ND from D to its invariant subspace Dτ0 .

In the case where K = Qp and K ′/K is totally ramified, so that K ′0 = K0 = Qp, the vector
space U is simply equal to D and ϕ is the inverse of ϕD (and N = ND).

Note: The eigenvalues of r(ϕ) to the power [K ′0 : K0] are those of ϕ
−[K′0:Qp]
D . Hence their p-adic

valuations are up to the scalar [K0 : Qp] the slopes (= p-adic valuations) of the eigenvalues of
ϕD. In particular they are typically not units, and thus r is typically unbounded. This is
therefore different from the case where K and L have different residue characteristic.

1.4.2 Continuation of the above example of an elliptic curve A/Fv

(a) If A has ordinary reduction, one has a short exact sequence

0→ Dcris(Z`(ε`χ))→ Dcris(V`(A))→ Dcris(Z`(χ−1))→ 0

where the outer modules have underlying D of rank 1. Thus Dcris(V`(A)) is reducible.

(b) If A has supersingular reduction, then either Dcris(V`(A)) is a simple object and remains
so after base change to any finite extension E/Fv, or there is an extension E/Fv of degree
at most 2 over which Dcris(V`(A)) becomes the sum of two 1-dimensional subobjects.

(c) If A has semistable but non-good reduction, then N =
(

1 1
0 1

)
, Dst(V`(A)) has rank 2 and

is reducible while Dcris(V`(A)) has rank 1 only; see [Ber02, p. 18].

1.4.3 Compatible systems III

Definition 1.33 (Strictly compatible system, strong sense). Let E be a number field and P its
set of finite places. For λ ∈ P , and F a number field, let Sλ denote the places v of S such that
v and λ lie over the same rational prime `.

A family of n-dimensional continuous Galois representations (Vλ)λ∈P of GF is an E-rational
strictly compatibly system in the strong sense, (with finite ramification set S) if

(a) for all λ ∈ P , the representation Vλ is unramified outside S∪Sλ and potentially semistable
at the places in Sλ;

(b) for all finite places v of F there exists a Frobenius semisimple WD-representation (rv, Nv)
of Fv such that

WD(Vλ|WFv
)F−ss = (rv, Nv) ∀λ ∈ P .
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Remark 1.34. As remarked earlier, if v is not in S, then (rv, Nv) is simply (ρ(Frobv)
ss, 0). Hence

for v /∈ S ∪ Sλ one can simply write require a compatibility of characteristic polynomials

pv(T ) = det(1− TFrobv|Vλ) ∈ Eλ[T ] ∀λ such that v /∈ Sλ;

Remark 1.35. One can add further conditions on compatible systems: For instance a purity
of weight condition: All roots of all characteristic polynomials are Weil-number of the same
weight. Etc.

Theorem 1.36 (Faltings, see [Fa87]). For a cuspidal Hecke eigenform f the representations
(Vλ(f))λ are semistable of HT-weights (0, k − 1).

Remark 1.37. The HT weights of V`(A) for an abelian variety A over a number field F are 0
and 1 equally distributed over all places v of F above ` and all embeddings Fv ↪→ Q`. A proof
in other language is contained in [Tat67].

Theorem 1.38 (T. Saito, see [Sai11]). For a cuspidal Hilbert modular Hecke eigenform f the
system (Vλ(f))λ is strictly compatible in the strong sense.

Question 1.39. Is it known that for an abelian variety A over number field F the family (V`(A))`
is strictly compatible in the strong sense? (The HT-weights are 0 and 1 each with multiplicity
dimA.)

1.5 Refinement: Fontaine Laffaille theory

The above is not the end of the story of understanding `-adic Galois representations of `-adic
fields. One also needs integral information on V (ρ). Fontaine’s theory above only contributes
to `-adic information, but does not help if one studies the mod `-reduction. One theory that
achieves this is due to Fontaine and Laffaille from [FL82].

Let K0/Qp be unramified (there are slight extensions which shall not bother us) with ring of
integers W , the ring of Witt vectors of the residue field of K0.

Definition 1.40. A strongly divisible module is a free W -module M of finite type equipped
with a decreasing filtration by sub-W -modules (FiliM)i∈Z such that Fil0M = M , FiliM = 0
for i � 0, each subquotient M/FiliM free over W and one has a semilinear, i.e., a σ-linear,
endomorphism ϕ : M →M such that ϕ(FiliM) ⊂ piFiliM and M =

∑
i≥0 p

−iϕ(FiliM).

Theorem 1.41 (Fontaine-Laffaille). If M is a strongly divisible module, then M ⊗Zp Qp is
admissible, i.e., equal to Dcris(V ) for some rankW M dimensional (crystalline) representation
of GK.
Suppose conversely that V is a crystalline representation of GK of HT weights between 0 and
p− 2 and with Qp-coefficients. Then Dcris(V ) contains a strongly divisible module. (Hard part.)

Let A be a W -algebra. (e.g. W or W/pW or a finite W -algebra, or ...)
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Definition 1.42. A Fontaine-Laffaille module over A is a finitely generated W ⊗A-module M
equipped with a decreasing filtration by sub-W ⊗A-modules (FiliM)i∈Z such that Fil0M = M ,
FiliM = 0 for i ≥ p−1, and with a semilinear, i.e., a σ⊗ idA-linear, endomorphism ϕi : FiliM →
M such that ϕ|FiliM = ϕi and M =

∑
i≥0 ϕ

i(FiliM).

Define a torsion crystalline representation of weight k (k ∈ N) to be any finite representation of
GK that can be written as T/T ′ where T is a Galois stable lattice in a crystalline representation
of GK with Hodge-Tate weights in {0, . . . , k} and T ′ ⊂ T is a Galois stable sublattice. This
yields a category of crystalline torsion modules.

Theorem 1.43 (Fontaine-Laffaille). Suppose A is a finite W -algebra. If M is a Fontaine-
Laffaille-module over A, then under the integral version Tcris of Dcris the module M is the image
of the crystalline torsion A-module.
Conversely, if M is a torsion crystalline representation over A of weight k ≤ p − 2, then the
image under Tcris is a Fontaine-Laffaille-module M over A.

Special case (we still assume that K/Qp is unramified):

Theorem 1.44 (Fontaine-Laffaille + Raynaud). Let MF1
tor be the category of Fontaine-Laffaille

torsion modules over W with Fil2 = 0 and suppose p > 2. Then there are equivalences of abelian
categories:

MF1
tor

∼= //
FL
{ finite flat group schemes/W}

∼= //
Ray.
{ flat repns. of GK}.

The latter applies in particular to modular forms of weigh 2 and abelian varieties (with level
prime to p or conductor not divisible by p, respectively). References are [Ra74] and [FL82].

1.6 The Fontaine Mazur conjecture

The Fontaine-Mazur conjecture is the following statement:

Conjecture 1.45 ([FM95]). Let F be a number field and S a finite set of places of F . Suppose
that ρ : GF,S → GLn(Q`) is continuous and irreducible and that ρ|Gv is de Rham for all v|`.
Then ρ comes from geometry, i.e., there exists a smooth projective variety X over F such that
ρ is a subquotient of some `-adic cohomology H i(XF̄ ,Q`).

In special cases, the conjecture can be phrased in a more concrete form, in the sense that a
recipe is given where in geometry one can find the representation:

Conjecture 1.46. Let S be a finite set of places of Q. Suppose that ρ : GQ,S → GLn(Q`) is
continuous and irreducible. Suppose further that ρ|Gp is de Rham with HT weights 0, w ≥ 1.
Then there exists an elliptic cuspidal Hecke eigenform f and a place λ of the coefficient field Ef
of f such that V (ρ) ∼= Vλ(f).

Conjecture 1.46 is proved in the majority of cases by Emerton and Kisin in [Em11] and [Ki09].

A second special case is the following:
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Conjecture 1.47. Let F be a totally real number field. Suppose ρ : GF,S → GL2(Q`) is continu-
ous, irreducible and of weight 2, i.e., it is de Rham at all places above ` with HT-weights (0, 1)
for all places v|` and all embeddings Fv → Q`. Then ρ arises from a Hilbert modular form of
weight (2, . . . , 2).

Conjecture 1.47 in the form stated is completely open. A weaker assertion is given by the
potential modularity results of Taylor. We follow the cases given in [Sn09]:

Theorem 1.48 (Taylor,Deulefait (version of [Sn09])). Suppose ρ is as in conjecture 1.47 and
that its reduction mod p is absolutely irreducible, that p ≥ 3 and that for p = 5 some extra
hypotheses are satisfied. Then

(a) the L-function L(ρ, s) has a meromorphic continuation to C and the expected functional
equation;

(b) there exists a strictly compatibly system (in the strong sense) (ρλ : GF,S → GLn(Eλ))λ for
some number field E and a place λ0 such that ρλ0 = ρ.

Note that the theorem applies in particular to elliptic curves over F . The proof, as a combination
of Brauer’s theorem on characters and the potential modularity result by Taylor; both ideas
stem from [Tay06]. Dieulefait in [Die07] observed how to deduce (b) from Taylor’s results. An
excellent survey of potential modularity and modularity lifting theorems is also [Bu10].

1.7 How to prove that A/Q is modular?

• Let N be the conductor of the elliptic curve A.

• We search for a cuspidal Hecke eigenform of weight 2 because A has HT-weights {0, 1}.

• Choose a prime p > 2 (for simplicity) not dividing N for which A[p] is absolutely irreducible
and modular; the later means that A[p] ∼= V℘(f) for some modular form f (any weight and
level). [By Taylor, potentially, this is always possible. Wiles in [Wi95] uses p = 3 (but has
to deal with problems coming from p|N) and results of Langlands and Tunnel.]

• By the weight and level part of Serre’s conjecture: can assume that f has level dividing
N and weight equal to 2.

• Consider the Hecke-algebra TΓ0(N) over Zp acting on S2(Γ0(N)) generated by Tq and Sq
for primes q not dividing Np. Each Hecke-eigensystem of some eigenform g ∈ S2(Γ0(N))
yields a ring homomorphism T2(Γ0(N)) → Fp : Tv 7→ av(f) mod mZp . Let mρ̄ be the
kernel for our fixed f . Then the localization Tρ̄ := T2(Γ0(N))mρ̄ is a local ring.

Proposition 1.49. (a) HomRi(Tρ̄,Qp) is in bijection with the set of cuspidal Hecke newforms
of level dividing N whose associated mod p Galois representation is isomorphic to ρ̄. (Mod
p means mod λ for some λ over p.)
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(b) There exists a Galois representation ρmod : GQ → GL2(Tρ̄) characterized completely by

Trace ρ(Frobv) = Tv (and det ρ(Frobv) = qv) for all v 6 |Np.

The proposition says that any Galois representation that arises from a level N form g of weight
2 (or k) and that is congruent to f mod p is obtained from ρmod by a ring homomorphism
Tρ̄ → Qp. Let Mρ̄ denote the set of these modular forms.

Proof. Part (a) is an elementary exercise. For (b), let O be the ring of integers of a finite
extension K of Qp that contains all coefficients of all g ∈Mρ̄. Then there is a representation

ρ̃ : GQ → GL2(
∏
g∈Mρ̄

O)

with ρ̃(Frobv) = (av(g))g∈Mρ̄ . Observe that Tρ̄ is a natural subring via the homomorphisms from
(a) of

∏
g∈Mρ̄

O which contains all traces Trace(ρ̃(Frobv)) = Tv. (under the various embeddings,

Tv maps to the tuple (av(g))g∈Mρ̄ .) Now there is a theorem of Carayol [Ca94] and independently
Serre that uses the hypothesis: (i) Tρ̄ is a complete noetherian local ring with finite residue field,
(ii) the ring

∏
g∈Mρ̄

O is semilocal with finite residue fields and it contains Tρ̄, (iii) all traces of

the representation ρ̃ belong the subring Tρ̄, (iv) ρ̄ is absolutely irreducible. Then ρ̃ is already
defined over Tρ̄, and this is exactly the claim of (b)

So now that we have a universal Galois representation for cusp forms of level N , weight 2 and
fixed ρ̄, the idea is to compare it to a Galois theoretically defined universal representation, that
is hopefully of the same kind but defined abstractly and made so that it ”contains” Vp(A).

Define (R = Rρ̄,N,2, ρR) as the ”universal deformation ring” that parameterizes all 2-dimensional
p-adic Galois representation whose mod p reduction is A[p], which at primes q | N have the
same WD-representation type as A, which at p are crystalline of weight 0,1 (flat), and which
have the same determinant as Vp(A) and are unramfied at all primes not dividing Np. (By the
Weil-paring the latter determinant is a finite twist of the cyclotomic character.)
Such a ring was first defined and studied by Mazur. The main method to relate such rings to
Hecke algebras is due to Wiles.
From the universality of R and the construction of Tρ̄ one deduces (elementary):

Proposition 1.50. There exists a unique surjective homomorphism α : R→ Tρ̄ such that

ρmod conj.∼ α ◦ ρR.

In the above situation one has the following result:

Theorem 1.51 (Main Theorem [Wiles, BCDT]). For Q have an isomorphism R→ Tρ̄.

Many refinements by Kisin, Khare-Wintenberger, Taylor and ”his” school.

Preview: In the remainder of this lecture series, I shall talk about universal deformation rings
and some subtleties in their definition. If time permits, I shall also explain some upper bound
on its dimension. References are
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(a) [Ma87] by Mazur for basic material.

(b) [Ki09] by Kisin for a short survey of many modern techniques.

(c) [Ki09] by Kisin for some groundbreaking deep results on deformation theory.

(d) [Pi07] by Pilloni for a treatment of local deformation problems for n = 2 and p 6= `.

(e) [CHT] by Clozel, Harris, Taylor for many local (and global) deformation functors for GLn.

(f) [Bö10] for a detailed lecture series by myself on the topic.

Acknowledgements: Many thanks go to Hendrik Verhoek for a careful proof-reading.
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