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Motivation

K- number field,
G- finite group.

Problems

@ Let S be a finite set of primes,
let Kg be the maximal extension of K unramified outside of S,
what is the structure of the Galois group Gk (S) = Gal(Ks/K)?

@ Given G, what are the sets S for which G is a quotient of Gk (S)?

@ What is the minimal size of a set S for which G appears as a quotient of
Gk(S)? In other words, what is the minimal number of ramified primes
in a G-extension of K?
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K = C(t), Ok = (C[t]
o If |S| = n then Gk(S) is the free profinite group on n — 1 generators (by
Riemann’s Existence Theorem).
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K = C(I), Ok = (C[t]
o If |S| = n then Gk(S) is the free profinite group on n — 1 generators (by
Riemann’s Existence Theorem).

@ Let d(G) denote the minimal number of generators of G. Then G is a
quotient of Gk (S) if and only if |S| > d(G) + 1.
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Example

K = C(I), Ok = (C[t]
@ If |S| = n then Gk (S) is the free profinite group on n — 1 generators (by
Riemann’s Existence Theorem).

@ Let d(G) denote the minimal number of generators of G. Then G is a
quotient of Gk (S) if and only if |S| > d(G) + 1.

Consequence

The minimal number of ramified primes in a G-extension of C(¢) is d(G) + 1.

v
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The Minimal Ramification Problem for K = Q

Problem
Given a finite group G:

@ What is the minimal number of ramified primes in a G-extension of Q?
(counting the infinite prime)
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The Minimal Ramification Problem for K = Q

Problem
Given a finite group G:
@ What is the minimal number of ramified primes in a G-extension of Q?
(counting the infinite prime)
@ The tame version: What is the minimal number of ramified primes in a
tame G-extension of Q?

Open cases:
@ Nilpotent groups,
@ Dihedral groups Dy,

@ Symmetric groups S,,.
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Cyclotomic fields
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@ Choose distinct primes g; = 1 (mod ), j = 1,...,r.
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o Let K; be the subfield of Q(e % ) for which Gal(K;/Q) = C,,.
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Abelian groups

Cyclotomic fields
Let G = Cp, X ... x C,,, where nj|na| ... |n,.

@ Choose distinct primes g; = 1 (mod ), j = 1,...,r.
2mi

o Let K; be the subfield of Q(e % ) for which Gal(K;/Q) = C,,.
@ We have: K=K K,

/

K

Consequence

An abelian group of rank r can be (tamely) realized over Q with r ramified
primes.
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A lower bound

A consequence of Minkowski’s Theorem
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A lower bound

A consequence of Minkowski’s Theorem

K POk = py---p; K pj

G | tame | | |
Q p K pj N KY

| unramiﬁed|

Q p

@ J;- the inertia group I(p;/p).
o The groups I, . .., I, are conjugates.

@ Each /; is cyclic.
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A lower bound

A consequence of Minkowski’s Theorem

K POk = py---p; K pj K
G ‘ tame ‘ ‘ ‘
Q p Kl pnki KT
‘ et ‘ unramified

Q p Q
@ J;- the inertia group I(p;/p).
o The groups I, . .., I, are conjugates.
@ Each /; is cyclic.
@ Let T = (I(p/p)|running over all rational primes p and p|p).
@ By Minkowski’s Theorem K7 = Q and T = G. In other words, the

inertia groups generate G.
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Consequence

classes.

o If there are n ramified primes in K/Q then G is generated by n conjugacy
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Consequence

o If there are n ramified primes in K/Q then G is generated by n conjugacy
classes.

@ Let ¢(G) be the minimal number of conjugacy classes that generate G.
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Consequence

o If there are n ramified primes in K/Q then G is generated by n conjugacy
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A lower bound - Part 11

Consequence

o If there are n ramified primes in K/Q then G is generated by n conjugacy
classes.

@ Let ¢(G) be the minimal number of conjugacy classes that generate G.

o In every (tame) G-extension of Q there are at least ¢(G) ramified primes.

Kaplan-Lev (2003)
Let G # {1}. Then:

d(G®) if G # [G,G]
1 if G = [G, G].

¢(G) == {
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A lower bound - Part I1

Consequence

o If there are n ramified primes in K/Q then G is generated by n conjugacy
classes.

@ Let ¢(G) be the minimal number of conjugacy classes that generate G.

o In every (tame) G-extension of Q there are at least ¢(G) ramified primes.

Kaplan-Lev (2003)
Let G # {1}. Then:

[ d(G"™) ifG # [G,G]
(@) “{ 1 if G =[G, G].

Remark
If G is nilpotent then ¢(G) = d(G).

v
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The Conjecture

The Boston-Markin Conjecture (2009)
Every finite group G can be realized with ¢(G) ramified primes. J
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The Boston-Markin Conjecture (2009)

Every finite group G can be realized with ¢(G) ramified primes.

Evidence
The conjecture holds for:
o finite abelian groups,
@ odd order groups of nilpotency class 2 (Plans 2004),
@ D, for even n (Plans 2004),
@ 3-groups of order dividing 33 (Nomura 2008),
o all groups of order at most 32 (Boston-Markin 2009),
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The Conjecture

The Boston-Markin Conjecture (2009)

Every finite group G can be realized with ¢(G) ramified primes.

Evidence
The conjecture holds for:
o finite abelian groups,
odd order groups of nilpotency class 2 (Plans 2004),
D,, for even n (Plans 2004),
3-groups of order dividing 3> (Nomura 2008),
all groups of order at most 32 (Boston-Markin 2009),
S, for small values of n (Jones-Roberts 2008, Rabayev 2009),

many other small order groups.
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Semiabelian groups

Definition

The family of semiabelian groups S is the minimal family for which:
© S contains all finite abelian groups;
Q@ ifGeSandG - HthenH € S.

@ if H € S and A is an abelian group then any A X H € S;

Small orders (Dentzer)

All groups of order dividing p* or 2° are semiabelian.

Order | Total | Non-semiabelian
24 15 1
26 267 10
33 67 10
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Minimal ramification for semiabelian p-groups

A subfamily
The family G, is the minimal family for which:

Q G, contains all abelian p-groups;
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Minimal ramification for semiabelian p-groups

A subfamily

The family G, is the minimal family for which:
Q G, contains all abelian p-groups;
Q ifH,G € G, then H1G = HI% x G € G,;
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Minimal ramification for semiabelian p-groups

A subfamily
The family G, is the minimal family for which:
Q G, contains all abelian p-groups;
Q@ ifH,GEG,then H1G = HI®l xG € Gy
Q if G € G, and G — H with ¢(G) = ¢(H), then H € G,,.

Theorem (Kisilevsky, Sonn)

Every G € G, can be tamely realized over Q with ¢(G)-ramified primes.
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Minimal ramification for semiabelian p-groups

A subfamily
The family G, is the minimal family for which:
Q G, contains all abelian p-groups;
Q@ ifH,GEG,then H1G = HI®l xG € Gy
Q if G € G, and G — H with ¢(G) = ¢(H), then H € G,,.

Theorem (Kisilevsky, Sonn)

Every G € G, can be tamely realized over Q with ¢(G)-ramified primes.

Theorem (N)
G, is the family of semiabelian p-groups.
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The wreath length

@ A group G is semiabelian if and only if it is an epimorphic image of an
iterated wreath product of cyclic groups G, ..., G;:

GG (...1Gy)...) =» G.
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v

Theorem I(KNS)

Every semiabelian group G can be tamely realized with wl(G) ramified
primes.
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An upper bound for semiabelian groups

The wreath length

@ A group G is semiabelian if and only if it is an epimorphic image of an
iterated wreath product of cyclic groups G, ..., G;:

GG (...1Gy)...) =» G.

e Let wl(G) denote the minimal  for which such an epimorphism exists.

v

Theorem I(KNS)

Every semiabelian group G can be tamely realized with wl(G) ramified
primes.

Theorem II (KNS)
For every nilpotent semiabelian group G, wl(G) = ¢(G).
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Consequences

Corollary I - The Boston-Markin conjecture for nilpotent semiabelian
groups

Every nilpotent semiabelian group G is tamely realizable over Q with ¢(G)
ramified primes.
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Consequences

Corollary I - The Boston-Markin conjecture for nilpotent semiabelian
groups

Every nilpotent semiabelian group G is tamely realizable over Q with ¢(G)
ramified primes.

Corollary II

Every group G of nilpotency class 2 is tamely realizable over Q with ¢(G)
ramified primes.
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Examples

Iterated wreath products of cyclic groups

Let G = G1 1 (Gy ... 1 G,) for non-trivial cyclic groups Gy, ..., G,.
e wli(G) =r.
o ¢(G) =d(G?) =d(Gy x --- x G,).

@ Therefore wl(G) = ¢(G) if and only if there is a prime p that divides the
orders of Gy, ..., G,.

@ G = (3 C¢ can be realized with wl(G) = ¢(G) = 2 ramified primes.

V.

Classical examples of iterated wreath products

@ The Sylow subgroups of S, are direct products of iterated wreath
products.

e The p-Sylow subgroups of GL,(F,), where ¢ is a prime power and
(g,p) = 1, are iterated wreath products.
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Other semiabelian groups

Open cases

@ For n odd and G = D,, the tame minimal ramification problem is
equivalent to:
K
Cy
M
2 | -with prime discriminant

Q

-unramified
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Other semiabelian groups

Open cases

@ For n odd and G = D,, the tame minimal ramification problem is
equivalent to:
K
Cy
M
2 | -with prime discriminant

Q

@ Letpy,...,p, bedistinct primes. Can G = C,, ¢ ... C,, be realized with
1 ramified prime?

-unramified

D. Neftin (University of Michigan) The minimal ramification problem Ann Arbor, 2012 14/20



Proof of Theorem I - by example

Recall: Theorem I

Every semiabelian group G can be tamely realized with wl(G) ramified
primes.
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Proof of Theorem I - by example

Recall: Theorem I

Every semiabelian group G can be tamely realized with wl(G) ramified
primes.

G = G, C, with two ramified primes
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Splitting Lemma

Splitting Lemma, Kisilevsky-Sonn (2005)

Let K be a number field and r an integer. There is a number field K, O K such
that for every prime p of K that splits completely in K, there is a
Cpr-extension of K that is ramified only at p and is totally ramified there.
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Splitting Lemma

Splitting Lemma, Kisilevsky-Sonn (2005)

Let K be a number field and r an integer. There is a number field K, O K such
that for every prime p of K that splits completely in K, there is a
Cpr-extension of K that is ramified only at p and is totally ramified there.

Remark

There are number fields K1, . . ., K, containing K such that there is a
C,r-extension of K that is ramified only at p and is totally ramified there if and
only if p splits completely in at least one of the fields K, . . ., K.

v
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Proof of Theorem II - p-groups

Theorem II for p-groups (Recall)

Let G be a semiabelian p-group and ¢ := ¢(G). Then wl(G) = ¢(G), i.e. there
are cyclic groups Gy, ..., G, and an epimorphism G;? (G ... 1 G.) — G.
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Proof of Theorem II - p-groups

Theorem II for p-groups (Recall)

Let G be a semiabelian p-group and ¢ := ¢(G). Then wl(G) = ¢(G), i.e. there
are cyclic groups Gy, ..., G, and an epimorphism G;? (G ... 1 G.) — G.

v

Equivalent formulation

There are cyclic p-groups G, . . . , G, and a c-preserving epimorphism
GlZ(GzZ...ZGr)—>G.
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Proof of Theorem II, Step I, Decompositions

Lemma (Dentzer)

A non-trivial group G is semiabelian if and only if G = AH for abelian A < G
and a proper semiabelian subgroup H < G.
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Proof of Theorem II, Step I, Decompositions

Lemma (Dentzer)

A non-trivial group G is semiabelian if and only if G = AH for abelian A < G
and a proper semiabelian subgroup H < G.

A Minimal Decomposition

Let G be a non-trivial semiabelian group. A minimal decomposition of G is a
decomposition G = AH such that:

@ A < G is a minimal normal subgroup for which there is a proper
semiabelian subgroup Hyp < G with G = AH,

@ H < G is a minimal subgroup for which G = AH.

Step I

Let G be a non-trivial semiabelian group and G = AH a minimal
decomposition. Then the induced epimorphism A x H — G = AH is
c-preserving.
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Proof of Theorem II, Step II, Wreath Products

Step I

Let G be a non-trivial semiabelian group and G = AH a minimal
decomposition. Then the induced epimorphism A X H — G = AH is
c-preserving.

Step II

There is an epimorphism 7 : AY H = Al s H — A x H. Let B be a minimal
subgroup of A for which the restriction of 7 to B ! H is an epimorphism. Then
m:BUH — A % H is c-preserving.
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Step I

Let G be a non-trivial semiabelian group and G = AH a minimal
decomposition. Then the induced epimorphism A X H — G = AH is
c-preserving.

Step II

There is an epimorphism 7 : AY H = Al s H — A x H. Let B be a minimal
subgroup of A for which the restriction of 7 to B ! H is an epimorphism. Then
m:BUH — A % H is c-preserving.

Iterating

Take a minimal decomposition H = A, H; and obtain B, using Step I1I. We get
a corresponding c-preserving epimorphism B (B { Hy) — G.
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Proof of Theorem II, Step II, Wreath Products

Step I

Let G be a non-trivial semiabelian group and G = AH a minimal
decomposition. Then the induced epimorphism A X H — G = AH is
c-preserving.

Step II

There is an epimorphism 7 : AY H = Al s H — A x H. Let B be a minimal
subgroup of A for which the restriction of 7 to B ! H is an epimorphism. Then
m:BUH — A % H is c-preserving.

Iterating

Take a minimal decomposition H = A, H; and obtain B, using Step I1I. We get
a corresponding c-preserving epimorphism B (B ! Hy) — G. Iterating this
process we obtain abelian p-groups By, . .., B, and a c-preserving
epimorphism B (B2 !...1B,;) — G.

v
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Questions?

http://www—personal .umich.edu/~neftin/index.html

You can find both the slides and the paper at J

D. Neftin (University of Michiga The minimal ramification problem
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