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Motivation

K- number field,
G- finite group.

Problems
Let S be a finite set of primes,

let KS be the maximal extension of K unramified outside of S,
what is the structure of the Galois group GK(S) = Gal(KS/K)?

Given G, what are the sets S for which G is a quotient of GK(S)?

What is the minimal size of a set S for which G appears as a quotient of
GK(S)?

In other words, what is the minimal number of ramified primes
in a G-extension of K?
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Example

K = C(t), OK = C[t]
If |S| = n then GK(S) is the free profinite group on n− 1 generators (by
Riemann’s Existence Theorem).

Let d(G) denote the minimal number of generators of G. Then G is a
quotient of GK(S) if and only if |S| ≥ d(G) + 1.

Consequence
The minimal number of ramified primes in a G-extension of C(t) is d(G) + 1.
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The Minimal Ramification Problem for K = Q

Problem
Given a finite group G:

What is the minimal number of ramified primes in a G-extension of Q?
(counting the infinite prime)

The tame version: What is the minimal number of ramified primes in a
tame G-extension of Q?

Open cases:

Nilpotent groups,

Dihedral groups Dn,

Symmetric groups Sn.

D. Neftin (University of Michigan) The minimal ramification problem Ann Arbor, 2012 4 / 20



The Minimal Ramification Problem for K = Q

Problem
Given a finite group G:

What is the minimal number of ramified primes in a G-extension of Q?
(counting the infinite prime)

The tame version: What is the minimal number of ramified primes in a
tame G-extension of Q?

Open cases:

Nilpotent groups,

Dihedral groups Dn,

Symmetric groups Sn.

D. Neftin (University of Michigan) The minimal ramification problem Ann Arbor, 2012 4 / 20



The Minimal Ramification Problem for K = Q

Problem
Given a finite group G:

What is the minimal number of ramified primes in a G-extension of Q?
(counting the infinite prime)

The tame version: What is the minimal number of ramified primes in a
tame G-extension of Q?

Open cases:

Nilpotent groups,

Dihedral groups Dn,

Symmetric groups Sn.

D. Neftin (University of Michigan) The minimal ramification problem Ann Arbor, 2012 4 / 20



The Minimal Ramification Problem for K = Q

Problem
Given a finite group G:

What is the minimal number of ramified primes in a G-extension of Q?
(counting the infinite prime)

The tame version: What is the minimal number of ramified primes in a
tame G-extension of Q?

Open cases:
Nilpotent groups,

Dihedral groups Dn,

Symmetric groups Sn.

D. Neftin (University of Michigan) The minimal ramification problem Ann Arbor, 2012 4 / 20



The Minimal Ramification Problem for K = Q

Problem
Given a finite group G:

What is the minimal number of ramified primes in a G-extension of Q?
(counting the infinite prime)

The tame version: What is the minimal number of ramified primes in a
tame G-extension of Q?

Open cases:
Nilpotent groups,

Dihedral groups Dn,

Symmetric groups Sn.

D. Neftin (University of Michigan) The minimal ramification problem Ann Arbor, 2012 4 / 20



The Minimal Ramification Problem for K = Q

Problem
Given a finite group G:

What is the minimal number of ramified primes in a G-extension of Q?
(counting the infinite prime)

The tame version: What is the minimal number of ramified primes in a
tame G-extension of Q?

Open cases:
Nilpotent groups,

Dihedral groups Dn,

Symmetric groups Sn.

D. Neftin (University of Michigan) The minimal ramification problem Ann Arbor, 2012 4 / 20



The Minimal Ramification Problem for K = Q

Problem
Given a finite group G:

What is the minimal number of ramified primes in a G-extension of Q?
(counting the infinite prime)

The tame version: What is the minimal number of ramified primes in a
tame G-extension of Q?

Open cases:
Nilpotent groups,

Dihedral groups Dn,

Symmetric groups Sn.

D. Neftin (University of Michigan) The minimal ramification problem Ann Arbor, 2012 4 / 20



Abelian groups

Cyclotomic fields
Let G = Cn1 × . . .× Cnr , where n1|n2| . . . |nr.

Choose distinct primes qj ≡ 1 (mod nj), j = 1, . . . , r.

Let Kj be the subfield of Q(e
2πi
qj ) for which Gal(Kj/Q) ∼= Cnj .

We have: K = K1 · · ·Kr

lllllllll
RRRRRRRRR

GK1

Cn1 RRRRRRRRRRR Kr

Cnrlllllllllll

Q.

Consequence
An abelian group of rank r can be (tamely) realized over Q with r ramified
primes.
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A lower bound

A consequence of Minkowski’s Theorem

K
G tame

pOK = pe
1 · · · pe

r

Q p

K pj

KIj pj ∩ KIj

unramified

Q p

K

KT

unramified

Q

Ij- the inertia group I(pj/p).

The groups I1, . . . , Ir are conjugates.

Each Ij is cyclic.

Let T = 〈I(p/p)|running over all rational primes p and p|p〉.
By Minkowski’s Theorem KT = Q and T = G. In other words, the
inertia groups generate G.
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A lower bound - Part II

Consequence
If there are n ramified primes in K/Q then G is generated by n conjugacy
classes.

Let c(G) be the minimal number of conjugacy classes that generate G.

In every (tame) G-extension of Q there are at least c(G) ramified primes.

Kaplan-Lev (2003)
Let G 6= {1}. Then:

c(G) :=

{
d(Gab)

if G 6= [G,G]
1 if G = [G,G].

Remark
If G is nilpotent then c(G) = d(G).
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The Conjecture

The Boston-Markin Conjecture (2009)
Every finite group G can be realized with c(G) ramified primes.

Evidence
The conjecture holds for:

finite abelian groups,

odd order groups of nilpotency class 2 (Plans 2004),

Dn for even n (Plans 2004),

3-groups of order dividing 35 (Nomura 2008),

all groups of order at most 32 (Boston-Markin 2009),

Sn for small values of n (Jones-Roberts 2008, Rabayev 2009),

many other small order groups.
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Semiabelian groups

Definition
The family of semiabelian groups S is the minimal family for which:

1 S contains all finite abelian groups;

2 if G ∈ S and G� H then H ∈ S.
3 if H ∈ S and A is an abelian group then any A o H ∈ S;

Small orders (Dentzer)

All groups of order dividing p4 or 25 are semiabelian.

Order Total Non-semiabelian
24 15 1
26 267 10
35 67 10
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Minimal ramification for semiabelian p-groups

A subfamily
The family Gp is the minimal family for which:

1 Gp contains all abelian p-groups;

2 if H,G ∈ Gp then H o G = H|G| o G ∈ Gp;
3 if G ∈ Gp and G� H with c(G) = c(H), then H ∈ Gp.

Theorem (Kisilevsky, Sonn)
Every G ∈ Gp can be tamely realized over Q with c(G)-ramified primes.

Theorem (N)
Gp is the family of semiabelian p-groups.

D. Neftin (University of Michigan) The minimal ramification problem Ann Arbor, 2012 10 / 20



Minimal ramification for semiabelian p-groups

A subfamily
The family Gp is the minimal family for which:

1 Gp contains all abelian p-groups;
2 if H,G ∈ Gp then H o G = H|G| o G ∈ Gp;

3 if G ∈ Gp and G� H with c(G) = c(H), then H ∈ Gp.

Theorem (Kisilevsky, Sonn)
Every G ∈ Gp can be tamely realized over Q with c(G)-ramified primes.

Theorem (N)
Gp is the family of semiabelian p-groups.

D. Neftin (University of Michigan) The minimal ramification problem Ann Arbor, 2012 10 / 20



Minimal ramification for semiabelian p-groups

A subfamily
The family Gp is the minimal family for which:

1 Gp contains all abelian p-groups;
2 if H,G ∈ Gp then H o G = H|G| o G ∈ Gp;
3 if G ∈ Gp and G� H with c(G) = c(H), then H ∈ Gp.

Theorem (Kisilevsky, Sonn)
Every G ∈ Gp can be tamely realized over Q with c(G)-ramified primes.

Theorem (N)
Gp is the family of semiabelian p-groups.

D. Neftin (University of Michigan) The minimal ramification problem Ann Arbor, 2012 10 / 20



Minimal ramification for semiabelian p-groups

A subfamily
The family Gp is the minimal family for which:

1 Gp contains all abelian p-groups;
2 if H,G ∈ Gp then H o G = H|G| o G ∈ Gp;
3 if G ∈ Gp and G� H with c(G) = c(H), then H ∈ Gp.

Theorem (Kisilevsky, Sonn)
Every G ∈ Gp can be tamely realized over Q with c(G)-ramified primes.

Theorem (N)
Gp is the family of semiabelian p-groups.

D. Neftin (University of Michigan) The minimal ramification problem Ann Arbor, 2012 10 / 20



Minimal ramification for semiabelian p-groups

A subfamily
The family Gp is the minimal family for which:

1 Gp contains all abelian p-groups;
2 if H,G ∈ Gp then H o G = H|G| o G ∈ Gp;
3 if G ∈ Gp and G� H with c(G) = c(H), then H ∈ Gp.

Theorem (Kisilevsky, Sonn)
Every G ∈ Gp can be tamely realized over Q with c(G)-ramified primes.

Theorem (N)
Gp is the family of semiabelian p-groups.

D. Neftin (University of Michigan) The minimal ramification problem Ann Arbor, 2012 10 / 20



Minimal ramification for semiabelian p-groups

A subfamily
The family Gp is the minimal family for which:

1 Gp contains all abelian p-groups;
2 if H,G ∈ Gp then H o G = H|G| o G ∈ Gp;
3 if G ∈ Gp and G� H with c(G) = c(H), then H ∈ Gp.

Theorem (Kisilevsky, Sonn)
Every G ∈ Gp can be tamely realized over Q with c(G)-ramified primes.

Theorem (N)
Gp is the family of semiabelian p-groups.

D. Neftin (University of Michigan) The minimal ramification problem Ann Arbor, 2012 10 / 20



An upper bound for semiabelian groups

The wreath length
A group G is semiabelian if and only if it is an epimorphic image of an
iterated wreath product of cyclic groups G1, . . . ,Gr:

G1 o (G2 o (. . . o Gr) . . .)→ G.

Let wl(G) denote the minimal r for which such an epimorphism exists.

Theorem I(KNS)
Every semiabelian group G can be tamely realized with wl(G) ramified
primes.

Theorem II (KNS)
For every nilpotent semiabelian group G, wl(G) = c(G).
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Consequences

Corollary I - The Boston-Markin conjecture for nilpotent semiabelian
groups
Every nilpotent semiabelian group G is tamely realizable over Q with c(G)
ramified primes.

Corollary II
Every group G of nilpotency class 2 is tamely realizable over Q with c(G)
ramified primes.
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Examples

Iterated wreath products of cyclic groups
Let G = G1 o (G2 o . . . o Gr) for non-trivial cyclic groups G1, . . . ,Gr.

wl(G) = r.

c(G) = d(Gab) = d(G1 × · · · × Gr).

Therefore wl(G) = c(G) if and only if there is a prime p that divides the
orders of G1, . . . ,Gr.

G = C3 o C6 can be realized with wl(G) = c(G) = 2 ramified primes.

Classical examples of iterated wreath products

The Sylow subgroups of Sn are direct products of iterated wreath
products.

The p-Sylow subgroups of GLn(Fq), where q is a prime power and
(q, p) = 1, are iterated wreath products.
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Other semiabelian groups

Open cases
For n odd and G = Dn the tame minimal ramification problem is
equivalent to:

K
Cn -unramified

M
2 -with prime discriminant

Q

Let p1, . . . , pr be distinct primes. Can G = Cp1 o . . . o Cpr be realized with
1 ramified prime?
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Proof of Theorem I - by example

Recall: Theorem I
Every semiabelian group G can be tamely realized with wl(G) ramified
primes.

G = Cp o Cp with two ramified primes

LLσ . . . Lσp−1

hhhhhhhhhhhhhhhhh

mmmmmmmmmm

�
�
�

RRRRRRRRRR

L

Cp WWWWWWWWWWWWWWWWWWW Lσ

RRRRRRRRRRR . . .
�
� Lσp−1

kkkkkkkkkkk

K
Cp=〈σ〉

Q
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Splitting Lemma

Splitting Lemma, Kisilevsky-Sonn (2005)
Let K be a number field and r an integer. There is a number field Kr ⊇ K such
that for every prime p of K that splits completely in Kr there is a
Cpr -extension of K that is ramified only at p and is totally ramified there.

Remark
There are number fields K1, . . . ,Km containing K such that there is a
Cpr -extension of K that is ramified only at p and is totally ramified there if and
only if p splits completely in at least one of the fields K1, . . . ,Km.
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Proof of Theorem II - p-groups

Theorem II for p-groups (Recall)
Let G be a semiabelian p-group and c := c(G). Then wl(G) = c(G), i.e. there
are cyclic groups G1, . . . ,Gc and an epimorphism G1 o (G2 o . . . o Gc)→ G.

Equivalent formulation
There are cyclic p-groups G1, . . . ,Gr and a c-preserving epimorphism
G1 o (G2 o . . . o Gr)→ G.
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Proof of Theorem II, Step I, Decompositions

Lemma (Dentzer)
A non-trivial group G is semiabelian if and only if G = AH for abelian AC G
and a proper semiabelian subgroup H < G.

A Minimal Decomposition
Let G be a non-trivial semiabelian group. A minimal decomposition of G is a
decomposition G = AH such that:

AC G is a minimal normal subgroup for which there is a proper
semiabelian subgroup H0 < G with G = AH0,

H < G is a minimal subgroup for which G = AH.

Step I
Let G be a non-trivial semiabelian group and G = AH a minimal
decomposition. Then the induced epimorphism A o H → G = AH is
c-preserving.
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Proof of Theorem II, Step II, Wreath Products

Step I
Let G be a non-trivial semiabelian group and G = AH a minimal
decomposition. Then the induced epimorphism A o H → G = AH is
c-preserving.

Step II

There is an epimorphism π : A o H = A|H| o H → A o H. Let B be a minimal
subgroup of A for which the restriction of π to B o H is an epimorphism. Then
π : B o H → A o H is c-preserving.

Iterating
Take a minimal decomposition H = A2H2 and obtain B2 using Step II. We get
a corresponding c-preserving epimorphism B o (B2 o H2)→ G.

Iterating this
process we obtain abelian p-groups B1, . . . ,Br and a c-preserving
epimorphism B1 o (B2 o . . . o Br)→ G.
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Questions?

You can find both the slides and the paper at
http://www-personal.umich.edu/~neftin/index.html
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