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1.1 INFINITE GALOIS EXTENSIONS
Let K be a field and N a Galois extension of K (i.e. algebraic, normal and separable). Let

be the Galois group of this extension. Denote by {N : K} and {G : 1} the lattices of intermediate fields L,
K C L C N, and subgroups H C G, respectively. Then there are maps

{N:K}%{G:l}

defined by
®(L)={0 € Gy | o) =id} =Gnyr (K CLCN)

U(H)={zeN|Hz=z} (H<G),

which reverse inclusion, i.e., they are anti-homomorphisms of lattices.
The main theorem of Galois theory for finite extensions can be stated then as follows.

1.1.1 Theorem Let N/K be a finite Galois extension. Then
(a) [N: K] =#Gnyk;

(b) The maps ® and ¥ are inverse to each other, i.e, they are anti-isomorphisms of lattices.

(c) If L € {N : K} and ®(L) = Gy, then L is normal over K iff Gn/r, is a normal subgroup of G, in
which case Grjx = Gn/x/GNyL-

Let us assume now that the Galois extension N/K is not necessarily finite. The one still has the following

1.1.2 Proposition ¥ o ® = idyy.xy. In particular ® is injective and ¥ is surjective.

Proof. If K C L C N one certainly has
\I/((I>(L)) = \I/(GN/L) = {x eEN | GN/L{ZZ = :ZZ} D L.
On the other hand, if z € N and G, o = x, then z is the only conjugate of z, i.e. x € L. D

However in the general case ® and ¥ are not anti-isomorphisms; in other words in the infinite case it
could happen that different subgroups of Gy, have the same fixed field, as the following example shows.

1.1.3 Example Let p be a prime and let K = F), be the field with p elements. Let ¢ # 2 be a prime number,

and consider the sequence
K=KyCKyC---,

where K; is the unique extension of K of degree [K; : K] = ¢*. Let

then ,
Ki:{xel\ﬂa:plZ —z =0}

Let G = Gn/k. Consider the Frobenius K-automorphism
p:N = N
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defined by p(z) = zP. Set
H={" |nelZ}
We shall prove that (a) H and G have the same fixed field, i.e., ¥(G) = U(H), and (b) H # G, establishing

that ¥ is not injective.

For (a): It suffices to show that U(H) = K. Let x € N with Hx = x; then ¢(z) = x; so 2P = z; hence
re K.

For (b):  We construct a K-automorphism o of N, which is not in H, in the following way. For each
i=1,2...let k;=1+¢+ -+ ¢! and consider the K-automorphisms ¢* of N. Since

ki1 ks
Pik: = Pk

we can defined a K-automorphism
ooN—- N

by setting
o(z) = or (z), when z € K;.

Now, if 0 € H, say 0 = ¢" we would have for each i =1,2...
ki
O\K; = SO\nKi =P K

and hence .
n=k; (mod¢)

for each i, since G,k is the cyclic group generated by ¢|x,. Multiplying this by (£ — 1) we would obtain
({—1)n=-1 (mod ¢), for each i, which is impossible if £ # 2.

Remark The key idea in the above example is the following: what happens is that the Galois group
GN = Gnyp, is isomorphic to the additive group Z, of the f-adic integers. The Frobenius automorphism ¢
corresponds to 1 € Zy, so that the group H is carried onto Z C Z,. The elements of G which are not in H
correspond to the f-adic integers which are not in Z (for instance, in our case ¢ = 1+ £+ (2 + (3 + - .+).

1.2 THE KRULL TOPOLOGY

Although the above example shows that Theorem 1.1.1 does not hold for infinite Galois extension, it suggest
a way of modifying the theorem so that it will in fact be valid even in those cases. The map o of the
example is in a sense approximated by the maps ", since it coincides with ¢ on the subextension Kj;
which becomes larger and larger with increasing i, and N = [J;2; K;. This leads to the idea of defining a
topology in G so that in fact o = lim ¢*. Then ¢ would be in the closure of H and once could hope that G
is the closure of H, suggesting a correspondence of the intermediate fields of N/K and the closed subgroups
of G. In fact this is the case as we will see.

Definition 1.2.1 Let N/K be a Galois extension and G = G, k. The set
S ={GnyLl|L/K finite, normal extension, L € {N : K} }

determines a basis of open neighbourhoods of 1 € G. The topology defined by & is called the Krull
topology of G.

Remarks

1) If N/K is a finite Galois extension, the the Krull topology of Gy, is the discrete topology.

2) Let 7,0 € Gy/i. Then 7 € oGy, = ot e Gn/L < o) = 7|1, i.e., two elements of G,k
“are near” if they coincide on a large field L.



1.2.2 Proposition Let N/K be a Galois extension and let G = Gy k. Then G endowed with the Krull
topology is a (i) Hausdorff, (ii) compact, and (iii) totally-disconnected topological group

Proof.  For (i): Let F, denote the set of all finite, normal subextension L/K of N/K. We have

ﬂUZ ﬂ Gy =1,

Ues L/KEF,

since

N= |J L
L/KeF,
Then, 0,7 € G, 0 #7 =0 '7# 1= 3Uy € S such that o717 ¢ Uy = 7 ¢ oUy = 7Uy N Uy = 0.
For (ii): Consider the homomorphism

G- [] Gux=P
L/KeF,

defined by

h(o) = H oL

L/KEF,

(Notice that P is compact since every G, k is a discrete finite group.)

We shall show that h is an injective continuous mapping, that h(G) is closed in P and that h is an open
map into h(G). This will prove that G is a homeomorphic to the compact space h(G).

Let o € G with k(o) = 1; then oy, =1, since N =, /e 7, L. Thus & is injective.

To see that h is continuous consider the composition

G P Gk

where g,/ is the canonical projection. It suffices to show that each g,k h is continuous; but this is clear
since

(9r/xh) "' ({1}) =GNy € S.

To prove that h(G) is closed consider the sets My, 1, = {por € P|(oL,)1, = 0r,} defined for each
pair Ly /K, Ly /K € F, with N O Ly D Ly O K. Notice that My, /1, is closed in P since it is a finite union
of closed subsets, namely, if G, /x = {f1, f2,..., fr} and S; is the set of extensions of f; to L, then

T

Mp, /L, = U ( H Gr/x x Si x {fi}).

i=1 L#Li,Lo
L/KeFn

On the other hand
MG S () Moy

L12L>
and if
II ove () Mo,
L/KEF, Li1DLo

we can define a K-automorphism 0: N — N by o(x) = o (z) if x € L; so that h(o) =[], ez, oL Le.,

hG) = m Mg, /L,

L12L2

and hence h(G) is closed.



Finally h is open into h(G), since if L/K € F,,,

WGuyr) =h@GN( ] Gryxx{1})
L'#L
L' /KeFn

which is open in h(G).

For (iii): It is enough to prove that the connected component H of 1 is {1}. For each U € S let
Ug =UNH; then Uy # 0 and it is open in H.

Let

Vi = U xUg;

x€H

agUp

then Vg is open in H, Uy N Vy = emptyset and H = Uy N Vy. Hence Vg = emptyset; i.e., UN H = H for
each U € S. Therefore
HC (U={1},

UeS
so H ={1}. o

1.2.3 Proposition Let N/K be a Galois extension. The open subgroups of G = Gy, are just the groups
Gnyr, where L/K is a finite subextension of N/K. The closed subgroups are precisely the intersections of
open subgroups.

Proof. Let L/K be a finite subextension of N/K. Choose a finite normal extension L of K such that
NDOLDLDK. Then
Gnji <Gy <G

SO

GN/L: U JGN/ﬂ;

O'EGN/L

i.e., G/ is the union of open sets and thus open. Conversely, let H be an open subgroup of G; then 3 a

finite normal extension L with
GN/E < H<G.

Consider the epimorphism

defined by restriction. Its kernel is G e The image of H under this map must be of the form G /L for

some field I with L 2 L 2 K, since G K is the Galois group of a finite Galois extension. Thus
H = {O' S G||O'|L = ldL} = GN/L

Since open subgroups are closed so is their intersection. Conversely, suppose H is a closed subgroup of
G} clearly

HC (\H-U.
Ues
On the other hand, let o (s H - U; then U € S = oU N H # (J; so every neighborhood of o hits H; hence
o € H. Thus H is the intersection of the open subgroups H -U, U € S. D

We are now in a position to generalize Theorem 1.1.1 to infinite Galois extensions.

1.2.4 Theorem (Krull) Let N/K be a (finite or infinite) Galois extension and let G = G k. Let {N : K}
be the lattice of intermediate fields N O L D K, and let {G : 1} be the lattice of closed subgroups of G. If
L e {N: K} define

(D(L) = {O' eG | O'|L = ldL} = GN/L
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Then ® is a lattice anti-isomorphism of {N : K} to {G : 1}. Moreover L € {N : K} is a normal extension
of K iff ®(L) is a normal subgroup of G; and if this is the case Gk = G/®(L).

Proof. Since ®(L) = Gy, is compact (Prop. 1.2.2), it is closed in G; so @ is in fact a map into {G : 1}.
Define
U:{G:1} - {N: K}

by
U(H)={z € N|Hz = z}.

Clearly Proposition 1.1.2 is still valid and we have ¥ o ® = id{y.x}. Now we prove that ® o ¥ = idg.1y. If
L/K is finite,
O(U(Gny)) = ©(W(B(L))) = ®(L) = GyL-

If H € {G : 1}, then, by Proposition 1.2.3,
H=()Gnyr,

the intersection running through a collection of extensions N/L with L/K finite. Then

O(U(H)) = S(¥(()Gnyr)) = (@U)(0(L) = (2¥e)(| L) = e JL) = (L) =(\Cnr = H

Assume that L is a normal extension of K, and let H = ®(L). Then oL = L, Yo € Gj; but since
oL = V(ocHo™!), this is equivalent to saying that cHo~! =, Vo, i.e., that H is normal in G. Conversely,
suppose that H is an invariant subgroup of G, and let W(H) = L. So oL = L, Vo € G, i.e., L is the fixed
field of the group of restrictions of the ¢ € G to L. Thus L/K is Galois and hence normal. Finally, since
every K-automorphism of L can be extended to a K-automorphism of N, the homomorphism

G— GL/K»
given by restriction, is onto. The kernel of this homomorphism is ®(L); thus G,k = G/®(L). )
1.3 PROFINITE GROUPS
Let I = (I,=) denote a directed partially ordered set or directed poset, that is, I is a set with a binary
relation = satisfying the following conditions:
(a) i <14, fori € I
(b) ¢ 2 jand j <X k imply ¢ < k, for i,j,k € I;
(¢) i =jand j = ¢imply i =j, for ¢,j € I; and
(d) if 4,5 € I, there exists some k € I such that ¢,5 < k.

An inverse or projective system of topological spaces (respectively, topological groups) over I, consists
of a collection {X; | ¢ € I} of topological spaces (respectively, topological groups) indexed by I, and a
collection of continuous mappings (respectively, continuous group homomorphisms) ¢;; : X; — X, defined
whenever i = j, such that the diagrams of the form

X, —2 X,

RN

commute whenever they are defined, i.e., whenever i, 5,k € [ and i > j > k. In addition we assume that ;;
is the identity mapping idx, on X,;. We denote such a system by {X;, ¢;;,I}.
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The inverse limit or projective limait

X = lim X;

lim
%

i€l
of the inverse system {X;, ¢;;, I} is the subspace (respectively, subgroup) X of the direct product
[Ix:
i€l

of topological spaces (respectively, topological groups) consisting of those tuples (z;) that satisfy the condition
@ij(x;) = xz; if i = j. We assume that X has the topology induced by the product topology of [[,.; X;. For
each i € I, let

i€l

denote the restriction of the canonical projection [],.; X; — X;. Then one easily checks that each ¢; is
continuous (respectively, a continuous homomorphism), and ¢;;¢; = ¢; (j < ). The space (respectively,
topological group) X together with the maps (repsectivel, homomorphisms) ; satisfy the following universal
property that in fact characterizes (as one easily checks) the inverse limit:

1.3.1 Universal property of inverse limits Suppose Y is another topological space (resp. group) and
;1Y — X; (i € I) are continuous maps (reps. continuous homomorphism) such that ¢;;1; = ¥, (§ < 1).
Then there exists a unique continuous map (reps. continuous homomorphisms) ¥ : ¥ — X such that for
each i € I the following diagram

comimutes.

Let C denote a nonempty collection of (isomorphism classes of) finite groups closed under taking sub-
groups, homomorphic images and finite direct products (sometimes we refer to C as a variety of finite groups or
a pseudovariety of finite groups. If in addition one assumes that whenever A, B€ Cand1l - A —G — B — 1
is an exact sequence of groups, then G € C, we say that C is an extension-closed variety of finite groups .
For example C can be

- (i) The collection of all finite groups;

- (ii) the collection of all finite p-groups (for a fixed prime p);

- (iii) the collection of all finite nilpotent groups.

Note that (i) and (ii) are extension-closed varieties of finite groups, but (iii) is a variety of finite groups
which is not extension-closed.

Let C be a variety of finite groups; and let {G}, ¢;;, I} be an inverse system of groups in C over a directed
poset I; then we say that

iel

is a pro-C group. If C is as in (i), (ii) or (iii) above, we say that then G is, respectively, a profinite group,
pro-p group or a pronilpotent group.

1.3.2 Examples
(a) The Galois group G'n/k of a Galois extension N/K of fields.
(b) Let G be a group. Consider the collection

N ={N<;G|G/N eC}.
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Make N into a directed poset by defining M < N if M > N (M,N € N). If M\,N € N and N = M,
let o : G/N — G/M be the natural epimorphism. Then

{G/N,onm}

is an inverse system of groups in C, and we say that the pro-C group

Ge = Jim G/N

NeN

is the pro-C completion of G. In particular we use the terms profinite completion, the pro-p completion,

the pronilpotent completion, etc., in the cases where C consists of all finite groups, all finite p-groups,

all finite nilpotent groups, etc., respectively.

The profinite and pro-p completions of a group of G appear quite frequently, and they will be usually
denoted instead by G, and G respectively.

(c) As a special case of (b), consider the group of integers Z. Its profinite completion is

Z = lim Z/nZ.

neN

Following a long tradition in Number Theory, we shall denote the pro-p completion of Z by Z, rather
than Z;. So,
Z, = lim Z/p"Z.
eEN

n

Observe that both Z and Z,, are not only abelian groups, but also they inherit from the finite rings Z/nZ
and Z/p"Z respectively, natural structures of rings. The group (ring) Z,, is called the group (ring) of p-adic
integers.

1.3.3 Lemma Let

G = Jim G,
i€l

where {G;, pij, I} is an inverse system of finite groups G;, and let
vi:G—G; (iel)
be the projection homomorphisms. Then
{Si [ Si = Ker(y;)}

is a fundamental system of open neighborhoods of the identity element 1 in G.

Proof. Consider the family of neighborhoods of 1 in [[,.; G; of the form

el

T yenny n

for any finite collection of indexes iy,...,7; € I, where {1}, denotes the subset of G; consisting of the
identity element. Since each G; is discrete, this family is a fundamental system of neighborhoods of the

identity element of [],.; G;. Let ig € I be such that ig = 4y,...,4;. Then

GN[(JIG)=x{bio) =Gn[( I Gi)x {1} - x{1}].

i#ig 170,00
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Therefore the family of neighborhoods of 1 in G, of the form
Gn [( H Gz) X {1}10]
i#io
is a fundamental system of open neighborhoods of 1. Finally, observe that

GnN [( H GZ) X {1}L0] = Ker(@io) = Sio'
iio

1.3.4 Theorem (Topological characterizations of pro-C groups)

The following conditions on a topological group G are equivalent.

(a) G is a pro-C group.

(b) G is compact, Hausdorff, totally disconnected, and for each open normal subgroup U of G, G/U € C.

(¢) The identity element 1 of G admits a fundamental system U of open neighborhoods U such that each U
is a normal subgroup of G with G/U € C, and

G:

—_—

=

1

G/U.

[

=}
<

€

For a formal proof of this theorem, see [RZ], Theorem 2.1.3. For properties of compact totally disconnected
topological spaces, see Chapter 1 of [RZ].

1.4 BASIC PROPERTIES OF PROFINITE GROUPS

NOTATION. If G is topological group, we write H <, G (respectively, H <. G) to indicate that H is an
open (respectively, closed) subgroup of G

1.4.1 Lemma

(a) Let G be a pro-C group. An open subgroup of G is also closed. If H is a closed subgroup of G, then H
is the intersection of all the open subgroups U containing H .

(b) Let G be a pro-C group. If H be a closed subgroup of G, then H is a pro-C group. If K is a closed
normal subgroup of G, then G/K is a pro-C group.

(c) The direct product [];.; Gi of any collection {G; | i € J} of pro-C groups with the product topology is a
pro-C group.

The proof of this lemma is an easy exercise using the characterizations in Theorem 1.3.4. For a formal
proof of this theorem, see [RZ], Propositions 2.1.4 and 2.2.1.

Let ¢ : X — Y be an epimorphism of sets. We say that a map 0 : ¥ — X is a section of ¢ if
wo = idy. Plainly every epimorphism ¢ of sets admits a section. However, if X and Y are topological spaces
and ¢ is continuous, it is not necessarily true that ¢ admits a continuous section. For example, the natural
epimorphism R — R/Z from the group of real numbers to the circle group does not admit a continuous
section. Nevertheless, every epimorphism of profinite groups admits a continuous section, as the following
proposition shows.

1.4.2 Proposition Let K < H be closed subgroups of a pro finite group G . Then there exists a continuous
section

0:G/H — G/K,
such that o(1H) = 1K.



Proof. We consider two cases.

Case 1. Assume that K has finite index in H. Then K is open in H, and therefore there exists an open
normal subgroup U of G with UNH < K. Let 1 = 1,2, ..., x, be representatives of the distinct cosets of
UH in G. Then G/H is the disjoint union of the spaces x;UH/H, i =1,2,...,n. We will prove that the
maps

i=1,2,...,n, defined as restrictions of p, are homeomorphisms. Then it will follow that o = (J;-_, p{l will
be the desired section. It is plain that p; is a continuous surjection. On the other hand if p;(x;u1) = pi(ziu2),

(u1,uy € U), then xiuluglzi_l € H. But since U is normal, xiuluglxi_l € U, and hence ziuluglxi_ S

HNU < K. Thus x;u; and x;us represent the same element in x;UK, i.e., p is injective. Since z;UK is
compact, p must be a homeomorphism.

Case 2. General case. Let T be the set of pairs (T, t) where T is a closed subgroup of H with K <T < H,
and t: G/H — G/T is a continuous section. Define a partial order in T by (T,t) > (T",t') < T < T’ and
the diagram

G/H ——~G/T
N
GT'

commutes, where p is the canonical projection. Then T is inductively ordered. For assume {(T,,t,) | @ € A}
is a totally ordered subset of 7, and let T' = (), 4 To. The surjections G/T" — G /T, induce a surjective
(since G/T is compact) continuous map

:G/T — lim G/T.,,

which is also injective, for
z,y e G, pr=py=al,=yT,, YVacA=
7y eT,, VaeA:w‘lyeﬂTa:T.

[

Therefore ¢ is a homeomorphism, since G/T is compact. The sections t, define a continuous map
t:G/H — G/T

which is easily seen to be a section. Moreover, we obviously have (7,t) > (Tu,ts), Vo € A. Hence T is
inductive. By Zorn’s lemma there is a maximal element in T, say (T',t). Then

K<T<HC<G.
We will show that T is contained in every open subgroup U containing K. This will imply T = K. Consider
an open subgroup H < U < K. Let S=TNU; Then S <T and (T : S) < co. Hence by Case 1, there is a
section -

t:G/T — G/S,
and clearly (S,t' ot) € T with (S,t' o) > T,%). So S =T, and thus T < U. o

1.5 PROFINITE GROUPS AS GALOIS GROUPS
Together with Theorem 1.2.4, the following result provides a new characterization of profinite groups.

1.5.1 Theorem (Leptin) Let G be a profinite group. Then there exists a Galois extension of fields K/L
such that G = Gk,
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Proof. Let F be any field. Denote by T the disjoint union of all the sets G/U, where U runs through the
collection of all open normal subgroups of G. Think of the elements of T' as indeterminates, and consider
the field K = F(T) of all rational functions on the indeterminates in T with coefficients in F. The group G
operates on T in a natural manner: if v € G and v'U € G/U, then v(7'U) = v7'U. This in turn induces an
action of G on K as a group of F—automorphisms of K. Put L = K¢, the subfield of K consisting of the
elements of K fixed by all the automorphisms v € G. We shall show that K/L is a Galois extension with
Galois group G.
If k € K, consider the subgroup
G = {7 € G | (k) = k}

of G. If the indeterminates that appear in the rational expression of k are {t; € G/U; |i=1,...,n}, then

G 2 ﬁ U;.
1=1

Therefore Gy, is an open subgroup of GG, and hence of finite index. From this we deduce that the orbit of k
under the action of G is finite. Say that {k = k1, ko, ..., k. } is the orbit of k. Consider the polynomial

T

FX) =TT(x = k).

i=1

Since G transforms this polynomial into itself, its coefficients are in L, that is, f(X) € L[X]. Hence k is
algebraic over L. Moreover, since the roots of f(X) are all different, k is separable over L. Finally, the
extension L(ki,ko,...,k,)/L is normal. Hence K is a union of normal extensions over L; thus K/L is a
normal extension. Therefore K/L is a Galois extension. Let H be the Galois group of K/L; then G is a
subgroup of H. To show that G = H, observe first that the inclusion mapping G — H is continuous, for
assume that U <, H and let KY be the subfield of the elements fixed by U; then KY/L is a finite Galois
extension by Theorem 1.2.4; say, KV = L(k},...,k.) for some k},... k. € K. Then

GNU2 ﬂGk
i=1

Therefore GNU is open in G. This shows that G is a closed subgroup of H. Finally, since G and H fix the
same elements of K, it follows from Theorem 1.2.4 that G = H. O

1.6 SUPERNATURAL NUMBERS AND SYLOW SUBGROUPS

For a finite group, its ‘order’ is the cardinality of its underlying set; for finite groups the notion of
cardinality provides fundamental information for the group as it is well known. However the cardinality of a
profinite group G does not carry with it much information about the group. One can show that a nonfinite
profinite group is necessarily uncountable (cf. [[RZ], Proposition 2.3.1]). Instead, there is a notion of ‘order’
#G of a profinite group GG that we are explaining here which is useful: it provides information about the
finite (continuous) quotients of G.

A supernatural number is a formal product

n = Hpn(p)7

p

where p runs through the the set of all prime numbers, and where n(p) is a non-negative integer or co. By
convention, we say that n < co, co+00=00+n=n+ oo = oo for all n € N. If

m =] p"®
p
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is another supernatural number, and m(p) < n(p) for each p, then we say that m divides n, and we write
m | n. If

o= [T ® i 1y
P

is a collection of supernatural numbers, then we define their product, greatest common divisor and least
common multiple in the following natural way

— [Ini =[[p"®, where n(p) = 3 n(p,i);
T

p 7
— ged{ni}tier = [[p™P), where n(p) = min{n(p,4)};
p 1

— lem{n; }ier = []p"?), where n(p) = max{n(p,i)}.
P K2

(Here > n(p,i), min{n(p,i)} and max{n(p,i)} have an obvious meaning; note that the results of these

operations can be either non-negative integers or co.)
Let G be a profinite group and H a closed subgroup of G. Let U denote the set of all open normal
subgroups of G. We define the index of H in G, to be the supernatural number

[G: H] =lem{[G/U : HU/U] | U € U}.
The order #G of G is the supernatural number #G = [G : 1], namely,

#G = lem{|G/U| | U € U}.

1.6.1 Proposition Let G be a profinite group.

(a) If H <. G, then |G : H] is a natural number if and only if H is an open subgroup of G;
(b) If H <. G, then
[G:H]|=lem{[G:U] | H<U<,G};

(¢) If H <. G and U’ is a fundamental system of neighborhoods of 1 in G consisting of open normal
subgroups, then

[G: H] =1lem{[G/U : HU/U] |U € U'};

(d) Let K <. H <.G. Then
[G:K]=|[G: H|H: KJ;

(e) Let {H; | i € I} be a family of closed subgroups of G filtered from below. Assume that H = (,c; H; .
Then

[G: Hl=lem{[G: H;] | i € I};
(f) Let {G;,vi;} be a surjective inverse system of profinite groups over a directed poset I. Let G = h£ ic1Gi.

Then
#G = lem{#G, | i € I};

(g) For any collection {G; | i € I} of profinite groups,

#([G) =1]#6:

iel il
One can find a formal proof of these properties in [[RZ], Proposition 2.3.2].

If p is a prime number there is then a natural notion of p-Sylow subgroup P of a profinite group G: P
is a pro-p group such that p does not divide [G : P]. Using the above notion of order for profinite groups,
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we can prove results analogous to the Sylow theorems for finite groups. To do this one uses as a basic tool
the following property of compact Hausdorff spaces.

1.6.2 Proposition Let {X;, ¢;;} be an inverse system of compact Hausdorff nonempty topological spaces X;
over the directed set I. Then

H

i€l
is monempty. In particular, the inverse limit of an inverse system of nonempty finite sets is nonempty.

Proof. For each j € I, define a subset Y; of [[ X; to consist of those (x;) with the property ¢ i(x;) = xx
whenever k£ < j. Using the axiom of choice, one easily checks that each Y; is a nonempty closed subset of
[IXi. Observe that if j < j/, then Y; D Yj/; it follows that the collection of subsets {Y; | j € I} has the finite
intersection property (i.e., any intersection of finitely many Y; is nonempty), since the poset I is directed.
Then, one deduces from the compactness of [[ X, that (Y] is nonempty. Since

Jim X; = (Y5
i€l jel
the result follows. o

1.6.3 Theorem Let p be a fixed prime number and let
G= <ll_Hl Gi,
i€l

be a profinite group, where {G;, pi;, I} is a surjective inverse system of finite groups. Then
(a) G contains a p-Sylow subgroup;
(b) Any pro-p subgroup of G is contained in a p-Sylow subgroup;
(¢c) Any two p-Sylow subgroups of G are conjugate.
Proof.

(a) Let H; be the set of all p-Sylow subgroups of G;. Then H; # 0. Since ¢;; : G; — G; is an
epimorphism, ¢;;(H;) C H;, whenever i = j. Therefore, {;, ¢;;, I} is an inverse system of nonempty finite
sets. Consequently, according to Proposition 1.6.2,

<li_m7{7é(0.
el

Let (H;) € <h_m ;. Then H; is a p-Sylow subgroup of G; for each i € I, and {H;, ;;, 1} is an inverse system
of finite groups. One easily checks that H = (h_m H; is a p-Sylow subgroup of G, as desired.

(b) Let H be a pro-p subgroup of G. Then, ¢;(H) is a pro-p subgroup of G; (i € I). Then there is some
p-Sylow subgroup of G; that contains ¢;(H); so the set

Si=1{S|wi(H) <S5 <G;, Sisap—Sylow subgroup of G;}

is nonempty. Furthermore, ¢;;(S;) C S;. Then {S;, ¢;;, I} is an inverse system of nonempty finite sets. Let
(S;) € @ S;; then {S;, ¢;;} is an inverse system of groups. Finally,

H = (h_m%'(H)S lim Sy,

and § = (h_m S; is a p-Sylow subgroup of G.

(c) Let H and K be p-Sylow subgroups of G. Then ¢;(H) and ¢;(K) are p-Sylow subgroups of G;
(i € I), and so they are conjugate in G;. Let

Qi ={¢: € Gi | ¢ "pi(H)qi = i(K)}.
Clearly ¢;;(Q:) € @, (i = j). Therefore, {Q;, pi;} is an inverse system of nonempty finite sets. Using again
Proposition 1.6.2, let ¢ € Jim @;. Then ¢ 'Hq= K, since p;(¢"*Hq) = p;(K), for each i € I. 0
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