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1.1 INFINITE GALOIS EXTENSIONS

Let K be a field and N a Galois extension of K (i.e. algebraic, normal and separable). Let

G = GN/K = {σ ∈ Aut(N)
∣∣ σ|K = idK}

be the Galois group of this extension. Denote by {N : K} and {G : 1} the lattices of intermediate fields L,
K ⊆ L ⊆ N , and subgroups H ⊆ G, respectively. Then there are maps

{N : K} Φ−→←−
Ψ
{G : 1}

defined by
Φ(L) = {σ ∈ GN/K

∣∣ σ|L = idL} = GN/L (K ⊆ L ⊆ N)

Ψ(H) = {x ∈ N
∣∣ Hx = x} (H ≤ G),

which reverse inclusion, i.e., they are anti-homomorphisms of lattices.
The main theorem of Galois theory for finite extensions can be stated then as follows.

1.1.1 Theorem Let N/K be a finite Galois extension. Then

(a) [N : K] = #GN/K ;

(b) The maps Φ and Ψ are inverse to each other, i.e, they are anti-isomorphisms of lattices.

(c) If L ∈ {N : K} and Φ(L) = GN/L, then L is normal over K iff GN/L is a normal subgroup of G, in
which case GL|K ∼= GN/K/GN/L.

Let us assume now that the Galois extension N/K is not necessarily finite. The one still has the following

1.1.2 Proposition Ψ ◦ Φ = id{N :K}. In particular Φ is injective and Ψ is surjective.

Proof. If K ⊆ L ⊆ N one certainly has

Ψ(Φ(L)) = Ψ(GN/L) = {x ∈ N
∣∣ GN/Lx = x} ⊃ L.

On the other hand, if x ∈ N and GN/Lx = x, then x is the only conjugate of x, i.e. x ∈ L.

However in the general case Φ and Ψ are not anti-isomorphisms; in other words in the infinite case it
could happen that different subgroups of GN/K have the same fixed field, as the following example shows.

1.1.3 Example Let p be a prime and let K = Fp be the field with p elements. Let ` 6= 2 be a prime number,
and consider the sequence

K = K0 ⊂ K0 ⊂ · · · ,

where Ki is the unique extension of K of degree [Ki : K] = `i. Let

N =

∞⋃
i=1

Ki;

then

Ki = {x ∈ N | xp
`i

− x = 0}.

Let G = GN/K . Consider the Frobenius K-automorphism

ϕ:N → N
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defined by ϕ(x) = xp. Set
H = {ϕn | n ∈ Z}.

We shall prove that (a) H and G have the same fixed field, i.e., Ψ(G) = Ψ(H), and (b) H 6= G, establishing
that Ψ is not injective.

For (a): It suffices to show that Ψ(H) = K. Let x ∈ N with Hx = x; then ϕ(x) = x; so xp = x; hence
x ∈ K.

For (b): We construct a K-automorphism σ of N , which is not in H, in the following way. For each
i = 1, 2 . . . let ki = 1 + `+ · · ·+ `i−1, and consider the K-automorphisms ϕki of N . Since

ϕ
ki+1

|Ki = ϕki|Ki ,

we can defined a K-automorphism
σ:N → N

by setting
σ(x) = ϕki(x), when x ∈ Ki.

Now, if σ ∈ H, say σ = ϕn we would have for each i = 1, 2 . . .

σ|Ki = ϕn|Ki = ϕki|Ki ,

and hence
n ≡ ki (mod `i)

for each i, since GKi/K is the cyclic group generated by ϕ|Ki . Multiplying this by (` − 1) we would obtain
(`− 1)n ≡ −1 (mod `i), for each i, which is impossible if ` 6= 2.

Remark The key idea in the above example is the following: what happens is that the Galois group
GN = GN/Fp is isomorphic to the additive group Z` of the `-adic integers. The Frobenius automorphism ϕ
corresponds to 1 ∈ Z`, so that the group H is carried onto Z ⊆ Z`. The elements of G which are not in H
correspond to the `-adic integers which are not in Z (for instance, in our case σ = 1 + `+ `2 + `3 + · · ·).

1.2 THE KRULL TOPOLOGY

Although the above example shows that Theorem 1.1.1 does not hold for infinite Galois extension, it suggest
a way of modifying the theorem so that it will in fact be valid even in those cases. The map σ of the
example is in a sense approximated by the maps ϕki , since it coincides with ϕki on the subextension Ki

which becomes larger and larger with increasing i, and N =
⋃∞
i=1Ki. This leads to the idea of defining a

topology in G so that in fact σ = limϕki . Then σ would be in the closure of H and once could hope that G
is the closure of H, suggesting a correspondence of the intermediate fields of N/K and the closed subgroups
of G. In fact this is the case as we will see.

Definition 1.2.1 Let N/K be a Galois extension and G = GN/K . The set

S = {GN/L‖L/K finite, normal extension, L ∈ {N : K}}

determines a basis of open neighbourhoods of 1 ∈ G. The topology defined by S is called the Krull
topology of G.

Remarks

1) If N/K is a finite Galois extension, the the Krull topology of GN/K is the discrete topology.

2) Let τ, σ ∈ GN/K . Then τ ∈ σGN/L ⇐⇒ σ−1τ ∈ GN/L ⇐⇒ σ|L = τ|L, i.e., two elements of GN/K
“are near” if they coincide on a large field L.
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1.2.2 Proposition Let N/K be a Galois extension and let G = GN/K . Then G endowed with the Krull
topology is a (i) Hausdorff, (ii) compact, and (iii) totally-disconnected topological group

Proof. For (i): Let Fn denote the set of all finite, normal subextension L/K of N/K. We have⋂
U∈S

U =
⋂

L/K∈Fn

GN/L = 1,

since
N =

⋃
L/K∈Fn

L.

Then, σ, τ ∈ G, σ 6= τ ⇒ σ−1τ 6= 1⇒ ∃U0 ∈ S such that σ−1τ /∈ U0 ⇒ τ /∈ σU0 ⇒ τU0 ∩ σU0 = ∅.
For (ii): Consider the homomorphism

h:G→
∏

L/K∈Fn

GL/K = P,

defined by

h(σ) =
∏

L/K∈Fn

σ|L.

(Notice that P is compact since every GL/K is a discrete finite group.)
We shall show that h is an injective continuous mapping, that h(G) is closed in P and that h is an open

map into h(G). This will prove that G is a homeomorphic to the compact space h(G).
Let σ ∈ G with h(σ) = 1; then σ|L = 1, since N =

⋃
L/K∈Fn L. Thus h is injective.

To see that h is continuous consider the composition

G
h−→ P

gL/K−→ GL/K

where gL/K is the canonical projection. It suffices to show that each gL/Kh is continuous; but this is clear
since

(gL/Kh)−1({1}) = GN/L ∈ S.

To prove that h(G) is closed consider the sets ML1/L2
= {pσL ∈ P

∣∣(σL1)|L2
= σL2} defined for each

pair L1/K,L2/K ∈ Fn with N ⊇ L1 ⊇ L2 ⊇ K. Notice that ML1/L2
is closed in P since it is a finite union

of closed subsets, namely, if GL2/K = {f1, f2, . . . , fr} and Si is the set of extensions of fi to L1, then

ML1/L2
=

r⋃
i=1

( ∏
L6=L1,L2
L/K∈Fn

GL/K × Si × {fi}
)
.

On the other hand
h(G) ⊆

⋂
L1⊇L2

ML1/L2
;

and if ∏
L/K∈Fn

σL ∈
⋂

L1⊇L2

ML1/L2

we can define a K-automorphism σ:N → N by σ(x) = σL(x) if x ∈ L; so that h(σ) =
∏
L/K∈Fn σL. I.e.,

h(G) =
⋂

L1⊇L2

ML1/L2
,

and hence h(G) is closed.
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Finally h is open into h(G), since if L/K ∈ Fn,

h(GN/L) = h(G) ∩
( ∏

L′ 6=L
L′/K∈Fn

GL′/K × {1}
)

which is open in h(G).
For (iii): It is enough to prove that the connected component H of 1 is {1}. For each U ∈ S let

UH = U ∩H; then UH 6= ∅ and it is open in H.
Let

VH =
⋃
x∈H
a/∈UH

xUH ;

then VH is open in H, UH ∩ VH = emptyset and H = UH ∩ VH . Hence VH = emptyset; i.e., U ∩H = H for
each U ∈ S. Therefore

H ⊆
⋂
U∈S

U = {1},

so H = {1}.

1.2.3 Proposition Let N/K be a Galois extension. The open subgroups of G = GN/K are just the groups
GN/L, where L/K is a finite subextension of N/K. The closed subgroups are precisely the intersections of
open subgroups.

Proof. Let L/K be a finite subextension of N/K. Choose a finite normal extension L̃ of K such that
N ⊇ L̃ ⊇ L ⊇ K. Then

GN/L̃ ≤ GN/L ≤ G;

so
GN/L =

⋃
σ∈GN/L

σGN/L̃;

i.e., GN/L is the union of open sets and thus open. Conversely, let H be an open subgroup of G; then ∃ a

finite normal extension L̃ with
GN/L̃ ≤ H ≤ G.

Consider the epimorphism
G→ GL̃/K

defined by restriction. Its kernel is GN/L̃. The image of H under this map must be of the form GL̃/L, for

some field L with L̃ ⊇ L ⊇ K, since GL̃/K is the Galois group of a finite Galois extension. Thus

H = {σ ∈ G‖σ|L = idL} = GN/L.

Since open subgroups are closed so is their intersection. Conversely, suppose H is a closed subgroup of
G; clearly

H ⊆
⋂
U∈S

H · U.

On the other hand, let σ
⋂
U∈S H ·U ; then U ∈ S ⇒ σU ∩H 6= ∅; so every neighborhood of σ hits H; hence

σ ∈ H. Thus H is the intersection of the open subgroups H · U , U ∈ S.

We are now in a position to generalize Theorem 1.1.1 to infinite Galois extensions.

1.2.4 Theorem (Krull) Let N/K be a (finite or infinite) Galois extension and let G = GN/K . Let {N : K}
be the lattice of intermediate fields N ⊇ L ⊇ K, and let {G : 1} be the lattice of closed subgroups of G. If
L ∈ {N : K} define

Φ(L) = {σ ∈ G
∣∣ σ|L = idL} = GN/L.
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Then Φ is a lattice anti-isomorphism of {N : K} to {G : 1}. Moreover L ∈ {N : K} is a normal extension
of K iff Φ(L) is a normal subgroup of G; and if this is the case GL/K ∼= G/Φ(L).

Proof. Since Φ(L) = GN/L is compact (Prop. 1.2.2), it is closed in G; so Φ is in fact a map into {G : 1}.
Define

Ψ: {G : 1} → {N : K}

by
Ψ(H) = {x ∈ N

∣∣Hx = x}.

Clearly Proposition 1.1.2 is still valid and we have Ψ ◦ Φ = id{N :K}. Now we prove that Φ ◦Ψ = id{G:1}. If
L/K is finite,

Φ(Ψ(GN/L)) = Φ(Ψ(Φ(L))) = Φ(L) = GN/L.

If H ∈ {G : 1}, then, by Proposition 1.2.3,

H =
⋂
GN/L,

the intersection running through a collection of extensions N/L with L/K finite. Then

Φ(Ψ(H)) = Φ(Ψ(
⋂
GN/L)) = (ΦΨ)(

⋂
Φ(L))) = (ΦΨΦ)(

⋃
L) = Φ(

⋃
L) =

⋂
Φ(L) =

⋂
GN/L = H.

Assume that L is a normal extension of K, and let H = Φ(L). Then σL = L, ∀σ ∈ G; but since
σL = Ψ(σHσ−1), this is equivalent to saying that σHσ−1 =, ∀σ, i.e., that H is normal in G. Conversely,
suppose that H is an invariant subgroup of G, and let Ψ(H) = L. So σL = L, ∀σ ∈ G, i.e., L is the fixed
field of the group of restrictions of the σ ∈ G to L. Thus L/K is Galois and hence normal. Finally, since
every K-automorphism of L can be extended to a K-automorphism of N , the homomorphism

G→ GL/K ,

given by restriction, is onto. The kernel of this homomorphism is Φ(L); thus GL/K ∼= G/Φ(L).

1.3 PROFINITE GROUPS

Let I = (I,�) denote a directed partially ordered set or directed poset , that is, I is a set with a binary
relation � satisfying the following conditions:

(a) i � i, for i ∈ I;

(b) i � j and j � k imply i � k, for i, j, k ∈ I;

(c) i � j and j � i imply i = j, for i, j ∈ I; and

(d) if i, j ∈ I, there exists some k ∈ I such that i, j � k.

An inverse or projective system of topological spaces (respectively, topological groups) over I, consists
of a collection {Xi | i ∈ I} of topological spaces (respectively, topological groups) indexed by I, and a
collection of continuous mappings (respectively, continuous group homomorphisms) ϕij : Xi −→ Xj , defined
whenever i � j, such that the diagrams of the form

Xi
ϕik //

ϕij   A
AA

AA
AA

A Xk

Xj

ϕjk

>>||||||||

commute whenever they are defined, i.e., whenever i, j, k ∈ I and i � j � k. In addition we assume that ϕii
is the identity mapping idXi on Xi. We denote such a system by {Xi, ϕij , I}.
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The inverse limit or projective limit
X = lim←−

i∈I

Xi

of the inverse system {Xi, ϕij , I} is the subspace (respectively, subgroup) X of the direct product∏
i∈I

Xi

of topological spaces (respectively, topological groups) consisting of those tuples (xi) that satisfy the condition
ϕij(xi) = xj if i � j. We assume that X has the topology induced by the product topology of

∏
i∈I Xi. For

each i ∈ I, let
ϕi : X −→ Xi

denote the restriction of the canonical projection
∏
i∈I Xi −→ Xi. Then one easily checks that each ϕi is

continuous (respectively, a continuous homomorphism), and ϕijϕi = ϕj (j ≺ i). The space (respectively,
topological group) X together with the maps (repsectivel, homomorphisms) ϕi satisfy the following universal
property that in fact characterizes (as one easily checks) the inverse limit:

1.3.1 Universal property of inverse limits Suppose Y is another topological space (resp. group) and
ψi : Y → Xi (i ∈ I) are continuous maps (reps. continuous homomorphism) such that ϕijψi = ψj (j ≺ i).
Then there exists a unique continuous map (reps. continuous homomorphisms) ψ : Y → X such that for
each i ∈ I the following diagram

Y

ψi   A
AA

AA
AA

A
ψ // X

ϕi

��
Xi

commutes.

Let C denote a nonempty collection of (isomorphism classes of) finite groups closed under taking sub-
groups, homomorphic images and finite direct products (sometimes we refer to C as a variety of finite groups or
a pseudovariety of finite groups. If in addition one assumes that whenever A,B ∈ C and 1→ A→ G→ B → 1
is an exact sequence of groups, then G ∈ C, we say that C is an extension-closed variety of finite groups .
For example C can be

- (i) The collection of all finite groups;

- (ii) the collection of all finite p-groups (for a fixed prime p);

- (iii) the collection of all finite nilpotent groups.

Note that (i) and (ii) are extension-closed varieties of finite groups, but (iii) is a variety of finite groups
which is not extension-closed.

Let C be a variety of finite groups; and let {Gi, ϕij , I} be an inverse system of groups in C over a directed
poset I; then we say that

G = lim←−
i∈I

Gi

is a pro-C group. If C is as in (i), (ii) or (iii) above, we say that then G is, respectively, a profinite group,
pro-p group or a pronilpotent group.

1.3.2 Examples

(a) The Galois group GN/K of a Galois extension N/K of fields.

(b) Let G be a group. Consider the collection

N = {N /f G | G/N ∈ C}.
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Make N into a directed poset by defining M � N if M ≥ N (M,N ∈ N ). If M,N ∈ N and N � M ,
let ϕNM : G/N −→ G/M be the natural epimorphism. Then

{G/N,ϕNM}

is an inverse system of groups in C, and we say that the pro-C group

GĈ = lim←−
N∈N

G/N

is the pro-C completion of G. In particular we use the terms profinite completion, the pro-p completion,
the pronilpotent completion, etc., in the cases where C consists of all finite groups, all finite p-groups,
all finite nilpotent groups, etc., respectively.
The profinite and pro-p completions of a group of G appear quite frequently, and they will be usually

denoted instead by Ĝ, and Gp̂ respectively.

(c) As a special case of (b), consider the group of integers Z. Its profinite completion is

Ẑ = lim←−
n∈N

Z/nZ.

Following a long tradition in Number Theory, we shall denote the pro-p completion of Z by Zp rather
than Zp̂. So,

Zp = lim←−
n∈N

Z/pnZ.

Observe that both Ẑ and Zp are not only abelian groups, but also they inherit from the finite rings Z/nZ
and Z/pnZ respectively, natural structures of rings. The group (ring) Zp is called the group (ring) of p-adic
integers.

1.3.3 Lemma Let

G = lim←−
i∈I

Gi,

where {Gi, ϕij , I} is an inverse system of finite groups Gi, and let

ϕi : G −→ Gi (i ∈ I)

be the projection homomorphisms. Then

{Si | Si = Ker(ϕi)}

is a fundamental system of open neighborhoods of the identity element 1 in G.

Proof. Consider the family of neighborhoods of 1 in
∏
i∈I Gi of the form

( ∏
i6=i1,...,it

Gi
)
× {1}i1 × · · · × {1}it ,

for any finite collection of indexes i1, . . . , it ∈ I, where {1}i denotes the subset of Gi consisting of the
identity element. Since each Gi is discrete, this family is a fundamental system of neighborhoods of the
identity element of

∏
i∈I Gi. Let i0 ∈ I be such that i0 � i1, . . . , it. Then

G ∩
[( ∏
i6=i0

Gi
)
× {1}i0

]
= G ∩

[( ∏
i 6=i1,...,it

Gi
)
× {1}i1 × · · · × {1}it

]
.
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Therefore the family of neighborhoods of 1 in G, of the form

G ∩
[( ∏
i6=i0

Gi
)
× {1}i0

]
is a fundamental system of open neighborhoods of 1. Finally, observe that

G ∩
[( ∏
i6=i0

Gi
)
× {1}i0

]
= Ker(ϕi0) = Si0 .

1.3.4 Theorem (Topological characterizations of pro-C groups)
The following conditions on a topological group G are equivalent.

(a) G is a pro-C group.

(b) G is compact, Hausdorff, totally disconnected, and for each open normal subgroup U of G, G/U ∈ C.

(c) The identity element 1 of G admits a fundamental system U of open neighborhoods U such that each U
is a normal subgroup of G with G/U ∈ C, and

G = lim←−
U∈U

G/U.

For a formal proof of this theorem, see [RZ], Theorem 2.1.3. For properties of compact totally disconnected
topological spaces, see Chapter 1 of [RZ].

1.4 BASIC PROPERTIES OF PROFINITE GROUPS

NOTATION. If G is topological group, we write H ≤o G (respectively, H ≤c G) to indicate that H is an
open (respectively, closed) subgroup of G

1.4.1 Lemma

(a) Let G be a pro-C group. An open subgroup of G is also closed. If H is a closed subgroup of G, then H
is the intersection of all the open subgroups U containing H.

(b) Let G be a pro-C group. If H be a closed subgroup of G, then H is a pro-C group. If K is a closed
normal subgroup of G, then G/K is a pro-C group.

(c) The direct product
∏
i∈I Gi of any collection {Gj | i ∈ J} of pro-C groups with the product topology is a

pro-C group.

The proof of this lemma is an easy exercise using the characterizations in Theorem 1.3.4. For a formal
proof of this theorem, see [RZ], Propositions 2.1.4 and 2.2.1.

Let ϕ : X −→ Y be an epimorphism of sets. We say that a map σ : Y −→ X is a section of ϕ if
ϕσ = idY . Plainly every epimorphism ϕ of sets admits a section. However, if X and Y are topological spaces
and ϕ is continuous, it is not necessarily true that ϕ admits a continuous section. For example, the natural
epimorphism R −→ R/Z from the group of real numbers to the circle group does not admit a continuous
section. Nevertheless, every epimorphism of profinite groups admits a continuous section, as the following
proposition shows.

1.4.2 Proposition Let K ≤ H be closed subgroups of a pro finite group G . Then there exists a continuous
section

σ:G/H −→ G/K,

such that σ(1H) = 1K.
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Proof. We consider two cases.

Case 1. Assume that K has finite index in H. Then K is open in H, and therefore there exists an open
normal subgroup U of G with U ∩H ≤ K. Let x1 = 1, x2, . . . , xn be representatives of the distinct cosets of
UH in G. Then G/H is the disjoint union of the spaces xiUH/H, i = 1, 2, . . . , n. We will prove that the
maps

pi:xiUK → xiUH/H

i = 1, 2, . . . , n, defined as restrictions of p, are homeomorphisms. Then it will follow that σ =
⋃n
i=1 p

−1
i will

be the desired section. It is plain that pi is a continuous surjection. On the other hand if pi(xiu1) = pi(xiu2),
(u1, u2 ∈ U), then xiu1u

−1
2 x−1i ∈ H. But since U is normal, xiu1u

−1
2 x−1i ∈ U , and hence xiu1u

−1
2 x−1i ∈

H ∩ U ≤ K. Thus xiu1 and xiu2 represent the same element in xiUK, i.e., p is injective. Since xiUK is
compact, p must be a homeomorphism.

Case 2. General case. Let T be the set of pairs (T, t) where T is a closed subgroup of H with K ≤ T ≤ H,
and t:G/H → G/T is a continuous section. Define a partial order in T by (T, t) ≥ (T ′, t′) ⇐⇒ T ≤ T ′ and
the diagram

G/H
t //

t′ ##G
GG

GG
GG

G
G/T

p

��
G/T ′

commutes, where p is the canonical projection. Then T is inductively ordered. For assume {(Tα, tα) | α ∈ A}
is a totally ordered subset of T , and let T =

⋂
α∈A Tα. The surjections G/T → G/Tα induce a surjective

(since G/T is compact) continuous map

ϕ:G/T → lim←−
α

G/Tα,

which is also injective, for

x, y ∈ G, ϕx = ϕy ⇒ xTα = yTα, ∀α ∈ A⇒

x−1y ∈ Tα, ∀α ∈ A⇒ x−1y ∈
⋂
α

Tα = T.

Therefore ϕ is a homeomorphism, since G/T is compact. The sections tα define a continuous map

t:G/H → G/T

which is easily seen to be a section. Moreover, we obviously have (T, t) ≥ (Tα, tα), ∀α ∈ A. Hence T is
inductive. By Zorn’s lemma there is a maximal element in T , say (T̄ , t̄). Then

K ≤ T̄ ≤ H ≤ G.

We will show that T̄ is contained in every open subgroup U containing K. This will imply T̄ = K. Consider
an open subgroup H ≤ U ≤ K. Let S = T̄ ∩ U ; Then S ≤ T̄ and (T̄ : S) <∞. Hence by Case 1, there is a
section

t′:G/T̄ → G/S,

and clearly (S, t′ ◦ t̄) ∈ T with (S, t′ ◦ t̄) ≥ T̄ , t̄). So S = T̄ , and thus T̄ ≤ U .

1.5 PROFINITE GROUPS AS GALOIS GROUPS

Together with Theorem 1.2.4, the following result provides a new characterization of profinite groups.

1.5.1 Theorem (Leptin) Let G be a profinite group. Then there exists a Galois extension of fields K/L
such that G = GK/L.
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Proof. Let F be any field. Denote by T the disjoint union of all the sets G/U , where U runs through the
collection of all open normal subgroups of G. Think of the elements of T as indeterminates, and consider
the field K = F (T ) of all rational functions on the indeterminates in T with coefficients in F . The group G
operates on T in a natural manner: if γ ∈ G and γ′U ∈ G/U , then γ(γ′U) = γγ′U . This in turn induces an
action of G on K as a group of F−automorphisms of K. Put L = KG, the subfield of K consisting of the
elements of K fixed by all the automorphisms γ ∈ G. We shall show that K/L is a Galois extension with
Galois group G.

If k ∈ K, consider the subgroup
Gk = {γ ∈ G | γ(k) = k}

of G. If the indeterminates that appear in the rational expression of k are {ti ∈ G/Ui | i = 1, . . . , n}, then

Gk ⊇
n⋂
i=1

Ui.

Therefore Gk is an open subgroup of G, and hence of finite index. From this we deduce that the orbit of k
under the action of G is finite. Say that {k = k1, k2, . . . , kr} is the orbit of k. Consider the polynomial

f(X) =

r∏
i=1

(X − ki).

Since G transforms this polynomial into itself, its coefficients are in L, that is, f(X) ∈ L[X]. Hence k is
algebraic over L. Moreover, since the roots of f(X) are all different, k is separable over L. Finally, the
extension L(k1, k2, . . . , kr)/L is normal. Hence K is a union of normal extensions over L; thus K/L is a
normal extension. Therefore K/L is a Galois extension. Let H be the Galois group of K/L; then G is a
subgroup of H. To show that G = H, observe first that the inclusion mapping G ↪→ H is continuous, for
assume that U /o H and let KU be the subfield of the elements fixed by U ; then KU/L is a finite Galois
extension by Theorem 1.2.4; say, KU = L(k′1, . . . , k

′
s) for some k′1, . . . , k

′
s ∈ K. Then

G ∩ U ⊇
s⋂
i=1

Gk′
i
.

Therefore G ∩ U is open in G. This shows that G is a closed subgroup of H. Finally, since G and H fix the
same elements of K, it follows from Theorem 1.2.4 that G = H.

1.6 SUPERNATURAL NUMBERS AND SYLOW SUBGROUPS

For a finite group, its ‘order’ is the cardinality of its underlying set; for finite groups the notion of
cardinality provides fundamental information for the group as it is well known. However the cardinality of a
profinite group G does not carry with it much information about the group. One can show that a nonfinite
profinite group is necessarily uncountable (cf. [[RZ], Proposition 2.3.1]). Instead, there is a notion of ‘order’
#G of a profinite group G that we are explaining here which is useful: it provides information about the
finite (continuous) quotients of G.

A supernatural number is a formal product

n =
∏
p

pn(p),

where p runs through the the set of all prime numbers, and where n(p) is a non-negative integer or ∞. By
convention, we say that n <∞, ∞+∞ =∞+ n = n+∞ =∞ for all n ∈ N. If

m =
∏
p

pm(p)
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is another supernatural number, and m(p) ≤ n(p) for each p, then we say that m divides n, and we write
m | n. If

{ni =
∏
p

pn(p,i) | i ∈ I}

is a collection of supernatural numbers, then we define their product, greatest common divisor and least
common multiple in the following natural way

–
∏
I

ni =
∏
p
pn(p), where n(p) =

∑
i

n(p, i);

– gcd{ni}i∈I =
∏
p
pn(p), where n(p) = min

i
{n(p, i)};

– lcm{ni}i∈I =
∏
p
pn(p), where n(p) = max

i
{n(p, i)}.

(Here
∑
i

n(p, i), min
i
{n(p, i)} and max

i
{n(p, i)} have an obvious meaning; note that the results of these

operations can be either non-negative integers or ∞.)
Let G be a profinite group and H a closed subgroup of G. Let U denote the set of all open normal

subgroups of G. We define the index of H in G, to be the supernatural number

[G : H] = lcm{[G/U : HU/U ] | U ∈ U}.

The order #G of G is the supernatural number #G = [G : 1], namely,

#G = lcm{|G/U | | U ∈ U}.

1.6.1 Proposition Let G be a profinite group.

(a) If H ≤c G, then [G : H] is a natural number if and only if H is an open subgroup of G;

(b) If H ≤c G, then
[G : H] = lcm{[G : U ] | H ≤ U ≤o G};

(c) If H ≤c G and U ′ is a fundamental system of neighborhoods of 1 in G consisting of open normal
subgroups, then

[G : H] = lcm{[G/U : HU/U ] | U ∈ U ′};

(d) Let K ≤c H ≤c G. Then
[G : K] = [G : H][H : K];

(e) Let {Hi | i ∈ I} be a family of closed subgroups of G filtered from below. Assume that H =
⋂
i∈I Hi .

Then
[G : H] = lcm{[G : Hi] | i ∈ I};

(f) Let {Gi, ϕij} be a surjective inverse system of profinite groups over a directed poset I. Let G = lim←− i∈IGi.

Then
#G = lcm{#Gi | i ∈ I};

(g) For any collection {Gi | i ∈ I} of profinite groups,

#(
∏
i∈I

Gi) =
∏
i∈I

#Gi.

One can find a formal proof of these properties in [[RZ], Proposition 2.3.2].

If p is a prime number there is then a natural notion of p-Sylow subgroup P of a profinite group G: P
is a pro-p group such that p does not divide [G : P ]. Using the above notion of order for profinite groups,
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we can prove results analogous to the Sylow theorems for finite groups. To do this one uses as a basic tool
the following property of compact Hausdorff spaces.

1.6.2 Proposition Let {Xi, ϕij} be an inverse system of compact Hausdorff nonempty topological spaces Xi

over the directed set I. Then
lim←−
i∈I

Xi

is nonempty. In particular, the inverse limit of an inverse system of nonempty finite sets is nonempty.

Proof. For each j ∈ I, define a subset Yj of
∏
Xi to consist of those (xi) with the property ϕjk(xj) = xk

whenever k � j. Using the axiom of choice, one easily checks that each Yj is a nonempty closed subset of∏
Xi. Observe that if j � j′, then Yj ⊇ Yj′ ; it follows that the collection of subsets {Yj | j ∈ I} has the finite

intersection property (i.e., any intersection of finitely many Yj is nonempty), since the poset I is directed.
Then, one deduces from the compactness of

∏
Xi that

⋂
Yj is nonempty. Since

lim←−
i∈I

Xi =
⋂
j∈I

Yj .

the result follows.

1.6.3 Theorem Let p be a fixed prime number and let

G = lim←−
i∈I

Gi,

be a profinite group, where {Gi, ϕij , I} is a surjective inverse system of finite groups. Then

(a) G contains a p-Sylow subgroup;

(b) Any pro-p subgroup of G is contained in a p-Sylow subgroup;

(c) Any two p-Sylow subgroups of G are conjugate.

Proof.

(a) Let Hi be the set of all p-Sylow subgroups of Gi. Then Hi 6= ∅. Since ϕij : Gi → Gj is an
epimorphism, ϕij(Hi) ⊂ Hj , whenever i � j. Therefore, {Hi, ϕij , I} is an inverse system of nonempty finite
sets. Consequently, according to Proposition 1.6.2,

lim←−
i∈I

H 6= ∅ .

Let (Hi) ∈ lim←− Hi. Then Hi is a p-Sylow subgroup of Gi for each i ∈ I, and {Hi, ϕij , I} is an inverse system

of finite groups. One easily checks that H = lim←− Hi is a p-Sylow subgroup of G, as desired.

(b) Let H be a pro-p subgroup of G. Then, ϕi(H) is a pro-p subgroup of Gi (i ∈ I). Then there is some
p-Sylow subgroup of Gi that contains ϕi(H); so the set

Si = {S | ϕi(H) ≤ S ≤ Gi , S is a p−Sylow subgroup of Gi}
is nonempty. Furthermore, ϕij(Si) ⊆ Sj . Then {Si, ϕij , I} is an inverse system of nonempty finite sets. Let
(Si) ∈ lim←− Si; then {Si, ϕij} is an inverse system of groups. Finally,

H = lim←− ϕi(H) ≤ lim←− Si,

and S = lim←− Si is a p-Sylow subgroup of G.

(c) Let H and K be p-Sylow subgroups of G. Then ϕi(H) and ϕi(K) are p-Sylow subgroups of Gi
(i ∈ I), and so they are conjugate in Gi. Let

Qi = {qi ∈ Gi | q−1i ϕi(H)qi = ϕi(K)}.
Clearly ϕij(Qi) ⊆ Qj (i � j). Therefore, {Qi, ϕij} is an inverse system of nonempty finite sets. Using again
Proposition 1.6.2, let q ∈ lim←− Qi. Then q−1Hq = K, since ϕi(q

−1Hq) = ϕi(K), for each i ∈ I.
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