Winter School on Galois Theory Luxembourg, 15 - 24 February 2012

INTRODUCTION TO PROFINITE GROUPS

Luis Ribes Carleton University, Ottawa, Canada

LECTURE 1

- 1.1 INFINITE GALOIS EXTENSIONS
- 1.2 THE KRULL TOPOLOGY
- 1.3 PROFINITE GROUPS
- 1.4 BASIC PROPERTIES OF PROFINITE GROUPS
- 1.5 PROFINITE GROUPS AS GALOIS GROUPS
- 1.6 SUPERNATURAL NUMBERS AND SYLOW SUBGROUPS

1.1 INFINITE GALOIS EXTENSIONS

Let K be a field and N a Galois extension of K (i.e. algebraic, normal and separable). Let

$$G = G_{N/K} = \{ \sigma \in \operatorname{Aut}(N) \mid \sigma_{|K} = \operatorname{id}_K \}$$

be the Galois group of this extension. Denote by $\{N : K\}$ and $\{G : 1\}$ the lattices of intermediate fields L, $K \subseteq L \subseteq N$, and subgroups $H \subseteq G$, respectively. Then there are maps

$$\{N:K\} \xleftarrow{\Phi} \{G:1\}$$

defined by

$$\Phi(L) = \{ \sigma \in G_{N/K} \mid \sigma_{|L} = \mathrm{id}_L \} = G_{N/L} \quad (K \subseteq L \subseteq N)$$

$$\Psi(H) = \{ x \in N \mid Hx = x \} \quad (H \le G),$$

which reverse inclusion, i.e., they are anti-homomorphisms of lattices.

The main theorem of Galois theory for finite extensions can be stated then as follows.

1.1.1 Theorem Let N/K be a finite Galois extension. Then

i

(a)
$$[N:K] = \#G_{N/K};$$

(b) The maps Φ and Ψ are inverse to each other, i.e. they are anti-isomorphisms of lattices.

(c) If $L \in \{N : K\}$ and $\Phi(L) = G_{N/L}$, then L is normal over K iff $G_{N/L}$ is a normal subgroup of G, in which case $G_{L|K} \cong G_{N/K}/G_{N/L}$.

Let us assume now that the Galois extension N/K is not necessarily finite. The one still has the following

1.1.2 Proposition $\Psi \circ \Phi = id_{\{N:K\}}$. In particular Φ is injective and Ψ is surjective.

Proof. If $K \subseteq L \subseteq N$ one certainly has

$$\Psi(\Phi(L)) = \Psi(G_{N/L}) = \{x \in N \mid G_{N/L}x = x\} \supset L.$$

On the other hand, if $x \in N$ and $G_{N/L}x = x$, then x is the only conjugate of x, i.e. $x \in L$.

However in the general case Φ and Ψ are not anti-isomorphisms; in other words in the infinite case it could happen that different subgroups of $G_{N/K}$ have the same fixed field, as the following example shows.

1.1.3 Example Let p be a prime and let $K = \mathbf{F}_p$ be the field with p elements. Let $\ell \neq 2$ be a prime number, and consider the sequence

$$K = K_0 \subset K_0 \subset \cdots,$$

where K_i is the unique extension of K of degree $[K_i : K] = \ell^i$. Let

$$N = \bigcup_{i=1}^{\infty} K_i;$$

then

$$K_i = \{ x \in N \mid x^{p^{\ell^i}} - x = 0 \}.$$

Let $G = G_{N/K}$. Consider the Frobenius K-automorphism

 $\varphi{:}\,N\to N$

defined by $\varphi(x) = x^p$. Set

$$H = \{\varphi^n \mid n \in \mathbf{Z}\}.$$

We shall prove that (a) H and G have the same fixed field, i.e., $\Psi(G) = \Psi(H)$, and (b) $H \neq G$, establishing that Ψ is not injective.

For (a): It suffices to show that $\Psi(H) = K$. Let $x \in N$ with Hx = x; then $\varphi(x) = x$; so $x^p = x$; hence $x \in K$.

For (b): We construct a K-automorphism σ of N, which is not in H, in the following way. For each i = 1, 2... let $k_i = 1 + \ell + \cdots + \ell^{i-1}$, and consider the K-automorphisms φ^{k_i} of N. Since

$$\varphi_{|K_i}^{k_{i+1}} = \varphi_{|K_i}^{k_i}$$

we can defined a K-automorphism

$$\sigma: N \to N$$

by setting

$$\sigma(x) = \varphi^{k_i}(x), \quad \text{when } x \in K_i$$

Now, if $\sigma \in H$, say $\sigma = \varphi^n$ we would have for each i = 1, 2...

$$\sigma_{|K_i} = \varphi_{|K_i}^n = \varphi_{|K_i}^{k_i},$$

and hence

$$i \equiv k_i \pmod{\ell^i}$$

1

for each *i*, since $G_{K_i/K}$ is the cyclic group generated by $\varphi_{|K_i}$. Multiplying this by $(\ell - 1)$ we would obtain $(\ell - 1)n \equiv -1 \pmod{\ell^i}$, for each *i*, which is impossible if $\ell \neq 2$.

Remark The key idea in the above example is the following: what happens is that the Galois group $G_N = G_{N/\mathbf{F}_p}$ is isomorphic to the additive group \mathbf{Z}_ℓ of the ℓ -adic integers. The Frobenius automorphism φ corresponds to $1 \in \mathbf{Z}_\ell$, so that the group H is carried onto $\mathbf{Z} \subseteq \mathbf{Z}_\ell$. The elements of G which are not in H correspond to the ℓ -adic integers which are not in \mathbf{Z} (for instance, in our case $\sigma = 1 + \ell + \ell^2 + \ell^3 + \cdots$).

1.2 THE KRULL TOPOLOGY

Although the above example shows that Theorem 1.1.1 does not hold for infinite Galois extension, it suggest a way of modifying the theorem so that it will in fact be valid even in those cases. The map σ of the example is in a sense approximated by the maps φ^{k_i} , since it coincides with φ^{k_i} on the subextension K_i which becomes larger and larger with increasing *i*, and $N = \bigcup_{i=1}^{\infty} K_i$. This leads to the idea of defining a topology in *G* so that in fact $\sigma = \lim \varphi^{k_i}$. Then σ would be in the closure of *H* and once could hope that *G* is the closure of *H*, suggesting a correspondence of the intermediate fields of N/K and the closed subgroups of *G*. In fact this is the case as we will see.

Definition 1.2.1 Let N/K be a Galois extension and $G = G_{N/K}$. The set

 $S = \{G_{N/L} || L/K \text{ finite, normal extension, } L \in \{N : K\}\}$

determines a basis of open neighbourhoods of $1 \in G$. The topology defined by S is called the *Krull* topology of G.

Remarks

1) If N/K is a finite Galois extension, the the Krull topology of $G_{N/K}$ is the discrete topology.

2) Let $\tau, \sigma \in G_{N/K}$. Then $\tau \in \sigma G_{N/L} \iff \sigma^{-1} \tau \in G_{N/L} \iff \sigma_{|L} = \tau_{|L}$, i.e., two elements of $G_{N/K}$ "are near" if they coincide on a large field L.

1.2.2 Proposition Let N/K be a Galois extension and let $G = G_{N/K}$. Then G endowed with the Krull topology is a (i) Hausdorff, (ii) compact, and (iii) totally-disconnected topological group

Proof. For (i): Let \mathcal{F}_n denote the set of all finite, normal subextension L/K of N/K. We have

$$\bigcap_{U \in \mathcal{S}} U = \bigcap_{L/K \in \mathcal{F}_n} G_{N/L} = 1$$

since

$$N = \bigcup_{L/K \in \mathcal{F}_n} L.$$

Then, $\sigma, \tau \in G$, $\sigma \neq \tau \Rightarrow \sigma^{-1}\tau \neq 1 \Rightarrow \exists U_0 \in S$ such that $\sigma^{-1}\tau \notin U_0 \Rightarrow \tau \notin \sigma U_0 \Rightarrow \tau U_0 \cap \sigma U_0 = \emptyset$. For (ii): Consider the homomorphism

$$h: G \to \prod_{L/K \in \mathcal{F}_n} G_{L/K} = P$$

defined by

$$h(\sigma) = \prod_{L/K \in \mathcal{F}_n} \sigma_{|L}$$

(Notice that P is compact since every $G_{L/K}$ is a discrete finite group.)

We shall show that h is an injective continuous mapping, that h(G) is closed in P and that h is an open map into h(G). This will prove that G is a homeomorphic to the compact space h(G).

Let $\sigma \in G$ with $h(\sigma) = 1$; then $\sigma_{|L|} = 1$, since $N = \bigcup_{L/K \in \mathcal{F}_n} L$. Thus h is injective.

To see that h is continuous consider the composition

$$G \xrightarrow{h} P \xrightarrow{g_{L/K}} G_{L/K}$$

where $g_{L/K}$ is the canonical projection. It suffices to show that each $g_{L/K}h$ is continuous; but this is clear since

$$(g_{L/K}h)^{-1}(\{1\}) = G_{N/L} \in \mathcal{S}$$

To prove that h(G) is closed consider the sets $M_{L_1/L_2} = \{p\sigma_L \in P | (\sigma_{L_1})|_{L_2} = \sigma_{L_2}\}$ defined for each pair $L_1/K, L_2/K \in \mathcal{F}_n$ with $N \supseteq L_1 \supseteq L_2 \supseteq K$. Notice that M_{L_1/L_2} is closed in P since it is a finite union of closed subsets, namely, if $G_{L_2/K} = \{f_1, f_2, \ldots, f_r\}$ and S_i is the set of extensions of f_i to L_1 , then

$$M_{L_1/L_2} = \bigcup_{i=1}^{\prime} \Big(\prod_{\substack{L \neq L_1, L_2 \\ L/K \in \mathcal{F}_n}} G_{L/K} \times S_i \times \{f_i\} \Big).$$

On the other hand

$$h(G) \subseteq \bigcap_{L_1 \supseteq L_2} M_{L_1/L_2};$$

and if

$$\prod_{L/K\in\mathcal{F}_n}\sigma_L\in\bigcap_{L_1\supseteq L_2}M_{L_1/L_2}$$

we can define a K-automorphism $\sigma: N \to N$ by $\sigma(x) = \sigma_L(x)$ if $x \in L$; so that $h(\sigma) = \prod_{L/K \in \mathcal{F}_n} \sigma_L$. I.e.,

$$h(G) = \bigcap_{L_1 \supseteq L_2} M_{L_1/L_2},$$

and hence h(G) is closed.

Finally h is open into h(G), since if $L/K \in \mathcal{F}_n$,

$$h(G_{N/L}) = h(G) \cap \left(\prod_{\substack{L' \neq L \\ L'/K \in \mathcal{F}_n}} G_{L'/K} \times \{1\}\right)$$

which is open in h(G).

For (iii): It is enough to prove that the connected component H of 1 is $\{1\}$. For each $U \in S$ let $U_H = U \cap H$; then $U_H \neq \emptyset$ and it is open in H. Let

 $V_H = \bigcup_{\substack{x \in H \\ a \notin U_H}} x U_H;$

then V_H is open in H, $U_H \cap V_H = emptyset$ and $H = U_H \cap V_H$. Hence $V_H = emptyset$; i.e., $U \cap H = H$ for each $U \in S$. Therefore

$$H \subseteq \bigcap_{U \in \mathcal{S}} U = \{1\}$$

so $H = \{1\}$.

1.2.3 Proposition Let N/K be a Galois extension. The open subgroups of $G = G_{N/K}$ are just the groups $G_{N/L}$, where L/K is a finite subextension of N/K. The closed subgroups are precisely the intersections of open subgroups.

Proof. Let L/K be a finite subextension of N/K. Choose a finite normal extension \tilde{L} of K such that $N \supseteq \tilde{L} \supseteq L \supseteq K$. Then $G_{N/\tilde{L}} \leq G_{N/L} \leq G;$

 \mathbf{SO}

$$G_{N/L} = \bigcup_{\sigma \in G_{N/L}} \sigma G_{N/\tilde{L}}$$

i.e., $G_{N/L}$ is the union of open sets and thus open. Conversely, let H be an open subgroup of G; then \exists a finite normal extension \tilde{L} with

$$G_{N/\tilde{L}} \le H \le G.$$

Consider the epimorphism

 $G \to G_{\tilde{L}/K}$

defined by restriction. Its kernel is $G_{N/\tilde{L}}$. The image of H under this map must be of the form $G_{\tilde{L}/L}$, for some field L with $\tilde{L} \supseteq L \supseteq K$, since $G_{\tilde{L}/K}$ is the Galois group of a finite Galois extension. Thus

$$H = \{ \sigma \in G \| \sigma_{|L} = \mathrm{id}_L \} = G_{N/L}.$$

Since open subgroups are closed so is their intersection. Conversely, suppose H is a closed subgroup of G; clearly

$$H \subseteq \bigcap_{U \in \mathcal{S}} H \cdot U.$$

On the other hand, let $\sigma \bigcap_{U \in S} H \cdot U$; then $U \in S \Rightarrow \sigma U \cap H \neq \emptyset$; so every neighborhood of σ hits H; hence $\sigma \in H$. Thus H is the intersection of the open subgroups $H \cdot U, U \in S$.

We are now in a position to generalize Theorem 1.1.1 to infinite Galois extensions.

1.2.4 Theorem (Krull) Let N/K be a (finite or infinite) Galois extension and let $G = G_{N/K}$. Let $\{N : K\}$ be the lattice of intermediate fields $N \supseteq L \supseteq K$, and let $\{G : 1\}$ be the lattice of closed subgroups of G. If $L \in \{N : K\}$ define

$$\Phi(L) = \{ \sigma \in G \mid \sigma_{|L} = \mathrm{id}_L \} = G_{N/L}.$$

Then Φ is a lattice anti-isomorphism of $\{N : K\}$ to $\{G : 1\}$. Moreover $L \in \{N : K\}$ is a normal extension of K iff $\Phi(L)$ is a normal subgroup of G; and if this is the case $G_{L/K} \cong G/\Phi(L)$.

Proof. Since $\Phi(L) = G_{N/L}$ is compact (Prop. 1.2.2), it is closed in G; so Φ is in fact a map into $\{G : 1\}$. Define

$$\Psi \colon \{G:1\} \to \{N:K\}$$

by

$$\Psi(H) = \{ x \in N | Hx = x \}.$$

Clearly Proposition 1.1.2 is still valid and we have $\Psi \circ \Phi = id_{\{N:K\}}$. Now we prove that $\Phi \circ \Psi = id_{\{G:1\}}$. If L/K is finite,

$$\Phi(\Psi(G_{N/L})) = \Phi(\Psi(\Phi(L))) = \Phi(L) = G_{N/L}.$$

If $H \in \{G : 1\}$, then, by Proposition 1.2.3,

$$H = \bigcap G_{N/L},$$

the intersection running through a collection of extensions N/L with L/K finite. Then

$$\Phi(\Psi(H)) = \Phi(\Psi(\bigcap G_{N/L})) = (\Phi\Psi)(\bigcap \Phi(L))) = (\Phi\Psi\Phi)(\bigcup L) = \Phi(\bigcup L) = \bigcap \Phi(L) = \bigcap G_{N/L} = H.$$

Assume that L is a normal extension of K, and let $H = \Phi(L)$. Then $\sigma L = L$, $\forall \sigma \in G$; but since $\sigma L = \Psi(\sigma H \sigma^{-1})$, this is equivalent to saying that $\sigma H \sigma^{-1} =$, $\forall \sigma$, i.e., that H is normal in G. Conversely, suppose that H is an invariant subgroup of G, and let $\Psi(H) = L$. So $\sigma L = L$, $\forall \sigma \in G$, i.e., L is the fixed field of the group of restrictions of the $\sigma \in G$ to L. Thus L/K is Galois and hence normal. Finally, since every K-automorphism of L can be extended to a K-automorphism of N, the homomorphism

$$G \to G_{L/K}$$

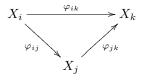
given by restriction, is onto. The kernel of this homomorphism is $\Phi(L)$; thus $G_{L/K} \cong G/\Phi(L)$.

1.3 PROFINITE GROUPS

Let $I = (I, \preceq)$ denote a *directed partially ordered set* or *directed poset*, that is, I is a set with a binary relation \preceq satisfying the following conditions:

- (a) $i \leq i$, for $i \in I$;
- (b) $i \leq j$ and $j \leq k$ imply $i \leq k$, for $i, j, k \in I$;
- (c) $i \leq j$ and $j \leq i$ imply i = j, for $i, j \in I$; and
- (d) if $i, j \in I$, there exists some $k \in I$ such that $i, j \leq k$.

An inverse or projective system of topological spaces (respectively, topological groups) over I, consists of a collection $\{X_i \mid i \in I\}$ of topological spaces (respectively, topological groups) indexed by I, and a collection of continuous mappings (respectively, continuous group homomorphisms) $\varphi_{ij} : X_i \longrightarrow X_j$, defined whenever $i \succeq j$, such that the diagrams of the form



commute whenever they are defined, i.e., whenever $i, j, k \in I$ and $i \succeq j \succeq k$. In addition we assume that φ_{ii} is the identity mapping id_{X_i} on X_i . We denote such a system by $\{X_i, \varphi_{ij}, I\}$.

The inverse limit or projective limit

$$X = \varprojlim_{i \in I} X_i$$

of the inverse system $\{X_i, \varphi_{ij}, I\}$ is the subspace (respectively, subgroup) X of the direct product

of topological spaces (respectively, topological groups) consisting of those tuples
$$(x_i)$$
 that satisfy the condition $\varphi_{ij}(x_i) = x_j$ if $i \succeq j$. We assume that X has the topology induced by the product topology of $\prod_{i \in I} X_i$. For each $i \in I$, let

 $\prod_{i \in I} X_i$

 $\varphi_i : X \longrightarrow X_i$

denote the restriction of the canonical projection $\prod_{i \in I} X_i \longrightarrow X_i$. Then one easily checks that each φ_i is continuous (respectively, a continuous homomorphism), and $\varphi_{ij}\varphi_i = \varphi_j$ $(j \prec i)$. The space (respectively, topological group) X together with the maps (repsectivel, homomorphisms) φ_i satisfy the following universal property that in fact **characterizes** (as one easily checks) the inverse limit:

1.3.1 Universal property of inverse limits Suppose Y is another topological space (resp. group) and $\psi_i : Y \to X_i \ (i \in I)$ are continuous maps (reps. continuous homomorphism) such that $\varphi_{ij}\psi_i = \psi_j \ (j \prec i)$. Then there exists a unique continuous map (reps. continuous homomorphisms) $\psi : Y \to X$ such that for each $i \in I$ the following diagram

commutes.

Let \mathcal{C} denote a nonempty collection of (isomorphism classes of) finite groups closed under taking subgroups, homomorphic images and finite direct products (sometimes we refer to \mathcal{C} as a variety of finite groups or a pseudovariety of finite groups. If in addition one assumes that whenever $A, B \in \mathcal{C}$ and $1 \to A \to G \to B \to 1$ is an exact sequence of groups, then $G \in \mathcal{C}$, we say that \mathcal{C} is an extension-closed variety of finite groups. For example \mathcal{C} can be

- (i) The collection of all finite groups;
- (ii) the collection of all finite p-groups (for a fixed prime p);
- (iii) the collection of all finite nilpotent groups.

Note that (i) and (ii) are extension-closed varieties of finite groups, but (iii) is a variety of finite groups which is not extension-closed.

Let C be a variety of finite groups; and let $\{G_i, \varphi_{ij}, I\}$ be an inverse system of groups in C over a directed poset I; then we say that

$$G = \varprojlim_{i \in I} G_i$$

is a pro-C group. If C is as in (i), (ii) or (iii) above, we say that then G is, respectively, a profinite group, pro-p group or a pronilpotent group.

1.3.2 Examples

- (a) The Galois group $G_{N/K}$ of a Galois extension N/K of fields.
- (b) Let G be a group. Consider the collection

$$\mathcal{N} = \{ N \triangleleft_f G \mid G/N \in \mathcal{C} \}.$$

Make \mathcal{N} into a directed poset by defining $M \preceq N$ if $M \geq N$ $(M, N \in \mathcal{N})$. If $M, N \in \mathcal{N}$ and $N \succeq M$, let $\varphi_{NM} : G/N \longrightarrow G/M$ be the natural epimorphism. Then

$$\{G/N,\varphi_{NM}\}$$

is an inverse system of groups in \mathcal{C} , and we say that the pro- \mathcal{C} group

$$G_{\hat{\mathcal{C}}} = \lim_{N \in \mathcal{N}} G/N$$

is the pro-C completion of G. In particular we use the terms profinite completion, the pro-p completion, the pronilpotent completion, etc., in the cases where C consists of all finite groups, all finite p-groups, all finite nilpotent groups, etc., respectively.

The profinite and pro-*p* completions of a group of *G* appear quite frequently, and they will be usually denoted instead by \hat{G} , and $G_{\hat{p}}$ respectively.

(c) As a special case of (b), consider the group of integers \mathbf{Z} . Its profinite completion is

$$\widehat{\mathbf{Z}} = \varprojlim_{n \in \mathbf{N}} \mathbf{Z}/n\mathbf{Z}$$

Following a long tradition in Number Theory, we shall denote the pro-*p* completion of \mathbf{Z} by \mathbf{Z}_p rather than $\mathbf{Z}_{\hat{p}}$. So,

$$\mathbf{Z}_p = \lim_{\substack{n \in \mathbf{N} \\ n \in \mathbf{N}}} \mathbf{Z}/p^n \mathbf{Z}.$$

Observe that both \mathbf{Z} and \mathbf{Z}_p are not only abelian groups, but also they inherit from the finite rings $\mathbf{Z}/n\mathbf{Z}$ and $\mathbf{Z}/p^n\mathbf{Z}$ respectively, natural structures of rings. The group (ring) \mathbf{Z}_p is called the group (ring) of *p*-adic integers.

1.3.3 Lemma Let

$$G = \varprojlim_{i \in I} G_i,$$

where $\{G_i, \varphi_{ij}, I\}$ is an inverse system of finite groups G_i , and let

$$\varphi_i: G \longrightarrow G_i \quad (i \in I)$$

be the projection homomorphisms. Then

$$\{S_i \mid S_i = \operatorname{Ker}(\varphi_i)\}\$$

is a fundamental system of open neighborhoods of the identity element 1 in G.

Proof. Consider the family of neighborhoods of 1 in $\prod_{i \in I} G_i$ of the form

$$\left(\prod_{i\neq i_1,\ldots,i_t} G_i\right) \times \{1\}_{i_1} \times \cdots \times \{1\}_{i_t},$$

for any finite collection of indexes $i_1, \ldots, i_t \in I$, where $\{1\}_i$ denotes the subset of G_i consisting of the identity element. Since each G_i is discrete, this family is a fundamental system of neighborhoods of the identity element of $\prod_{i \in I} G_i$. Let $i_0 \in I$ be such that $i_0 \succeq i_1, \ldots, i_t$. Then

$$G \cap \left[\left(\prod_{i \neq i_0} G_i\right) \times \{1\}_{i_0} \right] = G \cap \left[\left(\prod_{i \neq i_1, \dots, i_t} G_i\right) \times \{1\}_{i_1} \times \dots \times \{1\}_{i_t} \right].$$

Therefore the family of neighborhoods of 1 in G, of the form

$$G \cap \left[\left(\prod_{i \neq i_0} G_i\right) \times \{1\}_{i_0} \right]$$

is a fundamental system of open neighborhoods of 1. Finally, observe that

$$G \cap \left[\left(\prod_{i \neq i_0} G_i \right) \times \{1\}_{i_0} \right] = \operatorname{Ker}(\varphi_{i_0}) = S_{i_0}.$$

F	

1.3.4 Theorem (Topological characterizations of pro-C groups)

The following conditions on a topological group G are equivalent.

- (a) G is a pro-C group.
- (b) G is compact, Hausdorff, totally disconnected, and for each open normal subgroup U of G, $G/U \in C$.
- (c) The identity element 1 of G admits a fundamental system \mathcal{U} of open neighborhoods U such that each U is a normal subgroup of G with $G/U \in \mathcal{C}$, and

$$G = \lim_{U \in \mathcal{U}} G/U.$$

For a formal proof of this theorem, see [RZ], Theorem 2.1.3. For properties of compact totally disconnected topological spaces, see Chapter 1 of [RZ].

1.4 BASIC PROPERTIES OF PROFINITE GROUPS

NOTATION. If G is topological group, we write $H \leq_o G$ (respectively, $H \leq_c G$) to indicate that H is an open (respectively, closed) subgroup of G

1.4.1 Lemma

- (a) Let G be a pro-C group. An open subgroup of G is also closed. If H is a closed subgroup of G, then H is the intersection of all the open subgroups U containing H.
- (b) Let G be a pro-C group. If H be a closed subgroup of G, then H is a pro-C group. If K is a closed normal subgroup of G, then G/K is a pro-C group.
- (c) The direct product $\prod_{i \in I} G_i$ of any collection $\{G_j \mid i \in J\}$ of pro- \mathcal{C} groups with the product topology is a pro- \mathcal{C} group.

The proof of this lemma is an easy exercise using the characterizations in Theorem 1.3.4. For a formal proof of this theorem, see [RZ], Propositions 2.1.4 and 2.2.1.

Let $\varphi : X \longrightarrow Y$ be an epimorphism of sets. We say that a map $\sigma : Y \longrightarrow X$ is a section of φ if $\varphi \sigma = \operatorname{id}_Y$. Plainly every epimorphism φ of sets admits a section. However, if X and Y are topological spaces and φ is continuous, it is not necessarily true that φ admits a continuous section. For example, the natural epimorphism $\mathbf{R} \longrightarrow \mathbf{R}/\mathbf{Z}$ from the group of real numbers to the circle group does not admit a continuous section. Nevertheless, every epimorphism of profinite groups admits a continuous section, as the following proposition shows.

1.4.2 Proposition Let $K \leq H$ be closed subgroups of a pro finite group G. Then there exists a continuous section

$$\sigma: G/H \longrightarrow G/K,$$

such that $\sigma(1H) = 1K$.

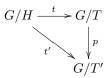
Proof. We consider two cases.

Case 1. Assume that K has finite index in H. Then K is open in H, and therefore there exists an open normal subgroup U of G with $U \cap H \leq K$. Let $x_1 = 1, x_2, \ldots, x_n$ be representatives of the distinct cosets of UH in G. Then G/H is the disjoint union of the spaces x_iUH/H , $i = 1, 2, \ldots, n$. We will prove that the maps

$$p_i: x_i UK \to x_i UH/H$$

 $i = 1, 2, \ldots, n$, defined as restrictions of p, are homeomorphisms. Then it will follow that $\sigma = \bigcup_{i=1}^{n} p_i^{-1}$ will be the desired section. It is plain that p_i is a continuous surjection. On the other hand if $p_i(x_iu_1) = p_i(x_iu_2)$, $(u_1, u_2 \in U)$, then $x_i u_1 u_2^{-1} x_i^{-1} \in H$. But since U is normal, $x_i u_1 u_2^{-1} x_i^{-1} \in U$, and hence $x_i u_1 u_2^{-1} x_i^{-1} \in H \cap U \leq K$. Thus $x_i u_1$ and $x_i u_2$ represent the same element in $x_i UK$, i.e., p is injective. Since $x_i UK$ is compact, p must be a homeomorphism.

Case 2. General case. Let \mathcal{T} be the set of pairs (T, t) where T is a closed subgroup of H with $K \leq T \leq H$, and $t: G/H \to G/T$ is a continuous section. Define a partial order in \mathcal{T} by $(T, t) \geq (T', t') \iff T \leq T'$ and the diagram



commutes, where p is the canonical projection. Then \mathcal{T} is inductively ordered. For assume $\{(T_{\alpha}, t_{\alpha}) \mid \alpha \in A\}$ is a totally ordered subset of \mathcal{T} , and let $T = \bigcap_{\alpha \in A} T_{\alpha}$. The surjections $G/T \to G/T_{\alpha}$ induce a surjective (since G/T is compact) continuous map

$$\varphi: G/T \to \varprojlim_{\alpha} G/T_{\alpha},$$

which is also injective, for

$$x, y \in G, \quad \varphi x = \varphi y \Rightarrow x T_{\alpha} = y T_{\alpha}, \quad \forall \alpha \in A \Rightarrow$$
$$x^{-1}y \in T_{\alpha}, \quad \forall \alpha \in A \Rightarrow x^{-1}y \in \bigcap_{\alpha} T_{\alpha} = T.$$

Therefore φ is a homeomorphism, since G/T is compact. The sections t_{α} define a continuous map

$$t: G/H \to G/T$$

which is easily seen to be a section. Moreover, we obviously have $(T,t) \ge (T_{\alpha}, t_{\alpha}), \forall \alpha \in A$. Hence \mathcal{T} is inductive. By Zorn's lemma there is a maximal element in \mathcal{T} , say $(\overline{T}, \overline{t})$. Then

$$K \leq \overline{T} \leq H \leq G$$
.

We will show that \overline{T} is contained in every open subgroup U containing K. This will imply $\overline{T} = K$. Consider an open subgroup $H \leq U \leq K$. Let $S = \overline{T} \cap U$; Then $S \leq \overline{T}$ and $(\overline{T} : S) < \infty$. Hence by Case 1, there is a section

$$t': G/\overline{T} \to G/S,$$

and clearly $(S, t' \circ \overline{t}) \in \mathcal{T}$ with $(S, t' \circ \overline{t}) \geq \overline{T}, \overline{t}$. So $S = \overline{T}$, and thus $\overline{T} \leq U$.

1.5 PROFINITE GROUPS AS GALOIS GROUPS

Together with Theorem 1.2.4, the following result provides a new characterization of profinite groups.

1.5.1 Theorem (Leptin) Let G be a profinite group. Then there exists a Galois extension of fields K/L such that $G = G_{K/L}$.

Proof. Let F be any field. Denote by T the disjoint union of all the sets G/U, where U runs through the collection of all open normal subgroups of G. Think of the elements of T as indeterminates, and consider the field K = F(T) of all rational functions on the indeterminates in T with coefficients in F. The group G operates on T in a natural manner: if $\gamma \in G$ and $\gamma'U \in G/U$, then $\gamma(\gamma'U) = \gamma\gamma'U$. This in turn induces an action of G on K as a group of F-automorphisms of K. Put $L = K^G$, the subfield of K consisting of the elements of K fixed by all the automorphisms $\gamma \in G$. We shall show that K/L is a Galois extension with Galois group G.

If $k \in K$, consider the subgroup

$$G_k = \{ \gamma \in G \mid \gamma(k) = k \}$$

of G. If the indeterminates that appear in the rational expression of k are $\{t_i \in G/U_i \mid i = 1, \ldots, n\}$, then

$$G_k \supseteq \bigcap_{i=1}^n U_i.$$

Therefore G_k is an open subgroup of G, and hence of finite index. From this we deduce that the orbit of k under the action of G is finite. Say that $\{k = k_1, k_2, \ldots, k_r\}$ is the orbit of k. Consider the polynomial

$$f(X) = \prod_{i=1}^{r} (X - k_i).$$

Since G transforms this polynomial into itself, its coefficients are in L, that is, $f(X) \in L[X]$. Hence k is algebraic over L. Moreover, since the roots of f(X) are all different, k is separable over L. Finally, the extension $L(k_1, k_2, \ldots, k_r)/L$ is normal. Hence K is a union of normal extensions over L; thus K/L is a normal extension. Therefore K/L is a Galois extension. Let H be the Galois group of K/L; then G is a subgroup of H. To show that G = H, observe first that the inclusion mapping $G \hookrightarrow H$ is continuous, for assume that $U \triangleleft_o H$ and let K^U be the subfield of the elements fixed by U; then K^U/L is a finite Galois extension by Theorem 1.2.4; say, $K^U = L(k'_1, \ldots, k'_s)$ for some $k'_1, \ldots, k'_s \in K$. Then

$$G \cap U \supseteq \bigcap_{i=1}^{s} G_{k_i'}.$$

Therefore $G \cap U$ is open in G. This shows that G is a closed subgroup of H. Finally, since G and H fix the same elements of K, it follows from Theorem 1.2.4 that G = H.

1.6 SUPERNATURAL NUMBERS AND SYLOW SUBGROUPS

For a finite group, its 'order' is the cardinality of its underlying set; for finite groups the notion of cardinality provides fundamental information for the group as it is well known. However the cardinality of a profinite group G does not carry with it much information about the group. One can show that a nonfinite profinite group is necessarily uncountable (cf. [[RZ], Proposition 2.3.1]). Instead, there is a notion of 'order' #G of a profinite group G that we are explaining here which is useful: it provides information about the finite (continuous) quotients of G.

A supernatural number is a formal product

$$n = \prod_{p} p^{n(p)},$$

where p runs through the set of all prime numbers, and where n(p) is a non-negative integer or ∞ . By convention, we say that $n < \infty, \infty + \infty = \infty + n = n + \infty = \infty$ for all $n \in \mathbb{N}$. If

$$m = \prod_{p} p^{m(p)}$$

is another supernatural number, and $m(p) \leq n(p)$ for each p, then we say that m divides n, and we write $m \mid n$. If

$$\{n_i = \prod_p p^{n(p,i)} \mid i \in I\}$$

is a collection of supernatural numbers, then we define their product, greatest common divisor and least common multiple in the following natural way

$$-\prod_{I} n_{i} = \prod_{p} p^{n(p)}, \text{ where } n(p) = \sum_{i} n(p,i); - \gcd\{n_{i}\}_{i \in I} = \prod_{p} p^{n(p)}, \text{ where } n(p) = \min_{i} \{n(p,i)\}; - \operatorname{lcm}\{n_{i}\}_{i \in I} = \prod_{p} p^{n(p)}, \text{ where } n(p) = \max_{i} \{n(p,i)\}.$$

(Here $\sum_{i} n(p, i)$, $\min_{i} \{n(p, i)\}$ and $\max_{i} \{n(p, i)\}$ have an obvious meaning; note that the results of these operations can be either non-negative integers or ∞ .)

Let G be a profinite group and H a closed subgroup of G. Let \mathcal{U} denote the set of all open normal subgroups of G. We define the *index* of H in G, to be the supernatural number

$$[G:H] = \operatorname{lcm}\{[G/U:HU/U] \mid U \in \mathcal{U}\}.$$

The order #G of G is the supernatural number #G = [G:1], namely,

$$#G = \operatorname{lcm}\{|G/U| \mid U \in \mathcal{U}\}.$$

1.6.1 Proposition Let G be a profinite group.

- (a) If $H \leq_c G$, then [G:H] is a natural number if and only if H is an open subgroup of G;
- (b) If $H \leq_c G$, then

$$[G:H] = \operatorname{lcm}\{[G:U] \mid H \le U \le_o G\};\$$

(c) If $H \leq_c G$ and \mathcal{U}' is a fundamental system of neighborhoods of 1 in G consisting of open normal subgroups, then

$$[G:H] = \operatorname{lcm}\{[G/U:HU/U] \mid U \in \mathcal{U}'\};$$

(d) Let $K \leq_c H \leq_c G$. Then

$$[G:K] = [G:H][H:K];$$

(e) Let $\{H_i \mid i \in I\}$ be a family of closed subgroups of G filtered from below. Assume that $H = \bigcap_{i \in I} H_i$. Then

$$[G:H] = \operatorname{lcm}\{[G:H_i] \mid i \in I\};\$$

(f) Let $\{G_i, \varphi_{ij}\}$ be a surjective inverse system of profinite groups over a directed poset I. Let $G = \varprojlim_{i \in I} G_i$. Then

$$#G = \operatorname{lcm}\{#G_i \mid i \in I\};$$

(g) For any collection $\{G_i \mid i \in I\}$ of profinite groups,

$$\#(\prod_{i\in I}G_i)=\prod_{i\in I}\#G_i.$$

One can find a formal proof of these properties in [[RZ], Proposition 2.3.2].

If p is a prime number there is then a natural notion of p-Sylow subgroup P of a profinite group G: P is a pro-p group such that p does not divide [G: P]. Using the above notion of order for profinite groups,

we can prove results analogous to the Sylow theorems for finite groups. To do this one uses as a basic tool the following property of compact Hausdorff spaces.

1.6.2 Proposition Let $\{X_i, \varphi_{ij}\}$ be an inverse system of compact Hausdorff nonempty topological spaces X_i over the directed set I. Then

$$\varprojlim_{i \in I} X_i$$

is nonempty. In particular, the inverse limit of an inverse system of nonempty finite sets is nonempty.

Proof. For each $j \in I$, define a subset Y_j of $\prod X_i$ to consist of those (x_i) with the property $\varphi_{jk}(x_j) = x_k$ whenever $k \leq j$. Using the axiom of choice, one easily checks that each Y_j is a nonempty closed subset of $\prod X_i$. Observe that if $j \leq j'$, then $Y_j \supseteq Y_{j'}$; it follows that the collection of subsets $\{Y_j \mid j \in I\}$ has the finite intersection property (i.e., any intersection of finitely many Y_j is nonempty), since the poset I is directed. Then, one deduces from the compactness of $\prod X_i$ that $\bigcap Y_j$ is nonempty. Since

$$\lim_{i \in I} X_i = \bigcap_{j \in I} Y_j$$

the result follows.

1.6.3 Theorem Let p be a fixed prime number and let

$$G = \varprojlim_{i \in I} G_i,$$

be a profinite group, where $\{G_i, \varphi_{ij}, I\}$ is a surjective inverse system of finite groups. Then

(a) G contains a p-Sylow subgroup;

(b) Any pro-p subgroup of G is contained in a p-Sylow subgroup;

(c) Any two p-Sylow subgroups of G are conjugate.

Proof.

(a) Let \mathcal{H}_i be the set of all *p*-Sylow subgroups of G_i . Then $\mathcal{H}_i \neq \emptyset$. Since $\varphi_{ij} : G_i \to G_j$ is an epimorphism, $\varphi_{ij}(\mathcal{H}_i) \subset \mathcal{H}_j$, whenever $i \succeq j$. Therefore, $\{\mathcal{H}_i, \varphi_{ij}, I\}$ is an inverse system of nonempty finite sets. Consequently, according to Proposition 1.6.2,

$$\varprojlim_{i\in I} \mathcal{H} \neq \emptyset \ .$$

Let $(H_i) \in \varprojlim \mathcal{H}_i$. Then H_i is a *p*-Sylow subgroup of G_i for each $i \in I$, and $\{H_i, \varphi_{ij}, I\}$ is an inverse system

of finite groups. One easily checks that $H = \varprojlim H_i$ is a *p*-Sylow subgroup of *G*, as desired.

(b) Let H be a pro-p subgroup of G. Then, $\varphi_i(H)$ is a pro-p subgroup of G_i $(i \in I)$. Then there is some p-Sylow subgroup of G_i that contains $\varphi_i(H)$; so the set

$$S_i = \{S \mid \varphi_i(H) \le S \le G_i, S \text{ is a } p - Sylow subgroup of } G_i\}$$

is nonempty. Furthermore, $\varphi_{ij}(S_i) \subseteq S_j$. Then $\{S_i, \varphi_{ij}, I\}$ is an inverse system of nonempty finite sets. Let $(S_i) \in \lim S_i$; then $\{S_i, \varphi_{ij}\}$ is an inverse system of groups. Finally,

$$H = \underline{\lim} \varphi_i(H) \le \underline{\lim} S_i,$$

and $S = \lim_{i \to \infty} S_i$ is a *p*-Sylow subgroup of *G*.

(c) Let H and K be p-Sylow subgroups of G. Then $\varphi_i(H)$ and $\varphi_i(K)$ are p-Sylow subgroups of G_i $(i \in I)$, and so they are conjugate in G_i . Let

$$Q_i = \{q_i \in G_i \mid q_i^{-1}\varphi_i(H)q_i = \varphi_i(K)\}.$$

Clearly $\varphi_{ij}(Q_i) \subseteq Q_j$ $(i \succeq j)$. Therefore, $\{Q_i, \varphi_{ij}\}$ is an inverse system of nonempty finite sets. Using again Proposition 1.6.2, let $q \in \lim_{i \to \infty} Q_i$. Then $q^{-1}Hq = K$, since $\varphi_i(q^{-1}Hq) = \varphi_i(K)$, for each $i \in I$.