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2.1 GENERATORS OF A PROFINITE GROUP

Let G be a profinite group and let X be a subset of G. We say that X generates G (as a profinite group)
if the abstract subgroup (X) of GG generated by X is dense in G. In that case, we call X a set of generators
of G, and we write G = (X).

We say that a subset X of a profinite group G converges to 1 if every open subgroup U of G contains
all but a finite number of the elements in X. If X generates G and converges to 1, then we say that X is a
set of generators of G converging to 1.

A profinite group is finitely generated if it contains a finite subset X that generates G.

A profinite group G is called procyclic if it contains an element = such that G = (x). Observe that a
profinite group G is procyclic if and only if it is the inverse limit of finite cyclic groups.

Example. Z and Z,, are procyclic groups. If p and g are different prime numbers, then Z, x Z, is procyclic.
On the other hand, Z, x Z, can be generated by two elements, but it is not procyclic.

Remark that if X is a set of generators converging to 1 of a profinite group G, then the topology on X —{1}
induced from G is the discrete topology. If X is infinite, X = X U{1}. If 1 ¢ X and X is infinite, then X
is the one-point compactification of X.

2.1.1 Proposition Every profinite group G admits a set of generators converging to 1.
Proof. Consider the set P of all pairs (IV, X ), where N <. G and Xy C G — N such that
(i) for every open subgroup U of G containing N, Xy — U is a finite set; and

(i) G = (X, N).

Note that these two conditions imply that Xy = {zN | z € Xy} is a set of generators of G/N converging
to 1. Clearly P # (. Define a partial ordering on P by (N, Xy) = (M, Xp) if N > M, Xy C Xy and
Xy — Xn € N. We first check that the hypotheses of Zorn’s Lemma are met. Let {(N;, X;) | i € I} be a
linearly ordered subset of P; put K = (,.; N; and X = [J,c; Xs. We claim that (K, Xx) € P. Clearly

Xk € G — K. Observe that for each i € I, the natural epimorphism ¢; : G/K — G/N; sends Xk onto
X;. Then Xk generates G/K = <h_m ic1G/N;. Hence condition (ii) holds. Finally, we check condition

(i). Let K < U <, G; then there is some ig € I such that U > N;;. So, Xg — U = X,, — U. Therefore,
Xg — U is finite. This proves the claim. One easily verifies that (K, X ) is an upper bound for the chain
{(Ni, X;) | i € I'}; hence (P, <) is an inductive poset. By Zorn’s Lemma, there exists a maximal pair (M, X)
in P. To finish the proof, it suffices to show that M = 1. Assuming otherwise, let U <, G be such that U N M
is a proper subgroup of M. Choose a finite subset T of M — (U N M) such that M = (T,U N M). Clearly,
(UNM,XUJT) € P. Furthermore, (M,X) < (UNM,X UT). This contradicts the maximality of (M, X).
Thus M = 1. D

NOTATION Let G be a profinite group. Then
d(G)

denotes the smallest cardinality of a set of generators of G converging to 1.
wo (@) is the smallest cardinality of a fundamental system of neighbourhoods of 1.

Let X be a profinite space (=inverse limit of finite discrete spaces). Denote by p(X) the the cardinal of
the set of all clopen subsets of X.

2.1.2 Proposition Let G be an infinite profinite group.

(a) If X is an infinite closed set of generators of G, then wo(G) = p(X).
(b) If X is an infinite set of generators of G converging to 1, then | X| = wo(G).
(¢) If d(G) is infinite, wo(G) = d(G).



Proof. See Section 2.6 in [RZ].
2.1.3 Proposition (Hopfian property) Let G be a finitely generated profinite group and let
v:G—G

be a continuous epimorphism. Then ¢ is an tsomorphism.

Proof. We claim that ¢ is an injection. To see this, it is enough to show that Ker(y) is contained in every
open normal subgroup of G. For each natural number n denote by U,, the set of all open normal subgroups
of G of index n. Then U,, is finite. Define

o:U, — U,

to be the function given by ®(U) = ¢~}(U). Clearly ® is injective. Since U,, is finite, ® is bijective. Let U
be an open normal subgroup of G; then U has finite index, say n, in G. Therefore U = ¢~(V) for some
open normal subgroup V, and thus U > Ker(y), as desired. Hence ¢ is an injection. Thus ¢ is a bijection.
Since G is compact, it follows that ¢ is a homeomorphism, and so an isomorphism of profinite groups. D

2.1.4 Proposition (Gaschiitz, Roquette) Let G and H be finitely generated profinite groups and let n be
a natural number with d(G) < n. Let

p:G— H
be a continuous epimorphism and assume that H = (hq,...,hy). Then there exist g1,...,g9, € G such that
G={(g1,...,9n) and p(g;) =h; (i =1,...,n).
Proof.

Case 1. G is finite.
For h = (hy,...,hy) € H X -+ x H with (hy,...,h,) = H, let tg(h) denote the number of n-tuples

g=(g1,-..,gn) EG X -+ xX G

such that (g1,...,9n) = G and ¢(g;) = h; for all i. Let g = (g1,...,9n) € G X --- X G be a tuple such that
©(g;) = h; for all i; then any tuple g’ = (¢4,...,4g,) with ©(g}) = h; (i =1,...,n) must be in

g1Ker(p) x -+ x g, Ker(p).

Hence

ta(h) = [Ker(p)[* = > tr(h),

where the sum is taken over the collection of proper subgroups L of G for which ¢(L) = H.

We have to show that t¢(h) > 1. This is certainly the case for certain types of tuples h, for example,
take h = ¢(g), where g = (g1,...,9n) and g1, ..., gn is a set of generators of G. Therefore the result follows
if we prove the following assertion: ¢ (h) is independent of h. Observe that this assertion holds if G' does
not contain any proper subgroup L with (L) = H, since in this case tg(h) is precisely the total number of
n-tuples g € G x --- x G such that ¢(g) = h, namely |Ker(yp)|". We prove the assertion by induction on
|G|. Assume that it holds for all epimorphisms L — H such that |L| < |G|. Then the above formula shows
that t¢(h) is independent of h.

Case 2. G is infinite.

Let U be the collection of all open normal subgroups of G. For each U € U consider the natural
epimorphism ¢y : G/U — H/p(U) induced by ¢. Then
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For h € H, denote by hY its natural image in H/@(U). Plainly H/o(U) = (h¥,...,hY). Let Xy be the set
of all n-tuples (y1,...,yn) € G/U x --- x G/U such that (y1,...,y,) = G/U and ¢(y;) = hY (i=1,...,n).
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By Case 1, Xy # 0. Clearly the collection {Xy | U € U} is an inverse system of sets in a natural way. It
follows then from Proposition 1.6.2 that there exists some

(91,---,9n) € im Ay CG x -+ xG.

veu
Then it is immediate that ¢(g;) =h; (i =1,...,n) and G = (g1,...,gn)- 0

The following results are characterizations of the value wy(G); they provide useful tools to prove results
by transfinite induction. For proofs of these results can be found in [RZ], Theorem 2.6.4 and Corollary 2.6.6.

2.1.5 Theorem Assume that G is a pro-C group. Let p be an ordinal number, and let |u| denote its cardinal.
Then wo(G) < |p| if and only if there exists a chain of closed normal subgroups Gy of G, indexed by the
ordinals A <

G=Go>G > >G> >G,=1 (1)

such that
(a) Gx/Gxry1 is a group in C;
(b) if X\ is a limit ordinal, then Gy = (), G

v<A TV

Moreover, if G is infinite, u and the chain (x) can be chosen in such a way that

(c) wo(G/Gr) <wo(G) for A < p.

2.1.6 Corollary Let G be a profinite group and let X be a system of generators converging to 1. Then
| X | < RNg if and only if G admits a countable descending chain of open normal subgroups

such that (N;oq Gi = 1, that is, if and only if the identity element 1 of G admits a fundamental system of
neighborhoods consisting of a countable chain of open subgroups.

2.2 FREE PRO-C GROUPS

2.2.1 Definition

Let Y be a set and G a pro-C group. We say that a map p:Y — G is convergent to 1 if every open
normal subgroup of G contains a.e. (almost every, i.e. all but a finite number) p(y), y € Y.

2.2.2 Definition

A pro-C group F' together with a map ¢: Y — F convergent to 1 is called a free pro-C group on the set
Y if it satisfies following universal property: if ¢: Y — G is any map convergent to 1 of Y into a pro-C group
G, then there exists a unique continuous homomorphism @: F' — G such that the diagram

F.-2xq
YA
Y

commutes.

2.2.3 Proposition For every set Y there exists a unique free pro-C group on the set Y. It is denoted Fe(Y).

Proof. (Sketch) If t: A — F and J/: A — F” are free pro-C groups on Y, let ¢: F — F' and ¢': F/ — F be
the unique continuous homomorphisms such that ¢ =" and ¢’t’ = +. Then we must have 1)’ o9 = idr and
Yo’ =idp,. Thus F and F’ are isomorphic, and hence F¢(Y) is unique.
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We shall construct F¢(Y) in the following manner. Let :°: Y — ® be the abstract free group with basis
Y and denote by A the system of all normal subgroups N of F' such that
(1) ®/N €C, and
(2) N contains a.e. \°(y) (y € Y).
Set

Fe(Y) = Jim ®/N.
NeN

The compatible family & — ®/N of homomorphisms defines a homomorphism i: ® — F¢(Y). Its image

is dense in F¢(Y). Take ¢ = i 0. Clearly ¢ is convergent to 1. Now we claim that F¢(Y) is free pro-C on

Y: indeed, suppose G is a pro-C group and let ¢: Y — G be convergent to 1. Let pg: ® — G be the unique
homomorphism such that g o 1% = (.

Y Yoo F(Y)

Nls

G
One checks that ¢ is continuous. It is unique because the image of ¢ is dense. D

2.2.4 Lemma

(a) Let F = F¢(X) be a free pro-C group on a set X converging to 1. If F is also free pro-C on a set'Y
converging to 1, then the bases X and Y have the same cardinality.

(b) Let F be a free pro-C group on a finite set X = {x1,...,z,}. Then, any set of generators {y1,...,yn}
of F with n elements is a basis of F.

Proof.

(a) Say X and Y are two bases of F. If both X and Y are infinite, the result follows from Proposition
2.1.2. Say that X = {x,...,2,} is finite and assume that |Y| > n . We show that this is not possible.
Indeed, choose a subset X' = {z,...,2,,} of Y, and define amap p: Y — F by p(z}) =z; (i=1,...,n)
and pu(y) = 1if y € Y — X’. Since p converges to 1, it extends to a continuous epimorphism f : FF — F;
then, by Proposition 2.1.3, iz is an isomorphism, a contradiction.

(b) Consider the continuous epimorphism ¢ : F' — F' determined by ¢(z;) =y; (i =1,...,n). Then
1) is an isomorphism by Proposition 2.1.3. D

If F = F¢(X) is a free pro-C group on the set X converging to 1. Define the rank of F to be the
cardinality of X. It is denoted by rank(F).

Given a cardinal number m, we denote by F¢(m) or F(m) a free pro-C group (on a set converging to 1)
of rank m.

The next result is clear.

2.2.5 Proposition Let ® be an abstract free group on a finite basis X. Then the pro-C completion ®s of ®
is a free pro-C group on X. In particular, rank(®) = rank(®s).
Examples

(a) The free profinite group of rank 1 is Z. Observe that Z is the free prosolvable (or proabelian, pronilpo-
tent, etc.) group of rank 1, as well.

(b) If p is a prime number, then Z, is the free pro-p group of rank 1.

The following result justifies the apparently artificial definition of free pro-C group that we have given
above: why do we assume that Y converges to 17 [see also the comments at the end of Section 2.5].
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2.2.6 Proposition Fvery pro-C group G is a quotient of a free pro-C group.
This is a consequence of Proposition 2.1.1.

2.3 THE EMBEDDING PROBLEM

2.3.1 Motivation Denote by I’ an algebraic separable closure of a given field F. The Galois group G /F of
the extension F'/F is called the absolute Galois group of F. Let K/F be a Galois extension of fields and let
«: H' — H be a continuous epimorphism of profinite groups. Assume that H = G, p, the Galois group
of K/F. Then there is an epimorphism

SD:GF/F_>H:GK/F

defined by restricting the automorphisms in Gz, to K. One question that arises often in Galois theory
is the following: does there exist a subfield K’ of F' containing K in such a way that H' = G ,r and
the natural epimorphism G/ /p — G/ is precisely a? This is called an embedding problem. A slightly
different way of posing this question is the following: given the diagram

GF/F
i«p
H —% » H= Gk/r

is there a continuous epimorphism ¢; : Gz g H " making the diagram commutative?

This question will be considered by some of my colleagues in this conference. For us it serves as a
motivation for the following definitions.

2.3.2 Definition Let G be a pro-C group.

(a) An embedding problem for G is a diagram of pro-C groups

iw (2)
1 K A—"=B 1

with exact row, where ¢ is a continuous epimorphism of profinite groups.
(b) We say that the embedding problem (2) is ‘solvable’ or that it ‘has a solution’ if there exists a continuous
epimorphism
p:G— A
such that ap = . The above embedding problem is said to be ‘weakly solvable’ or to have a ‘weak
solution’ if there is a continuous homomorphism

p:G— A

such that ap = .
(¢) The kernel of the embedding problem (2) is the group K = Ker(«). We say that the embedding problem
(2) has ‘finite minimal normal kernel” if K is a finite minimal normal subgroup of A.

(d) An infinite pro-C group G is said to have the ‘strong lifting property’ if every embedding problem (2)
with wo(B) < wo(G) and we(A) < wo(G) is solvable.



2.3.3 Lemma Let G be a pro-C group. The following conditions are equivalent.

(a) G has the strong lifting property;
(b) G has the strong lifting property over embedding problems (1) with finite minimal normal kernel.

Proof. The implication (a) = (b) is obvious.

(b) = (a): Suppose G has the strong lifting property over embedding problems (1) with finite minimal
normal kernel and let (1) be an embedding problem with wo(B) < wo(G) and we(A4) < wo(G). It follows
from Theorem 2.1.5 that there exist an ordinal number p and a chain of closed subgroups of K (see diagram
(1))

K=Ky>Ki>--->K\>--->K, =1

such that

i) each K is a normal subgroup of A with K /K1 finite; moreover, K i is maximal in K with
group + ; ) +
respect to these properties;

(ii) if A is a limit ordinal, then K = (1, ., K,; and

(iii) if wo(A) = wo(G) (therefore K is an infinite group and wo(A/K) < wo(A4)), then wo(4/K)) <
wo(A) whenever A < p.

We must prove that there exists an epimorphism ¢ : G — A such that ag = ¢. To do this we show in
fact that for each A < p there exists an epimorphism

QDAZG—)A/KA

such that if \; < X\ the diagram
G

A/Ky ——— A/K,,

commutes, where the horizontal mapping is the natural epimorphism. Then we can take ¢ = ¢,. To show
the existence of py, we proceed by induction (transfinite, if K is infinite) on A. Note that A/Ky = B; so,
put o = . Let A < p and assume that ¢, has been defined for all v < A so that the above conditions are
satisfied. If A is a limit ordinal, observe that since Ky =, K, then

A/Ky = Jim A/K, ;
v

in this case, define @) = (h_m Dy
v<A
If, on the other hand, A = o + 1, we define @) to be a solution to the embedding problem with finite
minimal normal kernel

G
Px i
o
=
1——=K,/Ky—— A/K), A/K, 1

To see that such a solution exists, we have to verify that wo(A/K,) < wo(G) and wo(A/K)y) < wo(G). If
wo(A) < wo(G), these inequalities are clear. On the other hand, if wo(A) = wo(G), we have

wo(A/EKy) = wo(A/Ky) < wo(A) = wo(G),

since K, /K is a finite group and since condition (iii) above holds.
It is clear that in either case ¢, satisfies the required conditions. D
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2.4 CHARACTERIZATION OF FREE PRO-C GROUPS

Here we present two results that characterize free pro-C groups on a set converging to 1 in terms of
embedding problems.

2.4.1 Theorem (Finite rank) Let G be a pro-C group. Assume that d(G) = m is finite. Then, the following
two conditions are equivalent

(a) G is a free pro-C group of rank m;
(b) Every embedding problem of pro-C for G

1 K A2

with d(B) < d(G) and d(A) < d(G), has a solution.
Proof.

(a) = (b) This implication follows immediately from Proposition 2.1.4.

(b) = (a) Consider a free pro-C group F of rank m, and let o : FF — G be a continuous epimorphism. By
(b) there exists an continuous epimorphism ¢ : G — F such that ap = idg. Then ¢ is a monomorphism,
and thus an isomorphism. D

2.4.2 Theorem (Mel’'nikov) Let G be a pro-C group. Assume that d(G) = m is infinite. Then, the
following two conditions are equivalent

(a) G is a free pro-C group on a set converging to 1 of rank m;

(b) G has the strong lifting property.

Proof.

(a) = (b) Let G be a free pro-C group of rank m on the set X converging to 1. Then |X| = wo(G) (see
Proposition 2.1.2). Consider the mbedding problem

1 K A—2>B 1

with wo(B) < wo(G) and we(A4) < wo(G). We must show that there exists a continuous epimorphism
® : G — A such that ap = ¢. According to Lemma 2.3.3 we may assume that K is finite. Put
Xo = X NKer(p). Let U be the collection of all open normal subgroups of B. By our assumptions, || < {.

Observe that, since X converges to 1,

X —Ker(p)| = X = ()¢ ') = | |J X =o' 0)] = .
Uveu veu

Therefore, | Xo| = m. Let Z be a set of generators of K; since Z is finite, we may choose a subset Y of X
such that |Z| = |Y|. By Proposition 1.4.2 there exists a continuous section o : B — A of a. Think of K
as a subgroup of A. Define ¢ : X — A as a map that sends Y to Z bijectively, and such that ¢1 = o
on X —Y. Since X is a set converging to 1 and ¢ and ¢ are continuous, the mapping ¢ converges to 1.
Therefore, 1 extends to a continuous homomorphism @ : G — A with a@g = ¢. Finally note that ¢ is onto
since 1(X) generates A.

(b) = (a) This follows immediately from Corollary 3.5.7 in [RZ]. n
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Combining the theorem above with Lemma 2.3.3, we get the following characterization of free pro-C
groups of infinite countable rank.

2.4.3 Corollary (Iwasawa) Let C be a formation of finite groups and let G be a pro-C group with wo(G) =
No. Then G is a free pro-C group on a countably infinite set converging to 1 if and only if every embedding
problem of pro-C groups of the form

has a solution whenever A is finite.

2.5 FREE PRO-C GROUPS ON PROFINITE SPACES

Let F be the free pro-C on the set Y, as described in Definition 2.2.2, and let ¢ : Y — F be the canonical
map. If the class C contains at least one nontrivial group, it easily follows that ¢ is injective: if x # y in
Y, choose G € C and ¢ : Y — G to be such that ¢(z) # ¢(y). Then the corresponding homomorphism
@ : F — G with ¢v = ¢, forces t(x) # 1(y).

One identifies Y with its image in F', and then the closure Y of Y in F is just X = Y W {1}, the one-
point compactification of the discrete set Y. These considerations motivate the following apparently more
general definition. First some terminology: A pointed topological space (X, x) is a topological space X with
a distinguished point * € X. A profinite group G can be thought of as a pointed space whose distinguished
point is the neutral element 1. A map of pointed spaces is a continuous map that preserves distinguished
points.

2.5.1 Definition

Let (X, ) be a pointed profinite space. A pro-C group F = F(X, %) together with a map : X — F
of pointed spaces is called a free pro-C group on the pointed space (X, x*) if it satisfies following universal
property: if o: X — G is any continuous map of pointed spaces into a pro-C group G, then there exists a
unique continuous homomorphism @: F' — G such that the diagram

F-feq

1A

X

commutes.
We say that (X, ) is a basis for F'.

Note that profinite space X can be thought naturally as a pointed space by adding to it an isolated
point: X WU {x}. Then we denote the corresponding free pro-C group F(X U {x},*) by F(X), which satisfies
an obvious universal property as above, but where the maps are not anymore maps of pointed spaces.

These more general free pro-C groups are often very useful when trying to describe the subgroup structure
of (normal) subgroups of a free pro-C group (see Chapters 3 and 8 in [RZ]) . For example, if F' = F(x,y)
is the free profinite group of rank 2, then the closed normal subgroup of F' generated by x can be easily
described as a free profinite on a space homeomorphic to VA

However F' = F(X,*) can always be described as a free pro-C on a set in the sense of Definition 2.2.2,
although there is no canonical procedure to find a basis converging to 1 for F. See Proposition 3.5.12 and
Theorem 3.5.13 in [RZ].



2.6 OPEN SUBGROUPS OF FREE PRO-C GROUPS

It is well-known that subgroups of abstract free groups are free. In contrast it is obvious that closed
subgroups of a free pro-C group need not be free pro-C in general: for example, Z is free profinite, but its
p-Sylow subgroup Z,, is not. However one has the following general result.

First we recall the concept of Schreier transversal. Let ® = ®(Y") be an an abstract free group on a
basis Y and let A be a subgroup of ®. Let T be a right transversal of A in ® (i.e., a set of representatives of
the right cosets of A in ®). One says that T is a Schreier transversal if it closed under taking prefixes (and
in particular contains the empty word): if y1,...,y, € YUY Land y1---5y; -+ -y, € T is a word in reduced
form, then y; ---y; € T, for all i = 0,...,n — 1. The existence of Schreier transversals is a standard exercise
in Zorn’s Lemma.

In the next result we assume that the variety of finite groups C is ‘closed under extensions’, i.e., if
1—- K — G — H — 1 is an exact sequence of groups and K, H € C, then G € C. For example, C could be
the class of all finite groups, or all finite solvable groups, or, for a fixed prime p, all finite p-groups.

2.6.1 Theorem Open subgroups of free pro-C groups are free pro-C. More precisely, let F' be a free pro-C
group on a profinite pointed space (X, *) and let H be an open subgroup of F. Let ® be the free abstract
group on'Y = X — {x} and let T be a Schreier transversal for H N ® in ®. Define

B = {tx(tx)™' | (t,z) € T x X}.

Then 1 € B, B is a profinite space and H is a free pro-C on the pointed space (B,1).

In [RZ] one can find two different proofs of this theorem. The first one (cf. Section 3.6) depends on
the corresponding result for abstract free groups. The second one (cf. Appendix D.2) is better and more
elementary: it is based on wreath products and it is done from scratch [in fact this method also gives a proof
for the corresponding result in abstract groups: The Nielsen-Schreier theorem].

2.7 FREE PRODUCTS OF PRO-C GROUPS

Let G be a proC group and let {G, | a € A} be a collection of pro-C groups indexed by a set A. For
each a € A, let 1,: G, — G be a continuous homomorphism. One says that the family {¢, | « € A}
is convergent if whenever U is an open neighborhood of 1 in G, then U contains all but a finite number
of the images 1o(Gy). We say that G together with the ¢, is the free pro-C product of the groups G, if
the following universal property is satisfied: whenever {\,: G, — K | @ € A} is a convergent family of
continuous homomorphisms into a pro-C group K, then there exists a unique continuous homomorphism

A:G — K such that

Lo

G,—G

\A
Ao N

K

commutes, for all & € A. One easily sees that if such a free product exists, then the maps ¢, are injections.
We denote such a free pro-C product again by

=] G

acA
Free pro-C products exist and are unique. To construct the free pro-C product G one proceeds as follows: let
Gabs = *aeAGa
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be the free product of the G, as abstract groups. Consider the pro-C topology on G%* determined by the
collection of normal subgroups N of finite index in G such that G*/N € C, N N G, is open in G, for
each a € A, and N > G, for all but finitely many «. Put

G = lim G/N.

N

Then G together with the maps ¢, : G — G is the free pro-C product ng 4 Ga-

If the set A is finite, the ‘convergence’ property of the homomorphisms ¢, is automatic; in that case,
instead of [ ", we use the symbol [].

For such free products, one has the following subgroup theorem

2.7.1 Theorem Let H be an open subgroup of the free pro-C product

=] G

acA

Then, for each « € A, there exists a set D, of representatives of the double cosets H\G /G, such that the
family of inclusions

{uGou™'NH < H|u € Dy,a € A}

converges, and H is the free pro-C product
H = [[Theuep, uGau™ N H| ITF,

where F' is a free pro-C group of finite rank.

In [RZ] one can find two different proofs of this theorem. The first one (cf. Section 9.1) depends on
the corresponding result for abstract free groups. The second one (cf. Appendix D.3) is better and more
elementary: it is based on wreath products and it is done from scratch [in fact this method also gives a
simple proof for the corresponding result in abstract groups: The Kurosh subgroup theorem].
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