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Einleitung

Die vorliegende Diplomarbeit basiert auf der Arbeit [W| und fiihrt deren Hauptresultate aus.
Insbesondere werden erwdhnte Verallgemeinerungen im Detail durchgefiihrt.

Im Rahmen ihrer Vermutungen zu geometrischen Galois-Darstellungen haben Fontaine und
Mazur in [FM] die folgende Vermutung aufgestellt (Conjecture 5a):

(1) Vermutung. Sei k ein Zahlkérper, p eine Primzahl, S eine endliche Menge von Primstellen,
welche keine iber p liegende enthalte, und Gk s die Galois-Gruppe der mazimalen auferhalb S
unverzweigten Erweiterung von k in einem vorgegebenen algebraischen Abschluff k von k.

Ist H ein Quotient von Gk g, und ist H p-adisch analytisch, dann ist H endlich.

Es ist ein bemerkenswerter Umstand, daf sich p-adisch analytische Gruppen rein gruppen-
theoretisch charakterisieren lassen. Es gilt ndmlich folgendes Resultat von Lazard (siehe [DDMS],
Theorem 8.1).

(2) Theorem. Eine topologische Gruppe G hat die Struktur einer p-adischen analytischen Gruppe
genau dann, wenn sie eine offene, endlich erzeugte potenzreiche Untergruppe enthilt.

Eine Pro-p-Gruppe heift im Fall p # 2 potenzreich (engl.: powerful), falls G/GP abelsch ist,
wobei GP den Abschluf des Erzeugnisses der p-ten Potenzen von G bezeichnet. Eine weitere
wichtige Klasse von Pro-p-Gruppen sind die uniformen Gruppen, welche als die endlich erzeugten
torsionsfreien potenzreichen Gruppen definiert werden kénnen. Ab einem gewissen Index sind die
Gruppen der absteigenden p-Zentralreihe einer potenzreichen Gruppe stets uniform.

Eine natiirliche Frage lautet daher:

Gibt es unendliche unverzweigte p-Erweiterungen eines Zahlkorpers, deren Galois-
Gruppe potenzreich bzw. uniform ist?

Man mochte, um sich dem Problem zu ndhern, Zusatzstrukturen ausnutzen kénnen. Daher
ist in [W] der Ansatz gewihlt, CM-Korper zu betrachten. Dies sind total imaginire quadratische
Erweiterungen total reeller Zahlkorper. Sie sind dadurch ausgezeichnet, daf auf ihnen eine Invo-
lution, die kompleze Konjugation, operiert. Diese liefert fiir bestimmte galoissche Erweiterungen
L|k* des total reellen Teilkorpers kT eine Aktion auf G(L|k), welche im Falle einer abelschen
Erweiterung L|k kanonisch ist. In jedem Fall erhélt man jedoch eine kanonische Aktion auf den
Kohomologiegruppen. Diese Aktion ist vertriglich mit allen wichtigen Abbildungen von Koho-
mologiegruppen, insbesondere auch dem Reziprozitdtshomomorphismus der globalen Klassenkor-
pertheorie. Daher kann z. B. die Aktion der Involution auf der Galois-Gruppe der maximalen
unverzweigten abelschen Erweiterung auf der Idealklassengruppe mithilfe der vom CM-Korper
bereitgestellten komplexen Konjugation studiert werden.

Die Ergebnisse dieser Arbeit entstehen dadurch, daff zunichst untersucht wird, welche Ei-
genschaften potenzreiche Gruppen haben, auf denen eine Involution operiert. Diese werden dann
verglichen mit Resultaten der Analyse der kérpertheoretischen Situation.

Ist A eine abelsche Gruppe, auf der eine Involution o operiert, so zerfdllt A in

A=AT® A",
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wobei o auf AT trivial und auf A~ durch oca = —a operiert, vorausgesetzt, daf Multiplikation mit
2 in A ein Automorphismus ist.

Wir fixieren eine Primzahl p # 2. Ist G eine potenzreiche Pro-p-Gruppe, auf der eine Involution
operiert, so haben wir die direkte Zerlegung

G/GP = (G/G")t & (G/GP)™.

So wie wir die F,-Dimension von G/GP als Erzeugendenrang d(G) von G auffassen konnen, kann
die Dimension von (G/GP)* als Erzeugendenrang von (G%)*, bezeichnet mit d(G)*, interpretiert
werden.

Diese Zahlen spielen eine zentrale Rolle in unseren Betrachtungen, denn es gilt nach Satz
(2.2.21)

(Gt -d(G)” <d(G)” + dimp, (H*(G,Qp/Zy)7). (1)

Wir haben sogar Gleichheit, falls G uniform mit endlicher Abelisierung ist.
Es ist ein bekannter Satz, daf

dimg, H*(G,Z/pZ) = r(G)

den Relationenrang von G angibt, falls G eine Pro-p-Gruppe ist. Im Fall uniformer Gruppen l&ft
sich dieser explizit aus dem Erzeugendenrang berechnen:

@- (7). @

Wir zeigen ein Resultat aus [W|, welches besagt, daft sogar stérker gilt (Korollar (2.2.18)):

dimg, H2(G,Z/pZ)* = <d((2;)+> + (d(?_> und (3)
dimp, HX(G,Z/pZ)” = d(G)* - d(G)~. (4)

Daraus schlieftt man z. B., da eine uniforme Gruppe mit endlicher Abelisierung und Erzeu-
gendenrang d(G) < 3 nur die Moglichkeiten

(d(G)T =1und d(G)” =2) oder (d(G)" =3 und d(G)” =0) (5)
zulat (vgl. Satz (2.2.22)).

Es ist von entscheidender Wichtigkeit, dimg, (, H*(G,Q,/Z,)~) zu kennen, um aus (1) Schliis-
se ziehen zu kénnen. Wir werden sehen, daf diese Dimension in vielen Féllen kleiner gleich 1 ist,
woraus sich fiir d(G)* # 1 sofort ergibt, daf nur d(G) < 3 auftreten kann.

Dieses Resultat erhélt man aus dem Dualitétssatz

HY(G,E) = H*(G,Q/7)" fir alle i € Z, (6)
welcher in den beiden folgenden Fillen gilt (vgl. Theoreme (1.2.29) bzw. (1.2.30)):
@

S sei eine (moglicherweise leere) Menge von Primstellen eines Zahlkorpers k.

Lg(p)|k sei die maximale unverzweigte galoissche p-Erweiterung von k, in welcher alle
Stellen aus S voll zerlegt sind.

G := G(Lgs(p)|k) sei die Galois-Gruppe dieser Erweiterung.

E :=Es(Ls(p)) = lim E(K), wobei E(K) := Eg(K) die Gruppe der
Lgs(p)DK Dk, K|k endlich
S-Einheiten einer endlichen galoisschen Korpererweiterung Lg(p) O K D k bezeichnet.



(IT) e S sei eine endliche Menge von Primstellen eines Zahlkorpers k.

In S sei keine iiber p liegende Stelle (deren Menge wir mit S, bezeichnen) enthalten:
Spns=40.

ks(p)|k sei die maximale auferhalb S unverzweigte galoissche p-Erweiterung von k.

G := G(ks(p)|k) sei die Galois-Gruppe dieser Erweiterung.

E(K) = O, ={a €0k |ac L{én”) fiir alle p}, wobei kg(p) D K eine endliche
galoissche Korpererweiterung von k sei. Dabei ist m der Modul Hpesp, und U()

bezeichnet die hoheren Einseinheiten. Fiir deren Definition an unendlichen Stelle siehe
S. 30.

E = O;S(p)vm

= lim E(K), wobei der direkte Limes iiber die in kg(p) enthaltenen
K
endlichen galoisschen Erweiterungen von k lduft.

Liegt ein CM-Korper zugrunde, so ist diese Dualitét kompatibel mit der Aktion der komplexen
Konjugation. Im Fall (I) fordern wir zusétzlich, daR keine Primstelle aus S in der Erweiterung
k|kT zerfalle.

Aus dem Dualitdtssatz werden wir eine Surjektion

ulk)/p 2 (E(K)/p)” — (H*(G,Qp/Zy)7)" (7)

(u(k) sind die in k enthaltenen Einheitswurzeln) schliefen kénnen, welche sofort die behauptete
Dimensionsbeschriankung liefert.

Die benutzte Kohomologie ist die Tate-Kohomologie, welche zunéchst fiir endliche Gruppen
definiert ist. Man definiert im Fall proendlicher Gruppen die H*(G, A) als die gewdhnliche Koho-
mologie fiir ¢ > 0. Fiir ¢ < 0 setzt man

H'(G,A) = lm H(G/U,AY), (8)
U <G offen

wobei der projektive Limes via den Deflationen zu bilden ist.

Auf diese Weise erhélt man keinen kohomologischen Funktor. Man bekommt dennoch eine
proendliche Version des Satzes von Nakayama-Tate und des Dualitétssatzes von Poitou, was in
der Arbeit [S] studiert wurde. Wir benétigen jedoch nur die Verallgemeinerung des Satzes von
Nakayama-Tate, denn dieser liefert im Zusammenspiel mit dem Reziprozitdtshomomorphismus
und dem Hauptidealsatz den Dualitédtssatz (6).

Um die Gemeinsamkeiten der Félle (I) und (II) herauszustellen, haben wir den Dualitétssatz
zundchst in der Sprache der abstrakten Klassenkdrpertheorie bewiesen und schliefslich auf die
konkreten Situationen angewendet.

Fiir die Idealklassengruppe von CM-Korpern gilt, falls p, C k gegeben ist, der Leopoldtsche
Spiegelungssatz:

d(Cly) T < 1+d(Cly)~. (9)

Dieses Ergebnis laft sich einfach auf die Félle (I) und (II) verallgemeinern. Wir werden den Satz
benutzen, um zu schliefen, daf d(Cl;)~ ungleich Null ist.

Die zusammengestellten Resultate fiihren auf folgendes Theorem, das Hauptergebnis dieser
Arbeit. Es stellt eine Verallgemeinerung der Resultate der Arbeit [W] dar, in der nur unverzweigte
Erweiterungen betrachtet werden.



(3) Theorem. Sei p eine ungerade Primzahl, sei k|k* ein CM-Korper, der die p-ten Einheits-
wurzeln enthdlt, und sei (1(k)(p) = pps (k) die Gruppe der Einheitswurzeln von p-Potenzordnung
in k. In den Situationen

(I) S sei eine beliebige Stellenmenge von k* mit der Eigenschaft, daff keine Primstelle in der
Erweiterung k|k™ zerfillt, und G = G(Ls(p)|k) sei die Galois-Gruppe der mazimalen ga-
loisschen p-Erweiterung von k, in der alle Stellen von S wvoll zerlegt sind.

(II) S sei eine endliche Stellenmenge von k™ mit S, NS = 0, und G = G(ks(p)|k) sei die
Galois-Gruppe der mazimalen auferhalb von S unverzweigten galoisschen p-Erweiterung
von k.

gilt:
Ist G potenzreich, dann ist G endlich oder d(G)" = 1.
Ist d(G)" =1 und gilt

im Fall (I): k(pyst1)|k ist nicht unverzweigt und in S voll zerlegt,
im Fall (I): k(pps+1)|k dst nicht unverzweigt auferhalb S und pup(k) C O

dann ist G nicht uniform.

Im Folgenden werden wir noch auf die Struktur der Arbeit ndher eingehen.

Die Arbeit gliedert sich in zwei Kapitel. Im ersten werden wir die beiden benétigten Versionen
des Dualitdtssatzes beweisen. Dazu werden wir im ersten Abschnitt zunéchst eine Version in der
Sprache der abstrakten Klassenkorpertheorie herleiten, und diese dann im zweiten Abschnitt auf
die konkreten Situationen anwenden.

Den ersten Abschnitt beginnen wir mit einer detaillierten Einfiihrung der Tate-Kohomologie.
Danach werden wir wichtige Begriffe der abstrakten Klassenkérpertheorie und die Pontrjagin-
sche Dualitatstheorie erwdhnen. In einem ldngeren Teilabschnitt widmen wir uns dann diversen
Dualitétssédtzen. U. a. wird der Satz von Nakayama-Tate fiir endliche und proendliche Gruppen
bewiesen. Die Ergebnisse dieses Teilabschnittes fliefen danach ein in einen Kurziiberblick iiber die
abstrakte Klassenkorpertheorie. Schliefslich wird der fiir die Arbeit zentrale abstrakte Dualitéts-
satz formuliert und bewiesen.

Den zweiten Abschnitt beginnen wir mit einer Einfiihrung der Sprache der globalen Klassen-
korpertheorie, wie wir sie benotigen werden. Danach leiten wir zwei exakte Sequenzen her, auf
denen die Dualitiitssitze beruhen. Anschliefend geben wir einen Uberblick iiber die Hauptsitze
der globalen Klassenkdrpertheorie. Im darauf folgenden Teilabschnitt analysieren wir die Situa-
tionen (I) und (II) genauer. Daraufhin gehen wir auf Versionen des Hauptidealsatzes in beiden
Fallen ein, denn dieser ist ein wichtiger Bestandteil des fiir die Arbeit zentralen Dualitétssatzes.
Letzteren beweisen wir in beiden Fillen in den letzten beiden Teilabschnitten.

Das zweite Kapitel beschéftigt sich mit Galois-Gruppen von CM-Kérpern. Im ersten Abschnitt
werden wir Pro-p-Gruppen untersuchen, insbesondere potenzreiche Gruppen. Dazu werden wir
zunéchst Erzeuger und Relationen, sowie deren kohomologische Interpretation betrachten, dann
auf Filtrierungen eingehen, welche fiir die danach zusammengefafste Theorie der potenzreichen
und uniformen Gruppen benétigt werden.

Daraufhin werden im zweiten Abschnitt gruppentheoretische Konsequenzen einer Aktion einer
Involution auf einer potenzreichen Gruppe behandelt; und zwar zunéchst im einfachen Fall abel-
scher Gruppen und, nach einem Studium der Aktion auf den Kohomologiegruppen, schlieklich fiir
Pro-p-Gruppen und potenzreiche Gruppen.

Im dritten Abschnitt werden wir auf die kdérpertheoretische Situation eingehen, indem wir
CM-Korper, ihre Kohomologietheorie und ihre Ideal- und Strahlklassengruppen ndher betrachten.

Schlieflich werden wir im vierten Abschnitt die Hauptresultate herleiten.

Einen herzlichen Dank mochte ich Herrn Wingberg aussprechen, der fiir meine Fragen stets
ein offenes Ohr und gute Antworten hatte.
Ich danke auch Otmar Venjakob, Denis Vogel und Markus Fenn fiir niitzliche Diskussionen.
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I. Ein Dualitatssatz

1.1. Ein abstrakter Dualitatssatz

In [W] ist ein Dualitdtssatz fiir Tate-Kohomologiegruppen von Galois-Gruppen bestimmter Er-
weiterungen der Ausgangspunkt fiir die Ergebnisse zur Fontaine-Mazur-Vermutung. In diesem
Abschnitt werden wir uns von den konkreten Vorgaben l6sen und eine abstrakte Version des
Dualitéitssatzes beweisen, die eine Ubertragung auf eine leicht modifizierte Situation ermdglicht.

1.1.1. Tate-Kohomologie

Wir wollen kurz die grundlegenden Definitionen und Sitze iber Homologie und Kohomologie von
Gruppen zusammenfassen und die Tate-Kohomologie definieren, die im Zentrum unseres Interesses
steht.

Vorbereitungen zur Homologie und Kohomologie

Sei G eine Gruppe (moglicherweise unendlich und ohne Topologie). Zunéchst wenden wir unser
Augenmerk den G-Moduln zu. Seien A, B zwei G-Moduln (wenn nichts anderes explizit gefordert
ist, wollen wir darunter immer Linksmoduln verstehen). Dann sind A ®z B und Hom(A, B) G-
Moduln unter den Aktionen

g(a®b) :=ga®gb bzw. (9.0)(a):= g.(¢(g" " .a)).

Z wollen wir stets mit der trivialen G-Aktion von rechts und von links versehen. Wir wollen ferner
A®gz) B erkldren, wofiir wir auch A®¢ B schreiben werden. Dazu fassen wir 4 auf als Rechtsmodul
mit a.g := g~ '.a. Per Definition gilt also a.g®gb = a®gg.b bzw. g.a®cg.b = a.g7 ' ®gg.b = a®ab.
In Verallgemeinerung der oben erkldrten Aktion erhalten wir daher einen trivialen G-Modul.
Wir definieren als I = (s — 1|s € G) den Kern der Augmentation ¢ : Z|G] — Z,g — 1. Die
Abbildung
ZRgA— AllIgA=: Ag, nQ®ga— na+ IgA

ist ein Isomorphismus. Damit ist Ag der grofite Faktormodul von A, auf dem G trivial operiert.
Ein weiterer Isomorphismus ist gegeben durch

A®GB—>(A®ZB)G, a®Gb»—>(a®Zb)+Ig(A®ZB).
Ferner bemerken wir, daf
Homg(A,B) := {f € Hom(A, B) | g.f(a) = f(g.a) Va € A} = (Hom(A, B))“

und speziell A = Homg(Z, A) gilt.
Wir betrachten die Standardauflosung F(G)e von Z iiber Z[G]|

IR - (e) PR le2) QPUC

0 7 «—— F(Q)o :=Z[G]



wobel wir definieren:
n

O 1= (—1)idi und  d;i(go,---9n) := (905 Gis- -+ Gn)-
=0

Setzen wir h, = gr__ll Jr, so erhalten wir die Identitét
(90,91,92, -, 9n) = go-(1, ha, haha, ... hiha .. hy) =t go.[halhal. . hal.

Die Symbole [h1|ha]|...|hy] mit beliebigen h; € G bilden somit eine Z[G]-Basis von F(G),,, bzw.
F(GQ), = Z|G] ®z (freie abelsche Gruppe auf [hq|ha]...|h,]). Man berechnet die Wirkung von d;
auf dieser Basis zu

halha) . . |l i=0
[h1||hn_1] T =n.

Homologie

Tensorieren wir die Standardauflésung iiber Z[G] mit dem G-Modul A, bzw. tensorieren wir iiber
Z mit A und nehmen den groften G-invarianten Faktormodul, so erhalten wir den Komplex (nach
Komposition der ersten beiden Abbildungen)

0 — Z[G] ®z1q) A — Z[G?] ®zic) A — Z[G®] Qg1 A — ...,

dessen Homologie wir mit H,,(G, A) bezeichnen wollen. Die Elemente von Z[G"] ®z;c A nennen
wir n-Ketten.

H.(G,-) bildet einen positiven homologischen Funktor bzgl. der G-Moduln, d.h. fiir jede kur-
ze exakte Sequenz 0 — A — B — C — 0 von G-Moduln gibt es fiir jedes n einen Ver-
bindungshomomorphismus (der nicht eindeutig sein muf, aber natiirlich gewahlt werden kann)
On : Hot1(G,C) — Hy(G, A), so dab gelten:

(i) Fiir jedes kommutative Diagramm

0 A B C 0
N
0 A B e 0

mit exakten Zeilen kommutiert das folgende Diagramm:

on

Hn+1(G7 C) - Hn(Gv A)

Hn+1(h)l .00 |

Hpi(G,C) =22 HL,(G, A

(ii) Fiir jede kurze exakte Sequenz 0 — A — B — C' — 0 ist die folgende Sequenz (die lange
ezakte Sequenz) fiir alle n exakt:

H, (G, B) — Ho(G,A) " — Hyy1(G.C) — Hyia (G, B) = Hyia (G, A)
Die Positivitit bedeutet, dak H, (G, A) fir alle n < 0 trivial ist.

(1.1.1) Lemma. Sei A ein projektiver G-Modul. Dann gelten:
(a) A ist homologisch trivial, d.h. H,(G,A) =0 fir alle n > 0.



(b) Ay ist ebenfalls projektiv als G/U-Modul fiir einen Normalteiler U < G.

Beweis. Fiir (a) siehe z.B. [Br]. Zu (b) sei M — N eine Surjektion zweier G/U-Moduln, und
¢ : Ay — N ein Homomorphismus. Durch G — G/U werden M und N auch zu G-Moduln,
weshalb ein G-Modulhomomorphismus ¢ : A — M existiert. Dieser faktorisiert aber iiber Ay.

O

Wir bemerken noch, daf zu jedem G-Modul A ein freier (und damit projektiver) G-Modul
F existiert zusammen mit einer Surjektion F' — A. Diese Eigenschaft bedeutet, dak H(G,-) ein
(bzgl. der projektiven G-Moduln) effagabler homologischer Funktor ist.

Wir wollen kurz den Verbindungshomomorphismus &y : H;(G,C = B/A) — Hy(G, A) explizit
beschreiben (vgl. [AW]). Ein 1-Zyklus in H1(G, B/A) hat die Form f =3_ [g] ®¢ (bg + A), wobei
die b, fast alle Null sind. Unter der Randabbildung gilt: df = >_ (1 — g 1) (by + A) = 0. Setzen
wir f = > [9] ®c by € Hi(G, B), so gilt folglich df € Ag. Damit erhalten wir die explizite
Beschreibung:

00} _lgl ®c (bg +A)) = (1= g )by + IcA
g g

Man iiberzeugt sich leicht, daf dies unabhéngig ist von der Auswahl der b,.
Sei H < G eine Untergruppe. Wir definieren fiir einen H-Modul

IndfA = Z[G] @z A.

Ist H =1 und X eine abelsche Gruppe, so nennen wir [ nd?X einen induzierten Modul. Es gilt
das Lemma von Shapiro:

H,(G,Ind%A) = H,(H, A) fiir alle n > 0.

Speziell folgt, dak die Homologiegruppen H, (G, Ind{'X) fiir alle n > 1 trivial sind.
Seien ¢ : G — H und 6 : A — B Gruppenhomomorphismen fiir einen G-Modul A und einen
H-Modul B. Das Paar (¢, 0) heilt vertraglich, wenn gilt

0(g.a) = #(g).0(a),

oder dquivalent dazu, wenn 6 ein G-Modulhomorphismus ist, wobei B via ¢ als G-Modul aufgefafst
wird.

(1.1.2) Bemerkung. FEin vertrigliches Paar (¢,0) wie oben induziert eine eindeutige Familie
von Homomorphismen

(¢,0), : Hy(G,A) — H,(H, B)
durch Festlegung auf den Ketten

S0 19a] 86 ag = S 1690l - 8(ga)] @1 8lay),

g g

wobei g das n-Tupel gy,. .., gn bezeichne.

Beweis. Die Vertriglichkeit impliziert § o (¢,0) = (¢,60) o §, weshalb Zykeln in Zykeln und
Rénder in Rénder iiberfiihrt werden. O

Wir wollen dies zur Definition einiger wichtiger Abbildungen verwenden:

e Fiir eine Untergruppe H < G und einen G-Modul A erhalten wir aus der Einbettung H — G
und der Identitdt auf A die Korestriktion

cor: Hy(H,A) — H,(G, A).



e Fiir einen Normalteiler U <1 G haben wir die natiirlichen Projektionen ¢ : G — G/U und
0:A— A/IyA = Ay, welche ein vertrigliches Paar bilden. Dieses liefert die Koinflation

coinf : H,(G,A) — H,(G/U, Ap).

e Sei wiederum H < G eine Untergruppe, A ein G-Modul und ¢ € G. Wir erhalten ein
vertriigliches Paar durch ¢, : H — gHg ', h — ghg~! und 0, : A — A, a > g.a. Dies liefert
Homomorphismen

H,(H,A) — H,(gHg™ ', A).

Fiir einen Normalteiler H <1 G erhélt man so eine G-Aktion auf den Homologiegruppen.

Der folgende Satz liefert u.a. eine natiirliche Vertréglichkeit der so definierten Abbildungen
mit Verbindungshomomorphismen.

(1.1.3) Satz. Sei ¢ : G — H ein Gruppenhomomorphismus und © ein Funktor der G-Moduln in
die H-Moduln, so dafl es zu jedem G-Modul A einen G-Modulhomomorphismus 04 : A — ©A gibt
(d.h. ¢ und 04 sind vertraglich), so daf§ das folgende Diagramm von G-Moduln kommutiert:

A1, o4

7| lew
A eu
Auperdem sei das Bild eines projektiven Moduls unter © projektiv. Dann gelten:

(a) Fiir eine gegebene kurze exakte Sequenz 0 — A — B — C — 0 von G-Moduln sei auflerdem
0— ©(A) - O(B) — ©(C) — 0 exakt. Dann ist das folgende Diagramm abelscher Gruppen
fir alle n > 0 kommutativ, wobei die (¢,0),, die Homomorphismen (¢,0c )y, bzw. (¢,04)n aus

Bemerkung (1.1.2) sind:

on

Hn-l-l(Gv C) HTL(G7A)

w@nﬂl lw@n
Hn+1(H7 @C) L Hn(Hv @A)

(b) Sei der Funktor © nun zusdtzlich exakt. Dann gibt es zu jedem G-Modul A eine eindeutig
bestimmte Familie (¢,©), von Homomorphismen

(¢,0)n, : Hy(G,A) — H,(H,0A),

so daf

(i) (¢,09)0 der Homomorphismus (¢,04)0 aus Bemerkung (1.1.2) ist, und

(i) fir jede kurze exakte Sequenz 0 — A — B — C — 0 von G-Moduln das Diagramm aus
(a) kommutiert.

Eine Familie von Homomorphismen, die die Eigenschaft (ii) des Satzes erfiillt, heift Morphis-
mus homologischer Funktoren.

Beweis. (a) kann man unter Benutzung der expliziten Beschreibung des Verbindungshomo-
morphismus nachrechnen. Wir konzentrieren hier unser Augenmerk auf (b).

Sei 0 = A — B — C — 0 eine exakte Sequenz von G-Moduln, so dafs nach Voraussetzung
0—0(4) % Oe(B) LA O(C) — 0 eine exakte Sequenz von H-Moduln ist.

Im folgenden bedienen wir uns einer Variante der Methode der Dimensionsverschiebung.



Seien {a; | i € I} und {b; | j € J} Erzeugendensysteme von A bzw. B. Wir bezeichnen mit
Fy, Fp und Fg die freien H-Moduln auf den Symbolen I, I U J bzw. J.
Wir betrachten das exakte kommutative Diagramm

0 0 0
0 K4 Fy —2 - A 0
(e}
0 Kp Fp —2— B 0,
8
0 K¢ Fo s C 0
0 0 0

wobei p, o und 7 auf den Symbolen definiert sind durch p : i — a; bzw. 0 : i — «a(a;),j — b; und
75— B(b;). Ka, Kp und K¢ bezeichnen die Kerne dieser Homomorphismen.
Hieraus erhalten wir folgenden Wiirfel (n > 0):

Hy1(G, Kc) ° H, (G, K4)
Hyy2(G, C) = H,(GA) (6O)n
(¢,9)n+1t (6,0)n11
(6:0)nt2 H, 1 (H,0(K)) = H,(H,0(K,))
/7 /
Hyio(H,0(0)) - H,1(H,0(A))

Die linken Verbindungshomomorphismen sind bijektiv, die rechten injektiv und fiir n > 1 sogar
auch bijektiv, da projektive Moduln homologisch trivial sind. Der Deckel und der Boden sind
kommutativ, was eine allgemeine Eigenschaften homologischer Funktoren ist. Die Kommutativitat
der rechten Seitenwand ist als eindeutige Definition von (¢, ©),, fiir n > 1 unter Vorgabe von (i)
und (ii) zu verstehen.

Nun benutzt man, daf (¢,0); : Hi(G,C) — Hi(H,0(C)) wegen der Injektivitidt von &y :
H,(G,C) — Hy(G, K¢) die Einschrankung von (¢,0)o : H1(G, K¢) — H1(H,O(K¢)) ist. Damit
kann man die Kommutativitat von

H\(G,C) ——  Ho(G,A)
wen | |@en

Hy(H,00) —2— Hy(H,0A).

unter Verwendung der expliziten Beschreibung des Verbindungshomomorphismus nachrechnen.
Daher tibertrégt sich die Kommutativitdt der Riickwand auf die Vorderwand, weswegen (ii)
allgemein erfiillt ist. O

Wir kénnen Teil (b) des Satzes auch wie folgt auffassen. DaR projektive Moduln unter ©
auf projektive Moduln abgebildet werden, hat zur Folge, dak der Funktor H,(H,O(-)) effacable
bzgl. der projektiven G-Moduln ist. Der Satz besagt dann, dak ein Morphismus von einem ho-
mologischen Funktor in einen effagablen homologischen Funktor (beide bzgl. derselben abelschen
Kategorie) bereits durch Festlegung in Dimension 0 eindeutig bestimmt ist.



Kohomologie

Nun wenden wir uns der Kohomologie zu. Aus der Standardauflésung erhalten wir durch Anwen-
dung des Funktors Homg(+, A) einen Kokomplex (nach Komposition der ersten beiden Abbildun-

gen)
0 — Homg(Z[G), A) — Homg(Z|G?], A) — Homg(Z|G?], A) — ...,

dessen Kohomologiegruppen wir mit H"(G, A) bezeichnen wollen. Die Elemente aus
C™(G, A) :== Homg(Z]G"], A)
heifsen homogene n-Koketten. In natiirlicher Weise ergibt sich die G-Isomorphie
C™(G,A) = {f:G"" — A Abbildung | f(gg0,---,99n) = 9f (g0, ..., gn) fiir alle g € G}.

Benutzen wir die Beschreibung der Z[G]-Basis der Standardauflésung von S. 4, so erhalten wir
eine natiirliche G-Isomorphie

C™(G, A) = {f : G" — A Abbildung } =: C"(G, A)

zwischen C"(G, A) und der Gruppe der inhomogenen n-Koketten. Die Randabbildungen erscheinen
in beiden Fallen natiirlich in anderer Gestalt.

H"™(G,") ist ein positiver kohomologischer Funktor bzgl. der G-Moduln, worunter wir (“dual”
zum homologischen Funktor) das Folgende verstehen wollen: Fiir jede kurze exakte Sequenz 0 —
A — B — C — 0 von G-Moduln gibt es fiir jedes n einen Verbindungshomomorphismus 6™ :
H"(G,C) — H"(G, A), so daB gelten:

(i) Fiir jedes kommutative Diagramm

0 A B C 0
A
0 A B e 0

mit exakten Zeilen kommutiert das folgende Diagramm:

HY(G,C) -2 H" (G, A)

H"(h)l H"“(f)l
H(G, ") -2 H™ (G, A

(ii) Fiir jede kurze exakte Sequenz 0 — A — B — C — 0 ist die folgende Sequenz (die lange
ezakte Sequenz) fiir alle n exakt:

H"(G, A) — H"(G, B) —» H"(G,C) —~— H"*Y(G, A) — H"™\(G, B).

Die Positivitat bedeutet wiederum, dak die Gruppen H"(G, A) fiir alle n < 0 trivial sind.

H™(G, ) ist coeffagable bzgl. der injektiven G-Moduln, d.h. zu jedem G-Modul A gibt es einen
injektiven Modul I zusammen mit einem Monomorphismus A — I.

Wir wollen auch hier den Verbindungshomomorphismus 6° : HY(G,C) — HY(G, A) fiir 0 —
A — B — C — 0 explizit beschreiben (vgl. [AW]). Sei b+ A € (B/A)¢ = CY. Wir bilden den
1-Kozyklus [g] — ¢.b — b in H'(G,B). Nun ist g.(b + A) — (b + A) = 0 nach Voraussetzung und
daher ist g.b—b € A. Man kann leicht die Unabhéngigkeit von der Auswahl von b nachpriifen und
erhélt die explizite Beschreibung

OB+ A) = (g— g.b—0b).



Wir definieren fiir eine Untergruppe H < G und einen H-Modul A den G-Modul
Coind%(A) :== Hompy(Z[G], A)

und nennen im Spezialfall von H = 1 und einer abelschen Gruppe X den Modul Coind{ (X)
koinduziert. Auch in dieser Situation gibt es das Lemma von Shapiro, welches die Isomorphie

H™(G, Coind%(A)) = H"(H, A) fiir alle n. > 0

besagt. Insbesondere sind die Gruppen H™(G, Coind{ (X) fiir alle n > 1 trivial.
Analog zum homologischen Fall heife fiir einen G-Modul A und einen H-Modul B ein Paar
von Gruppenhomomorphismen ¢ : G — H und 6 : B — A wvertrdglich, wenn gilt

0(¢(g).b) = g.0(b),
bzw. dquivalent dazu, wenn 6 ein G-Modulhomomorphismus ist.

Wir erhalten wie im homologischen Fall die

(1.1.4) Bemerkung. Ein vertragliches Paar (¢,0) wie oben induziert eine eindeutige Familie
von Homomorphismen

(¢,0)" : H"(H,B) — H"(G, A)
durch Festlegung auf den inhomogenen Koketten

fr= gl lgn] = 0(f([0(g1)] - - [@(gn)]))-

Wir wollen auch dies zur Definition einiger wichtiger Abbildungen verwenden:

e Fiir eine Untergruppe H < G und einen G-Modul A erhalten wir aus der Einbettung H — G
und der Identitdt auf A die Restriktion

res: H"(G,A) — H"(H, A).

e Fiir einen Normalteiler U <t G haben wir die natiirliche Projektion ¢ : G — G/U und die
Einbettung © : AV < A, welche ein vertrigliches Paar bilden. Dieses liefert die Inflation

inf : H"(G/U, AY) — H™(G, A).

e Sei wiederum H < G eine Untergruppe, A ein G-Modul und ¢ € G. Wir erhalten ein
vertrégliches Paar durch ¢, : gHg™' — H,ghg™! — h und 0y : A — A,a — g.a. Dieses
liefert Homomorphismen

H"(gHg ', A) — H"(H, A).

Fiir einen Normalteiler H <1 G erhélt man so eine G-Aktion auf den Kohomologiegruppen.

Der folgende Satz liefert u.a. eine natiirliche Vertréglichkeit der so definierten Abbildungen
mit Verbindungshomomorphismen. Er ist das kohomologische Analogon des Satzes (1.1.3).

(1.1.5) Satz. Sei ¢ : G — H ein Gruppenhomomorphismus und © ein Funktor der G-Moduln in
die H-Moduln, so dafl es zu jedem G-Modul A einen G-Modulhomomorphismus 604 : ©A — A g¢ibt
(d.h. ¢ und 04 sind vertraglich), so daf§ das folgende Diagramm von G-Moduln kommutiert:

04 1, 4

@fl lf
04

A —— A
Auflerdem bilde © injektive Objekte auf injektive ab. Dann gelten:



(a) Fiir eine gegebene kurze exakte Sequenz 0 — A — B — C — 0 von G-Moduln sei auferdem
0— 0(A) - ©(B) — ©(C) — 0 exakt. Dann ist das folgende Diagramm abelscher Gruppen
fiir alle n > 0 kommutativ, wobei die (¢, ©)" die Homomorphismen (¢,0c)" bzw. (¢,04)" aus
Bemerkung (1.1.4) sind:

H™(H,0C) —~— H"(H,0A4)

wer | | ey
HYG,0) —— H™YG,A)

(b) Sei der Funktor © nun zusdtzlich exakt. Dann gibt es zu jedem G-Modul A eine eindeutig
bestimmte Familie (¢,©)* von Homomorphismen

(¢,0)" : H"(H,0A) — H"(G, A),
so daf

(i) (¢,0)° der Homomorphismus (¢,04)° aus Bemerkung (1.1.4) ist, und

(i) fiir jede kurze exakte Sequenz 0 — A — B — C' — 0 von G-Moduln das Diagramm aus
(a) kommutiert.

Eine Familie von Homomorphismen, die (ii) erfiillt, nennen wir einen Morphismus kohomolo-
gischer Funktoren.

Homologie und Kohomologie proendlicher Gruppen

Sei G in diesem Abschnitt eine proendliche Gruppe. Seien V' < U offene Normalteiler von G. Wir
definieren die Norm durch
Ny = Y. g€zZ[U/V].
geu/v

N
Wir erhalten durch Anwendung von Ny einen Homomorphismus AV Y

AY | welcher einen
Homomorphismus (A")y — AY induziert. Dieser ist mit der Identitit auf G/U vertriglich.
In Verallgemeinerung dieser Situation betrachten wir eine Familie A(U) von abelschen Grup-

pen fiir offene Normalteiler U < G. Jedes A(U) sei mit einer G/U-Modulstruktur versehen, die

N,
mit der Norm vertréglich sei, d. h. die Homomorphismen G/V — G/U und A(V) LA A(U)
bilden ein vertrégliches Paar. Mittels Definition auf den Ketten (vgl. Bemerkung (1.1.2)) erhalten
wir einen Homomorphismus

fiir alle n € N.
Dies wollen wir benutzen, um die Deflation wie folgt zu erkldren:

def : Ho(G/V,A(V)) 2" H,(G/U, A(V)v) 22 H,(G/U,AU))

Via der Deflation bilden die Gruppen H,(G/U, A(U)) ein projektives System, was man in
Dimension 0 nachrechnet und per Dimensionsverschiebung ausdehnt.

Man stellt fest, daf die Gruppen H"(G/U, AY) fiir einen G-Modul A via der Inflation ein
direktes System bilden, was wiederum auf Dimension 0 klar ist und durch Dimensionsverschiebung
ausgedehnt werden kann. Wir setzen

H"(G,A) = lim H"(G/U, AY).

(Dies sind nicht die vorne definierten H™(G, A).) Alternativ ergeben sich die neu definierten
H™(G, A) als Kohomologie des Komplexes der C"(G, A) bzw. C"(G, A), indem man den G-Modul



A mit der diskreten Topologie versieht und zusétzlich die Stetigkeit aller Abbildungen fordert.
Auf diese Weise verallgemeinert sich auch der Begriff des koinduzierten Moduls zu

Coind%(A) :={f : G — A| f(h.g) = h.f(g) Vh € H, f stetig}.
Die Definition des vertréglichen Paares und der mit seiner Hilfe erhaltenen Abbildungen iibertrégt
sich direkt.
Tate-Kohomologie endlicher Gruppen

In diesem Abschnitt sei die Gruppe G stets endlich. Wir erinnern an bzw. treffen folgende Defini-
tionen:

L NG = deGg € Z[G]a

o I :=ker(e:Z[G] - Z)=(g9—1|g € G) QZ[G),
o ngA=ker(A e, A) fiir einen G-Modul A.
(1.1.6) Lemma. (a) Sei X eine abelsche Gruppe. Dann ist

Hom(Z[G), X) > Z|G] @z X, ¢— Y g®z6(g)
geG

ein G-Isomorphismus, dessen Umkehrabbildung durch h ®z x — (g — xd4) definiert ist,
wobei 641, das Kronecker-Delta sei. Damit fallen die Begriffe des induzierten und koinduzierten
Moduls zusammen.

(b) Sei A = Z|G)] ®z X ein induzierter bzw. koinduzierter G-Modul. Dann gelten A® = NgA,
ngA=IgA, und Ag = A/IgA N6, AG st ein G-Isomorphismus (G operiert trivial).

(c) Sei C ein endlich erzeugter freier G-Modul. Mit C* bezeichnen wir seinen dualen Modul
Hom(C,Z). Die Abbildung

C®z A— Hom(C*,A), c®a— ((f:C—Z) f(c) a)

ist ein G-Isomorphismus.

(d) Fiir zwei Z|G]-Moduln A und C, wobei C' endlich erzeugt und Z|G]-frei sei, erhalten wir die
G-Isomorphie

C @pe A= (C oz A)g 2% (C 0z A)° L Hom(C*, A)C = Homa(C*, A).

Beweis. Fiir (a) und (c) iiberzeugt man sich leicht, da® es sich tatséchlich um G-Homomor-
phismen handelt, und rechnet die Bijektivitdt nach. (d) folgt sofort aus (a)-(c).
Zu (b) sei zunichst a € A®. Da A Z-frei ist, kénnen wir eindeutig

(I:ZS®$S

seG

schreiben mit s € X. Wegen der G-Invarianz gilt

a:ng®x5:ZS®x9_1s,

seG se€G

weshalb die x4 alle gleich sind. Somit ist a = Ng(1 ® z;4) ein Element von NgA.



Desweiteren sei nun a € ngA gegeben, d.h.

0=Nga=Ng» s@z.=3 g® Y s

seG geG seG

so dak > ;s = 0 folgt. Somit ergibt sich

a:Zs@)xS:Zs®x8—21®x8:Z(s—l)(1®x8)EIgA.

seG seG seG seG

Die Isomorphie zwischen Ag und A% folgt aus

Ag = AJIgA = AfngA 2% NoA = AC,

Bezeichne F, die freie Standardauflésung von Z, also
0—>Z<iF0—>F1—>F2—>....

Wir setzen F_,, := F_, fiir n > 1 und erhalten dadurch die Sequenz

e F oy F o F < 70,
welche exakt ist, da die F_,, endlich erzeugte freie Z[G]-Moduln sind. Wir verschmelzen beide
Sequenzen und erhalten folgendes Diagramm, das an jeder Stelle exakt ist

«

K

— F 3 F 5

F_l 0 Fl F2
o
Z _— Z
0 0,
wobei « die Komposition €* o € sei. Aus Teil (d) des Lemmas (1.1.6) lesen wir ab, daf fiir n > 1

Homg(F_,,A) = Homg(F*_l,A) = Fh ®z[q) A

n

gilt. Auferdem haben wir die Isomorphie
7 o Nga G
®zq) A = Ag — A” = Homg(Z, A).

Anwendung des Funktors Homg(-, A) ergibt nun das folgende kommutative Diagramm, dessen
oberste Zeile ein Kokomplex ist:

—— 1 ®@zig) A —— FyQzigp4A —— Homg(Fy,A) —— Homg(F1,A) ——

! I

e R
| T
0 0

Wir definieren die Tate-Kohomologiegruppen H™ fiir n € Z als die Kohomologie der obersten Zeile.
Die Tate-Kohomologie H" (G, -) bildet einen kohomologischen Funktor. Es gilt der



(1.1.7) Satz.

H"(G,A) n>1
AG/NgA n=0
NeA[IGA n=-—1
H_, 1(G,A) n<-=-2

H"(G,A) =

Beweis. Den ersten und letzten Fall liest man direkt aus dem Diagramm ab. Fiir n = 0, -1
ergibt sich das Ergebnis daraus, daf die Pfeile nach unten surjektiv und die nach oben injektiv
sind. O

Es ist iiblich, die Bezeichnung Ho(G,A) :== H (G, A) = n;A/IgA zu wihlen. Trivialerweise
erhalten wir dann die folgende exakte Sequenz abelscher Gruppen:

0 — Ho(G, A) — Ho(G, A) —N9 HO(G, A) — HY(G, A) — 0.
Mittels der expliziten Beschreibung der Verbindungshomomorphismen stellt man fest, daf
Ng -im(8y) = 0 gilt, und daR ¢° iiber NgA faktorisiert. Fiir die Tate-Kohomologie ergeben sich
daraus die Verbindungshomomorphismen

672 H%G,A) — HY(G,A) und &°: H(G,A) — HY(G, A)
auf natiirliche Weise. Die Abbildung
671 neC/IgC — A /NgA
wird (vgl. [AW]) durch Multiplikation mit N¢ induziert (C'= B/A):
6t (b4+A)+15C — Ng-b+ NGA.

Man iiberzeugt sich wiederum leicht von der Wohldefiniertheit.

Teil (b) des Lemmas (1.1.6) besagt nun, da® fiir einen induzierten bzw. koinduzierten G-Modul
A gilt: H(G,A) = H(G,A) = 0. Aus unserem Wissen iiber Homologie und Kohomologie
schliefen wir H™(G, A) = 0 fiir alle n € Z.

Aufgrund der natiirlichen Homomorphismen Homg(Z[G], A) - A und A — Z[G] @z A ist
jeder G-Modul sowohl Faktor- als auch Untermodul eines induzierten bzw. koinduzierten Moduls,
und wir diirfen die Methode der Dimensionsverschiebung in beiden Richtungen benutzen.

Auf diese Weise konnen wir u. a. die Restriktion und die Korestriktion auf alle Dimensionen
n € Z ausdehnen.

Fiir die Homologie hatten wir die Deflation bereits vorne definiert. Es stellt sich heraus, dafs
defo : Ho(G, A) = Ag — Ho(G/U, AY) = (AY)q1s
gerade die Multiplikation mit Ny ist. Wir schliefen daher die Existenz der induzierten Abbildung
def~1: H71(G, A) — HY(G/U, AY).

Wir setzen def "1 := def, fiir n > 0. Es ergibt sich die gewiinschte Vertriglichkeit mit Verbin-
dungshomomorphismen.

Als néchstes mochten wir auch eine Deflation auf Dimension 0 fiir die Tate-Kohomologie
definieren. Dazu erinnern wir uns daran, daf die Verbindungshomomorphismen auf Dimension
—1 im Wesentlichen durch die Norm gegeben sind. Wir betrachten fiir eine exakte Sequenz 0 —
A — B — C — 0 das Diagramm

5C/lcC = A%/NGA

G

def,1l~NU J{

5_
vewCY /gy CY e AG/NG/UAU

‘Ngu



Wenn die rechte Abbildung durch die Identitdt induziert ist, wird das Diagramm offensichtlich
kommutativ. Daher definieren wir def® als diesen Homorphismus.

Wir stellen einige Eigenschaften zusammen. Aus [N-KKT], Satz 7.1, zitieren wir folgenden

(1.1.8) Satz. Ein G-Modul A ist bereits kohomologisch trivial, wenn es eine Dimension n gibt,
derart daf ) R
H"(H,A) = H""(H,A) =0

fir alle Untergruppen H < G gilt.
Aus [NSW], Proposition 1.7.6, entnehmen wir folgenden

(1.1.9) Satz. Seien A und B G-Moduln. Wenn A kohomologisch trivial und B divisibel ist, oder
wenn A Z-frei und B kohomologisch trivial ist, dann ist auch Hom(A, B) kohomologisch trivial.

Der Beweis des folgenden Satzes befindet sich in [AW].
(1.1.10) Satz. (a) Fir jede Untergruppe H < G vom Indez n gilt: coro res = n.
(b) Sei |G| =n, dann gilt nHY(G,A) =0 fiir alle q € Z.

(c) A sei ein endlich erzeugter Z[G)-Modul. Dann sind die Gruppen HY(G,A) fir alle ¢ € Z
endlich.

(d) Sei H<1G ein Normalteiler. Die Inflation-Restriktion-Sequenz
0 — BYG/H, AT ™ gLG, A) T AY(H, A)
ist exakt. Falls ﬁZ(H, A) =0 fir allei=1,...,n —1 gilt, dann ist auch die Sequenz
0 — H™G/H, A"Y ™ ga, A) T A (H, A)
ezakt.

Von besonderer Wichtigkeit fiir uns ist die Existenz des Cupproduktes, da wir an Dualitéts-
aussagen interessiert sind. Dafiir zitieren wir den folgenden Satz aus [N-KKT], 1.5.1:

(1.1.11) Satz. Seien A und B G-Moduln. Es gibt eine eindeutig bestimmte Familie bilinearer
Abbildungen, das Cupprodukt,

U: HP(G,A) x HY(G,A) — H"*1(G, A® B)
fir p,q € Z mit den folgenden Figenschaften:
(i) Fiir p=q =0 ist das Cupprodukt durch die Zuordnung

(@,b) —aUb:=a®b, ac H(G,A), be H(G,B)
gegeben.

11) Sind die G-Modulsequenzen 0 — A — A" — —0und) — AQB — A'QB — A"®QB —
(i) Sind die G-Modul 0—-A—A—-A"—-0und)— A®B - A/®@B — A"®B — 0
beide exakt, so ist das Diagramm

H?(G,A") xHY(G,B) —— HP™(G, A" ® B)
d 3 d
HP (G, A)x H9(G, B) —— HPT(G, A B)

kommutativ.



(111) Sind die G-Modulsequenzen 0 — B — B’ — B” — 0 und 0 - A®B — A®B’ — A@B" — 0
beide exakt, so ist das Diagramm

(@]

HP(G,A) x HYG,B") —— HP(G,A® B")

T ]

H?(G,A) x HYY(G,B) —— HPTTY(G, A B)
kommautativ.

Weiter gilt (vgl. [NSW], Proposition 1.4.5 zusammen mit Remark auf S. 42) der folgende

(1.1.12) Satz. Sei 0 — A — B — C — 0 eine exakte Sequenz von G-Moduln und M ein
weiterer G-Modul, derart daff auch die induzierte Sequenz 0 — Hom(C,M) — Hom(B,M) —
Hom(A, M) — 0 exakt ist. Dann ist fir alle p,q € Z das Diagramm

HP(G,Hom(A,M)) x HYG,A) —— HPT(G M)

] T ol

U

HPTY(G, Hom(C,M)) x HI"YG,C) —— HPT(G, M)
kommutativ, d.h. es gilt
(b)) U B+ (—1)P(aUdB) =0
fiir o € HP(G, Hom(A, M)) und 3 € HT (G, ).

Das im Satz verwendete Cupprodukt ergibt sich aus dem normalen durch folgende Hinterein-
anderschaltung

H{(G, Hom(A, M)) x H""{(G, A) —— H"(G,Hom(A,M)® A) —*— H"(G,M).

Dabei bezeichne ev die Auswertungsabbildung ev(f ® a) := f(a).

Wir wiirden gerne auch ein Cupprodukt, zumindest fiir bestimmte Dimensionen, fiir die noch
zu definierenden Tate-Kohomologiegruppen von proendlichen Gruppen erhalten. Der folgende Satz
aus [S]| (Proposition 3) liefert den Schliissel dazu.

(1.1.13) Satz. Sei G endlich, U <G ein Normalteiler und A, B G-Moduln. Fir i <0 und g > 1
ist das Diagramm

HY(G,A) x H(G,B) —— HIG,A®B)

defl infT infT

HY(G/U,AY) x H™(G/U,BY) —— HYG/U,(A® B))

kommutativ, d.h. es gilt
infldef(z) Uy) =z Uinfly)
fiir € H/(G, A) und y € HI(G/U, BY).

Tate-Kohomologie proendlicher Gruppen

In der Definition der Tate-Kohomologie ging an entscheidender Stelle die Endlichkeit der Grup-
pe G ein. Wir wollen nun unter stérkeren Voraussetzungen eine Ausdehnung auf den Fall einer
proendlichen Gruppe vornehmen. Man vergleiche dazu die Arbeit [S].

Wie schon vorne benutzt, wollen wir unter einem diskreten G-Modul A einen GG-Modul verste-
hen, der eine der beiden dquivalenten Bedingungen erfiillt:



(i) Die Operation G x A — A ist stetig, wenn wir A mit der diskreten Topologie versehen.

(ii)
A= U AY

U<G offen

Wie schon fiir i < —1 vorne bemerkt, bilden die H*(G/U, AV) auch fiir i = —1,0 via der
Deflation ein projektives System.

(1.1.14) Definition. Sei G proendlich und A ein diskreter G-Modul. Wir definieren die Tate-
Kohomologiegruppen fiir ¢ < 0 durch

oG, A) = lm H(G/UAY),
UG offen

wobei der projektive Limes via der Deflation genommen wird, und fir i > 0 durch
H'(G,A) = H'(G, A),
wobei rechts die gewdhnliche Kohomologie steht (vgl. vorheriger Abschnitt).

(1.1.15) Definition. Sei G eine proendliche Gruppe und A ein diskreter G-Modul. Dieser heifit
level-kompakt, falls er mit einer zusdtzlichen Topologie versehen ist, so daff AY kompakt und
Hausdorffsch ist fiir alle offenen Untergruppen U < G.

Mithilfe dieser Zusatzforderung an die G-Moduln wollen wir die Exaktheit des projektiven
Limes erreichen.

(1.1.16) Lemma. Sei GAproendlich und A ein level-kompakter G-Modul. Dann ist fir i <0 die
Tate- Kohomologiegruppe H'(G, A) eine proendliche Gruppe.

Beweis. Fiir jedes G//U tragen die Ketten F, ®q/¢/ AY bzw. Homg y(Fo, A) in natiirlicher
Weise eine von AV kommende kompakte und Hausdorffsche Topologie. Die Zykel bilden darin als
Kern eines stetigen Homomorphismus eine abgeschlossene Untergruppe, sind damit also kompakt
und Hausdorffsch. Ferner bleiben diese Eigenschaften auch unter der offenen Projektion Zykel —
Zykel / Rinder erhalten, woraus die Kompaktheit von H'(G/U, AV) fiir alle offenen Normalteiler
U < G folgt.

Ferner wissen wir, daR (G : U)H(G/U, AV) = 0 gilt. Damit ist H(G/U, AV) eine kompak-
te, Hausdorffsche, abelsche Torsionsgruppe. Wir zeigen gleich, dafl sie dann proendlich ist. Da
projektive Limites von proendlichen Gruppen proendlich sind, folgt die Aussage.

Sei H eine kompakte, Hausdorffsche, abelsche Torsionsgruppe, die sich als abstrakte Gruppe
schreiben 1ékt als H = @,.; < h; >. Fiir jede endliche Teilmenge J C I ist die Untergrup-
pe P, nJs < h; > offen, da ihr Komplement eine endliche, also wegen der Hausdorffeigenschaft
abgeschlossene, Menge ist. Diese Mengen bilden eine Umgebungsbasis der 0 bestehend aus Nor-
malteilern, weshalb H proendlich ist. O

Tm Folgenden sei H*(G, A) fiir i < 0 stets mit dieser kompakten und fiir i > 0 mit der diskreten
Topologie ausgestattet.

Da im allgemeinen zu einer exakten Sequenz 0 — A — B — C — 0 nicht auch 0 — AY —
BY — CY — 0 exakt ist (fiir offene Normalteiler U <1 G), erhalten wir in negativen Dimensionen
nicht ohne Zusatzvoraussetzungen lange exakte Sequenzen. Daher ist H (G, -) kein kohomologischer
Funktor.

Wir haben jedoch das folgende



(1.1.17) Lemma. Sei A ein level-kompakter G-Modul. Dann gilt:
HY(G, A) = A%/NgA

Dabei bezeichne
NegA= (] NgwAY
UG offen
die Gruppe der universellen Normen.

Beweis. Dies ist eine unmittelbare Konsequenz der AnwenAdung des projektiven Limes auf die
exakte Sequenz kompakter Gruppen 0 — Ng/UAU — A% — HY(G/U, AY) — 0. O

Wenden wir uns nun dem Cupprodukt zu. Wir definieren
H{(G,A) x HI/(G,B) —— HY(G,A® B)
fiir i <0 und ¢ > 1 wie folgt: Seien z € H*(G, A) und y € H9(G, B). Dann gibt es einen offenen
Normalteiler U <1 G, so daR y = inf(z) fiir ein z € H9~%(G /U, BY) gilt. Wir setzen:
x Uy = inf(def(x) U 2).

Dieses ist wegen Satz (1.1.13) wohldefiniert.

Ist zusétzlich A als Z-Modul endlich erzeugt, so bildet das Cupprodukt einen stetigen Homo-
morphismus. Dafiir geniigt es zu zeigen, daR fiir alle e € H9(G, A® B) und alle (,) im Urbild von
{e}, etwa mit infy(z) = y und infy(f) = e, eine offene Umgebung V von z in H'(G, A) existiert
mit def(V)Uz = f. Wegen der endlichen Erzeugtheit von A ist die Gruppe H(G /U, AV) als endlich
erzeugte Torsionsgruppe endlich. Somit ist der Kern K der Deflation H(G, A) — H(G/U, AY)
offen. Daher ist  + K (additiv geschrieben) eine solche gesuchte Umgebung.

1.1.2. Begriffe der abstrakten Klassenkorpertheorie

Wir stellen kurz wichtige Begriffe der abstrakten Klassenkdrpertheorie zusammen.

(1.1.18) Definition. Sei G eine proendliche Gruppe und A ein diskreter G-Modul.

(a) Ist G endlich, so nennen wir A einen Klassenmodul, falls fiir jede Untergruppe H < G gilt:
(i) HY(H,A) = 0.
(ii) Die Gruppe H*(H, A) ist zyklisch von der Ordnung |H]|.

(b) Wir nennen A einen Formationsmodul und das Paar (G, A) eine Klassenformation, falls fir
jedes Paar V < U offener Untergruppen von G

(i) die Gruppe H'(U/V, AV) trivial ist,
(1) und ein Isomorphismus

1
u:v)
gegeben ist, so daf fir jede offene Untergruppe W <U von G mit W <V das Diagramm

vy v H*U)V,AV) —

7)Z

H2UV,AYY M m2uw, AV T 52(v/W, AW)

invl invl invl
Inklusi (U:V)
(U?V) Z/Z = (U:IW)Z/Z (V:IW)Z/Z

kommutativ ist.

Das durch invy v (uy )y ) = W—i—z eindeutig bestimmte Element uy )y € H2(U/V, AV) heifit
Fundamentalklasse.



1.1.3. Pontrjaginsche Dualitétstheorie
Sei G eine abelsche topologische Gruppe.

(1.1.19) Definition. Die abelsche Gruppe
GY = Homstetig(Gv R/Z)

versehen mit der kompakt-offenen Topologie heiffit die Charaktergruppe bzw. das Pontrjagin-Dual
von G.

Ist G eine diskrete Torsionsgruppe, so gilt offensichtlich GV = Hom(G, Q/Z). Wir setzen
G* .= Hom(G,Q/Z).

Statt einer abelschen Gruppe kénnen wir natiirlich auch einen G-Modul A betrachten. Dann ist
auch A* mit einer G-Modulstruktur ausgestattet, via (g.f)(a) := f(¢'.a).

Der Hauptsatz der Pontrjaginschen Dualitdtstheorie besagt die Existenz eines kanonischen
Isomorphismus

G — (GY)Y, g (f : Homsteuig(G,R/Z) — R/Z, f(¢) := ¢(g)).
Die Zuordnung G — GV hat folgende Eigenschaften:
e diskrete abelsche Gruppen — kompakte abelsche Gruppen,
e diskrete abelsche Torsionsgruppen — proendliche abelsche Gruppen,
e proendliche abelsche Gruppen — diskrete abelsche Torsionsgruppen,

e kompakte abelsche Gruppen — diskrete abelsche Gruppen.

1.1.4. Dualitatssitze
Vorbereitungen

Zunichst wollen wir einige Vorbereitungen treffen.

(1.1.20) Bemerkung. Sei G eine proendliche Gruppe.

(a) Sei A ein diskreter G-Modul, der als Z-Modul endlich erzeugt ist. Dann gibt es eine offene
Untergruppe V. < G, so daf§ fiir alle in V enthaltenen offenen Untergruppen U < G gilt:
AY = A.

(b) Sei U < G eine offene Untergruppe, und A und B seien G-Moduln, wobei AV = A angenom-
men werde. Dann gilt: Hom(A, B)Y = Homy (A, B) = Hom(A, BY).
Beweis. Zu (a) betrachten wir die Untergruppe
V:{g€G|ga:aVa6A}:ﬂGa: ﬂ G-
acA a Z—Generator

Die G, seien dabei die Stabilisatoren von a, die wegen der Diskretheit von A offen sind. V ist als
endlicher Durchschnitt aus ihnen somit auch offen. V' erfiillt offensichtlich die Forderungen.
(b) Die erste Gleichheit ist klar und wurde schon gezeigt. Weiter haben wir
Homy (A, B) ={f: A — B Homomorphismus | u.f(a) = f(a) Ya € A}
= {f: A — B Homomorphismus | f(4) C BY} = Hom(A, BY).



(1.1.21) Lemma. Sei G eine proendliche Gruppe, A ein als Z-Modul endlich erzeugter diskre-
ter G-Modul, und B ein level-kompakter G-Modul. Dann ist auch Hom(A, B) versehen mit der
kompakt-offenen Topologie level-kompakt.

Beweis. Sei U < G eine offene Untergruppe. Diese enthélt nach Bemerkung (1.1.20) eine offene
Untergruppe V < G, fiir die Hom(A, B)Y = Hom(A, BY) ist. Letzterer Raum ist aber kompakt,
da fiir B die Level-Kompaktheit vorausgesetzt wurde. Nun ist Hom (A, B)Y eine abgeschlossene
Untergruppe von Hom(A, B)Y und somit selbst kompakt. a

(1.1.22) Lemma. Seien A, B topologische abelsche Gruppen, und es sei ein stetiger Homomor-
phismus
AxB — R/Z
gegeben. Dann ist die induzierte Abbildung
Yv:A—BY a— (b aUb)
ein stetiger Homomorphismus.

Beweis. Die Homomorphieeigenschaft ist klar. Sei a € v ~!([K,U]), wobei [K,U] mit K C B
kompakt und U C R/Z offen die Menge aller stetigen Homomorphismen B — R/Z sei, die
K in U abbilden. Die Menge V := {b € B | aUb € U} ist offen in B und umfakt K. Es
gilt: a € v~ Y([V,U]) € ¥~ Y([K,U]). Nun ist aber ¢~ ([V,U]) gleich der Projektion auf A von
(UHU)) N (A x V), also eine offene Umgebung von a, die ganz in v~ !([K,U]) liegt, woraus die
Stetigkeit folgt. O

(1.1.23) Lemma. Seien A, A', B, B’ abelsche topologische Gruppen. Ferner sei folgendes Dia-
gramm kommutativ, und alle Abbildungen seien stetig:

A x B — R/Z
ol ] s
A x B —2 R/Z
Dann erhalten wir die Kommutativitat von:
A —— BY
¢l lf’—>50f0¢
A —— BY

Beweis. Das laRt sich direkt nachrechnen. O

Der Dualititssatz von Nakayama-Tate

Der zentrale Dualitétssatz fiir endliche Gruppen ist der folgende Satz von Nakayama-Tate (vgl.
[NSW], Theorem 3.1.5).

(1.1.24) Satz. Sei G eine endliche Gruppe und C ein Klassenmodul. Weiter bezeichne ~y €
H?(G,C) eine Fundamentalklasse. Dann liefert fiir einen als Z-Modul endlich erzeugten und Z-
freien G-Modul A das Cupprodukt

(G, Hom(4,0)) x I*7(G, 4) —*— B*G,0) —™— L7/
'Y'_’@-i-z
fir alle i € Z einen Isomorphismus
H(G,Hom(A,C)) = H* (G, A)Y

endlicher abelscher Gruppen.



Hier wurde wieder das mit der Auswertungsabbildung verkniipfte Cupprodukt verwendet (vgl.
dazu die Diskussion im Anschluf an Satz (1.1.12)).

Bevor wir uns den Beweis des Satzes von Nakayama-Tate anschauen, wollen wir den Satz kurz
einordnen.

Die abstrakte Klassenkorpertheorie baut auf der Isomorphie

(res§y)U : HY(H,Z) = H1?(H,C)

(fiir Untergruppen H von G) auf, die fiir einen Klassenmodul C' mit Fundamentalklsse ~ gilt, wie
wir in diesem Abschnitt sehen werden. Es geht hier darum, diese Abbildung genauer zu kennen
und zu untersuchen, welche Bedingungen an C' zu stellen sind, damit Isomorphie vorliegt.

Eine elegante Methode wird durch den Zerfdllungsmodul geliefert, den wir im folgenden defi-
nieren und untersuchen werden.

Ausgangspunkt der Betrachtungen ist die Suche eines Moduls C(v), der einen vorgegebenen
G-Modul C mit v € H?(G, C) umfasse, so dak  unter der natiirlichen Abbildung in H?(G, C(v))
auf die Null geht.

2-Kozykeln in H?(G,C) erfiillen

pel,7) — e(pa, 7) + e(p,07) — clp,7) = 0,
wihrend ein 2-Korand ¢(o, 7) zu einem geeigneten Modul durch eine Gleichung des Typs
c(o,7) = ob(r) — b(oT) + b(o)

gegeben ist. Wir sehen fiir einen 2-Kozykel durch Setzen von p =0 =1, daff ¢(1,7) = ¢(1,1) ist,
und fiir einen 2-Korand, daf ¢(1,7) = 1.b(7) — b(7) + b(1) = b(1) gilt.

Im Folgenden sei ¢(o,7) ein Vertreter von . Wir werden nun den Zerfdllungsmodul C(~) so
definieren, daR das Bild von ¢(c,7) in H?(G, C (7)) Null ist:

Cly)=Co®B:=Co® P b,
1#£0€G

B ist also die freie abelsche Gruppe auf Symbolen b, fiir o # 1. Die G-Aktion auf C'(y) definieren
wir unserem Ziel entsprechend durch

by :=byr — by + (0, 7),

wobei by = ¢(1,1) sel.
Es ist natiirlich zu iiberpriifen, daf es sich um eine G-Aktion handelt. Das sieht man wie folgt:

1.by =b; — by +c(1,7) =b;
p(obr) = p(byr — by + (0, 7))
= bpor — by +bpe + 0, + c(p,07) — c(p,0) + pc(o,T)
= bpor — bpo + c(po,T) = (po)b-

Dabei wurde die Kozykelrelation von oben benutzt.
Es ist klar, daff der Modul C(v) wohldefiniert ist, da er bis auf Isomorphie nicht von der
Auswahl des Vertreters c¢(o,7) von ~ abhéngt. Denn sei d(o,7) = oc(7) — ¢(o7) + ¢(o) ein 2-

Korand von C und sei C/’(\"7) der zu c(o,7) + d(0, 7) gebildete Zerfillungsmodul auf Symbolen bs,
dann wird die Isomorphie durch b, — b, — ¢(0) gegeben.

Es ergibt sich sofort der folgende G-Epimorphismus

p:C(y)=C®B—1g,c—0, by — o — 1.



Hieraus erhalten wir die exakte Sequenz

0 C Cly) —2— I 0,

wobei die erste Abbildung die natiirliche Einbettung C' — C & B ist. Weiter haben wir die exakte
Sequenz

0 Ic Z|G] —— Z 0.
Dies gibt den folgenden Homomorphismus fiir jede Untergruppe H < G und jedes n € Z:

82 H(H,Z) —2 H™V(H, 1) —2— H"2(H,0).

Er ist der Homomorphismus, den wir suchen:

(1.1.25) Satz. Der obige Homomorphismus
62 H"(H,Z) — H""%(H,C)
fiir einen G-Modul C und ein v € Iiﬂ(G, () ist gegeben durch

B res(y) U B =:ym UG
Ferner sind dquivalent:
(i) C(v) ist kohomologisch trivial.
(ii) C ist ein Klassenmodul.
(ii3) 62 ist ein Isomorphismus.

Beweis. Zunichst rechnen wir unter Verwendung der expliziten Beschreibung der Verbin-
dungshomomorphismen nach, dak 62(1) =~y ist fiir T = 1 + |H|Z € H(H,Z): Ein Urbild der T
in den 0-Zykeln bzgl. Z[G] ist gegeben durch die 1; dessen Bild unter dem Randhomomorphismus
ergibt den 1-Kozykel bzgl. I als §1(1)(c) = o — 1. Ein Urbild davon in den 1-Zykeln bzgl. C(y) ist
z(0) = by. Dessen Bild unter dem Randhomorphismus ist d2061 (1)(0, 7) = 0b; —bs,r +be = c(0, 7).

Die Aussage 02 = vy U folgt nun aus Satz (1.1.12).

Es gilt H~'(H,Z) = H'(H,Z) = 0, da es aufgrund der Endlichkeit von H keine nicht-
trivialen Homomorphismen H — Z gibt, und auferdem ~,7Z = 0 ist wegen der Injektivitit
der Multiplikation mit |H|. Da Z[G] kohomologisch trivial ist, folgt H™(H,Z) = H""'(H, I5) und
hieraus H°(H, I¢) = H*(H, I¢) = 0. Somit erhalten wir den folgenden Teil einer langen exakten
Sequenz

0— H'(H,C) — H\(H,C(y)) — H'(H,I) — B*(H,C) — H*(H,C(7) =0, (%)

den wir zum Beweis der Aquivalenzen heranziehen.

(i) = (ii): Ist C(v) kohomologisch trivial, so folgt aus (x), daR H'(H,C) = 0 ist, und daR 0,
und somit auch 62 : H(H,Z) — H2(H,C) ein Isomorphismus ist. Daher ist C' ein Klassenmodul.

(i) = (i): Ist C ein Klassenmodul, dann ist notwendig d» : H(H,Ig) — H2(H,C) ein
Tsomorphismus, weshalb wegen (x) H'(H,C(y)) = H?(H,C(y)) = 0 ist. Hieraus schlieRen wir
mittels Satz (1.1.8) die kohomologische Trivialitdt von C(v).

Die Aquivalenz von (ii) und (444) ergibt sich sofort aus Betrachtung der zu 0 — C' — C(vy) —
I — 0 gehorigen langen exakten Sequenz. O

Einen ersten Schritt auf dem Weg zum Satz von Nakayama-Tate bildet das folgende Lemma
(vgl. INSW], Proposition 3.1.1):



(1.1.26) Lemma. Sei G eine endliche Gruppe und A ein G-Modul. Dann liefert fir alle i € Z
das Cupprodukt

Hi(G,A*) x H71(G,A) —— HYG,Q/Z) = &Z/Z

einen Isomorphismus

HY(G,A%) = H7YG, A)".

Beweis. Zunichst beschreibt man fiir i = 0 den Isomorphismus H(G, A*) = H~Y(G, A)*
direkt. Dann verwendet man Dimensionsverschiebung und den Satz (1.1.12), um das Resultat fiir
alle i € Z zu erhalten. Die Details des Beweises sind in [NSW], S. 113, nachzulesen. O

Der néchste Schritt wird geliefert durch folgendes Lemma ([NSW], Proposition 3.1.2).

(1.1.27) Lemma. Sei G eine endliche Gruppe und A ein Z-freier G-Modul. Dann liefert fir alle
i € Z das Cupprodukt

Hi{(G,Hom(A,Z)) x H(G,A) —— H%(G,Z) =Z/|G|Z

einen Isomorphismus

HY(G,Hom(A,Z)) = H7(G, A)*.
Beweis. A ist ein Z-freier Modul, weshalb die induzierte Sequenz
0 — Hom(A,Z) — Hom(A,Q) — Hom(A,Q/Z) — 0

exakt ist. Nun ist Hom(A, Q) aber kohomologisch trivial, denn Multiplikation mit |G| ist auf Q
und somit auch auf Hom(A,Q) bijektiv, weshalb |G| - H"(G, Hom(A,Q)) = 0 nur gelten kann,
wenn bereits H"(G, Hom(A,Q)) = 0 ist.

Aus Satz (1.1.11) erhalten wir das kommutative Diagramm

H=Y(G,Hom(A,Q/Z)) x H™(G,A) —— HY(G,Q/Z)

5l idl 5l )
H{(G,Hom(A,2)) x H™(G,A) —— HYG,Z)
in dem die senkrechten Abbildungen Isomorphismen sind. Mittels der expliziten Beschreibung des

rechten Verbindungshomomorphismus weiff man weiter, daft dieser die Identitdt ist. Somit folgt
die Aussage vermoge Lemma (1.1.23) aus Lemma (1.1.26). O

Beweis des Satzes von Nakayama-Tate (1.1.24). Aus den exakten Sequenzen 0 — C' —
C(y) = I¢ — 0und 0 — I — Z[G] — Z — 0 erhalten wir, da A Z-frei ist, die exakten Sequenzen

0— Hom(A,C) — Hom(A,C(y)) — Hom(A,Ig) — 0

und
0 — Hom(A, Ig) — Hom(A,Z|G])) — Hom(A,Z) — 0.

Hieraus schliefen wir nun unter Verwendung von Satz (1.1.11) die Kommutativitdt folgenden
Diagramms:

Hi72(G, Hom(A,Z)) x H>/(G,A) —— H(G,Z)

| : ]

H=YG, Hom(A,Ig)) x H*(G,A) —— HY(G,Ig)

| : ]

H(G,Hom(A,C)) x H?>(G,A) —— HG,C).



Da C ein Klassenmodul ist, folgt nach Satz (1.1.25) die kohomologische Trivialitdt von C(v).
Nun schlieft man mittels Satz (1.1.9) auf die kohomologische Trivialtitit von Hom(A,Z[G]) und
Hom(A,C(v)). Folglich sind die vertikalen Abbildungen im Diagramm Isomorphismen.

Der Satz folgt daher aus Lemma (1.1.27) unter Verwendung von Lemma (1.1.23). O

Proendliche Version des Satzes von Nakayama-Tate
Aus dem Dualitdtssatz von Nakayama-Tate schliefen wir folgende proendliche Version (vgl. [S],

Proposition 4).

(1.1.28) Satz. Sei G eine proendliche Gruppe und C ein Formationsmodul, der level-kompakt
sei. Dann liefert fir einen als Z-Modul endlich erzeugten, diskreten und Z-freien G-Modul A das
Cupprodukt

Hi{(G,Hom(A,C)) x H>/(G,A) —— H%*(G,C) C Q/Z
fiir alle i € Z einen topologischen Isomorphismus (d.h. insbesondere einen Homdomorphismus)
HY(G, Hom(A,C)) = H* (G, A)".
Im Fall i =1 sind die Gruppen endlich.

Beweis. Fiir den Verlauf des Beweises fixieren wir einen offenen Normalteiler U <t G mit der
Eigenschaft, dak A = AU ist, was wegen Bemerkung (1.1.20) erlaubt ist. Wir miissen drei Fille
unterscheiden.

(I) i< 1: Dann ist 2 —4 > 1. Sei V < G ein offener Normalteiler mit V' < U. Aus dem
kommutativen Diagramm aus Satz (1.1.13)

H{(G/U, Hom(A,CY)) x H>{(G/U,A) —— H%*G/U,CY)C Q/Z
defT infl infl
H{(G/V,Hom(A,CV)) x H>{(G/V,A) —— H*G/V,CV)C Q/Z
erhalten wir mittels Lemma (1.1.23) das kommutative Diagramm,
HY(G/U,Hom(A,CY)) —— H2{(G/U, A)Y
defT ianT )
H{(G/V,Hom(A,CV)) —— H2>7{(G/V,A)V

dessen horizontale Abbildungen nach dem Satz von Nakayama-Tate (1.1.24) Isomorphismen
sind. Anwendung des projektiven Limes liefert nun die Behauptung in diesem Fall.

(IT) 7 > 1: Dann ist 2—¢ < 1. Zun#chst haben wir das kommutative Diagramm aus Satz (1.1.13)
H2(G/U,A) x H{(G/U Hom(A,CY)) —— H*(G/U,CY)C Q/Z
defT infl infl
H2(G/V,A) x H(G/V,Hom(A,CV)) —— H*(G/V,CV)CQ/Z

Indem wir in der oberen und in der unteren Zeile die Argumente formal vertauschen (dabei
werde beachtet, daR a Ub = (—1)*(=2)hU a gilt), erhalten wir mittels Lemma, (1.1.23) das
kommutative Diagramm

HY(G/U,Hom(A,CY)) —— H2{(G/U, A)Y

inf l def l

H{(G/V,Hom(A,CV)) —— H?>7{(G)V, A)V



mit horizontalen Isomorphismen, aus dem durch Anwendung des induktiven Limes die Be-
hauptung folgt.

(IIT) i = 1: Wir haben H'(U/V, AV) = H(U/V,A) = Hom(U/V, A) = 0, denn A ist Z-frei. Aus
der Inflation-Restriktion-Sequenz

0 —— HY(G/UAY) — HYG/V,AY) == ' (U/V,A")

erhalten wir folglich die Isomorphie H(G/U, A) = HY(G/V, A). Das heift, daf der induk-
tive Limes iiber diese Objekte stationir wird. Damit ist insbesondere H'(G, A) endlich.

Ferner haben wir
H'(U/V,Hom(A,C)") = H'(U/V, Hom(A,C")) = @, a) H'(U/V,CY) =0,

denn C' ist eine Klassenformation.

Hieraus schliefsen wir wieder mittels der Inflation-Restriktion-Sequenz
0 —— HY(G/U,Hom(A,C)V) - AY(G/V,Hom(A,C))
—® ., HYU/V,Hom(A,C)")

auf die Isomorphie HY(G/U, Hom(A,CY)) = HY(G/V,Hom(A,C")), weshalb wiederum
der induktive Limes hieriiber stationdr wird.

Damit folgt das Resultat aus dem endlichen Fall (Satz (1.1.24)). O

1.1.5. Abstrakte Klassenkorpertheorie

Aus Satz (1.1.25) erhalten wir sofort den Hauptsatz iber Klassenformationen:

(1.1.29) Satz. Sei (G,C) eine Klassenformation. Dann ist die Abbildung
uyyyU: HYU/V,Z) — H**U/V,.CV)
fiir offene Untergruppen V < U von G ein Isomorphismus.
Insbesondere gilt das allgemeine Reziprozitdtsgesetz:
(1.1.30) Satz. Fiir offene Untergruppen V < U von G liefert
upU: H2(U/V,2) — H(U/V.CY)

den Isomorphismus
Ouyv : (U/V)® — CY /Ny CV.

Den von seiner Umkehrabbildung erzeugten Homomorphismus
(,U/V):C” — (U/v)®
nennen wir den Reziprozitdtshomomorphismus.

Der Reziprozitdtshomomorphismus hat folgende Eigenschaften (vgl. [N-KKT], Satz I1.1.11).

(1.1.31) Satz. Sei (G,C) eine Klassenformation und seien W <V QU, W U offene Unter-
gruppen von G. Dann sind die folgenden Diagramme kommutativ.



(a)

cv L, (yw e

Identitiitl lkanonisch

CU -U/v) (U/V)ab

(.U/W)
LW,

CU (U/W)ab

Inklusionl lVerlagerung

CV (V/w) (V/W)ab

Dabei wird die Verlagerung von der Restriktion H2(U/W,Z) — H~2(V/W,Z) induziert.

(c)
CV V/W) (V/W)ab

NU/Vl lkanonisch

-U/wW)
_—

CU (U/W)ab

Die Klassenkorpertheorie beinhaltet die Klassifikation der abelschen Oberkérper eines Korpers.
Der folgende Satz (vgl. [N-KKT], Satz I1.1.14) stellt die abstrakte Version dessen dar.

(1.1.32) Satz. Sei (G,C) eine Klassenformation und sei U < G eine offene Untergruppe. Eine
Normengruppe (bzgl. U) ist eine Untergruppe I von CY, so daf eine offene Untergruppe V < G
mit V < U existiert, fir die I = NU/VC’V gilt.

Die Normengruppen bilden einen Verband. Die Zuordnung

V- NU/VOV

bildet einen inklusionsumkehrenden Verbandsisomorphismus zwischen dem Verband der in G of-
fenen Normalteiler von U, fir die U/V abelsch ist, und dem Verband der Normengruppen bzgl.
U.

Auperdem ist jede in CU enthaltene Obergruppe einer Normengruppe selbst eine Normengrup-
pe.

1.1.6. Ein abstrakter Dualititssatz

Sei G eine proendliche Gruppe. Wir indizieren die abgeschlossenen Normalteiler von G mit
formalen Korpern Gi <G, und schreiben fiir eine zwei formale Korper L|k und K|k mit Gy, C Gi
fiir den Quotienten G(L|K) := G /Gr. Wir nennen die formale (galoissche) Erweiterung L|K
abelsch bzw. eine p-Erweiterung, falls G(L|K) eine abelsche bzw. eine Pro-p-Gruppe ist.

Wir betrachten die folgende Situation:

e (Gg,C) sei eine Klassenformation.

e Es existiere ein level-kompakter G-Modul C° und ein kohomologisch trivialer G3-Modul X,
so daf die Sequenz
1-C"—=C—-X—1

mit stetigen Homomorphismen exakt ist.



Fiir jede endliche formale Korpererweiterung K|k seien die G(K|k)-Moduln
CK = CGK, IK, EK, ClK
gegeben, welche eine exakte Sequenz bilden:

1— FEgx - Ig —Cg — Clg — 1. (1)

Fiir endliche formale Korpererweiterungen K'|K seien Abbildungen ¢ gegeben, wobei ¢ :
Ckx — Cg die Einbettung sei, so dak das Diagramm (1.1.33)

1 — EK/ IK/ CK/ CZK/ — 1

1 —— FEg Ik Ck Clg —— 1
TNK/‘K TNK/‘K TNK/‘K TNK/‘K

1 —— FEg IK/ CK/ CZK/ — 1

kommutativ ist. Auferdem bilden die Moduln via ¢ direkte Systeme. Wir setzen:

I= lim Zg, E= lim Fg, E(p)= lim Eg, C(p) = lim Ck.
K|k endl. K|k endl. K|k endl. p-Erw. K|k endl. p-Erw.
Tk hat guten Galois-Abstieg, d. h. IIC;SKIH{) =Tk.

Auferdem gilt H'(G(K'|K),Zx') = 1 fiir jede endliche formale Erweiterung K'|K.

Fiir jede endliche formale Korpererweiterung K|k ist Clx endlich, und der Reziprozitatsho-
momorphismus induziert einen Isomorphismus

Clg = Cx /N kCL = G(L|K) = G,
wobei der formale Korper L durch G, = [Gk,Gk] festgelegt ist.

(a) H(G(K|k),Zx) =1 fiir alle endlichen K|k und alle i € Z.
(b) HY(G(K|k),Zx) = 1 fiir alle endlichen p-Erweiterungen K|k und alle i € Z.

(a) Viacgilt: lim Clg = 1.

K|k endl.
(b) Via . gilt: lim Clg =1 und lim Clg(p) = 1.
K|k endl. K|k endl. p-Erw.

(1.1.34) Theorem. Fir jedes i € Z gibt es in Situation (a) einen kanonischen topologischen
Isomorphismus

HY(Gy, E) = H*(Gy,Q/2)

und in Situation (b) einen kanonischen topologischen Isomorphismus

H'(Gi(p), E(p) = H* (G (p), Qp/Zy)" -

Fiir eine proendliche Gruppe G bezeichnen wir dabei mit G(p) ihren maximalen Pro-p-Quo-

tienten. Fiir ihn gilt G(p) = G/R, wobei R fiir den Durchschnitt aller offenen Normalteiler H <G
steht, fiir die G/H eine p-Gruppe ist.

(1.1.35) Lemma. (G(p))® ist der mazimale Pro-p-Quotient von G, d.h.

(GP)™ = (G™)(p).



Beweis. Es gilt: (G/R)® = (G/R)/[G/R,G/R] = G/[G,G|R. Da, falls H <t G ein offener
Normalteiler ist, auch H[G, G]/[G,G] < G/[G, G| ein offener Normalteiler ist, und es umgekehrt
zu jedem offenen Normalteiler N < G/[G, G] einen offenen Normalteiler H < G mit [G,G] € H
und N = H/[G, G] gibt, ergibt sich die Gleichheit von (G/R)® und (G%)(p). O

Bevor wir zum Beweis des Theorems kommen, beweisen wir zunéchst ein
(1.1.36) Lemma. E hat guten Galois-Abstieg und es gilt fir alle K|k
HY Gk, E) = Clg

und im Fall (b) zusatzlich
HY(Gx(p), E(p)) = Clx (p).

Beweis. Wegen lim Clj = 1ist die Sequenz 1 — £ — 7 — C — 1 exakt. Zu ihr betrachten wir
Kk
die lange exakte Sequenz 1 — E¢K — Trr — Cx — H'(Gg,E) — HY(Gg,Z) = 1. Vergleichen
wir diese mit der exakten Sequenz 1 — EFx — Ix — Cx — Clix — 1, so folgt der erste Teil der
Aussage.
Sind wir in der Situation (b), so betrachten wir

Gk (p) = Gk/( N Gp)=Gk/( lm GL).
L|K endl. p-Erw. L|K endl. p-Erw.

Daher ist aufgrund des ersten Teils

H'( lm  GLE)(p)= lm  HY(GLE)p)=  lm  Clp) =1
L|K endl. p-Erw. L|K endl. p-Erw. L|K endl. p-Erw.

Folglich schlieften wir aus der Inflation-Restriktion-Sequenz

1 — H' Gk (), E(p) 2L HY (Gr, B)(p) <> H'(  lm G, E)p) =1
L|K endl. p-Erw.

die Isomorphie H' (G (p), E(p)) = Clk (p). O

Beweis von (1.1.34). Zunichst erhalten wir wegen der kohomologischen Trivialitidt von X

die Homdomorphie - .
(G, C) = H (G, C°)

fiir alle ¢ € Z. Dies hat zur Folge, daf sich die proendliche Version des Satzes von Nakayama-Tate
(1.1.28) auch auf C anwenden 1&ft, und wir fiir alle ¢ € Z einen Homéomorphismus

HY (G, C) = H* (G}, 2)Y
erhalten. Die gleichen Uberlegungen ergeben im Falle (b) eine Homéomorphie
H'(Gi(p).C(p)) = H* ' (Gi(p). 2)".
Ebenso erhalten wir fiir eine endliche Erweiterung K|k Isomorphismen
H'(G(K|k),Cx) = H* ' (G(K|K),Z)",

aus denen wir auf die Endlichkeit der linken Gruppe schlieften, da die rechte als Z-Modul endlich
erzeugt ist und von |G (K |k)| annulliert wird.
Wir teilen die 4-Terme-Sequenz (1) auf in

11— FEx —>1Ig — Mg —1



und
11— Mg —Cxg — Clg — 1.

Wegen der kohomologischen Trivialitdt von Zx erhalten wir hieraus fiir ¢ € Z Isomorphismen
H* (G(K k), Ex) = H'(G(K[k), Mx) (2)

fiir alle endlichen Erweiterungen K|k im Fall (a) bzw. fiir alle endlichen p-Erweiterungen K|k im
Fall (b). Ferner bekommen wir die exakte Sequenz

H(G(K k), M) — H(G(K k), Cic) — B (G(K k), Clic) — B (G(KIR), M) (3)
Wir wollen im folgenden fiir alle ¢ € Z die Existenz eines Homéomorphismus
HY(G,C) = HYGy, E)
im Fall (a) bzw. im Fall (b)
H'(Gi(p),C(p)) = H(Gr(p), E(p))
zeigen, denn dann folgt der Satz im Fall (a) wegen
H Gy, E) = H™YG},,C) = H3> Gy, Z)Y = H* (G, Q/7)"

bzw. der analogen Rechnung im Fall (b).
Wir behandeln drei Félle getrennt.

(I) i =0: In diesem Fall haben wir fiir (a) folgende Isomorphismen:

¢y, Resprodtit Ggeb Bdwl, G R/Z)Y

)

roendlicher Nakayama-Tate
H2 (Gk7 Z)V p Y

HY(G,0).

Im Fall (b) ergibt sich:
Cli(p) — G’ (p) — H' (Gi(p),R/Z)" — H*(G(p), 2)" — H"(Gi(p),C(p)).
Dabei haben wir Lemma (1.1.35) benutzt.
Mittels Lemma (1.1.36) erhalten wir die Aussage.
(IT) i > 0: Entscheidend ist, daf
lim H'(G(K|k),Clg) = H(Gy, lim Clg)=H"(Gy,1) =1

— —
K|k endl. K|k endL.

fiir (a) und im Fall (b) zusétzlich

lim  HY(G(K|k),Clx) = H'(Gi(p),  lim  Clx(p)) = H(Gi(p),1) =1
K|k endl. p-Erw. K|k endl. p-Erw.

gilt. Bildung des direkten Limes von (2) und (3) iiber alle endlichen Erweiterungen K|k
im Fall (a) und im Fall (b) iiber die endlichen p-Erweiterungen ergibt dann topologische
Isomorphismen

H™™ Gy, E) = H' (G, lim M) baw. H'™(Gy(p), E(p)) = H' (Gk(p), limy M)

und

H' (G, lim My ) = H'(Gy,,C) baw. H'(Gy(p),lim My) = H'(Gy(p).C(p))-



(ITI) i < 0: Entscheidend ist, daf im Fall (a)

lim  H(G(K|k),Clg) =1

om
K|k endl.

bzw. im Fall (b)
lim HY(G(K|k),Clg) =1
K|k endl. p-Erw.

gilt. Das sieht man wie folgt: Aus Satz (1.1.31) schliefen wir auf die Kommutativitiat der

Diagramme
Ny g Ny g
Clgy —— Clk Cli:(p) Clx(p)
Rezipr l Rezipr J{ und Rezipr l Rezipr J{
Gab/ kanonisch G%) Gab/ (p) kanonisch G%) (p)

mit senkrechten Isomorphismen. Withlen wir K'|K so, daf G(K'|K) = G% gilt, d.h. Gy =

[Gk,Gk], dann ist die kanonische Abbildung oben, die induziert wird von

G = [Gr,Gx] — G = Gk /[Gx.Gxl,

Nyer
die Nullabbildung. Dies hat zur Folge, daf in diesem Fall auch Clg- % Clk und
Ny

Cli/(p) EELNYG) k (p) die Nullabbildungen sind, woraus sich die Behauptung ergibt.

Wir wollen nun wie im Fall (II) durch Ubergang in (2) und (3) zum projektiven Limes via
den Deflationen iiber die endlichen Erweiterungen K|k im Fall (a) bzw. iiber die endlichen
p-Erweiterungen im Fall (b) den Beweis abschliefen. Dazu beachten wir, dak aus der End-
lichkeit von Cly die Endlichkeit von H ‘(G(Klk),Clg) folgt, und wie oben gesehen auch
die Gruppe H {(G(K|k),Ck) endlich ist. Daher schlieRen wir aus (3) auf die Endlichkeit
von H'(G(K|k), Mg). Also bleibt die Exaktheit beim Ubergang zum projektiven Limes
erhalten.

Somit ergibt sich

oY Gy, E) = lim  H(G(K|k), Mk) bzw.
K|k endl.
H* Y (Gilp), BE(p)) = lm  H'(Gr(p), M) und
K|k endl. p-Erw.
lim H'(G(K|k), Mk) = H(G,C) bzw.

K|k endl.

lim  H(G(KR), M) = H'(Gy(p),C(p)).
K|k endl. p-Erw.

1.2. Dualitatssatze in globaler Klassenkorpertheorie

1.2.1. Grundlagen

In diesem Abschnitt wollen wir kurz die wichtigsten im folgenden auftretenden Definitionen und
einige ihrer elementarsten Eigenschaften auflisten, die in der globalen Klassenkérpertheorie Ver-
wendung finden.



Eingeschrinkte Produkte

(1.2.1) Definition. Seien I eine Indexmenge und X; und Y; fiir i € I topologische Gruppen, so
daf Y; < X; offene Untergruppen sind. Dann ist das eingeschrinkte Produkt definiert als

H(Xi,Yi) ={(x;) € HXi | z; € Y; fir fast alle i € T }.

icl el

Dieses wird zur topologischen Gruppe durch Wahl einer Umgebungsbasis der 1 bestehend aus den

Mengen
HU]' X H Y}',

jed iel\J

wobei U; fiir festes j € J eine Umgebungsbasis der 1 von X, und J die endlichen Teilmengen von
I durchldauft.

Das eingeschriankte Produkt hat die folgenden Eigenschaften (siche [NSW], I.1):

(1.2.2) Satz. Die X; seien Hausdorffsch. Dann gilt:

(a) 11(X;,Y;) ist Hausdorffsch.
iel
(b) Sind die X; lokal kompakt und die Y; kompakt, so ist [[(X;,Y;) lokal kompakt.
i€l

Idel- und Idealgruppen

Sei k ein algebraischer Zahlkdrper, von dem wir einen algebraischen Abschluff k fixiert halten
wollen. Zu jeder Primstelle p von k withlen wir eine Einbettung i, : k — ky. Via dieser Einbettung
entspricht einer endlichen Erweiterung K|k mit K C k eine eindeutige vollstéindige Erweiterung
kp| Kspe |kp. Somit haben wir eine vertriigliche Auswahl von Primstellen B°|p fiir jede endliche
Erweiterung getroffen.

Wir wollen schreiben: Gp(K|k) = G(Kqe|ky), Gi := G(k|K) und K, := Kgpe.

Ferner wollen wir uns darauf einigen, was wir unter den Einseinheitengruppen eines Zahlkor-
pers K auch fiir unendliche Stellen verstehen méchten und setzen fiir n > 0:

Uy fiir n =10, p 1t oo,
n — te Einseinheitengruppe von K, fiir n >0, p{ oo,

U,Sn) = ¢ R flir n = 0, p reell,
R4 flir n > 1, p reell,
| C* fiir p komplex.

Wir definieren nun die Idelgruppe als das eingeschrinkte Produkt

Tr = [J U,

p

Nach Satz (1.2.2) ist die Idelgruppe lokal kompakt und HausdorfFsch.
Unter einem Modul wollen wir ein formales Produkt

m= Hp""
p

verstehen, wobei ny > 0 fiir alle und n, = 0 fiir fast alle p vorausgesetzt sei.



Fiir einen Modul m definieren wir die Idelgruppe modulo m als

o Tl < TTU®

plm pfm

die als abgeschlossene Untergruppe von Zx auch lokal kompakt ist.
Sei S eine Primstellenmenge von K. Fiir sie definieren wir die S-Idelgruppe

Ts(K) = [ [ 55 U < [T,

pes pgs

die ebenfalls abgeschlossen in 7 und lokal kompakt ist. Weiter halten wir fest, daft aufgrund unse-
rer Definition von uéo) an reellen Stellen Zg(K) gleich Zp(K) ist, falls sich die Primstellenmengen
S und T nur an unendlichen Stellen unterscheiden.

Mit Ok wollen wir wie gewdhnlich den Ring der ganzen Zahlen von K bezeichnen. Ferner

setzen wir fiir eine Primstellenmenge S
Ok,s :={a € K |vp(a) >0 fiir alle p & S,p t 0o},
d. h. dafs gilt
Ok s=1{a€ K |vy(a) =0 fiiralle p ¢ S,p oo} =Zg(K)NK™.

Wir definieren fiir einen Modul m = Hp p"e

OF wi={a €O |acly"™ firalle p} = T2 N K*.

Weiter bezeichne Jx die Idealgruppe von Of . Sie ist die freie abelsche Gruppe mit den Prim-
idealen als Erzeugenden. Unter 7, fg wollen wir die Idealgruppe von Ok g verstehen, welche iso-
morph ist zur freien abelschen Gruppe erzeugt von den Primidealen auferhalb von S. Ebenso sei
Ji die Untergruppe von Jg der zu m teilerfremden Ideale, welche somit isomorph zu J, I? ist,
wobei S hier die Menge aller m teilenden Primideale bezeichnet.

Galois-Aktion

Im folgenden wollen wir eine Galois-Aktion auf den Idelen definieren. Sei dazu K |k eine endliche
galoissche Erweiterung mit Galois-Gruppe G(K k). Ein 0 € G(K |k) operiere nun auf einem Idel
a= (Clqg)qg durch

(0a)p = oa,-1p.

Fiir eine Menge S von Primstellen von k werde die Menge aller Primstellen von K, die iiber
denen von S liegen, ebenfalls mit S bezeichnet. Ist m = ], p;" ein Modul von k, so bezeichnen
wir ebenfalls mit m den Modul [[;(Bi1 - Pir,)"™ von K, wobei die P, ; die iiber p; liegenden
Primstellen von K sind, und e; der Verzweigungsindex von ‘B; ; iiber p; ist.

Es ist klar, daff die Untergruppen Zg(K) und Z}? unter dieser Aktion abgeschlossen sind.
Die Idealgruppe Jk versehen wir mit der gewdhnlichen Galois-Aktion, also der Anwendung von
o € G(K|k) auf das Ideal. Der Homomorphismus

X:Zg — Jk, a+— Hp“v(ap)
ptoo

ist ein G-Homomorphismus: o.x(a) = o [ p** (@) = [[(op)* (@) = [[p* "% 1) = y(ca).
Ferner gilt nach Satz I11.2.5 aus [N-KKT], daf Z(K') guten Galois-Abstieg hat, daf also

7, — 7O M



ist, was sich natiirlich auch auf 7} und Zg(K) tibertrdgt. Damit erhalten wir fiir eine Galois-
Erweiterung M|K diskrete G(M|K)-Moduln wie folgt:

. MI|L
Ty = h_n}l I = U I]\C}( |L)
LIK,LCM L|K,LCM

(bzw. Gleiches fiir Zg(K) und Z}).

Wir konnen nun auch die Tate-Kohomologie der Idelgruppe betrachten. Diese hat folgende
fundamentale Eigenschaft, die uns erlauben wird, Resultate aus dem Lokalen ins Globale zu iiber-
tragen.

(1.2.3) Satz. Sei K|k eine endliche Galois-Erweiterung. Dann gilt fir alle i € Z
HGKIR), Iic) = @) H(Gy(K ), K ).
p
Dabei beachte man die Konvention der Primstellenauswahl bei Erweiterungen.

Beweis. Der Beweis beruht auf dem Lemma von Shapiro und ist z. B. in [NSW], Proposition
8.1.2, nachzulesen. O

Als Konsequenz von Hilberts Satz 90 erhalten wir das
(1.2.4) Korollar. Fiir endliche Galois-Erweiterungen K|k gilt: H'(G(K|k),Zx) = 1.

(1.2.5) Korollar. Sei K|k eine unverzweigte endliche Galois-Erweiterung, die in einer Primstel-
lenmenge S woll zerlegt ist, dann gilt fiir alle i € Z: H (G(K|k),Zs(K)) = 1.

Beweis. Ist p € S, so ist die Zerlegungsgruppe gleich G(Kp|kp) = 1. AuRerdem gilt fiir
unverzweigte Stellen p nach [N-KKT|, IL.4.3, dak H'(G(Kyp|ky),Up) = 1 ist. 0

Idel-, Ideal- und Strahlklassengruppen
Aus [N-ZT)] zitieren wir den wichtigen Satz VI.1.5:

(1.2.6) Satz. k™ ist eine diskrete und abgeschlossene Untergruppe von Iy unter der diagonalen
FEinbettung a — (a)y.

Somit ist die durch
Cx = Ik /K*

definierte Idelklassengruppe eine lokal kompakte Hausdorffsche abelsche Gruppe. Da die diagonale
Einbettung K> — T fiir eine endliche galoissche Erweiterung K|k ein G(K|k)-Homomorphismus
ist, erhalten wir auch auf Cx eine G(K|k)-Modulstruktur, die wie die Idelgruppe einen guten
Galois-Abstieg hat, d.h.

Cp = Cg(K‘k),
was aus der exakten Sequenz 0 — kX — I — Cg(Klk) — HY(G(K|k), K*) zusammen mit

Hilberts Satz 90 folgt.
Wir definieren die Absolutnorm eines Idels a € Z;, durch

N(a) := H\ap\p-
p

Wegen der Geschlossenheitsrelation ist NM(a) = 1 fiir a € k™. Somit wird auch eine Absolutnorm
auf der Idelklassengruppe Cj induziert. Mit Cg bezeichnen wir den Kern der Absolutnorm auf Cy.
Als fundamental wird sich die Kompaktheit der Gruppe C3 erweisen ([N-ZT], Theorem VI.1.6).



Den lokal kompakten, Hausdorffschen G(K|k)-Modul
Cs(K) =Ig /K Uks,

wobei die kompakte Gruppe Uk s durch [[,co{1} X [[,¢5 L{éo) gegeben sei, nennen wir die S-
Idelklassengruppe. Falls K|k aukerhalb von S unverzweigt ist, ist der Modul Uk s kohomologisch
trivial, was aus dem lokalen Resultat fiir unverzweigte Primstellen p von k folgt (vgl. [N-KKT],
Satz 11.4.3), und daraus, dak wir die Erweiterung C|R als verzweigt ansehen. In dieser Situation
hat der Modul Cs(K) guten Galois-Abstieg, da die Sequenz 0 — Uy, 5 — Z — (Cs(K))EEIR) — 0
exakt ist.

Unter der Idelklassengruppe modulo m wollen wir den ebenfalls lokal kompakten und Haus-
dorffschen G(K|k)-Modul

Cp = TRK* [K* = I} /0%,

verstehen.
Es sei Px die Gruppe der Hauptideale von Ok und weiter
PR i={(a) € ¥ |a € OF und a € U™ fiir p | m}
und
P ={(a) € T{ |a € K*}.

Von Interesse fiir uns sind neben der gewohnlichen Idealklassengruppe

Clk = Ik /Pk

auch die durch
CIp = JR/PR baw. Cls(K) = JE/PE

definierte Idealklassengruppe modulo m bzw. die S-Idealklassengruppe.

Wir betrachten den Epimorphismus Jx — j[‘g, a — Og,sa, welcher den Epimorphismus
Tk — Ji/Pr = Cls(K) induziert. Py liegt im Kern dieses Homomorphismus, so daf Clg(K)
ein Faktor von Clx und somit endlich ist.

Die Gruppe Ck /C} heilt Strahlklassengruppe modulo m. Im folgenden wollen wir sie idealtheo-
retisch beschreiben und ihre Endlichkeit ableiten. Dazu betrachten wir die Gruppe

I%m) ={aelkg|a, € Z/{é"”) fiir p | m}.

)

Aus dem Approximationssatz folgt, dakk Zx = Iﬁ{m K* ist. Der Homomorphismus

NPT | g
ptoo, pfm
ist mit dem vorher definierten x vertréglich in dem Sinne, daf dieser sich aus a — (a) fiir a € K*

und obigem y zusammensetzt.
Wir betrachten die Surjektion

X: I~ TR/PR.
Sei a € Z,'}{m) im Kern von ¥. Dann gibt es ein (z) € P, d.h. x € ué”v) fiir p | m, mit () = x(a).
Dann ist apx_l ein Element von Zx[éo) fiir p 4 m und von L{én” ), falls p den Modul m teilt. Daher
gilt
ker(Y) = I NTRK™.

Also erhalten wir

Cr/CR = T /TR = TR JTRK* =~ T )(T\ N IRKX) =~ 72 /PR,



Es sei m; der endliche Anteil des Moduls m aufgefakt als Ideal von O . Nach dem chinesischen
Restsatz gilt die Isomorphie

plmyg

Aus dem Isomorphismus (O /p®)* = Llp/lxlés), a+ p° — aLlés) erhalten wir (Og/my)* =
lemf Uy, /Llén”) ~7s. (K) /I;f . Hieraus leiten wir die Isomorphie

Ts. (K) /T = T tp/ts™) |

plmy p|m, p reell, np=1

ab, aus der wir die Endlichkeit von Zg__ (K)/Z® unter Benutzung der Endlichkeit von Oj /p? (")
erhalten. Betrachten wir nun die exakte Sequenz

I (K)K*JIRK* - Ig/IRK” — Ik /Zs. (K)K* — 0,

so erhalten wir die Endlichkeit von Zx /TR K> = Cx /CE, denn Tg /Ts.  (K)K™ ist isomorph zur
Idealklassengruppe Clg, und Zg, (K)K* JIRK* =Tg, (K)/IR(K*NZIs, (K)) ist ein Faktor von
Ts..(K)/Z3. Wir halten fest:

(1.2.7) Satz. Die Strahlklassengruppe modulo m ist endlich, und wir haben via x die Isomorphie
Ck/Ck = IR /PEK.

1.2.2. Zwei exakte Sequenzen

In diesem Kapitel werden wir zwei exakte Sequenzen herleiten, auf denen die folgenden Dualitéts-
sdtze beruhen.
Wir starten zunédchst mit einem

(1.2.8) Lemma. Sei 0 — A — B 2, C — 0 eine exakte Sequenz von abelschen topologischen
Gruppen (bzw. G-Moduln), in der alle Homomorphismen stetig sind. Es seien ferner zwei abge-
schlossene Untergruppen (bzw. -moduln) M C B und D C C' gegeben, so dafi (M) C D ist. Dann
gilt:

(a) Die Sequenz
0 — ¢ YD)/M —B/M % C/D —0

ist exakt mit stetigen Homomorphismen.

(b) Ist zusdtzlich ¢(M) = D, so ist die Sequenz

0—A/ANM —B/M % C/D —0

exakt mit stetigen Homomorphismen.

Beweis. ¢~!(D) < B ist ein abgeschlossener Untermodul. Die Stetigkeit der Abbildungen in
(a) und (b) ist klar. Wegen C = B/A gilt D = ¢~!(D)/A. Daher folgt

C/D = (B/A)/(¢~'(D)/A) = B¢~ (D),

weshalb die Sequenz in (a) exakt ist.
Zu (b) geniigt es zu zeigen, dak ¢~!(D) = AM (multiplikativ geschrieben) gilt. Dies iiberpriift
man sofort. O

Als erstes wenden wir uns der S-Theorie zu. Sei S also eine Menge von Primstellen des Zahl-
korpers K. Wir halten zunéchst fest:



(1.2.9) Lemma. Die Sequenz 0 — Ts(K) — T - J2 — 0 ist exakt, und die Homomorphismen
sind stetig, wobes jfg mit der Quotiententopologie versehen sei.

Wir definieren
0
Tr.s = [J&7.U).
pesS

Dies hat umittelbar die Exaktheit der Sequenz

0—>L{K7S—>IS(K)LO'1>IK75—>O (4)
zur Folge. Weiter definieren wir Cx g durch die exakte Sequenz

0— Ok g—TIks— Cxks—0. (5)

Als Anwendung von Lemma (1.2.8) erhalten wir zunéchst das

(1.2.10) Lemma. Folgende Sequenzen sind exakt, und die Homomorphismen sind stetige Abbil-
dungen:

(a) 0 — K*Ig(K) — Ik — Clg(K) — 0
(b) 0— Zg(K)/Of g — Cx — Cls(K) — 0
(¢) 0 —Ck g — Cs(K)— Cls(K) —0

Beweis. Wir gehen aus von der exakten Sequenz 0 — Zg(K) — Zk 5T I? — 0 aus vorigem
Lemma (1.2.9).

Fiir (a) wihlen wir die Untergruppen Py < J2 und K*Zg(K) < Z, fiir die x(K*Zs(K)) =
Py gilt. Lemma (1.2.8) liefert nun die Aussage.

Fiir (b) wihlen wir Py < J2 und K* < Zy. Es gilt: x(K*) = P2, woraus die Aussage folgt.

Fiir (c) wiahlen wir wiederum 73[5; < \7[5;, aber nun K*Uk s < Zk. Es gilt x(K Uk s) = 7315{.
Aus Lemma (1.2.8) erhalten wir die exakte Sequenz

0—Zs(K)/(Zs(K)N KXUK,S) — Cs(K) — Clg(K) — 0.

Mittels (4) sehen wir, dak der Kern von proj : Zs(K) — Ck,s = Ik,s5/O g gegeben ist durch
UK,SO[?S = Uk s(K*NZg(K)) = K Uk sNZs(K). Also gilt Cx s = Ig(K)/(Zs(K)NK*Uk,s),
womit alles bewiesen ist. O

Aus (b) und durch Zusammensetzen von (5) mit Teil (c) erhalten wir den

(1.2.11) Satz. Sei S eine Menge von Primstellen. Dann sind die Sequenzen
0— Okg—Is(K) = Cx — Cls(K) — 0

und
0— OIX{,S —TIg,s — Cs(K) — Clg(K) — 0

exakt mit stetigen Homomorphismen.

Nun wollen wir ein analoges Ergebnis fiir die m-Theorie entwickeln. Sei dazu m = Hp p™r ein
Modul. IThm ordnen wir die endliche Menge S der Primstellen zu, die in m aufgehen. Wir definieren
die lokal kompakte, Hausdorffsche, abelsche Gruppe

Tk m = HZ/{;(,”").

plm



Es ergibt sich wieder die exakte Sequenz
0> Ugs— I8 2% T — 0. (6)
Weiterhin definieren wir analog zu Vorherigem die Gruppe Cx m durch die Exaktheit der Sequenz
0— Ok w—Zkm— Cxkm— 0. (7)
(1.2.12) Lemma. Die Sequenz
0—Ig/Okg m— Cxk = Cx/Cg — 0
ist exakt mit stetigen Homomorphismen.

Beweis. Per Definition haben wir die exakte Sequenz
0— K*Ig —Ix — Cg/CR — 0.

Faktorisieren wir aus den ersten beiden Gliedern K* heraus, so erhalten wir das Ergebnis unter
Beachtung von K*IR/K* = IR/IRNK* =I2/OFk . 0

Die zu Satz (1.2.11) analogen exakten Sequenzen sind die folgenden:

(1.2.13) Satz. Sei m = [[,p"™ ein Modul und S die endliche Menge der in m aufgehenden
Primstellen. Dann sind die Sequenzen

0— Ok n—Ig = Ck = Cx/Cg — 0

und
0— Ok m— Zrm— Cs(K) = Cx/Ck — 0

exakt mit stetigen Homomorphismen.

Beweis. Die Exaktheit der ersten Sequenz folgt unmittelbar aus Lemma (1.2.12).
Die Inklusion K*Ugk s C K*ZI}} liefert die exakte Sequenz

0— K*"IR/K Uks — I /K Uk s =Cs(K) - I /K I =Ck/CR — 0.
Analog wie in Lemma (1.2.10) betrachten wir die natiirliche Abbildung 7} prol, 1 Ko/ Ok s die
aufgrund von (6) den Kern UK,SO[Xgm =Urs(IRNK*)=1I¢NUk K™ hat. Damit erhalten wir
die Isomorphie K*ZI2/K*Uk s = IR/ (IR NUK sK™) = IK,m/(’)IX(’m = Cg,m- Die zweite Sequenz
folgt nun mittels Zusammensetzen von (7) mit der gerade erhaltenen Sequenz. O

1.2.3. Allgemeine globale Klassenkorpertheorie

Sei k ein algebraischer Zahlkorper und K|k eine endliche galoissche Erweiterung. Die lokale Klas-
senkorpertheorie (vgl. etwa [N-KKT], Kapitel II) liefert fiir endliche Primstellen p von k Invari-

antenabbildungen
1

iIlVKp|kp : Hz(G(Kp‘kp)aKg) l) WZ/Z
p-vp
Fiir unendliche Primstellen ist nur der Fall K, = C und ky = R von Relevanz. Fiir ihn definieren
wir

invep : H*(G(C[R), C*) = H*(G(CR), C*) 2 R/Ry = %Z/z

durch das Vorzeichen. Aufgrund von Satz (1.2.3) kénnen wir nun einen Homomorphismus

invg ), : H(G(K|k), Ig) — ﬁZ/Z



durch die (endliche) Summe der Invariantenabbildungen seiner Komponenten definieren. Ein fun-
damentales Ergebnis (vgl. [N-KKT], Satz II1.5.5) besagt

c € H*(G(K|k),K*) = invge=0,

womit der Homomorphismus

. 1
invgp, : H(G(K|k),Cx ) — WZ/Z
wohldefiniert ist. Auch diesen Homomorphismus nennen wir Invariantenabbildung.

Nun kénnen wir das folgende Theorem formulieren, fiir dessen Beweis wir auf [NSW], Theorem
8.1.22, bzw. auf [N-KKT], Satz II1.6.9, verweisen.

(1.2.14) Theorem. Sei k ein algebraischer Zahlkirper und k ein algebraischer Abschluf. C =
lim Ck sei die Idelklassengruppe und G = G(k|k) die Galoisgruppe. Dann ist (G,C) eine Klassen-
K|k

formation.

Mittels der abstrakten Theorie erhalten wir aus Satz (1.1.30) den Hauptsatz der globalen Klas-
senkdrpertheorie.

(1.2.15) Theorem. Fir endliche Erweiterungen L|K |k, wobei L|K galoissch sei, gibt es einen
Reziprozitidtshomomorphismus (-, L|K), so daff die Sequenz

CUR), Gk —— 0

0 —— Ny kCr Ck

exakt ist. Ferner dbertragen sich die kommutativen Diagramme aus Satz (1.1.31) sinngemdap.

Aus Satz (1.1.32) iibertrégt sich der Begriff der Normengruppe. Dies sind genau die Unter-
gruppen von Cr der Form Ny, Cy. Ferner gibt es einen inklusionsumkehrenden Verbandsisomor-
phismus

L— NpkCr

zwischen den endlichen, galoisschen und abelschen Oberkérpern von K und den Normengruppen.
Fiir diese gilt der wichtige Ezistenzsatz (siehe [N-KKT|, Satz I11.7.8):

(1.2.16) Satz. Die Normengruppen von Cx sind gerade die offenen Untergruppen von endlichem
Index von Ck.

1.2.4. Beschrinkte Verzweigung und volle Zerlegung

Allgemeines

Wir wollen nun einige Vorbereitungen zur genaueren Analyse von Korpererweiterungen mittels
Idelklassen treffen. Dazu betrachten wir zundchst den Sachverhalt im Lokalen.

(1.2.17) Satz. Sei L|K eine endliche, galoissche und abelsche Erweiterung p-adischer Zahlkor-
per. Dann bildet das lokale Normrestsymbol (-, L|K)

(a) die Einheitengruppe Ux surjektiv auf die Tragheitsgruppe Go(L|K) ab,

)

(b) die Einseinheitengruppe UI({I surjektiv auf die Verzweigungsgruppe G1(L|K) ab,

(c) die n-te FEinseinheitengruppe U[({n) fir n > 0 surjektiv auf die n-te Verzweigungsgruppe in
oberer Numerierung G"(L|K) ab.



Beweis. Der Teil (c) wird fiir die Hauptsétze dieser Arbeit keine Anwendung finden, und
sein Beweis ist nicht so elementar wie der der beiden anderen Falle. Wir begniigen uns daher mit
einem Verweis auf [Se-LF], chapter XV, Theorem 2. Der Beweis der anderen Félle ist an [N-KKT]
angelehnt.

(a) Sei T der Tragheitskorper der Erweiterung L|K, die vom Grad n = e - f mit Verzwei-
gungindex e sei. Die Galois-Gruppe G(L|T) ist gerade die Trigheitsgruppe Go(L|K), und die
Erweiterung T'|K ist unverzweigt vom Grad f. In diesem Fall wird das lokale Normrestsym-
bol durch den Frobeniusautomorphismus beschrieben: (a,T|K) = cp?l‘([({a) (vgl. [N-KKT], Ka-
pitel T1.4). Sei u € Ux und 7 : G(L|K)® — G(T|K)® die natiirliche Abbildung. Dann ist
7((u, L|K)) = (u, LIK)Go(L|K) = (u, T|K) = 2™ = 1, damit gilt also (u, L|K) € Go(L|K).

TIK —
Betrachten wir nun 7 € Go(L|K) mit (a, L|K) = 7 fiir ein a € K*. Das impliziert (a,T|K) =
;I‘([ga) = 1, also ist vx (a) durch f teilbar, und wir kénnen ein b € L™ mit vx(a) = fvr(b) wihlen.

Es ist e vk (Npjgb) = vi(Npgb) = n-vp(b) = e - vk (a) und somit v (a) = vk (N xb). Daher
finden wir ein u € Ux mit a = u - Ny gb. Somit ist (a, L|K) = (u, L|K) = 7, und die gesamte
Tragheitsgruppe wird getroffen.

(b) Da die Normengruppen aufgrund der Endlichkeit der Galois-Gruppe offene Untergrup-

pen von K* sind, und die UI(?) eine Umgebungsbasis der 1 bilden, mufs es ein n geben, so
daf (Ll[(?),L|K ) = 1 ist. Die Verzweigungsgruppe G1(L|K) ist charakterisiert als die einzige p-
Sylowgruppe von Go(L|K). Daher ist sie das Bild der p-Sylowgruppe U [(; ) /Lll({n) von Uy /Lll({n) unter
dem Normrestsymbol (man beachte, daf alle Faktorgruppen L{I(? /L{%H) fiir 4 > 1 isomorph zur

additiven und Ux /Ll[(g) isomorph zur multiplikativen Gruppe des Restklassenkorpers von K sind).
O

Wir verwenden den folgenden Satz (vgl. [N-KKT], Satz I11.8.2) fiir den Ubergang vom Lokalen
zum Globalen:

(1.2.18) Satz. Sei K|k eine endliche, galoissche und abelsche Erweiterung von Zahlkérpern. Mit-
tels der natiirlichen Abbildung ky, — Cj, gilt:

NK|kCK N kg = NKp\kag

Beweis. Die Inklusion D ist klar. Fiir die andere betrachten wir eine Idelklasse

a: (...,1,:1:]3,1,...) ECK
mit z, € k:pX. Diese kommt per Voraussetzung von einem Normidel her:
NK|k’b = (...,1,.’L‘p,1,...)(1,,

wobei a in k* liege. Damit ist a Normenelement fiir alle von p verschiedenen Primstellen. Aus der
Produktformel entnehmen wir, dat a auch fiir p Normenelement sein muf, weshalb dies auch fiir
Ty gilt. O

Fundamental fiir das Folgende ist der

(1.2.19) Satz. Sei K|k eine endliche, galoissche und abelsche Erweiterung von Zahlkorpern, und
sei p eine (endliche oder unendliche) Primstelle von k. Dann gilt:

(a) p ist voll zerlegt in K < k' C NgiCxk.
(b) p ist unverzweigt in K < L{Igg) C N kCk -

(c) p ist zahm verzweigt in K < Z/{,gi) C NgkCk -



(d) Seip eine endliche Stelle und G™(Kp|ky) die n-te Verzweigungsgruppe in oberer Numerierunyg.
Es ist dann:

GM(Kylky) =1 & U C NgyCr.

Dabei heifle eine unendliche Stelle unverzweigt bzw. gleichbedeutend damit voll zerlegt genau dann,
wenn ky, = K, ist. Insbesondere fassen wir C|R als verzweigt auf.

Beweis. Dies iibertragt sich mittels des Satzes (1.2.18) direkt aus dem Lokalen (Satz (1.2.17)).
O

In S voll zerlegter Fall

Nun wenden wir uns dem Fall von Erweiterungen zu, die in einer Primstellenmenge S voll zerlegt
sind.

(1.2.20) Lemma. Sei k ein algebraischer Zahlkérper, K|k eine endliche, galoissche und unver-
zweigte Erweiterung, die in der Primstellenmenge S von k voll zerlegt ist. Dann gilt:

Is(k‘)/O]:S = Is(k')kx/k'x - NK|]<;CK-
Beweis. Dies ist eine unmittelbare Konsequenz von Satz (1.2.19) (a). O

(1.2.21) Satz. Sei L“Sb C k die mazimale abelsche unverzweigte und in S voll zerlegte Erweiterung
des Zahlkérpers k. Dann gilt:
G(LLk) = Clg(k).

Beweis. Aufgrund von Lemma (1.2.10) (b) ist Zg(k)/O, ¢ eine offene Untergruppe von Cj,
und somit eine Normengruppe, etwa zum Koérper K. Dieser hat aber wegen des Lemmas (1.2.20)
die gewiinschten Eigenschaften, also ist K gleich L“Sb. O

Wir wollen auch Aussagen {iber maximale galoissche p-Erweiterungen machen. Wir bemerken,
daf Lemma (1.1.35) fiir eine beliebige galoissche Erweiterung L|k bedeutet, dafl die maximale
galoissche p-Erweiterung innerhalb der maximalen abelschen Teilerweiterung von L|k das gleiche
ist, wie die maximale abelsche Erweiterung innerhalb der maximalen galoisschen p-Teilerweiterung
von L|k.

Wir nennen L%(p) die maximale abelsche unverzweigte p-Erweiterung von k, die in S voll
zerlegt ist. Es folgt das

(1.2.22) Korollar. G(L¥(p)|k) = Cls(k)(p).

Beschrinkte Verzweigung

Nun wenden wir uns der Theorie der beschrankten Verzweigung zu. Dafiir haben wir zunéchst
den wichtigen

(1.2.23) Satz. Sei k ein algebraischer Zahlkérper. Die Normengruppen von Ci sind gerade die
Obergruppen der Kongruenzuntergruppen Cp".

Beweis. CJ' < Cj, ist wegen Satz (1.2.7) offen, also eine Normengruppe. Damit sind auch alle
Obergruppen Normengruppen.

Umgekehrt sei I eine Normengruppe, also eine offene Untergruppe von Cy. Die héheren Eins-
einheiten definieren eine Umgebungsbasis der 1 in den lokalen Korpern ky. Damit ist die Gruppe

(T ks = TTes™ < [Tk />
ploo
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fiir geeignetes endliches S, das die unendlichen Stellen nicht enthalte, eine Teilmenge von I. [ ist
also Obergruppe von C¢ mit dem entsprechend definierten Modul m. O

Der Satz besagt also, dafs jede endliche galoissche und abelsche Erweiterung K|k in einem
Strahlklassenkdrper k™ enthalten ist. Dies seien die zu Cf gehorigen Korper. Damit sind die Galois-
Gruppen dieser Erweiterungen gerade die Strahlklassengruppen:

G(k™[k) = Cp/Cy
Als Konsequenz aus Satz (1.2.19) (c) erhalten wir den

(1.2.24) Satz. Sei k ein Zahlkérper mit algebraischem Abschluff k und S eine endliche Menge
von Primstellen von k. Setze m = Hpes p. Dann ist der Strahlklassenkdérper k™ die mazimale
abelsche, auferhald S unverzweigte und innerhalb S zahm verzweigte galoissche Erweiterung von
k mit endlicher abelscher Galois-Gruppe

G(k™k) = ¢ /C.

Mit k™(p) bezeichnen wir die maximale in k™ enthaltene galoissche p-Erweiterung von k. Fir sie
gilt:
G(E™(p)|k) = (Cr/CF)(p)-

Wir wollen noch kurz auf eine alternative Formulierung des Reziprozitédtsgesetzes fiir be-
schrinkte Verzweigung eingehen. Sei S eine endliche Menge von Primstellen von k. Die Definition
von Cs(K) = I /K*Uk,s ist dadurch motiviert, dak in den Stellen p ¢ S im Hinblick auf Satz
(1.2.19) (b) die Gruppen U, stets in den Normengruppen enthalten sind. Wegen K* NUk g =1
kénnen wir Ug s als Untergruppe von Cx auffassen. Aufgrund der kohomologischen Trivialitét
von Uk s (siehe S. 33) folgt aus der exakten Sequenz 0 — Uk g — Cx — Cg(K) — 0, daf fiir alle
i € Z gilt:

(G(KIK), Cx) = H(G(K k), Cs (K).

Ruft man sich ferner den guten Galois-Abstieg von Cg(K) in Erinnerung, erhélt man sofort, dafs
(Gs,Cg) eine Klassenformation bildet. Dabei sei Gg die Galois-Gruppe der maximalen auferhalb
S unverzweigten Erweiterung ks von k, und Cs = lim Cs(K), wobei der Limes {iber die endlichen
galoisschen Erweiterungen K von k laufe, die in kg enthalten sind. Die Normengruppen ergeben
sich aus den gewdhnlichen durch Faktorbildung nach Uk . Damit sind es gerade wieder die offenen
Untergruppen endlichen Indexes von Cg(k).

1.2.5. Der Hauptidealsatz
Abstrakte Fassung

Zunéchst formulieren wir eine abstrakte Fassung des Hauptidealsatzes in der im Abschnitt 1.1.6
benutzten Notation.

Sei G = Gy, eine proendliche Gruppe und C' eine Klassenformation zu G. Wir indizieren die
abgeschlossenen Normalteiler von G}, mit formalen Korpern K |k und schreiben wieder G(L|K) =
G /G, fiir zwei formale Korper L|k und K|k mit G € Gg. AuRerdem setzen wir Cx = COK.

Wir setzen in diesem Abschnitt voraus, daf fiir alle endlichen formalen Korpererweiterungen
K|k die Abelisierung G2 endlich ist.

Wir fixieren eine endliche formale Korpererweiterung K|k und bezeichnen mit Ky den Korper
mit

GP = G(K1|K)
und mit Ko den Korper mit
GP = G(K,|K)).



Nach Definition erhalten wir, dak G, = G’ eine Untergruppe von G ist, und dah G, = G

gilt (dabei bezeiche jeweils G’ die Kommutatorgruppe [G,G]). Daraus schliefen wir die Gleich-
heiten
G(K3|K)™® = G(K1|K) und G(K3|K) = G(Ks|K)).

Nach Satz (1.1.31) ist das Diagramm

LKs|K
Ck /N, kCr, LRI, G(K,|K)™®

| el

K| K
Cr, /Niy i, Oy 2280, G|y )

kommutativ, wobei i der von der Inklusion Cx — C, induzierte Homomorphismus ist.
Die bertihmte gruppentheoretische Version des Hauptidealsatzes von Furtwéngler (vgl. [N-ZT],
Theorem VI.7.6) ist das folgende

(1.2.25) Theorem. Sei G eine endlich erzeugte Gruppe, so ist die Verlagerung
Ver: G — (G")®
die triviale Abbildung.

Daraus ziehen wir die fiir uns relevante Konsequenz:

(1.2.26) Korollar. Der von der Inklusion induzierte Homomorphismus

7 CK/NK1|KCK1 - OK1/NK2|K10K2

ist trivial.

Der Hauptidealsatz in der globalen Klassenkdrpertheorie

Sei k ein Zahlkdrper mit fixiertem algebraischen Abschluf k|k und S eine Primstellenmenge von
k. Lg sei die maximale unverzweigte Erweiterung von k, die in .S voll zerlegt ist. Eine Verbindung
zum abstrakten Fall erhalten wir durch die Definition

Gj = G(Lg|k) und C :=Crg.

Mit k; bezeichnen wir die maximale abelsche unverzweigte und in S voll zerlegte Erweiterung
von k und mit ky die entsprechende von ki, welche galoissch iiber k ist. Weiter seien k;(p) und
k2(p) die maximalen in ki bzw. ko enthaltenen galoisschen p-Erweiterungen. Dann kommutieren
die Diagramme

Cls(k) ‘% Cr/Niy |kCh,y Cls(k)(p) ‘% (Ch /Ny (0)|kCh:1 () (P)
natl zl und natl zl
Cls(k1) «—— Cr/NigitsCre  Cls(k1(0))(p) “—— (Chip)/Nia(w)lhs (0)Cra(r)) (P)
Damit ergibt sich das
(1.2.27) Korollar. Die natirlichen Abbildungen

Cls(k) — Cls(k1) und  Cls(k)(p) — Cls(ki(p))(p)

sind trivial.



Nun sei m ein Modul und L™ die maximale Erweiterung von k innerhalb von &, so daf fiir
L™ > K Dk stets K% C k™ gilt. Die Verbindung zum abstrakten Fall wird gegeben durch

Gr:=G(L™k) und C:=Cpm.

Wir schreiben k; := k™ und ks := k" fiir die Strahlklassenkdérper modulo m von k£ bzw. k1 und
wieder k1(p) bzw. ko(p) fiir die in k1 bzw. ko enthaltenen maximalen galoisschen p-Erweiterungen.
ko ist galoissch iiber k. Es kommutieren die Diagramme

TEPE —— Cr/CT (TN/PP) ——  (C/C)(p)

| | owd |

TRIPR —— Cu/Cl (TR0 Prp)®) «——— (Crp)/C ) (P)
Somit ergibt sich das
(1.2.28) Korollar. Die natirlichen Abbildungen
TEIPE = T PE und  (TPR)®) = (T /Pl ) (®)
und die von der Inklusion induzierten Abbildungen
i Cr/Cp — Cim [Ciim und i1 (Ce/Ci)(p) = (Cam(p)/Chm () (P)

sind trivial.

Speziell fiir m = 1 ist der Strahlklassenkdrper gerade die maximale abelsche unverzweigte
Erweiterung, (kleiner) Hilbertscher Klassenkorper genannt. Die Aussage des klassischen Haupt-
idealsatzes ist nun, dal jedes Ideal von k im Hilbertschen Klassenkérper ki ein Hauptideal wird.

1.2.6. Ein Dualititssatz fiir in S voll zerlegte Erweiterungen

Wir nehmen nun die Voraussetzungen der Arbeit [W].
e Sei k ein algebraischer Zahlkérper und S eine Menge von Primstellen von k.

e Lg sei die maximale unverzweigte und in S voll zerlegte Erweiterung von k, und Lg(p) die
maximale in Lg enthaltene galoissche p-Erweiterung.

e Fiir eine endliche Galois-Erweiterung K|k sei Eg(K) die Gruppe der S-Einheiten O} k.5» und

wir setzen
Eg(Ls) = lim Es(K) bzw. Eg(Ls(p)):= lm  Eg(K).
K|k,KCLs K|k,KCLs(p)

Aus dem abstrakten Dualitétssatz (Theorem (1.1.34)) schliefen wir Theorem 1.1 von [W].
(1.2.29) Theorem. (a) Fir alle i € Z gibt es kanonische topologische Isomorphismen
H'(G(Ls|k), Bs(Ls)) = H*"(G(Ls|k), Q/Z) .
(b) Fir alle i € Z gibt es kanonische topologische Isomorphismen

H(G(Ls(p)|k), Es(Ls(p))) = H*(G(Ls(p)|k), Qp/Zy) " .



Beweis. Wir miissen die Bedeutung der im abstrakten Dualitdtssatz verwendeten Bezeich-
nungen festlegen.

Fiir eine endliche galoissche Erweiterung K C Lg von k bezeichne Cx die Idelklassengruppe
und CY den kompakten Kern der Absolutnorm. Setzen wir

— ; 0 _ : 0
C= lim Ckx und C = lim Cg,
LsDK|k LsDK|k

so ist CY level-kompakt, und wir haben die exakte Sequenz
0—-C"—-C—R,—0.

Die Rolle von Ex werde durch die S-Einheiten Eg(K) iibernommen und die von Zx durch
Zs(K), welche fiir K C Lg nach Korollar (1.2.5) kohomologisch trivial ist.

Clg werde représentiert durch Clg(K ), welches nach Satz (1.2.21) isomorph zur Galois-Gruppe
der maximalen unverzweigten abelschen und in S voll zerlegten Erweiterung von K ist.

Die Endlichkeit von Clg(K) haben wir auf Seite 33 bewiesen.

Die Trivialitdt von lim Clg(K) und lim  Cls(K)(p) folgt aus dem Hauptidealsatz

LsDOK]|k Ls(p)DK|k

(Korollar (1.2.27)).

Die Exaktheit der Sequenzen in dem und die Kommutativitit des Diagramms (1.1.33) folgen
aus Satz (1.2.11) bzw. lassen sich sofort nachrechnen.

Das Theorem ergibt sich nun aus Theorem (1.1.34). O

1.2.7. Ein Dualititssatz fiir beschrinkte Verzweigung

Nun betrachten wir die folgende Situation:

e Sei p eine Primzahl und k ein algebraischer Zahlkorper, welchen wir im Falle p = 2 als total
imagindr voraussetzen wollen, und sei k ein algebraischer Abschluff von k.

e Sei S eine endliche Menge von Primstellen von k mit
SNnS, =0,
wobei S), die Menge der iiber p liegenden Primstellen von k sei.

e Mit kg bezeichnen wir die maximale galoissche Erweiterung von k in k, die auferhalb von
S, also insbesondere iiber p, unverzweigt ist.

Weiter sei kg(p) die maximale, darin enthaltene galoissche p-Erweiterung. Nach Vorausset-
zung ist kg(p) iiber k in allen Primstellen p € S zahm verzweigt.

e Fiir eine endliche galoissche Erweiterung ks O K|k schreiben wir E¥(K) := Oy, fiir den
Modul m := [ ¢ p-

Wir setzen E°(kg) := lim E%(K) und E°(ks(p)) := lim E3(K).
ksDK|k ks(p)DK|k

(1.2.30) Theorem. Fir alle i € Z gibt es kanonische topologische Isomorphismen
H (G(ks(p)|k), ES (ks(p)) = H* ™ (G(ks(p)|k), Qp/Zp) "

Beweis. Wir miissen auch hier die Ubersetzungen zum abstrakten Fall angeben.
Fiir eine endliche galoissche Erweiterung K C kg von k sei wieder Cx die Idelklassengruppe
und CY der kompakte Kern der Absolutnorm. Setzen wir auch hier

— i 0_ 15 0
C= lim Cx und C" = lim Ck,
ksDK|k ksDK|k



so ist CY level-kompakt, und wir haben die exakte Sequenz
0—-C"—>C—R,—0.

Die Rolle von Ef wird durch E¥(K) iibernommen und die von Zx durch die Gruppe I,
welche fiir K C kg(p) kohomologisch trivial ist, was aus dem folgenden Lemma (1.2.31) folgt.
Denn es spielen nur die endlichen Stellen von S eine Rolle, da die Erweiterung auferhalb von S
unverzweigt ist, und fiir p # 2 bei Vervollstdndigung nach archimedischen Stellen die Erweiterung
C/R nicht auftreten kann, und fiir p = 2 der Grundkorper k als total imagindr vorausgesetzt
wurde.

Clk werde représentiert durch die Gruppe Ck /CR, welche nach Satz (1.2.24) isomorph zur
Galois-Gruppe der maximalen auferhalb S unverzweigten (und innerhalb S zahm verzweigten)
abelschen Erweiterung von K ist.

Die Endlichkeit von Cx /C} haben wir in Satz (1.2.7) bewiesen.

Die Trivialitit von lim Ck/Cg und lim Ck/Cg(p) folgt aus dem Hauptidealsatz (Ko-

ksDK|k ks(p)DK|k
rollar (1.2.28)).

Die Exaktheit der Sequenzen in dem und die Kommutativitdat des Diagramms (1.1.33) folgen
aus Satz (1.2.13) bzw. lassen sich sofort nachrechnen.

Das Theorem ergibt sich nun aus dem Fall (b) von Theorem (1.1.34). O

(1.2.31) Lemma. Sei p eine Primzahl, K ein g-adischer Zahlkérper mit ¢ # p. Ist L|K eine

Galois-Erweiterung vom Grad p®, so sind die hoheren Einseinheitengruppen Llén) fir allen > 1
kohomologisch trivial.

Beweis. Die n-te Einseinheitengruppe ist projektiver Limes U é") = lianUgL) U ém) flirn>1
von (multiplikativen) ¢-Gruppen, auf denen Potenzierung mit p® bijektiv ist. Somit ist Potenzie-
rung mit p® auch auf Z/lg”) und daher auf H*(G(L|K ),Z/{g”)) bijektiv. Aufgrund von f®°) = 1 fiir
alle f € Hi(G(L|K),u™) ist H (G(LIK),u™) =1 fiir alle i € Z. O



II. Galois-Gruppen von CM-Korpern

2.1. Strukturen in Pro-p-Gruppen

2.1.1. Erzeuger und Relationen von Pro-p-Gruppen

Sei G eine Pro-p-Gruppe. Die Frattini- Untergruppe ®(G) ist definiert als der Durchschnitt aller
echten offenen Untergruppen von G. Es gilt (siche [DDMS], Prop. 1.13)

o(G) = G*[G, G,

wobei GP das Erzeugnis der p-ten Potenzen von G bezeichnet. Daher ist G/®(G) die grofte
Faktorgruppe von G, die abelsch und vom Exponenten p ist. Da jeder Homomorphismus G —
Z/pZ iiber ®(G) faktorisiert, erhalten wir die Gleichheit

HY(G) = Hom(G, Z/pZ) = Hom(G/®(G), Z/pZ) = Hom(G/B(G),R/Z) = (G/®(G))".

Dabei haben wir H!(G) fiir H'(G,Z/pZ) geschrieben.

Eine Teilmenge S C G heift konvergent (gegen 1), falls in jeder offenen Untergruppe U < G
fast alle Elemente von S liegen.

Eine konvergente Teilmenge S C G heifit Erzeugendensystem von G, falls < S > gleich G ist.
Wir nennen die minimale Erzeugendenzahl den Rang von G und bezeichnen ihn mit d(G).

Eine den Pro-p-Gruppen besondere Eigenschaft ist die folgende Charakterisierung des Ranges.

(2.1.1) Satz. Fine konvergente Teilmenge S der Pro-p-Gruppe G erzeugt G genau dann, wenn
G/®(G) durch die Restklassen S modulo ®(G) von S erzeugt wird. Ferner gilt:

d(G) = dimg, H'(G) = ;1)|G/<I>(G).

Beweis. Wir setzen H := < S >. Falls nun H/®(H) gleich G/®(G) ist, dann gilt insbesondere
HY(H/®(H)) = HY(G/®(G)) und somit H'(H) = H'(G), weshalb aus der Inflation-Restriktion-
Sequenz folgt, da® H'(G/H) trivial ist. Dann muf aber bereits G/H die Einsgruppe sein. Der
Satz folgt nun sofort. O

Eine Pro-p-Gruppe ist also genau dann endlich erzeugt, wenn G/®(G) = G/G?[G,G] = H'(G)
endlich ist. Dies wollen wir leicht verallgemeinern.
Unter Benutzung der exakten Sequenz

0—Z/pZ —Z/p"Z — Z/p" 7 — 0

fiir r € N erhalten wir induktiv, da® H'(G,Z/p"Z) endlich ist, falls dies fiir H(G,Z/pZ) der Fall
ist. Aus der Rechnung

HY(G,Z)p"Z) = Hom(G/GP [G, G, Z/p'Z) = (GG [G,G])"

schliefen wir, daf in diesem Fall auch die Gruppe G/GP"[G, G| endlich ist. Wir erhalten:
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(2.1.2) Lemma. Sei G eine endlich erzeugte Pro-p-Gruppe.

(a) G/GP"|G,G] ist endlich fir alle r € N.
(b) FEine offene Untergruppe H < G ist ebenfalls endlich erzeugt.

Beweis. (a) haben wir gerade gezeigt. (b) ist z. B. in [DDMS], Proposition 1.7, bewiesen.
O

Sei N <1 G ein abgeschlossener Normalteiler von G. Ein Erzeugendensystem als Normalteiler
von N ist eine konvergente Teilmenge S C IV, so dafs N der kleinste Normalteiler ist, der S enthalt.

(2.1.3) Lemma. Sei G eine Pro-p-Gruppe und N ein abgeschlossener Normalteiler, der als Nor-
malteiler von der Menge S C N erzeugt wird. Ferner sei H < G ein weiterer abgeschlossener
Normalteiler. Dann wird NH/H als Normalteiler von G/H erzeugt von der Menge S der Rest-
klassen modulo H der Elemente aus S.

Beweis. Es gilt N = (| M, wobei der Durchschnitt iiber alle abgeschlossenen Normalteiler
M <1 G gebildet wird, die S umfassen. Dann ist

NH/H = N MH/H= (] X,
SCMH/H, M<G SCX,X<G/H

was die Behauptung impliziert. O

Aus [NSW] zitieren wir Corollary 3.9.3:

(2.1.4) Satz. Sei N <G ein abgeschlossener Normalteiler der Pro-p-Gruppe G. Dann erzeugt die
Menge S C N den Normalteiler N als Normalteiler genau dann, wenn S (siehe Lemma (2.1.3))
N/NP[G, N] als Normalteiler von G/®(G) erzeugt.

Ist S minimal, so gilt

S| = dimy, H'(N)C.

Im folgenden wollen wir den Begriff der freien Pro-p-Gruppe einfithren und ihn benutzen, um
den Begriff der Relation zu definieren und zu charakterisieren.

(2.1.5) Definition. Sei X eine Menge. Eine freie Pro-p-Gruppe auf X ist eine Pro-p-Gruppe
Fx zusammen mit einer Abbildung i : X — Fx, so daf gelten:

(i) Jede offene Untergruppe U < Fx enthdlt fast alle Elemente von i(X).

(1) Fiir jede Pro-p-Gruppe G mit Abbildung j : X — G gibt es genau einen Homomorphismus
f:Fx — G, sodaff foi=7 gilt.

Man erhalt eine freie Pro-p-Gruppe durch Bildung des projektiven Limes iiber alle Quotienten
F /U, wobei F die gewohnliche freie Gruppe bezeichnet, und U die Normalteiler von F von end-
lichem Index durchlduft, die fast alle Elemente 2 € X enthalten, und fiir die /U eine p-Gruppe
ist. Die Existenz und Eindeutigkeit des Homomorphismus f : F'x — G folgt dann im Wesentlichen
aus der stetigen Fortsetzung auf F'x des eindeutigen Homomorphismus der gewthnlichen freien
Gruppe auf X nach G.

Aus der universellen Eigenschaft der freien Pro-p-Gruppen schliefen wir, dafs es zu vorgegebe-
ner Pro-p-Gruppe G mit Erzeugendensystem S eine exakte Sequenz

l1-R—-F—-G-—1

gibt, wobei F' die freie Pro-p-Gruppe auf S ist.
Ein Relationensystem R von G bzgl. S ist ein Erzeugendensystem von R als Normalteiler von
F'. Auch fiir dieses haben wir eine kohomologische Charakterisierung.



(2.1.6) Satz. Sei G eine endlich erzeugte Pro-p-Gruppe mit minimalem Erzeugendensystem S.
Dann gilt fiir ein minimales Relationensystem R bzgl. S

IR| = dimg, H*(G).
Diese Zahl bezeichnen wir mit r(G) und nennen sie den Relationenrang von G.
Beweis. Wir betrachten die Fiinf-Terme-Sequenz aus Satz (2.2.7)
0— HYG) — HYF) — H'(R)® — H*(G) — H*(F).
Da nach [NSW], Proposition 3.5.8, H%(F) = 0 gilt, erhalten wir zusammen mit Satz (2.1.4)

0 = dimy, H'(G) — dimp, H' (F) + dimg, H*(R)® — dimg, H*(G)
=d(G) — |S| + [R| — dimp, H*(G).

Wir werden spéter folgende Sitze bendtigen.

(2.1.7) Satz. Sei G eine endlich erzeugte Pro-p-Gruppe mit einer Relation, d.h. r(G) = 1. Dann
ist d(G) =1 oder G hat Z, als Quotienten.

Beweis. Ist 7(G) = 1, so finden wir eine exakte Sequenz
1-R—-F—->G—1,

wobei R von einem Element als Normalteiler der freien Pro-p-Gruppe F' (bzgl. einem minimalen
Erzeugendensystem S von G) erzeugt wird. Nach Lemma (2.1.3) ist RF'/F’ entweder trivial oder
wird von einem Element als Untergruppe von F/F’ = F% erzeugt. Die Sequenz

1 — RF'/F — F® - G® -1

ist exakt, und alle vorkommenden Gruppen sind Z,-Moduln, wobei rkz, F @b — | S| ist. Daher gilt
rkz, G > |S| — 1, und die Behauptung folgt. |

(2.1.8) Satz. Sei G eine endlich erzeugte Pro-p-Gruppe. Dann ist die Sequenz
0— (,G™) — H*(G,Z/pZ) — pH*(G,Q,/Z) — 0
exakt. Insbesondere berechnet sich der Relationenrang von G zu
r(G) = dimg, ,G® + dimg, ,H*(G,Q,/Z,).
Beweis. Wir gehen aus von der exakten Sequenz
0= ~Z/2— Qy/Zy L Qy/Zy — 0
Dieser ordnen wir die lange exakte Sequenz
Hl(Gv Qp/Zp) L Hl(Gv Qp/Zp) - H2(G7 Z|pZ) — Hz(Ga Qp/Zp) = Hz(Ga Qp/Zp)

zu. Die Sequenz
0 _)pGab N Gab LGab

ist exakt, woraus wir durch Dualisierung die ebenfalls exakte Sequenz

HY(G,Q,/Z,) & H'(G,Q,/Z,) — H'(,G?, Q,/Z,) — 0



erhalten. Deshalb kénnen wir schliefsen, daf
0— Hl(pGab7Qp/Zp) - H2(G7Z/pZ) - pH2(G7Qp/Zp) —0

exakt ist. Wegen
H'(,G,Qp/Zp) = Hom(,G*, Qp/Zy) = (,G*)"

ergibt sich der Satz. O

Der folgende Satz ist ein Analogon zur Zerlegung eines Moduls {iber einem Hauptidealring in
einen freien und einen Torsionsteil.

(2.1.9) Satz. Sei G eine endlich erzeugte Pro-p-Gruppe. Dann gilt:
d(G) = dimg,(G/®(G)) = rkz, (G™) + dimg, (,G™).

Beweis. Wegen d(G%) = d(G) diirfen wir G als abelsch voraussetzen. Dann ist G direktes
Produkt von r Kopien von Z, und s = d(G) — r Gruppen der Form Z/p®Z. Dabei ist r der Rang
von G als Zy,-Modul. Aufgrund von ,Z, = 0 gilt ,G = ,([[Z/p*Z). Fiir die Fp-Dimension folgt
nun dimg, (,G) = s. O

2.1.2. Filtrierungen von Pro-p-Gruppen
Allgemeines

Eine filtrierte Gruppe ist eine Gruppe GG zusammen mit einer Abbildung
w:G — NU{oo},

so daf fiir alle z,y € G
wlzy™") > min(w(z),w(y))

gilt. Definieren wir fiir jedes n € N die Menge
Gy :={z € Gl w(x) > n},

so erhalten wir eine absteigende Kette von Untergruppen von G.
Umgekehrt definiert eine solche Kette auch eine Filtrierung via

w(z) := maz{n| x € G, }.
In [Lz| wird von einer Filtrierung zusétzlich gefordert, daf
w([z,y]) > w(z) +w(y)
fiir alle z,y € G gilt, was gleichbedeutend ist mit
(G, Gl € Grgm-
Wir nennen eine solche Filtrierung zentral.
Wir halten noch fest, dafs in diesem Falle GG, fiir alle n ein Normalteiler von G ist, und zusétz-

lich G, /Gp+1 im Zentrum von G/G 41 liegt. Des weiteren sind sukzessive Quotienten zentraler
Filtrierungen abelsch.



Zassenhaus-Filtrierung einer Pro-p-Gruppe

In diesem Abschnitt folgen wir weitgehend [K-GJ. Sei G eine Pro-p-Gruppe. Wir mdchten uns eine
Filtrierung von G beschaffen. Dazu konstruieren wir zundchst eine Umgebungsbasis der 0 in der
Gruppenalgebra. Viele Aussagen iiber Gruppenfiltrierungen kénnen wir dann in der Gruppenal-
gebra behandeln.

Wir definieren die (vervollstandigte) Gruppenalgebra durch

Fp[[GH = lﬂl FP[G/N]v
wobei der projektive Limes iiber die offenen Normalteiler von GG gebildet wird. In ihr haben wir

das Ideal
I(G)=(g— 1] g€ q).

Ferner setzen wir

1"(G) = (L(G)"™
Nun haben wir den folgenden Satz (vgl. [K-G], Satz 7.8).

(2.1.10) Satz. Sei G eine endlich erzeugte Pro-p-Gruppe. Dann bilden die Ideale I"(G) eine
Umgebungsbasis der 0 in F,[[G]].

Wir definieren die Zassenhaus-Filtrierung durch
Gy =1{9€Glg—-1€I"(G)}.
Fiir das Studium ihrer Eigenschaften beweisen wir zunéchst das folgende Lemma.
(2.1.11) Lemma. (a) Fir alle g,h € G gilt:
l9:h] =1=(gh=1)(gTh™ = 1)+ (gh = 1) + (g7 h™" = 1)
(b) Fiir alle g € G,y und alle h € G, gilt:

gh—1=g—1+h—1 (modulo I"""(Q)).

(d) Fir alle g € Gy gilt: g"" € G-
Beweis. (a) rechnet man unmittelbar aus. Fiir (b) berechnen wir
gh—1=(g-1)(h—-1)+g—1+h—-1=g—1+h—1 (modulo I"™(G)).
Fiir (c) rechnen wir modulo I""™(G):
[9,h] =1 =(gh = 1)(g"'h™" = 1)+ (gh = 1) + (¢ 'h™" = 1)
(G=D+G=1)(g " =D+ =1)+g—1+h—1+g —1+h"~1
(

g-D(@g -+ h-D)r 1) +g—1+h—-1+g -1+t -1
0

F,[[G]] hat Charakteristik p, daher ist
1= (g1
ein Element von I?*"(G), weshalb (d) gilt. O

Wir erhalten nun den



(2.1.12) Satz. Sei G eine endlich erzeugte Pro-p-Gruppe. Dann ist die Zassenhaus-Filtrierung
eine zentrale Filtrierung, und die G, bilden eine Umgebungsbasis der 1 von G.

Beweis. Die erste Behauptung folgt unmittelbar aus dem vorausgehenden Lemma. Zur zweiten
betrachten wir die Abbildung

¢ G(n)/G(n—H) - In(G)/In+1(G)7 g—g—1
Diese ist ein Homomorphismus nach Teil (b) des Lemmas. Ferner ist ¢ nach Definition von G/, ;1)

injektiv. Daher ist G(,)/G ,+1) endlich, weshalb G, ;1) in G offen ist.
Sei ferner U <1 G ein offener Normalteiler und

Yu : Fp[[Gl] — Fp[G/U]

die natiirliche Projektion. Da der Kern von ¢y offen ist, gibt es einen Index n, so daf I"(G) im
Kern enthalten ist. Fiir alle g € G(,,) haben wir also die Gleichheit

Yu(g—1)=0=1u(g) — 1.
Daher ist G(,,) in U enthalten, und die G, steigen zur 1 ab. O

Die absteigende g-Zentralreihe

Wir definieren im Folgenden fiir eine Pro-p-Gruppe G eine weitere zentrale Filtrierung, die ganz
entscheidende Verwendung finden wird.

Sei zunichst allgemein ¢ eine p-Potenz oder 0. Die absteigende q-Zentralreihe wird induktiv
definiert durch

G .= @ und GHLY = (Ga))a[Gna) | G].
(2.1.13) Satz. Sei G eine endlich erzeugte Pro-p-Gruppe.
(a) Sei K C G eine abgeschlossene Untergruppe. Wir setzen induktiv
KW = K und K™ .= (KM)[K® G].
Dann gilt fiir alle n € N

K™ C Gy,
wobei G,y die n-te Gruppe in der Zassenhaus-Filtrierung ist. Insbesondere steigen die K™
und damit auch die G echt zur 1 ab.

(b) Sei q = p°® eine p-Potenz. Dann ist
G (9) caG
eine offene Untergruppe. Die G bilden also eine Umgebungsbasis der 1.
Beweis. (a) Im Lemma (2.1.11) haben wir gesehen, daf
(Gm)? € Gng) und [Gr), G| € Gy

gilt. Wir zeigen die Behauptung nun induktiv. Fiir n = 1 ist sie klar. Der Induktionsschritt folgt
aus

KU = (KM)a[K™, G] € (GM)I[GM, G] € Glg)Ginin) € Gnt)-

Dies gilt fiir ¢ = p®. Der Beweis fiir ¢ = 0 ergibt sich aus gleicher Rechnung durch Weglassen aller
Terme, in denen ein g auftritt.

(b) Wir benutzen wiederum Induktion nach n. Der Induktionsanfang ist klar. Fiir den Schritt
setzen wir zunéchst H := G(9). Dann ist H als offene Untergruppe nach Lemma (2.1.2) endlich
erzeugt, und H/H4[H, H] ist endlich. Daher ist aber auch G(™% /G("+1.9) = H/H4[H, G] endlich.

a

Man kann weiterhin zeigen, daf die absteigende ¢-Zentralreihe tatsachlich eine zentrale Fil-
trierung darstellt. Fiir den Fall ¢ = p ist die Rechnung z.B. in [DDMS] durchgefiihrt.
Wir wollen im Folgenden schreiben: G, := G("P).



2.1.3. Potenzreiche und uniforme Pro-p-Gruppen

In diesem Abschnitt présentieren wir kurz die wichtigsten elementaren Resultate der Theorie der
potenzreichen und uniformen Gruppen, wie sie in [DDMS] entwickelt wird.

Wir fixieren eine Primzahl p, welche wir der Einfachheit halber als ungerade annehmen wollen.

Sei G eine Pro-p-Gruppe. G heifit potenzreich, falls G /GP abelsch ist.

Die wichtigsten aus der Definition folgenden Eigenschaften sind zusammengefafit im folgenden
Satz (vgl. [DDMS], Theorem 3.6, Proposition 3.7, Theorem 3.8).

(2.1.14) Satz. Sei G =< ay,...,aq > eine endlich erzeugte potenzreiche Gruppe, und bezeichne
G, die i-te Gruppe der absteigenden p-Zentralreihe.

(a) Fiir alle k > 0 und alle i > 1 gilt Gy = Gfk, insbesondere ist G;11 = ®(G;) die Frattini-
Untergruppe von G;.

i—1

T zeGl=<d" ... d

(b) G; =GP

(c) Die Abbildung x — 2P induziert eine Surjektion von G;/Git1 auf Giyr/Giyps1 fiir allek >0
und alle 1 > 1.

(d) G ist das Produkt der prozyklischen Gruppen < a; >, d. h. G =<aj >---< ag >.
(e) Fir eine abgeschlossene Untergruppe H < G gilt: d(H) < d(G).
Wir definieren den Rang einer proendlichen Gruppe durch
rk(G) = sup{d(H) | H < G offene Untergruppe}.
Es gilt folgender fundamentaler Zusammenhang (vgl. [DDMS], Theorem 3.13).

(2.1.15) Satz. Sei G eine Pro-p-Gruppe. Dann hat G endlichen Rang genau dann, wenn G end-
lich erzeugt ist und eine offene potenzreiche Untergruppe besitzt.

Nach Satz (2.1.14) (c) ist fiir eine endlich erzeugte potenzreiche Gruppe G die Abbildung
Gi/Giv1 = Giy1/Giga, v — 2

ein surjektiver Homomorphismus, d. h. die Indizes (G; : G;41) steigen ab. Also existiert ein k mit
(Gr : Gry1) = (Gryi : Gpyiyr) fiir alle i > 0. Aquivalent dazu liefert Potenzierung mit z”" einen
Isomorphismus zwischen Gy /Gj11 und Ggii/Ggiir1. Dieses erhebt man zur Definition:

Eine potenzreiche Gruppe heifst uniform, wenn sie endlich erzeugt ist, und Potenzierung mit
p’ fiir alle i € N einen Isomorphismus G1/G2 = G;11/Gyy2 induziert.

Wichtige Eigenschaften sind zusammengefalt im folgenden Satz (vgl. [DDMS], Proposition
4.4, Theorem 4.5).

(2.1.16) Satz. Sei G eine endlich erzeugte potenzreiche Pro-p-Gruppe. Dann sind dquivalent:
(i) G ist uniform.

(i) Es gilt d(H) = d(G) fir alle offenen und potenzreichen Untergruppen H von G.

(ii) G ist torsionsfrei.

Sind A und B offene uniforme Untergruppen einer endlich erzeugten Pro-p-Gruppe, dann gilt
d(A) = d(B). Dies erlaubt die Definition

dim(G) := d(H) fiir eine offene uniforme Untergruppe H von G.



Die Zahl dim(G) nennen wir die Dimension von G.
Falls G von endlichem Rang, und N <1 G ein abgeschlossener Normalteiler ist, dann gilt (siehe
[DDMS], Theorem 4.8):
dim(G) = dim(N) + dim(G/N).

Der Zusammenhang zu p-adischen analytischen Gruppen wird gegeben durch folgendes bereits
in der Einleitung erwéhntes Theorem (vgl. [DDMS]|, Theorem 8.1).

(2.1.17) Theorem. Eine topologische Gruppe G hat die Struktur einer p-adischen analytischen
Gruppe genau dann, wenn sie eine offene, endlich erzeugte potenzreiche Untergruppe enthdlt.

Die oben eingefiihrte Dimension stimmt mit der Dimension als p-adische analytische Gruppe
iiberein.

2.2. Pro-p-Gruppen mit Aktion einer Involution

2.2.1. Aktion einer Involution auf abelschen Gruppen

Wir wollen in diesem Abschnitt abelsche Gruppen untersuchen, auf denen eine Involution, die wir
mit ¢ bezeichnen, operiert.
Zunichst setzen wir fiir eine (additiv geschriebene) abelsche Gruppe A

At :={a€A|loa=a} und A” :={a€ A|oa=—a}.

(2.2.1) Lemma. Seien A, B und C abelsche Gruppen, auf denen Multiplikation mit 2 ein Auto-
morphismus ist. Die Involution o operiere auf A, B und C. Dann gelten:

(a) AT ={i(a+o0a)|a€ A} und A~ ={i(a—o0ca)|ac A}
(b)) A=At p A,

(c) Ist f : A — B ein o-invarianter Homomorphismus, so ist f(AT) C B, und auferdem gelten
Ker(£) = Ker(f : A* — B*) und Im(f)* = Im(f  A* - B*).

(d) Ist 0 = A — B — C — 0 eine ezxakte Sequenz mit o-invarianten Homomorphismen, so sind
auch die Sequenzen 0 — A* — BT — C* — 0 exakt.

(e) Die Gruppe Hom(A, B) versehen wir mit der gewohnlichen o-Aktion (B sei hier ein trivialer
o-Modul), d.h. (of)(a) := f(oa). Dann gilt:

Hom(A,B)jE = Hom(Ai,B).
(f) (AV)* = (AF)Y.
(9) (A B)t = (AT @ B") @ (A~ @ B™).
(h) (A9 B)" =(A"@B") @& (AT ®B").
Beweis. Das rechnet man unmittelbar nach. O

(2.2.2) Satz. Sei C eine endliche abelsche Gruppe vom Ezponenten p # 2, auf der die Involution
o operiert. Dann existiert eine o-invariante Zerlegung

C=A41&--- A+ EB1 & P By,

wobei A; = A, B; = B, |Ail = |Bj| = p, d* = dimp,CT und d~ = dimy,C~ gelten.



Beweis. Nach dem Satz von Maschke ist F,[< o >| halbeinfach, da 2 # p vorausgesetzt
ist. Daher ist auch jeder F,[< o >]-Modul halbeinfach, weshalb C' in eine direkte Summe von
irreduziblen Moduln zerfillt, auf denen o entweder als Inversion oder als Identitdt operiert.

Wire die Elementzahl eines irreduziblen F)[< o >]-Moduls grofer als p, so zerfiele er zunéchst
als abelsche Gruppe in die direkte Summe von zu Z/pZ isomorphen Gruppen. Auf diesen kann
man aber die o-Aktion so einrichten, daf die direkte Summe o-invariant ist. O

2.2.2. Aktion einer Involution auf den Kohomologiegruppen

Sei G eine proendliche Gruppe und A ein diskreter G-Modul. Weiter sei eine endliche Gruppe A
gegeben, die auf G und auf A derart operiert, daf fiir alle 0 € A die Homomorphismen

bs:G—G,g—0tlg und 6,:A— A a— oca
ein vertrigliches Paar im Sinne der Bemerkung (1.1.4) bilden. Das heift, daf

05 (Ps(g).a) = g.05(a) bzw. o.((c7g).a) = g.(0.a) (1)

fiir alle a € A und alle g € G gilt. Daher definiert die Festlegung auf den Koketten von G mit
Werten in A

@)l lgn) == of(0™ ] ... [0 gn)

einen Homomorphismus H"(G,A) — H"(G, A). Insbesondere ist der Randoperator A-invariant,
d. h. daf fiir alle n-Koketten f: G" — A gilt

Ao f) = o(9f).

Aus Satz (1.1.5) erhalten wir, daf Verbindungshomomorphismen A-invariant sind, d.h.

5(af) = a(df).

Auf den Koketten sieht man sofort, daf wir auf diese Weise eine A-Aktion auf den Kohomologie-
gruppen H"(G, A) erhalten.
Wir werden uns im Folgenden in einer der beiden Situationen des néchsten Satzes befinden.

(2.2.3) Satz. (a) Sei G eine proendliche Gruppe auf der die endliche Gruppe A operiert. A sei
eine diskrete abelsche Gruppe mit trivialer Operation von G und A.

Dann erhalten wir eine A-Aktion auf den Kohomologiegruppen H" (G, A).

(b) Sei F eine proendliche Gruppe mit offenem Normalteiler G < F, und A sei ein diskreter
F-Modul. Wir nehmen an, dafi die resultierende exakte Sequenz

1-G—-F5 A1

zerfallt, d.h. daf§ es einen Homomorphismus ¢ : A — F mit m o = id gibt. Dies ist z.B. der

Fall, wenn G eine Pro-p-Gruppe und A eine q-Gruppe mit p # q ist.

Dann operiert o € A auf G durch Konjugation mit o(o) und auf A durch o.a := ¢(0).a.

Ferner erhalten wir eine von der Wahl des Schnittes unabhdngige Operation von A auf den

Kohomologiegruppen H™(G, A).

Beweis. (a) Die Giiltigkeit von (1) folgt direkt.

(b) Die ersten Aussagen sind klar. Die Giiltigkeit von (1) sieht man aus

0.(0.0) = 9.(¢(0).0) = (). ((p(0 ) g pl0)).0) = (0 9) ).

Die letzte Aussage folgt daraus, daf H'(G,-) invariant unter der Aktion von G ist (vgl. [NSW],
Proposition 1.6.2), und je zwei Schnitte ¢, : A — F stets konjugiert sind. O

Im Folgenden betrachten wir Konsequenzen fiir die Abbildungen zwischen den Kohomologie-
gruppen. Wir setzen stets voraus, daf eine A-Aktion auf den Kohomologiegruppen vorliegt.



(2.2.4) Lemma. Ist ¢ : G — H ein A-invarianter Homomorphismus, der mit einem A-invarian-
ten Homomorphismus 6 : B — A vom H-Modul B in den G-Modul A vertrdglich ist im Sinne der
Bemerkung (1.1.4), so sind die resultierenden Homomorphismen (¢,0) : H"(H,B) — H"(G, A)
ebenfalls A-invariant.

Beweis. Sei 0 € A. Wegen

(o) (o1l - 1g:) = 0(of (o7 @g)] - |o™ (6(5))) )
= o0 (F (6 g0)l. |olo ™ g0)) ) = (e (@) (1] lgn);

wobel wir zur Abkiirzung 1 := (¢, 6) gesetzt haben, ergibt sich die Behauptung. a

Das Lemma kdnnen wir insbesondere auf die Inflation und die Restriktion anwenden. Eine
analoge Aussage gilt fiir die Homologie, so daf auch die Korestriktion A-invariant ist.

Aus seiner expliziten Beschreibung (z.B. in [N-KKT], S. 48) ersehen wir, da der kanonische
Isomorphismus

G~ H (G, 7)

fiir eine endliche Gruppe G ebenfalls A-invariant ist. Gleiches gilt fiir die Isomorphie
A% /NgA = H(G, A).

Aus der Beschreibung des Cup-Produktes auf den Koketten (z. B. in [NSW], p. 35) schliefen
wir seine A-Invarianz
o(aUb) = (ca) U (ob).

Auf diese Situation wird das folgende Lemma, dessen Beweis sich sofort durch Nachrechnen ergibt,
Anwendung finden.

(2.2.5) Lemma. Sei U: A x B — C eine Z-bilineare Abbildung der abelschen Gruppen A, B,C,
auf denen die Gruppe A operiert. Ist U A-invariant, so sind die induzierten Homomorphismen

A— Hom(B,C), ar (b— aUb)

und
A—-C,a—~aUb

fiir festes b € B mit ob = b auch A-invariant.

Wir wollen uns ab hier auf den Fall A = Z /27 spezialisieren. Dabei werde A von der Involution
o erzeugt. Die resultierende Aktion auf den Kohomologiegruppen ist dann entweder trivial oder
auch eine Involution.

Ein weiterer wichtiger Homomorphismus von Kohomologiegruppen ist die Transgression. Der
Beweis ihrer A-Invarianz erfordert eine genaue Analyse der Definition. Wir werden ihn im Fol-
genden in einem Spezialfall durchfiihren.

(2.2.6) Lemma. Sei p # 2 und G eine Pro-p-Gruppe auf der die Involution o operiert, sei
H <G ein offener Normalteiler, X ein trivialer G-Modul, auf dem o trivial operiere, und auf dem
Multiplikation mit 2 ein Automorphismus ist.

Dann ist die Transgression

tg: H'(H, X)%'" — H*(G/H, X)

ein o-invarianter Homomorphismus.



Beweis. Wir spezialisieren die in [K-G], Abschnitt 3.7, bzw. in [NSW], Prop. 1.6.5, gegebene
explizite Beschreibung der Transgression auf unseren Fall und verfolgen die o-Aktion.

Wir gehen aus von einem 1-Kozyklus @ € H'(H, X)%/ und einem Vertreter a € @, welcher
im speziellen Fall des trivialen Moduls X ein Homomorphismus ist. a wird nach Voraussetzung
unter der Konjugation mit Elementen aus G fixiert:

a(g~thg) = a(h) fiir alle g € G und alle h € H.

Daher gilt speziell:

a(g192) = a(g2g1) fiir alle g1, 92 € G mit g1g2 € H.

Wir wihlen einen Schnitt s : G/H — G mit s(0) = 0. Dann schreibt sich ¢ € G eindeutig als
g=8(7)-h mit v € G/H und h € H. Damit definieren wir eine 1-Kokette b : G — X durch

b(g) = bls(v) - h) := a(h) +b(s(7))-

Wir setzen dabei b(s(0)) = b(0) = 0. Daher ist die Einschrdnkung von b auf H gleich a. Fiir jede
Auswahl der anderen Werte von b(s(7y)) gilt

b(g +h) =b(s(y) - h1 - h) = a(hy - h) = a(h1) + a(h) = b(g) + a(h)

fiir alle g € G und alle h € H. Wir definieren die Funktion

fas GIH = X, 7= za(s(em) ™ - 7s(7)),
fiir die gilt
pa(07) =a(s(7)7" - os(om)) = (0a)(0s(7) " os(7))
= —(0a)(s(o7) ™" - 05(7)) = ~¢oa(7).
Da die Transgression ein Homomorphismus ist und nach Voraussetzung die direkte Zerlegung
HY(H, X)%H = (H(H, X)G/HY* o (HY(H, X)¢/H)~

existiert, konnen wir uns im Folgenden auf die Fille ca = a oder ca = —a zuriickziehen. Wir
schreiben dann suggestiv 2* = £1. Es gilt damit

oa
Poa = —Pa-
a

Wir definieren nun va

b(s(7)) == 7%(7)-

Dann gilt
(0b)(g) = %ab(g) fiir alle g € G,

was man der Rechnung

(#)(9) = b(5(7) + () (k) = b(s(o7)s(07) (7)) + (0a)(h)
= b(s(07)) +a(s(07) ™" 75(1) + (Ga)(h) = b(s(57)) + 20a(7) + (90) (1)
= 6u(07) + 20a(7) + (00)(h) = = Z=p0a(1) + 204(3) + (ca) (1)

= ¢u(7) + (ca) () = “=b(g).

entnimmt. Damit ist gezeigt, daf die Zuordnung a +— b invariant unter o ist.



Wir erhalten nun einen 2-Kozykel f : G x G — X durch die Festlegung
f(g1,92) == (9b)(g1,92) = b(g1) + b(g2) — b(g192)-

Wir hatten bereits gesehen, daf der Randoperator o-invariant ist, woraus sich ergibt, dafs auch
die Zuordnung a — f unter ¢ invariant ist.

Der Kozykel f ist so konstruiert, daf er nur von den Nebenklassen s(v) + H abhingt, was
man folgender Rechnung entnimmt:

f(g1-h1,92 - ha) =b(g1 - h1) + b(g2 - ha) — b(g1 - ha - g2 - h2)
= f(g1,92) + a(h1) + a(h2) — a(hy - hs)) = f(91,92)-

Somit erhalten wir also einen 2-Kozykel f € H*(G/H, X). Nach [NSW], Prop. 1.6.5, wird die
Transgression durch die Zuordnung @ — f gegeben, welche sich also als o-invariant herausgestellt
hat. O

Unsere bisherigen Uberlegungen flieRen ein in den

(2.2.7) Satz. Sei G eine proendliche Gruppe, H <G ein abgeschlossener Normalteiler und X ein
G-Modul. Dann gilt:

(a) Die Fiinf-Terme-Sequenz
0 — HYG/H, xH) ™ glG, x) 1 ghw, ) B g q e, x ) M gra, x)
st exakt.

(b) Ist H < G offen, G eine Pro-p-Gruppe fir p # 2, X ein trivialer G-Modul, auf dem Multipli-
kation mit 2 ein Isomorphismus ist, und operiert die Involution o auf G (und trivial auf X ),
so ist die Sequenz aus (a) o-invariant.

Beweis. Fiir (a) zitieren wir [NSW], Prop. 1.6.6. Die Aussage (b) folgt aus Lemma (2.2.4)
angewendet auf die Inflation und die Restriktion und aus Lemma (2.2.6). O

Der folgende Satz fakt wichtige von uns benétigte Resultate zur o-Aktion auf den Kohomolo-
glegruppen zusammen.

(2.2.8) Satz. Seien A und B abelsche proendliche Gruppen, versehen mit der Operation einer
Involution o, wobei wir A= A" und B = B~ fordern.

(a) Fiir alle trivialen diskreten B-Moduln X mit trivialer o-Aktion und alle i gilt:
HY (A, X)=H'(AX)".
(b) Fir alle trivialen diskreten B-Moduln X mit trivialer o-Aktion gilt:
HY(B,X)=HYB,X)".
(c) Ist B eine zyklische Pro-p-Gruppe fir p # 2, dann gelten
H%*(A,Z/pZ) = H*(A,Z/pZ)*  und  H*(B,Z/pZ) = H*(B,Z/pZ)".
Beweis. (a) und (b) und die erste Aussage von (c) sind klar.

Fiir (c) betrachten wir das Ende der Fiinf-Terme-Sequenz aus Satz (2.2.7) bzgl. der Darstellung
1-R—%Z,— B—1:

HY(R,Z/p2)B & H*(B,2/pZ) 2% H2(Z,,7./pZ).

Wir setzen die Aktion von o auf Z, fort, d.h. Z, = (Z,)~. Dann gilt offensichtlich R = R™. Da
Z,, frei ist, gilt H?(Z,,Z/pZ) = 0, und wir erhalten somit den o-invarianten Isomorphismus

H'(R,Z/pZ)" — H*(B,Z/pL).
Da nach (b) aber H'(R,Z/pZ) = H'(R,Z/pZ)~ gilt, folgt die Aussage. O



2.2.3. Pro-p-Gruppen mit Aktion einer Involution

Wir stellen zunéchst einige wichtige Kommutatorrelationen zusammen.

(2.2.9) Lemma. Sei G eine Gruppe und bezeichne G™ die von den n-fachen Kommutatoren
erzeugte Untergruppe.

(a) Fiir alle x,y,z € G gilt:
[z,y2] = [z, yl[z, 2][[2,y], ].

(b) Fir alle z,y € G und alle n € N gilt:

n(n—1)

(zy)" = 2™y [z, y]” = (modulo G®)).

(¢) Fiir alle z € G™, alle y € G und alle a,b € N gilt:

(2%, 4"] = [, 4] (modulo G"2)).

Sei p eine ungerade Primzahl. Wir haben gesehen, daf dimg, H'(G) als minimale Erzeugerzahl
von G interpretiert werden kann. Genauer gibt die Dimension des Plus- bzw. des Minusteils von
H'(G) die minimale Erzeugerzahl des Plus- bzw. des Minusteils der Abelisierung von G an.

(2.2.10) Lemma. Sei G eine endlich erzeugte Pro-p-Gruppe. Dann gilt:
d(G)* = dims, H'(G)* = d((G/G2)*) = d((G™)F).

Beweis. Die erste Gleichheit wollen wir als Definition von d(G)* verstehen. Es gilt nach
Lemma (2.2.1)
Hom((G/G9)*,2/pZ) = Hom(G /G, Z/pZ)*,

woraus die zweite Gleichheit folgt. Wegen Hom(G,Z/pZ) = Hom(G/Gs,Z/pZ) erhalten wir
die dritte aus dem Diagramm

Gab — (Gab)—i- @ (Gab)—

Lo |

G/Gy = (G/G2)" @ (G/G2),

in dem alle Pfeile Surjektionen sind. O

(2.2.11) Lemma. Sei G eine endlich erzeugte Pro-p-Gruppe, auf der eine Involution o operiert,
so daf d(G)T = 0 gilt. Dann operiert o auf G™ /G V) qls Identitit, falls n gerade ist, und
als Inversion, falls n ungerade ist. Dabei bezeichne G wiederum das Erzeugnis der n-fachen
Kommutatoren.

Beweis. Den Beweis fithren wir per Induktion nach n. Nach Voraussetzung ist

G/GP|G,G] = (G/GP[G,G])™.
Nun betrachten wir die natiirliche Projektion

(G/IG.G)T — (G/GPIG.G])" = (G/2(G))",

deren Bild trivial ist. Die Anzahl der Erzeugenden von (G/[G,G])" ist somit 0, und G/[G, G| ist
gleich (G/[G,G])~, was den Induktionsanfang darstellt.
Sei die Aussage nun fiir n bereits bewiesen. Wihle z € G™ und y € G. Dann ist

olz,y] = [ox,y~!] (modulo G)).



Modulo GtV ist gz entweder x oder ! je nach dem, ob n gerade oder ungerade ist. Aus
Lemma (2.2.9) (c) erhalten wir

[z, ] = [#,4]" (modulo G("+2)) und [z7, y 7! = [z,9] (modulo G(”+2)).
Daraus folgt der Induktionsschritt. 0

(2.2.12) Bemerkung. Sei G eine endlich erzeugte Pro-p-Gruppe, auf der eine Involution o ope-
riert. Dann ist die erakte Sequenz

0— (pGab)v — H*(G) — sz(Gva/Zp) — 0.
aus Satz (2.1.8) o-invariant.

Beweis. Da diese Sequenz aus einer langen exakten Sequenz zu einer trivialerweise o-invari-
anten kurzen exakten Sequenz gewonnen wurde, ist sie selbst o-invariant. O

Es gilt der folgende Spezialfall der Kiinneth-Formel.

e atz. (a elen s enauLicne Tuppen un €in 0zgi. un trivialer oaul. ann
2.2.13) S Seien G, H endliche G d B ein bzgl. G und H trivialer Modul. D
gilt:
H?*(G x H,B) = H*(G,B) ® H*(H,B) ® (H'(G,B) ® H'(H, B)).

(b) Seien G; firi = 1,...,n endliche Gruppen und B ein bzgl. aller G; trivialer Modul. Dann
gilt:

H2(ﬁ Gi,B) = é H*(G;, B) o @(H' (Gs, B) @ H'(G;, B)).
i=1 i=1 i<j

Sind die Gruppen G; abelsch und operiert eine Involution o auf ihnen, so ist die Zerlegung
o-invariant.

Beweis. (a) Dies folgt zum Beispiel aus [NSW], Ex. II.1.7. (b) folgt induktiv aus (a) unter
Benutzung von

H?*((G1 x G2) x G3,B) = H*(G1 x G2,B) & H*(G3,B) & (H'(G1 x G2, B) ® H'(G3, B))

3
=P H*(Gi, B) © PH(Gi, B) ® H' (G, B))
i=1 i<j
|
Die Kiinneth-Formel werden wir benutzen, um die Dimension von H?(G/G3)* zu bestimmen.

(2.2.14) Satz. Sei G eine endlich erzeugte Pro-p-Gruppe.

(a) Sei d = d(G). Dann gilt:

d(d+1
dimp, H*(G/G2) = (d+1)
(b) Operiert eine Involution o auf G, so gilt genauer
, 2 G d”
dimg, H*(G/G2)" =d" + 5 + 5 und

dimg, H*(G/G2)” =d~ +d" -d",

wobei d* = d(G)t und d~ = d(G)~ gesetzt wurde.



Beweis. (a) folgt aus (b), indem G mit der trivialen o-Aktion versehen wird.
Aus Satz (2.2.2) erhalten wir eine o-invariante Zerlegung

G/Go =A@ DA+ ®B1®--- D By,

wobei die A; und B; Gruppen der Ordnung p sind, fiir die 4; = A;r und B; = B; gilt. Die
Kiinneth-Zerlegung von H 2(G /G2) hat dann die Gestalt

H?(G/Gs) EBH2 ) o P H' (A) @ H'(A)) e @ H'(B;) @ H' (B;)

1<j 1<j
dt d— d—-
1 2
s @PUr ()0 1(B) & P HB)
=1 j=1 7j=1

wobei nach Satz (2.2.8) o auf der ersten Zeile als Identitdt und auf der zweiten als Inversion
operiert. Sowohl die Erzeugenden- als auch die Relationenzahl von Z/pZ ist 1, weshalb sich die
Behauptung durch Abzédhlen der Dimensionen ergibt. O

2.2.4. Potenzreiche Pro-p-Gruppen mit Aktion einer Involution

Sei p eine ungerade Prizahl. Wir kommen nun zu einem Resultat, das fiir die Betrachtung der
Galois-Gruppen von CM-Koérpern von Nutzen sein wird (vgl. [W], Proposition 2.1).

(2.2.15) Satz. Sei G eine endlich erzeugte potenzreiche Pro-p-Gruppe, auf welcher eine Involu-
tion o operiert. Ist d(G1) = 0, dann ist G abelsch.

Beweis. Wegen d(G™1) = 0 erhalten wir aus Lemma (2.2.11), daf o als Inversion auf G/[G, G]
und als Identitdt auf [G, G]/|G, G, G| operiert. Letzteres impliziert insbesondere

[Gv G]/H = ([G7 G]/H)+,

wobei H = |G, G|P[G, G, G] gesetzt wurde.
Sei x € G. Dann gibt es ein r € [G,G] mit oz = 7. Wir berechnen nun die o-Aktion auf
auf GPH/H:
oxP = (oz)? = (z7 )P = 7P (modulo H),

wobei die Rechenregel (b) von Lemma (2.2.9) benutzt wurde. Also gilt
GPH/H = (GPH/H)".
Da G potenzreich ist, erhalten wir die Inklusion
(G,G]/H)" =|G,G]/H C G’H/H = (GP’H/H)~,
woraus folgt, daf [G,G]/H trivial ist.

Setzt man K = K = [G,G] und K"+D = (KM)P[K" G], d.h. K® = H, so folgt aus Satz
(2.1.13) (a), dak die K@ echt zur 1 absteigen. Wegen K1) = K®) muf daher K1), also [G,G],
trivial sein. |
Relationen in potenzreichen Pro-p-Gruppen
Aus der (o-invarianten) exakten Sequenz

0 — H'Y(G/Gy) = HY(G) % HY(G2)® & H2(G/Gs) ™ H?(G)
(vgl. Satz (2.2.7)) und Satz (2.2.14) ersehen wir sofort, daf bei einer endlich erzeugten potenzrei-

chen Pro-p-Gruppe G stets
d
ez (")

gilt, da d(G2) < d(G) ist. Stérker noch gilt das



(2.2.16) Theorem. Sei G eine endlich erzeugte potenzreiche Pro-p-Gruppe. Dann gilt:

(d(ZG )> <r(@) < (d(ZG )> +d(G) — dim(G).

Insbesondere gilt daher

falls G uniform ist.

Beweis. Wir fithren den gruppentheoretischen Beweis, wie er sich in [DDMS], Theorem 4.35,
findet.
Wir setzen d; := (G; : Gi+1). Da G potenzreich ist, erhalten wir eine absteigende Kette

lZ:d(G):dlngZ"'de:dim(G),

so daft GG;, uniform ist.
Nach [DDMS], Theorem 3.6, gibt es ein Erzeugendensystem {z1,...,7;} von G, so dak die

Menge {le,%1’ . ,xszil} ein Erzeugendensystem von G; bildet.
Wir wollen im Folgenden ein Relationensystem von G bzgl. {z1,...,2;} angeben. Sei dazu F
die freie Pro-p-Gruppe auf der Menge {x1,...,2;}, dann suchen wir also eine exakte Sequenz

0O—R—F—-H—O0

mit G = H.

Zunichst nehmen wir in R Relationen auf, die garantieren, da H eine potenzreiche Gruppe
ist. In G gilt fiir 1 <i<j <l

[mZ’ x]]xil(zd)mg‘Q(Z?]) . xlAl(lvj) — 1

mit gewissen A, (,j) € pZ,, da die Kommutatoruntergruppe in den p-ten Potenzen enthalten ist.

AuRerdem wollen wir erreichen, dal |H/H,| < |G/G,]| ist, das heift, daf die Indizes in H
mindestens so schnell absteigen wie die in G. Dieses ist dadurch charakterisiert, daf sich fiir d; >
m > d;y1 das Element 22 mit den di+1 Erzeugern von G,y schreiben lét, es also u,(m) € pin
gibt mit

p~t w1(m) p2(m) Hdg (M)
Ty Y Ty ce T =1

Definieren wir also nun R als den kleinsten abgeschlossenen Normalteiler von F', der die (é) +

[ — dim(G) Elemente

A1 (ZJ)

(i, )yt (2209 D) =i (m) up(m) P (M)

P
und b xy a g

enthélt, so ist H eine potenzreiche Gruppe mit |H/H,| < |G/G.,]|.
Nun haben wir aber auch eine Projektion

m: H—> G,

da die Relationen von H auch in G erfiillt sind. AuBerdem gilt 7(H,,) = G,. Deswegen erhalten
wir via 7 Isomorphismen

H/H, = G/G,.

Ein Element aus dem Kern von 7 liegt daher im Durchschnitt aller H,,, welcher aber 1 ist. Daher
ist H zu G isomorph, und die rechte Ungleichung ist bewiesen. O

Aus diesem mit gruppentheoretischen Mitteln erhaltenen Ergebnis ziehen wir Konsequenzen
fiir die Kohomologiegruppen.



(2.2.17) Korollar. Sei G eine endlich erzeugte uniforme Pro-p-Gruppe. Dann ist H' (G3)® =
H(G3) und die Sequenz

0— HY(Go) % HX(G/Gs) ™ H2(G) — 0

ist exakt.

Beweis. Wir miissen die Surjektivitdt der Inflation zeigen. Es ist (vgl. Satz (2.2.14))

dit, (im(ind) = dime, H(G/Gx) ~ dims, /(G2 = 4@) + (*F)) ~ atca) = (“F))

Nach Theorem (2.2.16) gilt aber dimg, H*(G) = (d(2G )), weshalb die Behauptungen folgen. O

Hieraus kénnen wir nun die Dimensionen des Plus- und des Minusteils von H?(G) berechnen.

(2.2.18) Korollar. Sei G eine endlich erzeugte uniforme Pro-p-Gruppe, auf der eine Involution
o operiert. Dann gelten

dimp, H*(G)" = <d(§)+> + (d(?_> und

dimp, H*(G)™ = d(G)* - d(G)".

Beweis. Die exakte Sequenz aus Korollar (2.2.17) ist o-invariant (vgl. Satz (2.2.7)). Das
Ergebnis folgt deshalb sofort aus Satz (2.2.14). |

(2.2.19) Korollar. Sei G eine endlich erzeugte uniforme Pro-p-Gruppe. Ist d(G) = 1 oder
d(G) =2, dann hat G® die Gruppe Z, als Quotienten.

Beweis. Ist d(G) = 1, so folgt nach Theorem (2.2.16), dak r(G) = (é) = 0 ist. Daher ist G
eine freie Pro-p-Gruppe mit einem Erzeuger. Folglich ist G = G® isomorph zu L.

Im Fall d(G) = 2 ist der Relationenrang r(G) = (3) =1, und Satz (2.1.7) liefert das Ergebnis.

Od

Erzeugende in potenzreichen Pro-p-Gruppen

(2.2.20) Lemma. Sei G eine endlich erzeugte potenzreiche Pro-p-Gruppe, auf der eine Involution
o operiert. Dann gilt fiir alle i € Z:

d(G)* > d(Gy)*.
Beweis. Die Potenzierung mit p’ gibt eine o-invariante Surjektion
G/Gy — Gi/Git1 = Gi/(Gi)2.
Lemma (2.2.10) liefert nun das Ergebnis. O

Nun kommen wir zu einem wichtigen Resultat aus [W] (Proposition 2.3) iiber die Beziehung
der Plus- und Minusteile von H!(G), also von d(G)" zu d(G)~.

(2.2.21) Satz. Sei G eine potenzreiche Pro-p-Gruppe mit Aktion einer Involution o. Dann gelten:
+ - )

(a) (d(g) )+ (d(g) ) < d(G)* + dimp, ,H*(G,Qy/Zy) ",

(b) d(G)t - d(G)” < d(G)™ + dimp, 2H(G,Q,/ 7).

Ist G uniform mit endlicher Abelisierung, dann gilt in beiden Fdllen Gleichheit.



Beweis. Aus dem Endstiick der o-invarianten exakten Sequenz (vgl. Satz (2.2.7))
0 — HY(G2)C & H2(G/G,) 25 H2(G)
und Bemerkung (2.2.12) erhalten wir die Ungleichung
dimg, H*(G/G2)* < d(G2)* + dimg, (,G™)* + dimg, ,H*(G,Q,/Z,)*.

Da G potenzreich ist, gilt nach Lemma (2.2.20) d(G2)* < d(G)*. Aus Satz (2.1.9) schliefen wir
weiter die Ungleichung

dimg, (,G™)* = d(G)* — rkz, (G")* < d(G)*,
so dafs wir
dimp, H*(G/G2)* < 2d(G)* + dimg, ,H*(G,Qp/Z,)*

bekommen. Setzen wir nun die Dimension von H?(G/G3)* ein, die in Satz (2.2.14) berechnet
wurde, so folgt das Resultat.

Benutzen wir Korollar (2.2.17) und d(G;)* = d(G)*, so erhalten wir im Falle einer uniformen
Gruppe mit endlicher Abelisierung Gleichheiten. O

Es ist von Interesse, Flle zu kennen, in denen , H%(G, Q,/Z,)~ trivial ist. Dies trifft zumindest
fiir d(G)* =1 und fiir d(G)~ = 0 zu, falls G uniform mit endlicher Abelisierung ist.

Wegen (g) = 3 und Theorem (2.2.16) stellt der Fall uniformer Gruppen mit d(G) = 3 eine
Besonderheit dar, denn der Erzeugendenrang ist gleich dem Relationenrang. Daraus erhdlt man
Einschrankungen fiir die Plus- und Minusteile. Das wird von grofem Interesse fiir uns sein, da
die potenzreichen Galois-Gruppen von CM-Korpern, die wir betrachten werden, Erzeugendenrang
kleiner oder gleich 3 besitzen.

(2.2.22) Satz. Sei G eine uniforme Pro-p-Gruppe, auf der eine Involution o operiert. Es sei
d(GQ) < 3, und die Abelisierung von G sei endlich. Dann gilt

dG)T =1 und d(G)” =2

oder
dG)" =3 wund d(G)” =0.

Beweis. Wegen Korollar (2.2.19) kann nur der Fall d(G) = 3 auftreten. Da 3 = r(G) = d(G) =
dimy,,G* = dimr,H?(G) aus den Voraussetzungen folgt, erhalten wir aus Bemerkung (2.2.12)
die o-invariante Isomorphie

(L,C)" = H(@)
und daher aus Korollar (2.2.18)

d(G)~ = dimp, H*(G)~ = d(G)" - d(G) ™,

woraus sich die Behauptung ergibt. O

2.3. Zu CM-Korpern

2.3.1. CM-Korper

In diesem Abschnitt wollen wir grundlegende Eigenschaften von CM-Kérpern zusammenstellen.

(2.3.1) Definition. Sei k ein Zahlkorper.



o k heifit total reell, falls das Bild aller Finbettungen k — C in R enthalten ist.

Zu jedem Zahlkérper K gibt es einen maximalen total reellen Teilkorper, den wir stets mit
K™ bezeichnen wollen.

e k heiffit total imaginér, falls das Bild keiner Finbettung k — C in R enthalten ist.

o k heifft CM-Korper, falls k total imagindr und eine quadratische Erweiterung seines mai-
malen total reellen Teilkérpers kT ist.

Wir betrachten zunéchst das wichtige

(2.3.2) Beispiel. Sei n > 2. Q((y,) ist ein CM-Korper mit mazimalem total reellem Teilkorper
Q(¢n)* = QG + &1

Sei k ein CM-Kérper und « : k — C eine Einbettung. Die Galois-Gruppe G(k|k™) wird erzeugt
von dem Element
o:z— a Ya(x)) =7,

welches nicht von der Auswahl der Einbettung abhingt. Wir nennen den Erzeuger von G(k|k™)
auch komplexe Konjugation.

Sei K*|k™ eine galoissche Erweiterung total reeller Zahlkérper. Dann folgt aus dem Translati-
onssatz der Galois-Theorie, daf K := K+k|K™' ein CM-Kérper ist, und die Einschrinkung einen
Isomorphismus G(K |k) = G(KT|k™) ergibt.

(2.3.3) Lemma. Sei k ein CM-Kérper, o € G(k|k') die kompleze Konjugation, und sei K|k
eine galoissche Erweiterung, die k enthdlt. Der Grad [K : k] werde nicht von 2 geteilt. Durch
Auswahl von 6 € G(K|k™) mit 6|, = o definieren wir eine Aktion von o auf G(K|k) durch
Konjugation mit .

Die Aktion auf den Kohomologiegruppen H'(G(K|k), A) fiir einen G(K|k*)-Modul A ist un-
abhangig von der Auswahl von 6. Dabei operiere o auf A durch o.a := 7.a.

Auferdem ist die induzierte Aktion von o auf G(K|k) unabhingig von der Auswahl von &,
wobei K die mazimale abelsche Teilerweiterung von K iber k bezeichne.

Beweis. Die Forderung an den Grad stellt sicher, da die Gruppenerweiterung 1 — G(K|k) —
G(K|kT) — G(k|k™) — 1 zerfillt. Dann folgt die erste Aussage aus Satz (2.2.3) (b).

Seien & und 7 zwei Elemente aus G(K%|kT) mit 6|, = 0 = 7|;. Dann ist 57! ein Element
der abelschen Gruppe G(K®|k), mit dem Konjugation trivial ist. O

(2.3.4) Korollar. Ist K|k eine galoissche Erweiterung, wobei K und k CM-Korper seien. Dann
liefert die Einschrinkung der k-Automorphismen von K auf K+ eine Isomorphie

G(K|k) = G(KT|kT).

Falls ferner K|k abelsch, K|k galoissch ist, und der Grad [K : k| nicht von 2 geteilt wird, dann
operiert die komlexe Kongugation trivial auf G(K|k).

Beweis. Die erste Aussage folgt, da K = kK™ ist. o operiert auf G(K*|k") als Konjugation
mit 7|+ fiir eine beliebige Fortsetzung ¢ von o auf G(K|k'). Wenn G(Kt|k™) abelsch ist, ist
die Operation trivial, welche aufgrund der Voraussetzung an den Grad definiert ist. O

2.3.2. Zur Kohomologie- und Klassenko6rpertheorie von CM-Korpern

Das zentrale Resultat in diesem Abschnitt ist die Kompatibilitdt der Invariantenabbildung eines
CM-Kérpers mit der Aktion der komplexen Konjugation. Daraus kénnen wir die Kompatibilitét
des Reziprozitdtshomomorphismus und des Isomorphismus aus dem Satz von Nakayama-Tate mit
der komplexen Konjugation schliefsen.



(2.3.5) Satz. Sei k ein CM-Kdrper mit mazimalem total reellem Teilkérper k™, und bezeichne o
die kompleze Konjugation. Sei L|k™ eine galoissche Erweiterung, derart daff k in L enthalten ist,
und der Grad [L : k] nicht von 2 geteilt wird.

Dann st die Invariantenabbildung

inv: H2(G(LIK),CL) = ﬁZ/Z

ein o-invarianter Isomorphismus, wobei die Aktion von o auf ﬁZ/Z die triviale sei.

Beweis. Es ist ein fundamentales Resultat der globalen Klassenkdrpertheorie, daf die Invari-
antenabbildung stets ein Isomorphismus ist. Sei ¢ € G(L|k™) eine Fortsetzung von o, es gelte also
G|k = 0. Dann ist nach [NSW]|, Proposition 1.6.2, die Gruppe H?(G(L|k™),Cy) invariant unter
Konjugation mit &, welches gerade die Aktion von o ist. Nun liefert die Korestriktion aufgrund
des kommutativen Diagrammes (vgl. [N-KKT], Satz I1.1.4 (c))

H*(G(LIk),CL) ——— H*(G(LIk"),CL)

invl invl

1 Einbettung 1
mZ/Z [L:k+}Z/27
dak die Korestriktion injektiv ist, woraus sich die Behauptung unmittelbar ergibt. O

Wir kommen nun zu den bereits erwéhnten Anwendungen.

(2.3.6) Korollar. Seik ein CM-Korper mit mazimalem total reellem Teilkorper k™, und bezeich-
ne o die kompleze Konjugation. Sei L|k™ eine galoissche Erweiterung, derart daff k in L enthalten
ist, und der Grad [L : k] nicht von 2 geteilt wird.

Dann bildet der Reziprozitdtshomomorphismus die exakte Sequenz

Reziprozitdit

1 — NgzjkCr — Cy G(LIk)™ — 1

mit o-invarianten Homomorphismen.

Beweis. Setze G := G(L|k). Der Reziprozitdtshomomorphismus ergibt sich aus den Isomor-
phien
G® — A72(G,7) =% H°(G,CL) — Cu/NeCr,
wobei v € H?(G,Cp) eine Fundamentalklasse sei. Da o auf dieser nach Satz (2.3.5) trivial operiert,

ist der mittlere Isomorphismus nach Satz (2.2.5) o-invariant. Diese Eigenschaft hatten wir von
den anderen beiden Isomorphismen bereits nachgepriift. O

(2.3.7) Korollar. Sei k ein CM-Kdérper mit mazimalem total reellem Teilkérper k™, und bezeich-
ne o die kompleze Konjugation. Sei L|k™ eine galoissche Erweiterung, derart daff k in L enthalten
ist, und der Grad [L : k] nicht von 2 geteilt wird.

Dann liefert der Satz von Nakayama-Tate (1.1.24) einen o-invarianten Isomorphismus

H'(G(LIk),Cr) = H>™*(G(L[k), Z)"
fiir alle i € Z.

Beweis. Der Homomorphismus entsteht aus dem Cupprodukt

H(G(LIK),CL) x B2 H(G(LIK), Z) 5 HA(G(L|k),Cr) - ﬁZ/Z'

Die Behauptung folgt nun aus Satz (2.3.5) und Lemma (2.2.5). O

Wir wollen nun zu den im 1. Kapitel behandelten Dualitatssdtzen kommen.



(2.3.8) Korollar. Sei k ein CM-Kérper und sei p # 2. Die komplere Konjugation in k|k™ be-
zeichnen wir wieder mit o. Dann gilt:

(a) Fiir alle i € Z ist der Isomorphismus
H'(G(Ls(p)|k), Es(Ls(p))) = H*~(G(Ls(p)|k), Qp/Zy)"
aus Theorem (1.2.29) (b) o-invariant.

(b) Fir alle i € Z ist der Isomorphismus
H'(G(ks(p)[k), E° (ks(p))) = H*(G(ks(p)Ik), Qp/Zp)".
aus Theorem (1.2.30) o-invariant.

Beweis. Einer Analyse des Beweises von Theorem (1.1.34) entnimmt man, daf sich beide
Isomorphismen zusammensetzen aus Verbindungshomomorphismen, dem Bilden von Pontrjagin-
Dualen, dem Reziprozitdtshomomorphismus und dem Homomorphismus aus dem Satz von Naka-
yama-Tate. Von all diesen haben wir die o-Invarianz bewiesen. O

2.3.3. Zur Ideal- und Strahlklassengruppe von CM-Koé6rpern

In diesem Abschnitt stellen wir Resultate iiber die S-Idealklassengruppe und die Idealklassen-
gruppe modulo einem Modul m zusammen. Dabei orientieren wir uns weitestgehend an [Wa]. Das
Hauptresultat ist eine Version des Leopoldtschen Spiegelungssatzes.

(2.3.9) Satz. Seik ein CM-Korper, der die p-ten Einheitswurzeln pi,(k) enthalte. Wir betrachten
eine galoissche Erweiterung L|k™, von der wir fordern, daf8 die Galoisgruppe H := G(L|k) abelsch
und vom Ezrponenten p # 2 sei. Sei ferner

B Ck*/(E*)P eine Untergruppe mit L = k(B%),

welche nach der Theorie Kummerscher Korper (vgl. z.B. [N-KKT|, Satz II1.1.4) existiert.
Dann definiert
h(b/P)
bl/p

eine nicht-ausgeartete Paarung, die Kummer-Paarung, welche o-invariant ist, d. h.

H x B — pp(k), <h,b>=

< h?,b7 >= (< h,b>)?,
wobei o wiederum die komplexe Konjugation in k|k* bezeichne.

Beweis. Zunéchst seien h € H und by,by € B. Dann ist

h®P05™)  h(b?) h(by'?)
b}/pb;/p o bi/P b;/P

< h,b1by >= =< h,by >< h,by > .

Seien weiter h,hy € H und b € B. Wenn i so gewshlt ist, dak ho(b'/?) = (Jb'/P gilt, wobei
(p € pp(k) eine primitive p-te Einheitswurzel sei, dann erhalten wir die Gleichheit

hioha(0V/P)  h(GDYP) i (0V/7)
haOVP) Gy

Damit errechnen wir

~ hioha(bYP)  hy o ho(bYP) ho(b1/P)
< hihs,b >= Dip = hg(bl/p) VE =< hy,b>< hy,b>.




Wenn i so gewéhlt ist, dak o(b'/?) = Cf,bl/ P gilt, bekommen wir die o-Invarianz

G ohoa(a(b?))  _h(¢GDYP)
= 5—
o (bl/p) Cibl/p

< hO b7 >= = (< h,b>)°,

wobei 6 € G(L|k™) eine Fortsetzung von o bezeichnet.
Weiter zeigen wir, daf die Paarung nicht-ausgeartet ist. Gilt fiir ein h € H

<hbP >=(l =1 firalle b € B,
dann operiert A trivial auf B und damit auf L|k. Folglich ist h = idy. Ist umgekehrt fiir ein b € B

h(b/P)

1/p  _
< h,bP >= Y

=1 fiiralle h € H,

dann ist b*/? € L und somit b € LP. 0

(2.3.10) Lemma. Sei S eine (mdglicherweise leere) Menge von Primstellen eines Zahlkorpers k.
Sei ferner a € k* derart, daff K := k(a'/™) eine auferhalb von S unverzweigte Erweiterung von
k ist. Dann existiert ein Ideal a € J° mit a® = (a).

Beweis. Die Primzerlegung von (a) € J3 laute

aOps = pi" o pe

mit p; ¢ S. Wegen der Unverzweigtheit auRerhalb von S ergibt sich die Zerlegung in J;°
CLOL,S = (‘Bl,l T ‘Bl,rl)al tee (ms,l to ms,rs)as,

wobei die Primideale B; ; iiber p; liegen. Nun ist a'/™ € L, weshalb n die Zahlen o; fiir i = 1,...,s
teilt.

a:= p?l/n .. p?S/”
ist somit ein Ideal mit den gewiinschten Eigenschaften. O
(2.3.11) Satz. Sei k ein CM-Kdrper.

(a) Sei S eine (mdglicherweise leere) Menge von Primstellen von k™. In der Erweiterung k|k™
zerfalle keine in S gelegene Primstelle. Dann gilt:

(Es(k))™ = u(k),
wobei (k) die Menge der in k gelegenen Einheitswurzeln bezeichne.

(b) Seim ein Modul von k*. Dann gilt:
(Opm)~ C nulk).

Beweis. (b) folgt aus (a) mit S = (), denn wir haben eine o-invariante Einbettung (o bezeichne
wiederum die komplexe Konjugation; wir schreiben aber auch oz = T)

Of i = E(k).

Zu (a) stellen wir zunéchst fest, daf p(k) in (Eg(k))” enthalten ist. Sei z € (Fg(k))~. Da
keine Primstelle p € S zerfillt, gilt fiir diese

vp(27h) = 0p(T) = (@) = vp(2),



also vy(x) = 0, weshalb x bereits in E(k)~ liegt. Es ist nach Voraussetzung 27 = 1.

Eine ganze Zahl x € FE(k), deren Absolutbetrag 1 ist, ist eine Einheitswurzel. Ist namlich f €
Z[X] das Minimalpolynom von z, welches den Grad n habe, so haben alle Minimalpolynome der
Potenzen von x einen Grad kleiner gleich n. Die Koeffizienten dieser Polynome sind ganze Zahlen,
die aber durch n betragsméfig beschriankt sind. Da es nur endlich viele solcher Polynome gibt,
gibt es auch nur endlich viele Potenzen von z, welches somit wie behauptet eine Einheitswurzel
ist. O

(2.3.12) Satz. Sei k ein CM-Kdrper.

(a) Sei S eine (mdglicherweise leere) Menge von Primstellen von k™. In der Erweiterung k|k™
zerfalle keine in S gelegene Primstelle. Dann hat der natirliche Homomorphismus

¢+ Cls(k¥) — (Cls(k)*, Py = (aOk,5)(PR) "
einen Kern der Ordnung 1 oder 2 und einen Kokern vom Exponenten 2.
(b) Seim ein Modul von k*. Dann hat der natiirliche Homomorphismus
Y CLY — (C™T
einen Kern der Ordnung 1 oder 2 und einen Kokern vom Ezponenten 2.
Beweis. (a) Wir betrachten den Homomorphismus
T = (TO)T, ar a0

Ein Ideal a € (7;°)" hat eine Primzerlegung
= .. er'QfIQ_fln'QfSQ_fs te F e
- 71 r 1 1 s s mit €4, f] € 4,

wobei B; = P; fiir i = 1,...,r gilt, und keines der PB; oder Q; bzw. Q; in S liegt. Ist p ein in
k|k* unverzweigtes Primideal von k%, so ist entweder op(p) = P mit L = P oder ¢(p) = QQ
mit einem Primideal P bzw. Q von k. Ist hingegen p eines der endlich vielen in k|k™ verzweigten
Primideale von kT, dann erhalten wir ¢(p) = P2 mit einem Primideal B von k, welches = P
erfiillt. Daraus schliefsen wir, daf der Kokern von ¢ den Exponenten 2 und so viele Erzeuger hat,
wie es in k|k™ verzweigte Primideale auferhalb von S gibt.

Direkt der Definition entnehmen wir, dag (Py)* = Py, gilt. Durch Ubergang zu den Quoti-
enten modulo P,f+ erhalten wir aus ¢ den Homomorphismus

¢:Cls(k™) = T8 /Py — (T2)T /P2 = (Cls(k))T,

welcher daher auch einen Kokern vom Exponenten 2 besitzt.
Sei a ein Element des Kernes von ¢. Dann ist a0, g = aO}, g mit einem o € P,f. Daher gilt

Qlle

2 ist ein Element von (Eg(k))” und somit nach Satz (2.3.11) eine Einheitswurzel. Gibt es eine
Einheitswurzel ¢ € p(k) derart, dak £ = ¢2 gilt, dann folgt ol ' = (T und a = a0y, 5. Deshalb
ist der Kern von ¢ in u(k)/(u(k))? enthalten, welches isomorph zu Z/27 ist.

(b) Der Beweis verlduft vollkommen analog. O

(2.3.13) Korollar. Sei k ein CM-Kérper und p eine ungerade Primzahl.



(a) Sei S eine (mdglicherweise leere) Menge von Primstellen von k™. In der Erweiterung k|k™
zerfalle keine in S gelegene Primstelle. Dann sind die Gruppen

Cls(k*)(p) = (Cls(k)(p))*
isomorph.

(b) Seim ein Modul von k*. Dann sind die Gruppen

Cli (p) = (CLE(p) ™
isomorph.

Beweis. Nach Satz (2.3.12) haben beide dort betrachteten Homomorphismen 2-Gruppen als
Kern und Kokern. Da diese gleichzeitig auch p-Gruppen sind, miissen sie trivial sein. O

(2.3.14) Satz. Sei k ein CM-Korper. Wir betrachten zwei Fille.

(a) Sei S eine (mdglicherweise leere) Menge von Primstellen von k™. In der Erweiterung k|k™
zerfalle keine in S gelegene Primstelle. Fir E = Eg(k) gelten dann E= = pj und (E :
EtE") <2.

(b) Seim ein Modul von k. Fir E := O;m gelten dann E~ C py und (E: ETE™) < 2.

Beweis. Die erste Behauptung ist die Aussage von Satz (2.3.11). Wir betrachten die exakte
Sequenz

1 E*E- - E S E (B,
mit ¢(z) = %(E‘)Q. Man beachte, dak ¢(z) = £ € (E7)?, also = ®(?, impliziert, daf x( !
ein Element von E* ist. Daher existiert eine Zerlegung z = (x¢~!)( in einen ET- und einen
E~-Anteil. Wegen |u(k)/p(k)?| < 2 folgt die zweite Behauptung. O

Nun haben wir alle Vorbereitungen beendet, und kénnen die von uns bendtigte Version des
Leopoldtschen Spiegelungssatzes beweisen.

(2.3.15) Satz. Seip # 2, und sei k ein CM-Korper, der die Gruppe p,(k) der p-ten Einheits-
wurzeln enthalte. Wir betrachten zwei Falle.

(a) Sei S eine (mdglicherweise leere) Menge von Primstellen von k™. In der Erweiterung k|k™
zerfalle keine in S gelegene Primstelle. Sei L|k die mazimale unverzweigte elementar abelsche
p-Erweiterung von k, in der alle Primstellen aus S voll zerlegt sind. Wir setzen

A= Cls(k)(p), 50 dap A* = Cls(k+)(p)
gilt (vgl. Korollar (2.3.13)).

(b) Sei S eine endliche Primstellenmenge von k™, welche keine Stelle iiber p enthalte, und sei
L|k die mazimale auferhalb S unverzweigte elementar abelsche p-Erweiterung von k. Setze
m = J[,cop und
A= CIl})p), so daf AT =CI(p)

gilt (vgl. Korollar (2.8.13)).

Dann liefert der Reziprozitdtshomomorphismus eine mit der komplexen Konjugation kompatible
Isomorphie
A/AP = G(L|k),

und es gilt
d(A)F <1+4d(A)".



Beweis. Wegen der Maximalitit ist die Erweiterung L|k™ in beiden Fillen galoissch. Mit
o bezeichnen wir wiederum die komplexe Konjugation in k|k™. Wir setzen H := G(L|k). Die
o-invariante Isomorphie A/AP = G(L|k) folgt aus Korollar (2.3.6) und den Sétzen (1.2.21) bzw.
(1.2.24).

Aus Satz (2.3.9) erhalten wir eine Untergruppe B C k*/(k*)P mit L = k(B'/?) und die
Kummer-Paarung H x B — p,(k). Die o-Invarianz impliziert sofort, daf

<H"B">=1=<H ,B” >
gilt, denn (p,(k))* enthélt nur die 1. Somit ist die Paarung
H" x B~ — p,(k)
nicht-ausgeartet, und daher gilt
d(A)T =d(AT) =d(H') =d(B").

Aus Lemma (2.3.10) lesen wir ab, daf es zu jedem b € B, welches modulo (£*)P bestimmt ist,
ein Ideal a € J im Fall (a) und im Fall (b) a € J™ (wir nehmen das Bild unter der Projektion
T — J;) gibt mit (b) = aP. Somit erhalten wir einen Homomorphismus

¢:B— A b—a.
Es ist klar, dafs ¢ wohldefiniert und o-invariant ist, so daf sich ein Homomorphismus
Y:B” = (pA)”
ergibt.
Im Fall (a) ist ein Element b € B im Kern von ¢, falls (b) = (a)? fiir ein a € Eg(k) gilt. Daher
ist
ker(y) < (Es(k)/(Es(k))?)™.
Im Fall (b) ergeben analoge Uberlegungen
Fer(u) < (O (O n)P)

Dabei wurde Satz (2.3.11) benutzt.
Nun folgt aus Satz (2.3.14) mittels Indexbetrachtungen, daff

(Bs(k)/ (s (k))")™ = p(k)/(1(k))? baw. (O o/ (OF o))~ € pulk)/(u(k))”
gilt. Wir haben also insgesamt die exakte Sequenz
1 — ker(y) — B~ % (,4)7,
und daher erhalten wir
d(B™) < d(ker(¢)) + d(,A)~ < d(Z/pZ) + d(A™) = 1+ d(A)~.

Wegen der oben gezeigten Gleichheit d(B~) = d(A)™" ist der Satz bewiesen. |



2.4. Potenzreiche Galois-Gruppen von CM-Korpern

Dieser Abschnitt enthélt die zentralen Resultate zu potenzreichen Galois-Gruppen bestimmter
p-Erweiterungen von CM-Korpern, wie sie in [W] zu finden sind und eine Verallgemeinerung auf
auferhalb einer Primstellenmenge S unverzweigte Erweiterungen.

Sei k|kT ein CM-Kérper und p # 2 eine Primzahl.

Wir betrachten die beiden folgenden Situationen:

@D e

(IT) °

S sei eine (moglicherweise leere) Menge von Primstellen von k.
In k|k™ zerfalle keine in S gelegene Primstelle.

Lg(p)|k sei die maximale unverzweigte galoissche p-Erweiterung von k, in welcher alle
Stellen aus S voll zerlegt sind.

G := G(Ls(p)|k) sei die Galois-Gruppe dieser Erweiterung.

E :=Es(Ls(p)) = lim E(K), wobei E(K) := Eg(K) die Gruppe der
Ls(p)DKDk, K|k endlich

S-Einheiten einer endlichen galoisschen Korpererweiterung Lg(p) O K D k bezeichnet.

S sei eine endliche Menge von Primstellen von k™.

In S sei keine iiber p liegende Stelle (deren Menge wir mit S, bezeichnen) enthalten:

SpNS=0.

ks(p)|k sei die maximale auferhalb von S unverzweigte galoissche p-Erweiterung von

k.

G := G(ks(p)|k) sei die Galois-Gruppe dieser Erweiterung.

BE(K) := O ,, wobei kg(p) O K eine endliche galoissche Kérpererweiterungen von &
sei. Dabei ist m der Modul [],c4p.

E = kas(p),m = lim E(K), wobei der direkte Limes iiber die in kg(p) enthaltenen
K

endlichen galoisschen Erweiterungen von k lauft.

Wir halten fest, daf in beiden Fillen die Abelisierung von G endlich ist (Abschnitt 1.2.1 bzw.
Satz (1.2.7)). Die Erweiterungen Lg(p)|k™ und kg(p)|k™ sind beide galoissch, so daR wir eine
Aktion der komplexen Konjugation auf G bekommen, welche wir mit o bezeichnen.

Wir wollen nun voraussetzen, daf G potenzreich ist und Konsequenzen betrachten.

Mithilfe von Satz (2.2.21) wollen wir die Mdglichkeiten fiir d* := d(G)' und d~ := d(G)~
einschréinken. Dazu werden wir eine obere Schranke fiir

dimg, (,H2(G,Qy/Z,)")

suchen. Auf diese Weise werden wir auf den Fall d(G) < 3 gefithrt werden. An dieser Stelle gehen
entscheidend die im Kapitel I bewiesenen Dualitdtssitze ein.
In der Tat liefert Korollar (2.3.8) angewendet im Fall i = 0 eine o-invariante Surjektion

E(k) - HY(G,E) = E(k)/NgE = H*(G,Q,/Z,)"

und daher insbesondere nach Satz (2.3.11) eine Surjektion

pp(k) 2 (E(k)/p)™ — (H*(G,Qp/Zy)7)".

Dies impliziert also

0 falls py(k) € k

. 2 -
dime, (,H(G, Qp/Zp)") < {1 falls pp(k) C k.



Aus Satz (2.2.21) ersehen wir nun die Ungleichung
dt-d”-<d +1.
Daher kénnen nur die folgenden Félle auftreten:
d” =0oder d" =0 oder d* =1 oder (d* =2und d~ =1 und p,(k) C k).

Wir wollen d* # 1 annehmen. Somit erhalten wir dann aufer in den Sonderfillen d* = 0 und
d~ = 0 die Ungleichung d(G) < 3.
Im Fall d(G)" = 0 ist G nach Satz (2.2.15) abelsch, in unserem Fall also endlich.
Sind die p-ten Einheitswurzeln in k enthalten, so liefert der Leopoldtsche Spiegelungssatz (Satz
(2.3.15)) die Ungleichung
dt <14d,

welche den Fall d— = 0 ausschliefst.
Nun gibt es einen Index i, so dak G; =: P eine uniforme Gruppe ist. Nach Lemma (2.2.20)
gilt
d(P)" <d* und d(P)” <d .
Wir wollen annehmen, daff d* # 0 und d~ # 0 und somit d(P) < d(G) < 3 gilt. Wire d(P) < 3,
so hitte P nach Korollar (2.2.19) eine unendliche Abelisierung, was aber den Voraussetzungen
widerspricht. Deshalb kénnen wir uns auf den Fall

d(G) =d(P) =3, d*=d(P)* und d~ = d(P)~

beschrianken.

Das gruppentheoretische Resultat des Satzes (2.2.22) liefert nun einen Widerspruch.

Wir fassen die Diskussion zusammen im folgenden Theorem, welches Theorem 3.1 aus [W]
verallgemeinert.

(2.4.1) Theorem. Die Voraussetzungen seien die in (I) oder (II) am Beginn des Abschnitts
gegebenen. Falls die p-ten Einheitswurzeln nicht in k enthalten sind, wollen wir zusdatzlich d(G)~ #
0 fordern.

Ist G potenzreich, dann ist G endlich oder d(G)™ = 1.

Fiir den Fall (k) € k und d(G)" = 1 oder d(G)~ = 0 werden wir keine Aussage machen
kénnen. Beschrénken wir uns jedoch auf uniforme Gruppen, so 1t sich noch mehr sagen.

d(G)" = 1 bedeutet nach Korollar (2.3.13) im Fall (I), daR die Galois-Gruppe H der maximalen
unverzweigten abelschen p-Erweiterung von kT, welche in S voll zerlegt ist, den Rang 1 hat, und
im Fall (IT), da die Galois-Gruppe H der maximalen auferhalb S unverzweigten abelschen p-
Erweiterung von k* ebenfalls d(H) = 1 erfiillt. In beiden Fillen existiert somit eine echte abelsche
p-Erweiterung K von k™ innerhalb von Lg(p) bzw. kg(p), welche total reell ist, da unendliche
Stellen in p-Erweiterungen nicht verzweigen. Setzen wir K := kK, so erhalten wir also eine echte
endliche Erweiterung von CM-Korpern.

Investieren wir ein weiteres Mal den Dualitétssatz aus Korollar (2.3.8), so erhalten wir eine
o-invariante Surjektion:

H*(G,Q,/Z,)" = H°(G,E) —» H°(G(K|k), E(K)).
Da K|k CM-Kérper sind, gilt nach Korollar (2.3.4) G(K|k) = G(K'|kT) = G(K|k)* und daher
HO((G(K k), E(K))/p)~ = H(G(K|k), p(K) () /p,

vorausgesetzt j1,(k) C Ok = E(K) im Fall (IT). Wir haben somit insgesamt die Surjektion

(pH* (G, Qp/Zp)7)" — HY(G(KK), p(K)(p))/p-



Ist G uniform mit endlicher Abelisierung, so folgt aus Satz (2.2.21), dak ,H*(G, Q,/Z,)" trivial
ist. Wir erhalten also einen Widerspruch, falls die Gruppe H(G(K|k), u(K)(p))/p nicht trivial
ist. Nehmen wir z. B. an, daR u(K)(p) = p(k)(p) gilt, und dak k die p-ten Einheitswurzeln enthélt,
dann erhalten wir R

AOGUKIR), w(K)(9))/p = n(k)(p)/p = Z/.

Diesen Fall erreichen wir offenbar durch die Forderung, da Adjunktion von i,s+1 im Fall (I) nicht
unverzweigt und in S voll zerlegt und im Fall (II) auferhalb S nicht unverzweigt ist, falls 1ps (k)
die Gruppe der in k enthaltenen Einheitswurzeln von p-Potenzordnung ist.

Als Resultat erhalten wir folgendes Theorem in Verallgemeinerung von [W], Theorem 3.2.

(2.4.2) Theorem. Die Voraussetzungen seien die in (I) oder (II) am Beginn des Abschnitts
gegebenen. Der CM-Korper k|kt enthalte die p-ten FEinheitswurzeln. Im Fall (II) gelte aufer-
dem (k) C O . = E(K). Es sei u(k)(p) = pps(k) die Gruppe der Einheitswurzeln von p-
Potenzordnung in k. Ist d(G)™ =1, so fordern wir zusdtzlich

im Fall (T): k(p,st1)|k ist nicht unverzweigt und in S voll zerlegt,
im Fall (II): k(pps+1)|k ist nicht unverzweigt auferhalb S.

Dann ist G nicht uniform.
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