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1 A short review

Let E be a field of characteristic p > 0 and denote by σ : E → E the absolute Frobenius
endomorphism x 7→ xp. Based on the notion of étale ϕ-module, introduced in the last
talk, the following theorem had been proved:

Theorem 1.1 There are equivalences of categories

RepFp
(GE)

V //Met
ϕ (E),

M
oo

where V assigns to M ∈Met
ϕ (E) the mod p Galois representation (Es⊗EM)ϕ=id of GE

and M assigns to V ∈ RepFp
(GE) the étale ϕ-module ((Es ⊗Fp V )G, σ ⊗ id) on E.

Recall that an étale ϕ-module is a finite dimensional E vector space, equipped with a
σ-semi-linear endomorphism ϕ such that the linearization of ϕ is an isomorphism.
The first aim of this talk is to present a generalization to p-adic Galois representations
of GE . Recall from last time that

• OE is a Cohen ring of E.

• E := Frac(OE).
• ObEunr is the p-adic completion of lim

−→F/E
OF where the limit is over all finite unram-

ified extensions F/E , where unramified means that the extension F/E of residue
fields is finite separable and that p is a uniformizer of OF .

• Êunr := Frac(ObEunr).

If E is perfect then OE is unique (up to unique isomorphism) and isomorphic to W (E)
and ObEunr

∼= W (Es).
A Frobenius endomorphism: Using a basic property of Cohen rings, there exists a
lift σ : OE → OE of σ : E → E and we fix one such. It has a unique extension

σ : ObEunr −→ ObEunr

which reduces to σ : Es → Es on residue fields. [For F over E finite, the residue field F of
F contains Eσ(F ), and hence by standard field theory there exists a unique extension of
σ to F . The extension from lim

−→F/E
F to the p-adic completion is the unique continuous

one.] Abbreviate
G := GE ∼= Gal(Eunr/E) ∼= Autcont(Êunr /E).
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2 p-adic Galois representations of GE

Theorem 2.1 There are equivalences of categories

RepZp
(GE)

V //Met
ϕ (OE),

M
oo

where V assigns to M ∈Met
ϕ (OE) the Galois representation V(M) := (ObEunr ⊗OEM)ϕ=id

of GE and M assigns to V ∈ RepZp
(GE) the étale ϕ-module M(V ) := (ObEunr ⊗ZpV )G

on OE with ϕ = σ ⊗ id and where V and M are quasi-inverse to each other.

Example 2.2 Perhaps the simplest Cohen ring which is not a ring of Witt vectors is
the following: Let k be a perfect field of characteristic p and W := W (k) its ring of Witt
vectors. Let E := k((x)). Then a Cohen ring of E is given by

OE :=
{∑
i∈Z

aix
i | ∀i : ai ∈W and lim

i→∞
a−i = 0

}
.

One can easily verify that OE is a complete discrete valuation ring with maximal ideal
pOE and residue field E. A Frobenius lift is σ : OE → OE sending λ ∈W to σ(λ), where
σ : W →W is the unique lift of σ restricted to k, and sending x to xp. Another possible
choice for the image of x is xp + px.

Proposition 2.3 The following hold:

(a) (ObEunr)G = OE and (Êunr)G = E.

(b) (ObEunr)σ=id = Zp and (Êunr)σ=id = Qp.

Proof: ‘⊃’ is clear in all cases. (For (b) note that id is a lift to Zp of σ on Fp).
‘⊂’: For (b) note that (ObEunr)σ=id ⊂ (W (Es))σ=id = W (Fp) by direct inspection of ϕ on
Witt vectors. The assertions of (a) are clear for the uncompleted rings OEunr and Eunr.
To prove (a) one can either use a similar argument as for (b), or one can consider the
following diagram

0 // pn(ObEunr)G // (ObEunr)G // (ObEunr /p
n)G // H1(. . .)

0 // pn(OEunr)G //
?�

OO

(OEunr)G //
?�

OO

(OEunr/pn)G // H1(G,OEunr).

The term H1(G,OEunr) is zero by the additive Hilbert 90 theorem, and thus the second
row is

0 −→ pnOE −→ OE −→ OE /pn −→ 0.

So the diagram yields that the p-adic completion of (ObEunr)G is a subring of OE =
lim
←−n
OE /pn. By continuity of the action of G, the ring (ObEunr)G is p-adically complete

which completes the proof.
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For the proof of Theorem 2.1, we need the following

Key Lemma 2.4 (a) Suppose X ∈Met
ϕ (ObEunr). Then

ObEunr ⊗ZpXϕ=id
∼= X. (Lang’s Thm)

(b) Suppose X is a continuous G-module, finitely generated over ObEunr. Then

ObEunr ⊗OEX
G ∼= X. (Hilbert 90)

Note that (b) (for all X . . . ) is equivalent to H1
cont(G,Aut(X)) = {1} (for all such X).

Proof: We first explain why it will suffice to prove both parts of the lemma for ObEunr-
modules X of finite length. So suppose this is done and consider X = lim

←−n
X/pnX.

Having the assertions of the lemma for all X/pnX, one easily deduces that the inverse
limit systems (X/pnX)ϕ=id or (X/pnX)G, respectively, have surjective transition maps.
Since G and ϕ act continuously, it follows that the inverse limits of these agree with
Xϕ=id or XG, respectively. The assertions for X in the lemma now directly follows from
the assertions for all X/pnX (of finite length) in the inverse limit system.
Suppose now that len(X) < ∞. The aim is to reduce the proof to assertions proved
in the last talk, i.e., to the case where X is a vector space over Es. We induct over
n ∈ N such that pnX = 0. Define X ′ := {x ∈ X | px = 0} and consider the short exact
sequence

0 −→ X ′ −→ X −→ X ′′ −→ 0.

Taking ϕ-fixed points, or G invariants, respectively, yields the exact sequences

0 −→ (X ′)ϕ=id −→ (X)ϕ=id −→ (X ′′)ϕ=id −→ X ′/(ϕ− id)X ′, (1)

0 −→ (X ′)G −→ (X)G −→ (X ′′)G −→ H1
cont(G,X

′). (2)

The module X ′ is p-torsion and hence a finite dimensional vector space over Es. So
to it we can apply the results of last time. In case (a) it will be an étale ϕ-sheaf over
Es. Any such is trivial, i.e., isomorphic to a finite sum of copies of (Es, σ) (by Lang’s
Theorem). Since ϕ− id is surjective on Es, the right-most term of (1) is zero. Similarly,
in case (b) the results from last time imply that X ′ is a trivial G-module over Es, i.e.,
isomorphic to a finite sum of copies of Es with the canonical Galois action (by Hilbert
90). By the additive Hilbert 90, the right-most term of (2) is zero.
To finish the proof (say, only in case (b)), consider the following diagram:

0 // ObEunr ⊗OE (X ′)G //

��

ObEunr ⊗OEXG

��

// ObEunr ⊗OE (X ′′)G

��

// 0

0 // X ′ // X // X ′′ // 0.

By the result from last time, the vertical arrow on the left is an isomorphism, because X ′

is trivial. By our induction hypothesis, the vertical arrow on the right is an isomorphism.
Hence by the Snake Lemma, then central vertical arrow is an isomorphism.

3



Corollary 2.5 The following natural maps are isomorphisms:

(a) For T ∈ RepZp
(G) and M(T ) = (ObEunr ⊗ZpT )G the map

αT : ObEunr ⊗OEM(T ) −→ ObEunr ⊗ZpT.

(b) For M ∈Met
ϕ (OE) and V(M) = (ObEunr ⊗OEM)ϕ=id the map

αM : ObEunr ⊗ZpV(M) −→ ObEunr ⊗OEM.

The injectivity of the maps follows from the ‘Artin trick’ – note that the results of
the last talk are not directly applicable to the d.v.r. ObEunr . By applying the previous
lemma to X = ObEunr ⊗ZpT and X = ObEunr ⊗OEM , respectively, it follows that the α?

are isomorphisms.

Proof of Theorem 2.1: By applying V to the isomorphism αT and M to the isomor-
phism αM , Proposition 2.3 yields that V ◦M and M ◦V are naturally isomorphic to the
respective identity functors.

3 The ring R

The aim of this part of the talk is to introduce a ring R which will be useful when
describing p-adic Galois representations of the absolute Galois group GK of a local field
K. Before we come to its definition, we try to give a motivation.

3.1 A motivation

Let ε(n) denote a primitive pn-th root of unity in Qp. (Later we will assume that
(ε(n+1))p = ε(n) for all n.) Define Kcyc :=

⋃
nK(ε(n)). Using that Gal(Qcyc

p /Qp) ∼= Z∗p ∼=
Zp × F∗p ( or ∼= Z2 × Z/(2) for p = 2) one deduces

Gal(Kcyc/K) ∼= Zp ×∆K

for a finite subgroup ∆K ⊂ F∗p (or ∆K ⊂ Z/(2) for p = 2). One defines K∞ := (Kcyc)∆K

and ΓK := Gal(K∞/K). Consider

GK

K

HKKcyc

K∞

∆K

K

ΓK

K0

tot. ramif.

Qp.

unr.
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An important observation by Fontaine-Wintenberger (?) is that there exists a field of
characteristic p, the field EK of norms of K such that

HK
∼= Gal(Es

K/EK).

One has EK
∼= kK((πK)) for kK the residue field of K and πK an indeterminate. We

will not prove this, but only recall the definition of EK : Define Kn = (K∞)p
nΓK and

EK = lim
←−

(K0

NormK1/K0←− K1

NormK2/K1←− K2 ←− . . .)

One can prove that that EK is also isomorphic to

EK = lim
←−

(K∞
x 7→xp

←− K∞
x 7→xp

←− K∞ ←− . . .)

We will bypass the theory of field of norms. But the second description of EK is
reminiscent of the defintion of R we are about to learn.

3.2 The ring R(Ā)

Let Ā be a ring of characteristic p and ϕ : Ā → Ā : x → xp be the Frobenius endomor-
phism of Ā.

Definition 3.1

R(Ā) := lim
←−

(Ā
ϕ←− Ā ϕ←− Ā ϕ←− . . .)

= {(xn) ∈ ĀN | ∀n : xpn+1 = xn}

The ring R(Ā) is perfect and reduced, because (xn) = (xn+1)p and if (xn)p
m

= 0, then
(xn+m) = (0). Let

θm : R(Ā) −→ Ā : (xn) 7→ xm.

The following lemma, may later be useful:

Lemma 3.2 Suppose R̃ ⊂ R(Ā) is a topologically closed subring such that θm(R̃) =
θm(R(Ā)) for all m. Then R̃ = R(Ā).

Proof:

R(Ā) = {(xn) | . . .} = lim
←−

Im(θ1, . . . , θm)

= lim
←−

(θ1, . . . , θm)(R̃) = R̃.

Note that if ϕ is injective, then R(Ā) is simply the intersection
⋃
Āp

n
. The cases we

will be interested in are cases where Ā is highly non-reduced, such as OK∞/pOK∞ .

Suppose A is a separated p-adically complete topological ring, i.e., A ∼= lim
←−

A/pn. Set
Ā := A/p.

Proposition 3.3 The map

SA := {(x(n)) ∈ AN | ∀n : (x(n+1))p = x(n)} −→ R(Ā) : (x(n)) 7→ (x(n) mod pA)n

is a bijection. It is a ring isomorphism if on SA one defines

(x(n)) · (y(n)) = (x(n) · y(n)) and (x(n)) + (y(n)) =
(

lim
m→∞

(x(n+m) + y(n+m))p
m
)
n
.
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Proof: Define R(Ā)→ SA : (xn)→ (x(n)) as follows: Lift xn ∈ Ā to x̂n ∈ A for all n.
Then x̂pn+1 − x̂n ∈ pA because mod p the element is xpn+1 − xn = 0. Using the binomial
theorem for (x+ y)p, one deduces for all n:

x̂p
m+1

n+1 − x̂
pm

n ∈ pm+1A.

It follows that for all n the sequence (x̂n+m)p
m

is a Cauchy sequence in m. Defining x(n)

as its limit, it follows that (x(n)) is in SA and it obviously reduces to (xn) modulo pA.
The x(n) are independent of the choice of the lifts x̂n. The sequence is also the unique
sequence in SA lifting R(Ā). This shows that the map is a bijection.
It remains to see that for (xn) and (yn) in R(Ā) with lifts (x(n)) and (y(n)) in SA the
given addition formula in SA describes the lift of (xn+yn). But this is clear: (x(n) +y(n))
is a lift of xn + yn and by the formula which gives the canonical lifts from any sequence
of lifts, we obtain the addition formula of the proposition.

3.3 The ring R

Let C := K̂.

Definition 3.4

R := R(OK/pOK) = R(OC/pOC) = {(x(n)) ∈ ON
C | ∀n : (xn+1)p = xn}

vR((x(n))) := vC(x(0)) ∀(x(n)) ∈ R.

Theorem 3.5 The following hold:

(a) The ring R is perfect of characteristic p.

(b) (R, v) is a complete valuation ring with valuation v = vR, with v(R) = Q≥0∪{∞}
with maximal ideal mR = {x ∈ R | v(x) > 0} and residue field k̄ = Fp.

(c) If the Teichmüller lift k̄ → OKunr
0
∼= W (k̄) is denoted a 7→ â, then k̄ → R is the

map a 7→ (âp−n)n.

(d) Frac(R) is algebraically closed.

It follows that R is the completion of the algebraic closure of k̄((x)) for any x ∈ R with
strict positive valuation. (Hence R ∼= Ês

K .) Also, note that one has the identification

Frac(R) = {(x(n)) ∈ CN | ∀n : (x(n+1))p = x(n)}.

Proof: Part (a) is clear. Part (c) is straightforward from the previous proposition. We
first prove (b): Since C is algebraically closed it is closed under taking p-th roots and
hence any c ∈ C can occur as c(0) in a sequence (c(n)) such that (c(n+1))p = (c(n)) for all
n. Hence vR(R) = vC(OC) is as described. Also vR((x(n))) =∞ if and only if x(0) = 0
which is equivalent to all x(n) being zero.
The condition v(x·y) = v(x)+v(y) is straightforward from the definition of multiplication
on sequences x = (x(n)) and y = (y(n)):

vR((x(n)) · (y(n))) = vR((x(n) · y(n))) = vC(x(0)y(0)) = vC(x(0)) + vC(y(0)).
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The ultrametric triangle inequality follows from

vR(x+ y) = vR((x(n)) + (y(n))) = vR

(
lim
m→∞

(x(n+m) + y(n+m))p
m
)

= vC

(
lim
m→∞

(x(m) + y(m))p
m
)

= lim
m→∞

pm vC

(
(x(m) + y(m))

)
︸ ︷︷ ︸
≥min{vC(x(m)),vC(y(m))}

≥ lim inf
m→∞

(
min

{
pmvC(x(m))︸ ︷︷ ︸

=vC(x(0))

, pmvC(y(m))︸ ︷︷ ︸
=vC(y(0))

})
= min{vR(x), vR(y)}.

For (b) it remains to show that v defines the topology on R given by the inverse limit
topology (of the discrete sets OC/pOC) and that v is complete. For the topology, note
that a neighborhood basis of R is given by the sets (Ker(θm))m. Now for a sequence
(x(n)) we have

(x(n)) ∈ Ker(θm)⇐⇒ (x(m) mod p ≡ 0OC ⇐⇒ vC(x(m)) ≥ 1⇐⇒ vR((x(n))) ≥ pm.

Thus the topologies agree. The completeness follows from the discreteness of OC/pOC :
If in

∑
rn the rn ∈ R tend to zero, then under any θm the sum becomes stationary and

thus it converges.
We finally prove (d): Consider an irreducible polynomial

P (x) = xd + ad−1x
d−1 + . . .+ a1x+ a0 ∈ R[x].

(It suffices to consider coefficients in R instead of Frac(R).) Because R is perfect, we
may assume that P is separable, i.e., that it has no multiple roots.
Write ai = (a(n)

i ) ∈ SOC
and consider

P (n)(x) = xd + a
(n)
d−1x

d−1 + . . .+ a
(n)
1 x+ a

(n)
0 ∈ OC [x].

Because C is algebraically closed, the polynomial P (n) has roots α(n)
1 , . . . , α(n)

d in C.
We would like to see that for n� 0 these roots are pairwise distinct modulo pOC . For
this we show that the discriminants of the P (n) have vC valuations converging to 0, so
that also the valuation of the difference of distinct roots has to converge to zero.
The discriminant of P (n) is the Resultant of P (n) and (P (n))′. The latter can be com-
puted from a determinant containing as its entries the coefficients of P (n) and of (P (n))′.
Determinants can be explicitly written in terms of sums and products of matrix entries.
Based on this, one can verify the following: If (aij) ∈ Md(R) and aij = (a(n)

ij ), then

det(a(n+m)
ij )p

m m→∞−→ (det(aij))(n). If one applies this to the above way of computing the
discriminant of P , it follows that the sequence in C (in upper indexing) representing
discr(P ) is given by

discr(P )(n) = lim
m→∞

discr(P (n+m))p
m
.

Since P is has no multiple roots, discr(P ) is non-zero, and so vC(discr(P )(0)) ≥ 0 is
non-zero. Clearly vC(discr(P )(n)) = 1

pn vC(discr(P )(0)), and so it follows that

discr(P (n)) n→∞−→ 0.

In particular, for all n� 0 we can order (for fixed n) the α(n)
i in such a way that they

form sequences in OC satisfying

(α(n+1)
i )p = α

(n)
i

(for all n � 0). It easily follows that these sequences define elements of R which are
roots of P .
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